
Chapter 13

A SURVEY OF DISTRIBUTED MINING OF DATA
STREAMS

Srinivasan Parthasarathy
Department of Computer Science and Engineering
The Ohio State University
srini@cse.ohio-state.edu

Am01 Ghoting
Department of Computer Science and Engineering
The Ohio State University

Matthew Eric Otey
Department of Computer Science and Engineering
The Ohio State University
otey Ocse.ohio-state.edu

Abstract With advances in data collection and generation technologies, organizations and
researchers are faced with the ever growing problem of how to manage and
analyze large dynamic datasets. Environments that produce streaming sources of
data are becoming common place. Examples include stock market, sensor, web
click stream, and network data. In many instances, these environments are also
equipped with multiple distributed computing nodes that are often located near
the data sources. Analyzing and monitoring data in such environments requires
data mining technology that is cognizant of the mining task, the distributed nature
of the data, and the data influx rate. In this chapter, we survey the current state
of the field and identify potential directions of future research.

1. Introduction
Advances in technology have enabled us to collect vast amounts of data from

various sources, whether they be from experimental observations, simulations,

290 DATA STREAMS: MODELS AND ALGORITHMS

sensors, credit card transactions, or from networked systems. To benefit from
these enhanced data collecting capabilities, it is clear that semi-automated in-
teractive techniques such as data mining should be employed to process and
analyze the data. It is also desirable to have interactive response times to client
queries, as the process is often iterative in nature (with a human in the loop).
The challenges to meet these criteria are often daunting as detailed next.

Although inexpensive storage space makes it possible to maintain vast vol-
umes of data, accessing and managing the data becomes a performance issue.
Often one finds that a single node is incapable of housing such large datasets.
Efficient and adaptive techniques for data access, data storage and communi-
cation (if the data sources are distributed) are thus necessary. Moreover, data
mining becomes more complicated in the context of dynamic databases, where
there is a constant influx of data. Changes in the data can invalidate existing
patterns or introduce new ones. Re-executing the algorithms from scratch leads
to large computational and I/O overheads. These two factors have led to the
development of distributed algorithms for analyzing streaming data which is
the focus of this survey article.

Many systems use a centralized model for mining multiple data streams [2].
Under this model the distributed data streams are directed to one central location
before they are mined. A schematic diagram of a centralized data stream mining
system is presented in Figure 13.1. Such a model of computation is limited in
several respects. First, centralized mining of data streams can result in long
response time. While distributed computing resources may be available, they
are not fully utilized. Second, central collection of data can result in heavy
traffic over critical communication links. If these communication links have
limited network bandwidth, network I/O may become a performance bottleneck.
Furthermore, in power constrained domains such as sensor networks, this can
result in excessive power consumption due to excessive data communication.

To alleviate the aforementioned problems, several researchers have proposed
a model that is aware of the distributed sources of data, computational resources,
and communication links. A schematic diagram of such a distributed stream
mining system is presented in Figure 13.1 and can be contrasted with the cen-
tralized model. In the model of distributed stream mining, instead of offloading
the data to one central location, the distributed computing nodes perform parts
of the computation close to the data, while communicating the local models
to a central site as and when needed. Such an architecture provides several
benefits. First, by using distributed computing nodes, it allows the derivation
of a greater degree of parallelism, thus reducing response time. Second, as
only local models need to be communicated, communication can potentially
be reduced, improving scalability, and reducing power consumption in power
constrained domains.

A Survey of Distributed Mining of Data Streams

I FINALMODEL I

DATA MINING
ALGORITHM

FIh'AL MODEL 7
DATA MINING f i

\ ALGORITHM)

DATA INTEGRATION

Figure 13.1. Centralized Stream Processing Architecture (left) Distributed Stream Processing
Architecture (right)

This chapter presents a brief overview of distributed stream mining algo-
rithms, systems support, and applications, together with emerging research di-
rections. We attempt to characterize and classify these approaches as to whether
they belong in the centralized model or the distributed model. The rest of this
chapter is organized as follows. First, we present distributed stream mining
algorithms for various mining tasks such as outlier detection, clustering, fre-
quent itemset mining, classification, and summarization. Second, we present an
overview of distributed stream mining in resource constrained domains. Third,
we summarize research efforts on building systems support for facilitating dis-
tributed stream mining. Finally, we conclude with emerging research directions
in distributed stream mining.

2. Outlier and Anomaly Detection

The goal in outlier or anomaly detection is to find data points that are most
different from the remaining points in the data set [4]. Most outlier detection
algorithms are schemes in which the distance between every pair of points
is calculated, and the points most distant from all other points are marked as
outliers [29]. This is an O(n2) algorithm that assumes a static data set. Such
approaches are difficult to extend to distributed streaming data sets. Points in
these data sets arrive at multiple distributed end-points, which may or may not
be compute nodes, and must be processed incrementally. Such constraints lead
us away from purely distance-based approaches, and towards more heuristic

292 DATA STREAMS: MODELS AND ALGORITHMS

techniques. Note that the central issue in many anomaly detection systems, is
to identify anomalies in real-time or as close to real time as possible thus making
it a natural candidate for many streaming applications. Moreover, often times
the data is produced at disparate sites making distributed stream mining a natural
fit for this domain. In this section we review the work in outlier or anomaly
detection most germane to distributed stream mining.

Various application-specific approaches to outlier/anomaly detection have
been proposed in the literature. An approach [39] has been presented for dis-
tributed deviation detection in sensor networks. This approach is tailored to
the sensor network domain and targets misbehaving sensors. The approach
maintains density estimates of values seen by a sensor, and flags a sensor to
be a misbehaving sensor if its value deviates significantly from the previously
observed values. This computation is handled close to the sensors in a dis-
tributed fashion, with only results being reported to the central server as and
when needed.

One of the most popular applications of distributed outlier detection is that
of network intrusion detection. Recent trends have demanded a distributed
approach to intrusion detection on the Internet. The first of these trends is a
move towards distributed intrusions and attacks, that is to say, intrusions and
attacks originating from a diverse set of hosts on the internet. Another trend
is the increasing heterogeneous nature of the Internet, where different hosts,
perhaps residing in the same subnetwork have differing security requirements.
For example, there have been proposals for distributed firewalls [20] for fulfill-
ing diverse security requirements. Also, the appearance of mobile and wireless
computing has created dynamic network topologies that are difficult, if not
impossible, to protect from a centralized location. Efficient detection and pre-
vention of these attacks requires distributed nodes to collaborate. By itself, a
node can only collect information about the state of the network immediately
surrounding it, which may be insufficient to detect distributed attacks. If the
nodes collaborate by sharing network audit data, host watch lists, and models of
known network attacks, each can construct a better global model of the network.

Otey et a1 [36], present a distributed outlier detection algorithm targeted at
distributed online streams, specifically to process network data collected at dis-
tributed sites. Their approach finds outliers based on the number of attribute
dependencies violated by a data point in continuous, categorical, and mixed
attribute spaces. They maintain an in-memory structure that succinctly sum-
marizes the required dependency information. In order to find exact outliers
in a distributed streaming setting, the in-memory summaries would need to be
exchanged frequently. These summaries can be large, and consequently, in a
distributed setting, each distributed computing node only exchanges local out-
liers with the other computing nodes. A point is deemed to be a global outlier
if every distributed node believes it to be an outlier based on its local model

A Survey of Distributed Mining of Data Streams 293

of normalcy. While such an approach will only find approximate outliers, the
authors show that this heuristic works well in practice. While the authors report
that to find exact outliers they need to exchange a large summary which leads
to excessive communication, it could be possible to exchange only decisive
parts of the summary, instead of the entire summary, in order to more accu-
rately detect the true outliers. Furthermore, their in-memory summaries are
large, as they summarize a large amount of dependency information. Reducing
this memory requirement could potentially allow the use of this algorithm in
resource-constrained domains.

EMERALD is an approach for collaborative intrusion detection for large net-
works within an enterprise [42]. This approach allows for distributed protection
of the network through a hierarchy of surveillance systems that analyze network
data at the service, domain, and enterprise-wide levels. However, EMERALD
does not provide mechanisms for allowing different organizations to collabo-
rate. Locasto et a1 [33] examine techniques that allow different organizations
to do such collaboration for enhanced network intrusion detection. If organi-
zations can collaborate, then each can build a better model of global network
activity, and more precise models of attacks (since they have more data from
which to estimate the model parameters). This allows for better characterization
and prediction of attacks. Collaboration is achieved through the exchange of
Bloom filters, each of which encodes a list of IP addresses of suspicious hosts
that a particular organization's Intrusion Detection System (IDS) has detected,
as well as the ports which these suspicious hosts have accessed. The use of
Bloom filters helps both to keep each collaborating organization's information
confidential and to reduce the amount of data that must be exchanged.

A major limitation of this approach is that information exchanged may not
be sufficient to identify distributed attacks. For example, it is possible that
an attack may originate from a number of hosts, none of which are suspicious
enough to be included on any organization's watch list. However, the combined
audit data collected by each organization's IDS may be sufficient to detect that
attack. To implement such a system, two problems must be addressed. The
fist is that each organization may collect disjoint sets of features. Collaborating
organizations must agree beforehand on a set of common features to use. Some
ideas for common standards for intrusion detection have been realized with the
Common Intrusion Detection Framework (CIDF) [31]. The second problem is
that of the privacy of each organization's data. It may not be practical to use
Bloom filters to encode a large set of features. However, techniques do exist
for privacy-preserving data mining [28,23,32] that will allow organizations to
collaborate without compromising the privacy of their data.

There have been other approaches for detecting distributed denial-of-service
attacks. Lee et a1 have proposed a technique for detecting novel and distributed
intrusions based on the aforementioned CIDF [31]. The approach not only

294 DATA STREAMS: MODELS AND ALGORITHMS

allows nodes to share information with which they can detect distributed attacks,
but also allows them to distribute models of novel attacks. Yu et a1 propose a
middleware-based approach to prevent distributed denial of service attacks [45].
Their approach makes use of Virtual Private Operation Environments (VPOE)
to allow devices running the middleware to collaborate. These devices can act
as firewalls or network monitors, and their roles can change as is necessary.
Each device contains several modules, including an attack detection module,
a signaling module for cooperating with other devices, and policy processing
modules.

Some work in network intrusion detection has been done in the domain of
mobile ad hoc networks (MANETs) [47, 181, where nodes communicate over
a wireless medium. In MANETs, the topology is dynamic, and nodes must
cooperate in order to route messages to their proper destinations. Because of
the open communication medium, dynamic topology, and cooperative nature,
MANETs are especially prone to network intrusions, and present difficulties
for distributed intrusion detection.

To protect against intrusions, Zhang at a1 have proposed several intrusion
detection techniques [46,47]. In their proposed architecture, each node in the
network participates in detection and response, and each is equipped with a
local detection engine and a cooperative detection engine. The local detection
engine is responsible for detecting intrusions from the local audit data. If a node
has strong evidence that an intrusion is taking place, it can initiate a response to
the intrusion. However, if the evidence is not sufficiently strong, it can initiate a
global intrusion detection procedure through the cooperative detection engine.
The nodes only cooperate by sharing their detection states, not their audit data,
and so it is difficult for each node to build an accurate global model of the
network with which to detect intrusions. In this case, intrusions detectable only
at the global level (e.g. ip sweeps) will be missed. However, the authors do point
out that they only use local data since the remote nodes may be compromised
and their data may not be trustworthy.

In another paper [IS], Huang and Lee present an alternative approach to
intrusion detection in MANETs. In this work, the intrusions to be detected are
attacks against the structure of the network itself. Such intrusions are those
that corrupt routing tables and protocols, intercept packets, or launch network-
level denial-of-service attacks. Since MANETs typically operate on battery
power, it may not be cost effective for each node to constantly run its own
intrusion detection system, especially when there is a low threat level. The
authors propose that a more effective approach would be for a cluster of nodes
in a MANET to elect one node as a monitor (the clusterhead) for the entire
cluster. Using the assumption that each node can overhear network traffic in
its transmission range, and that the other cluster members can provide (some
of) the features (since the transmission ranges of the clusterhead and the other

A Survey of Distributed Mining of Data Streams 295

cluster members may not overlap, the other cluster members may have statistics
on portions of the cluster not accessible to the clusterhead), the clusterhead is
responsible for analyzing the flow of packets in its cluster in order to detect
intrusions and initiate a response. In order for this intrusion detection approach
to be effective, the election of the clusterhead must be fair, and each clusterhead
must serve an equal amount of time. The first requirement ensures that the
election of the clusterhead is unbiased (i.e. a compromised node cannot tilt the
election in its favor), and the second requirement ensures that a compromised
node cannot force out the current clusterhead nor remain as clusterhead for an
unlimited period of time. There is a good division of labor, as the clusterhead
is the only member of the cluster that must run the intrusion detection system;
the other nodes need only collect data and send it to the clusterhead. However,
a limitation of this approach is that not all intrusions are visible at the global
level, especially given the feature set the detection system uses (statistics on the
network topology, routes, and traffic). Such local intrusions include exploits of
services running on a node, which may only be discernible using the content of
the traffic.

3. Clustering
The goal in clustering is to partition a set of points into groups such that

points within a group are similar in some sense and points in different groups
are dissimilar in the same sense. In the context of distributed streams, one would
want to process the data streams in a distributed fashion, while communicating
the summaries, and to arrive at global clustering of the data points. Guha
et a2 [17], present an approach for clustering data streams. Their approach
produces a clustering of the points seen using small amounts of memory and
time. The summarized data consists of the cluster centers together with the
number of points assigned to that cluster. The k-median algorithm is used as
the underlying clustering mechanism. The resulting clustering is a constant
factor approximation of the true clustering. As has been shown in [16], this
algorithm can be easily extended to operate in a distributed setting. Essentially,
clusterings from each distributed site can be combined and clustered to find the
global clustering with the same approximation factor. From a qualitative stand
point, in many situations, k-median clusters are known to be less desirable than
those formed by other clustering techniques. It would be interesting to see
if other clustering algorithms that produce more desirable clusterings can be
extended with the above methodology to operate over distributed streams.

Januzaj et a1 [21], present a distributed version of the density-based cluster-
ing algorithm, DBSCAN. Essentially, each site builds a local density-based
clustering, and then communicates a summary of the clustering to a central
site. The central site performs a density-based clustering on the summaries

296 DATA STREAMS: MODELS AND ALGORITHMS

obtained from all sites to find a global clustering. This clustering is relayed
back to the distributed sites that update their local clusterings based on the dis-
covered global clustering. While this approach is not capable of processing
dynamic data, in [I 31, the authors have shown that density based clustering can
be performed incrementally. Therefore, a distributed and incremental version
of DBSCAN can potentially be devised. However, like the distributed version
presented by Januzaj et al, we cannot provide a guarantee on the quality of the
result.

Beringer and Hullermeir consider the problem of clustering parallel data
streams 151. Their goal is to find correlated streams as they arrive synchronously.
The authors represent the data streams using exponentially weighted sliding
windows. The discrete Fourier transform is computed incrementally, and k-
Means clustering is performed in this transformed space at regular intervals
of time. Data streams belonging to the same cluster are considered to be cor-
related. While the processing is centralized, the approach can be tailored to
correlate distributed data streams. Furthermore, the approach is suitable for
online streams. It is possible that this approach can be extended to a distributed
computing environment. The Fourier coefficients can be exchanged incremen-
tally and aggregated locally to summarize remote information. Furthermore,
one can potentially produce approximate results by only exchanging the signif-
icant coefficients.

4. Frequent itemset mining

The goal in frequent itemset mining is to find groups of items or values that
co-occur frequently in a transactional data set. For instance, in the context
of market data analysis, a frequent two itemset could be {beer, chips), which
means that people frequently buy beer and chips together. The goal in frequent
itemset mining is to find all itemsets in a data set that occur at least x number
of times, where x is the minimum support parameter provided by the user.

Frequent itemset mining is both CPU and 110 intensive, making it very costly
to completely re-mine a dynamic data set any time one or more transactions are
added or deleted. To address the problem of mining frequent itemsets from dy-
namic data sets, several researchers have proposed incremental techniques [lo,
1 1,14,30,43,44]. Incremental algorithms essentially re-use previously mined
information and try to combine this information with the fresh data to efficiently
compute the new set of frequent itemsets. However, it can be the case that the
database may be distributed over multiple sites, and is being updated at different
rates at each site, which requires the use of distributed asynchronous frequent
itemset mining techniques.

Otey et a1 [38], present a distributed incremental algorithm for frequent
itemset mining. The approach is capable of incrementally finding maximal

A Survey of Distributed Mining of Data Streams 297

frequent itemsets in dynamic data. Maximal frequent itemsets are those that
do not have any frequent supersets, and the set of maximal frequent itemsets
determines the complete set of frequent itemsets. Furthermore, it is capable of
mining frequent itemsets in a distributed setting. Distributed sites can exchange
their local maximal frequent itemsets to obtain a superset of the global maximal
frequent itemsets. This superset is then exchanged between all nodes so that
their local counts may be obtained. In the final round of communication, a
reduction operation is performed to find the exact set of global maximal frequent
itemsets.

Manku and Motwani [35], present an algorithm for mining frequent itemsets
over data streams. In order to mine all frequent itemsets in constant space,
they employ a down counting approach. Essentially, they update the support
counts for the discovered itemsets as the data set is processed. Furthermore,
for all the discovered itemsets, they decrement the support count by a specific
value. As a result, itemsets that occur rarely will have their count set to zero
and will be eventually eliminated from list. If they reappear later, their count
is approximated. While this approach is tailored to data streams, it is not
distributed. The methodology proposed in [38] can potentially be applied to
this algorithm to process distributed data streams.

Manjhi et a1 [34], extend Manku and Motwani's approach to find frequent
items in the union of multiple distributed streams. The central issue is how to
best manage the degree of approximation performed as partial synopses from
multiple nodes are combined. They characterize this process for hierarchical
communication topologies in terms of a precision gradient followed by syn-
opses as they are passed from leaves to the root and combined incrementally.
They studied the problem of finding the optimal precision gradient under two
alternative and incompatible optimization objectives: (1) minimizing load on
the central node to which answers are delivered, and (2) minimizing worst-case
load on any communication link. While this approach targets frequent items
only, it would be interesting to see if it can be extended to find frequent itemsets.

5. Classification
Hulten and Domingos [19], present a one-pass decision tree construction

algorithm for streaming data. They build a tree incrementally by observing
data as it streams in and splitting a node in the tree when a sufficient number
of samples have been seen. Their approach uses the Hoeffding inequality to
converge to a sample size. Jin and Agrawal revisit this problem and present
solutions that speed up split point calculation as well as reduce the desired
sample size to achieve the same level of accuracy [22]. Both these approaches
are not capable of processing distributed streams.

298 DATA STREAMS: MODELS AND ALGORITHMS

Kargupta and Park present an approach for aggregating decision trees con-
structed at distributed sites [26]. As each decision tree can be represented as
a numeric function, the authors propose to transmit and aggregate these trees
by using their Fourier representations. They also show that the Fourier-based
representation is suitable for approximating a decision tree, and thus, suitable
for transmission in bandwidth-limited mobile environments. Coupled with a
streaming decision tree construction algorithm, this approach should be capable
of processing distributed data streams.

Chen et a1 [8], present a collective approach to mine Bayesian networks from
distributed heterogeneous web-log data streams. In their approach, they learn
a local Bayesian network at each site using the local data. Then each site iden-
tifies the observations that are most likely to be evidence of coupling between
local and non-local variables and transmits a subset of these observations to a
central site. Another Bayesian network is learned at the central site using the
data transmitted from the local sites. The local and central Bayesian networks
are combined to obtain a collective Bayesian network, that models the entire
data. This technique is then suitably adapted to an online Bayesian learning
technique, where the network parameters are updated sequentially based on new
data from multiple streams. This approach is particularly suitable for mining
applications with distributed sources of data streams in an environment with
non-zero communication cost (e.g. wireless networks).

6. Summarization

Bulut and Singh [6], propose a novel technique to summarize a data stream
incrementally. The summaries over the stream are computed at multiple resolu-
tions, and together they induce a unique Wavelet-based approximation tree. The
resolution of approximations increases as we move from the root of the approx-
imation tree down to its leaf nodes. The tree has space complexity O(logN),
where N denotes the current size of the stream. The amortized processing cost
for each new data value is O(1). These bounds are currently the best known for
the algorithms that work under a biased query model where the most recent val-
ues are of a greater interest. They also consider the scenario in which a central
source site summarizes a data stream at multiple resolutions. The clients are
distributed across the network and pose queries. The summaries computed at
the central site are cached adaptively at the clients. The access pattern, i.e. reads
and writes, over the stream results in multiple replication schemes at different
resolutions. Each replication scheme expands as the corresponding read rate
increases, and contracts as the corresponding write rate increases. This adaptive
scheme minimizes the total communication cost and the number of inter-site
messages. While the summarization process is centralized, it can potentially

A Survey of Distributed Mining of Data Streams 299

be used to summarize distributed streams at distributed sites by aggregating
wavelet coefficients.

The problem of pattern discovery in a large number of co-evolving streams
has attracted much attention in many domains. Papadimitriou et a1 introduce
SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series) [40], a com-
prehensive approach to discover correlations that effectively and efficiently
summarize large collections of streams. The approach uses very less memory
and both its memory requirements and processing time are independent of the
stream length. It scales linearly with the number of streams and is adaptive and
fully automatic. It dynamically detects changes (both gradual and sudden) in
the input streams, and automatically determines the number of hidden variables.
The correlations and hidden variables discovered have multiple uses. They pro-
vide a succinct summary to the user, they can help to do fast forecasting and
detect outliers, and they facilitate interpolations and handling of missing values.
While the algorithm is centralized, it targets multiple distributed streams. The
approach can potentially be used to summarize streams arriving at distributed
sites.

Babcock and Olston [3], study a useful class of queries that continuously
report the k largest values obtained from distributed data streams ("top-k mon-
itoring queries"), which are of particular interest because they can be used to
reduce the overhead incurred while running other types of monitoring queries.
They show that transmitting entire data streams is unnecessary to support these
queries. They present an alternative approach that significantly reduces com-
munication. In their approach, arithmetic constraints are maintained at remote
stream sources to ensure that the most recently provided top-k answer remains
valid to within a user-specified error tolerance. Distributed communication is
only necessary on the occasion when constraints are violated.

7. Mining Distributed Data Streams in Resource
Constrained Environments

Recently, there has been a lot of interest in environments that demand dis-
tributed stream mining where resources are constrained. For instance, in the
sensor network domain, due to energy consumption constraints, excessive com-
munication is undesirable. One can potentially perform more computation and
less communication to perform the same task with reduced energy consumption.
Consequently, in such scenarios, data mining algorithms (specifically clustering
and classification) with tunable computation and communication requirements
are needed [24,39].

A similar set of problems have recently been looked at in the network intru-
sion detection community. Here, researchers have proposed to offload compu-
tation related to monitoring and intrusion detection on to the network interface

300 DATA STREAMS: MODELS AND ALGORITHMS

card (NIC) [37] with the idea of enhancing reliability and reducing the con-
straints imposed on the host processing environment. Initial results in this
domain convey the promise of this area but there are several limiting criteria
in current generation NICs (e.g. programming model, lack of floating point
operations) that may be alleviated in next generation NICs.

Kargupta et a1 present Mobimine [27], a system for intelligent analysis of
time-critical data using a Personal Data Assistant (PDA). The system monitors
stock market data and signals interesting stock behavior to the user. Stocks are
interesting if they may positively or negatively affect the stock portfolio of the
user. Furthermore, to assist in the user's analysis, they transmit classification
trees to the user's PDA using the Fourier spectrum-based approach presented
earlier. As discussed previously, this Fourier spectrum-based representation is
well suited to environments that have limited communication bandwidth.

The Vehicle Data Stream Mining System (VEDAS) [25], is a mobile and
distributed data stream mining/monitoring application that taps into the contin-
uous stream of data generated by most modern vehicles. It allows continuous
on-board monitoring of the data streams generated by the moving vehicles,
identifying the emerging patterns, and reporting them to a remote control ten-
ter over a low-bandwidth wireless network connection. The system offers many
possibilities such as real-time on-board health monitoring, drunk-driving detec-
tion, driver characterization, and security related applications for commercial
fleet management. While there has been initial work in such constrained envi-
ronments, we believe that there is still a lot to be done in this area.

8. Systems Support
A distributed stream mining system can be complex. It typically consists

of several sub-components such as the mining algorithms, the communication
sub-system, the resource manager, the scheduler, etc. A successful stream
mining system must adapt to the dynamics of the data and best use the available
set of resources and components. In this section, we will briefly summarize
efforts that target the building of system support for resource-aware distributed
processing of streams.

When processing continuous data streams, data arrival can be bursty, and the
data rate may fluctuate over time. Systems that seek to give rapid or real-time
query responses in such an environment must be prepared to deal gracefully
with bursts in data arrival without compromising system performance. Babcock
et a1 [I] show that the choice of an operator scheduling strategy can have sig-
nificant impact on the run-time system memory usage. When data streams are
bursty, the choice of an operator scheduling strategy can result in significantly
high run-time memory usage and poor performance. To minimize memory uti-
lization at peak load, they present Chain scheduling, an adaptive, load-aware

A Survey of Distributed Mining of Data Streams 301

scheduling of query operators to minimize resource consumption during times
of peak load. This operator scheduling strategy for data stream systems is
near-optimal in minimizing run-time memory usage for single-stream queries
involving selections, projections, and foreign-key joins with stored relations.
At peak load, the scheduling strategy selects an operator path (a set of consec-
utive operators) that is capable of processing and freeing the maximum amount
of memory per unit time. This in effect results in the scheduling of operators
that together are both selective and have a high aggregate tuple processing rate.

The aforementioned scheduling strategy is not targeted at the processing of
distributed streams. Furthermore, using the Chain operator scheduling strategy
has an adverse affect on response time and is not suitable for data mining ap-
plications that need to provide interactive performance even under peak load.
In order to mine data streams, we need a scheduling strategy that supports
both response time and memory-aware scheduling of operators. Furthermore,
when scheduling a data stream mining application with dependent operators
in a distributed setting, the scheduling scheme should not need to communi-
cate a significant amount of state information. Ghoting and Parthasarathy [16],
propose an adaptive operator scheduling technique for mining distributed data
streams with response time guarantees and bounded memory utilization. The
user can tune the application to the desired level of interactivity, thus facilitating
the data mining process. They achieve this through a step-wise degradation in
response time beginning from a schedule that is optimal in terms of response
time. This sacrifice in response time is used towards optimal memory utiliza-
tion. After an initial scheduling decision is made, changes in system state may
force a reconsideration of operator schedules. The authors show that a decision
as to whether a local state change will affect the global operator schedule can
be made locally. Consequently, each local site can proceed independently, even
under minor state changes, and a global assignment is triggered only when it is
actually needed.

Plale considers the problem of efficient temporal-join processing in a dis-
tributed setting [41]. In this work, the author's goal is to optimize the join
processing of event streams to efficiently determine sets of events that occur
together. The size of the join window cannot be determined apriori as this may
lead to missed events. The author proposes to vary the size of the join win-
dow depending on the rate of the incoming stream. The rate of the incoming
stream gives a good indication of how many previous events on the stream can
be dropped. Reducing the window size also helps reduce memory utilization.
Furthermore, instead of forwarding events into the query processing engine on
a first-come first-serve basis, the author proposes to forward the earliest event
first to further improve performance, as this facilitates the earlier determination
of events that are a part of the join result.

302 DATA STREAMS: MODELS AND ALGORITHMS

Chen et a1 present GATES [7], a middleware for processing distributed data
streams. This middleware targets data stream processing in a grid setting and
is built on top of the Open Grid Services Architecture. It provides a high level
interface that allows one to specify a stream processing algorithm as a set of
pipelined stages. One of the key design goals of GATES is to support self
adaption under changing conditions. To support self adaptation, the middleware
changes one or more of the sampling rate, the summary structure size, or the
algorithm used, based on changing conditions of the data stream. For instance,
if the stream rate increases, the system reduces the sampling rate accordingly
to maintain a real-time response. If we do not adapt the sampling rate, we
could potentially face increasing queue sizes, resulting in poor performance.
To support self adaptation, the programmer needs to provide the middleware
with parameters that allow it to tune the application at runtime. The middleware
builds a simple performance model that allows it to predict how parameter
changes help in performance adaptation in a distributed setting.

Chi et a1 [12] present a load shedding scheme for mining multiple data
streams, although the computation is not distributed. They assume that the task
of reading data from the stream and building feature values is computationally
expensive and is the bottleneck. Their strategies decide on how to expend
limited computation for building feature values for data on multiple streams.
They decide on whether to drop a data item on the stream based on the historic
utility of the items produced by the stream. If they choose not to build feature
values for a data item, they simply predict feature values based on historical
data. They use finite memory Markov chains to make such predictions. While
the approach presented by the authors is centralized, load shedding decisions
can be trivially distributed.

Conclusions and Future Research Directions
In this chapter, we presented a summary of the current state-of-the-art in

distributed data stream mining. Specifically, algorithms for outlier detection,
clustering, frequent itemset mining, classification, and summarization were
presented. Furthermore, we briefly described related applications and systems
support for distributed stream mining.

First, the distributed sources of data that need to be mined are likely to span
multiple organizations. Each of these organizations may have heterogeneous
computing resources. Furthermore, the distributed data will be accessed by
multiple analysts, each potentially desiring the execution of a different mining
task. The various distributed stream mining systems that have been proposed
to date do not take the variability in the tasks and computing resources into
account. To facilitate execution and deployment in such settings, a plug and
play system design that is cognizant of each organization's privacy is necessary.

A Survey of Distributed Mining of Data Streams 303

A framework in which services are built on top of each other will facilitate rapid
application development for data mining. Furthermore, these systems will need
to be integrated with existing data grid and knowledge grid infrastructures [9]
and researchers will need to design middleware to support this integration.

Second, next generation computing systems for data mining are likely to be
built using off-the-shelf CPUs connected using a high bandwidth interconnect.
In order to derive high performance on such systems, stream mining algorithms
may need to be redesigned. For instance, next generation processors are likely
to have multiple-cores on chip. As has been shown previously [15], data mining
algorithms are adversely affected by the memory-wall problem. This problem
will likely be exacerbated on future multi-core architectures. Therefore, stream
mining algorithms at each local site will need to be redesigned to derive high
performance on next generation architectures. Similarly, with innovations in
networking technologies, designs that are cognizant of high performance inter-
connects (like Inhiband) will need to be investigated.

Third, as noted earlier, in many instances, environments that demand dis-
tributed stream mining are resource constrained. This in turn requires the de-
velopment of data mining technology that is tailored to the specific execution
environment. Various tradeoffs, e.g. energy vs. communication, communi-
cation vs. redundant computation etc., must be evaluated on a scenario-by-
scenario basis. Consequently, in such scenarios, data mining algorithms with
tunable computation and communication requirements will need to be devised.
While initial forays in this domain have been made, a systematic evaluation of
the various design tradeoffs even for a single application domain has not been
done. Looking further into the future, it will be interesting to evaluate if based
on specific solutions a more abstract set of interfaces can be developed for a
host of application domains.

Fourth, new applications for distributed data stream mining are on the hori-
zon. For example, RFID (radio frequency identification) technology is expected
to significantly improve the efficiency of business processes by allowing auto-
matic capture and identification. RFID chips are expected to be embedded in
a variety of devices, and the captured data will likely be ubiquitous in the near
future. New applications for these distributed streaming data sets will arise and
application specific data mining technology will need to be designed.

Finally, over the past few years, several stream mining algorithms have been
proposed in the literature. While they are capable of operating in a centralized
setting, many are not capable of operating in a distributed setting and cannot be
trivially extended to do so. In order to obtain exact or approximate (bounded)
results in a distributed setting, the amount of state information that needs to be
exchanged is usually excessive. To facilitate distributed stream mining algo-
rithm design, instead of starting from a centralized solution, one needs to start
with a distributed mind-set right from the beginning. Statistics or summaries

304 DATA STREAMS: MODELS AND ALGORITHMS

that can be efficiently maintained in a distributed and incremental setting should
be designed and then specific solutions that use these statistics should be de-
vised. Such a design strategy will facilitate distributed stream mining algorithm
design.

References

[I] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain: Operator schedul-
ing for memory minimization in data stream systems. In Proceedings of
the International Conference on Management of Data (SIGMOD), 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proceedings of the Symposium on
Principles of Database Systems (PODS), 2002.

[3] B. Babcock and C. Olston. Distributed top k monitoring. In Proceedings of
the International Conference on Management of Data (SIGMOD), 2003.

[4] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley and
Sons, 1994.

[5] J. Beringer and E. Hullermeier. Online clustering of parallel data streams.
Data and Knowledge Engineering, 2005.

[6] A. Bulut and A. Singh. SWAT: Hierarchical stream summarization in
large networks. In Proceedings of the International Conference on Data
Engineering (ZCDE), 2003.

[7] L. Chen, K. Reddy, and G. Agrawal. GATES: A grid-based middleware for
processing distributed data streams. In Proceedings of the International
Symposium on High Peflormance Distributed Computing (HPDC), 2004.

[8] R. Chen, D. Sivakumar, and H. Kargupta. An approach to online bayesian
network learning from multiple data streams. In Proceedings of the Inter-
national Conference on Principles of Data Mining and Knowledge Dis-
covery, 200 1.

[9] A. Chervenak, I. Foster, C. Kesselrnan, C. Salisbury, and S. Tuecke. The
data grid: Towards an architecture for the distributed management and
analysis of large scientific data sets, 2001.

[lo] D. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of discov-
ered association rules in large databases: An incremental updating tech-
nique. In Proceedings of the International Conference on Data Engineer-
ing (ICDE), 1996.

[l 11 D. Cheung, S. Lee, and B. Kao. A general incremental technique for main-
taining discovered association rules. In Proceedings of the International
Conference on Database Systems for Advanced Applications, 1997.

A Survey of Distributed Mining of Data Streams 305

[12] Y Chi, P. Yu, H. Wang, and R. Muntz. Loadstar: A load shedding scheme
for classifying data streams. In Proceedings of the SIAM International
Conference on Data Mining (SDM), 2005.

[13] M. Ester, H. Kriegel, J. Sander, M. Wirnmer, and X. Xu. Incremental
clustering for mining in a data warehousing environment. In Proceedings
of the International Conference on Ye y Large Data Bases (VLDB), 1998.

[14] V. Ganti, J. Gehrke, and Raghu Ramakrishnan. Demon-data evolution
and monitoring. In Proceedings of the International Conference on Data
Engineering (ICDE), 2000.

[15] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y. Chen,
and P. Dubey. A characterization of data mining algorithms on a mod-
ern processor. In Proceedings of the ACM SIGMOD Workshop on Data
Management on New Hardware, 2005.

[16] A. Ghoting and S. Parthasarathy. Facilitating interactive distributed data
stream processing and mining. In Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS), 2004.

[17] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data
streams. In Proceedings of the Symposium on Foundations of Computer
Science(FOCS), 2000.

[18] Yi-An Huang and Wenke Lee. A cooperative intrusion detection system
for ad hoc networks. In Proceedings of the 1st ACM workshop on Security
of ad hoc and sensor networks, 2003.

[19] G. Hulten and P. Domingos. Mining high speed data streams. In Proceed-
ings of the International Conference on Knowledge Discovery and Data
Mining (SIGKDD), 2000.

[20] Sotiris Ioannidis, Angelos D. Keromytis, Steven M. Bellovin, and
Jonathan M. Smith. Implementing a distributed firewall. In ACM Confer-
ence on Computer and Communications Security, 2000.

[21] E. Januzaj, H. Kriegel, and M. Pfeifle. DBDC: Density based distributed
clustering. In Proceedings of the International Conference on Extending
Data Base Technology (EDBT), 2004.

[22] R. Jin and G. Agrawal. Efficient decision tree construction on stream-
ing data. In Proceedings of the International Conference on Knowledge
Discove y and Data Mining (SIGKDD), 2003.

[23] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining
of association rules on horizontally partitioned data. In Proceedings of
the ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discove y , 2002.

[24] H. Kargupta. Distributed data mining for sensor networks. In Tutorial
presented at ECML/PKDD, 2004.

306 DATA STREAMS: MODELS AND ALGORITHMS

[25] H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra, J. Dull,
K. Sarkar, M. Klein, M. Vasa, and D. Handy. Vedas: A mobile and
distributed data stream mining system for real-time vehicle monitoring.
In Proceedings of the SIAM International Conference on Data Mining
(SDM), 2004.

[26] H. Kargupta and B. Park. A fourier spectrum based approach to represent
decision trees for mining data streams in mobile environments. IEEE
Transactions on Knowledge and Data Engineering, 2004.

[27] H. Kargupta, B. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar. Mo-
biMine: Monitoring the stock market from a PDA. SIGKDD Explorations,
2002.

[28] Hill01 Kargupta, Souptik Datta, Qi Wang, and Krishnamoorthy Sivaku-
mar. On the privacy preserving properties of random data perturbation
techniques. In Proceedings of the International Conference on Data Min-
ing (ICDM), 2003.

[29] E. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in
large datasets. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), 1998.

[30] S. Lee and D. Cheung. Maintenance of discovered association rules: When
to update? In Proceedings ofthe Workshop on Research Issues in Data
Mining and Knowledge Discovery, 1997.

[3 11 Wenke Lee, Rahul A. Nimbalkar, Kam K. Yee, Sunil B. Patil, Pragneshku-
mar H. Desai, Thuan T. Tran, and Salvatore J. Stolfo. A data mining and
CIDF based approach for detecting novel and distributed intrusions. Lec-
ture Notes in Computer Science, 2000.

[32] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. Lec-
ture Notes in Computer Science, 1880:36,2000.

[33] M. Locasto, J. Parekh, S. Stolfo, A. Keromytis, T. Malkin, and V. Misra.
Collaborative distributed intrusion detection. Technical report, Columbia
University, 2004.

1341 A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (re-
cently) frequent items in distributed data streams. In Proceedings of the
International Conference on Data Engineering (ICDE), 2005.

[35] G. Manku and R. Motwani. Approximate frequency counts over data
streams. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2002.

[36] M. Otey, A. Ghoting, and S. Parthasarathy. Fast distributed outlier detec-
tion in mixed attribute data sets. Data Mining and Knowledge Discovery
Journal, 2006.

A Survey of Distributed Mining of Data Streams 3 07

[37] M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula, and D. Panda.
Towards nic-based instrusion detection. In Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD),
2003.

[38] M. Otey, C. Wang, S. Parthasarathy, A. Veloso, and W. Meira. Mining
frequent itemsets in distributed and dynamic databases. In Proceedings
of the International Conference on Data Mining (ICDM), 2003.

[39] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos. Dis-
tributed deviation detection in sensor networks. SIGMOD Record, 2003.

[40] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery
in multiple time series. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), 2005.

[41] B. Plale. Learning run time knowledge about event rates to improve
memory utilization in wide area stream filtering. In Proceedings of the
International Symposium on High Per$ormance Distributed Computing
(HPDC), 2002.

[42] P. Porras and P. Neumann. EMERALD: Event monitoring enabling re-
sponses to anomalous live disturbances. In Proceedings of the National
Information Systems Security Conference, 1 997.

[43] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm
for the incremental updation of association rules in large databases. In
Proceedings of the International Conference on Knowledge Discovery
and Data Mining (SIGKDD), 1997.

1441 A. Veloso, W. Meira Jr., M. B. De Carvalho, B. Possas, S. Parthasarathy,
and M. J. Zaki. Mining frequent itemsets in evolving databases. In Pro-
ceedings of the SIAM International Conference on Data Mining, 2002.

[45] Wei Yu, Dong Xuan, and Wei Zhao. Middleware-based approach for
preventing distributed deny of service attacks. In Proceedings of the IEEE
Military Communications Conference, 2002.

[46] Yongguang Zhang and Wenke Lee. Intrusion detection in wireless ad-hoc
networks. In Mobile Computing and Networking, 2000.

1471 Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion detection
techniques for mobile wireless networks. Wreless Networking, 9(5):545-
556,2003.

