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Abstract With advances in data collection and generation technologies, organizations and 
researchers are faced with the ever growing problem of how to manage and 
analyze large dynamic datasets. Environments that produce streaming sources of 
data are becoming common place. Examples include stock market, sensor, web 
click stream, and network data. In many instances, these environments are also 
equipped with multiple distributed computing nodes that are often located near 
the data sources. Analyzing and monitoring data in such environments requires 
data mining technology that is cognizant of the mining task, the distributed nature 
of the data, and the data influx rate. In this chapter, we survey the current state 
of the field and identify potential directions of future research. 

1. Introduction 
Advances in technology have enabled us to collect vast amounts of data from 

various sources, whether they be from experimental observations, simulations, 
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sensors, credit card transactions, or from networked systems. To benefit from 
these enhanced data collecting capabilities, it is clear that semi-automated in- 
teractive techniques such as data mining should be employed to process and 
analyze the data. It is also desirable to have interactive response times to client 
queries, as the process is often iterative in nature (with a human in the loop). 
The challenges to meet these criteria are often daunting as detailed next. 

Although inexpensive storage space makes it possible to maintain vast vol- 
umes of data, accessing and managing the data becomes a performance issue. 
Often one finds that a single node is incapable of housing such large datasets. 
Efficient and adaptive techniques for data access, data storage and communi- 
cation (if the data sources are distributed) are thus necessary. Moreover, data 
mining becomes more complicated in the context of dynamic databases, where 
there is a constant influx of data. Changes in the data can invalidate existing 
patterns or introduce new ones. Re-executing the algorithms from scratch leads 
to large computational and I/O overheads. These two factors have led to the 
development of distributed algorithms for analyzing streaming data which is 
the focus of this survey article. 

Many systems use a centralized model for mining multiple data streams [2]. 
Under this model the distributed data streams are directed to one central location 
before they are mined. A schematic diagram of a centralized data stream mining 
system is presented in Figure 13.1. Such a model of computation is limited in 
several respects. First, centralized mining of data streams can result in long 
response time. While distributed computing resources may be available, they 
are not fully utilized. Second, central collection of data can result in heavy 
traffic over critical communication links. If these communication links have 
limited network bandwidth, network I/O may become a performance bottleneck. 
Furthermore, in power constrained domains such as sensor networks, this can 
result in excessive power consumption due to excessive data communication. 

To alleviate the aforementioned problems, several researchers have proposed 
a model that is aware of the distributed sources of data, computational resources, 
and communication links. A schematic diagram of such a distributed stream 
mining system is presented in Figure 13.1 and can be contrasted with the cen- 
tralized model. In the model of distributed stream mining, instead of offloading 
the data to one central location, the distributed computing nodes perform parts 
of the computation close to the data, while communicating the local models 
to a central site as and when needed. Such an architecture provides several 
benefits. First, by using distributed computing nodes, it allows the derivation 
of a greater degree of parallelism, thus reducing response time. Second, as 
only local models need to be communicated, communication can potentially 
be reduced, improving scalability, and reducing power consumption in power 
constrained domains. 
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This chapter presents a brief overview of distributed stream mining algo- 
rithms, systems support, and applications, together with emerging research di- 
rections. We attempt to characterize and classify these approaches as to whether 
they belong in the centralized model or the distributed model. The rest of this 
chapter is organized as follows. First, we present distributed stream mining 
algorithms for various mining tasks such as outlier detection, clustering, fre- 
quent itemset mining, classification, and summarization. Second, we present an 
overview of distributed stream mining in resource constrained domains. Third, 
we summarize research efforts on building systems support for facilitating dis- 
tributed stream mining. Finally, we conclude with emerging research directions 
in distributed stream mining. 

2. Outlier and Anomaly Detection 

The goal in outlier or anomaly detection is to find data points that are most 
different from the remaining points in the data set [4]. Most outlier detection 
algorithms are schemes in which the distance between every pair of points 
is calculated, and the points most distant from all other points are marked as 
outliers [29]. This is an O(n2) algorithm that assumes a static data set. Such 
approaches are difficult to extend to distributed streaming data sets. Points in 
these data sets arrive at multiple distributed end-points, which may or may not 
be compute nodes, and must be processed incrementally. Such constraints lead 
us away from purely distance-based approaches, and towards more heuristic 
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techniques. Note that the central issue in many anomaly detection systems, is 
to identify anomalies in real-time or as close to real time as possible thus making 
it a natural candidate for many streaming applications. Moreover, often times 
the data is produced at disparate sites making distributed stream mining a natural 
fit for this domain. In this section we review the work in outlier or anomaly 
detection most germane to distributed stream mining. 

Various application-specific approaches to outlier/anomaly detection have 
been proposed in the literature. An approach [39] has been presented for dis- 
tributed deviation detection in sensor networks. This approach is tailored to 
the sensor network domain and targets misbehaving sensors. The approach 
maintains density estimates of values seen by a sensor, and flags a sensor to 
be a misbehaving sensor if its value deviates significantly from the previously 
observed values. This computation is handled close to the sensors in a dis- 
tributed fashion, with only results being reported to the central server as and 
when needed. 

One of the most popular applications of distributed outlier detection is that 
of network intrusion detection. Recent trends have demanded a distributed 
approach to intrusion detection on the Internet. The first of these trends is a 
move towards distributed intrusions and attacks, that is to say, intrusions and 
attacks originating from a diverse set of hosts on the internet. Another trend 
is the increasing heterogeneous nature of the Internet, where different hosts, 
perhaps residing in the same subnetwork have differing security requirements. 
For example, there have been proposals for distributed firewalls [20] for fulfill- 
ing diverse security requirements. Also, the appearance of mobile and wireless 
computing has created dynamic network topologies that are difficult, if not 
impossible, to protect from a centralized location. Efficient detection and pre- 
vention of these attacks requires distributed nodes to collaborate. By itself, a 
node can only collect information about the state of the network immediately 
surrounding it, which may be insufficient to detect distributed attacks. If the 
nodes collaborate by sharing network audit data, host watch lists, and models of 
known network attacks, each can construct a better global model of the network. 

Otey et a1 [36], present a distributed outlier detection algorithm targeted at 
distributed online streams, specifically to process network data collected at dis- 
tributed sites. Their approach finds outliers based on the number of attribute 
dependencies violated by a data point in continuous, categorical, and mixed 
attribute spaces. They maintain an in-memory structure that succinctly sum- 
marizes the required dependency information. In order to find exact outliers 
in a distributed streaming setting, the in-memory summaries would need to be 
exchanged frequently. These summaries can be large, and consequently, in a 
distributed setting, each distributed computing node only exchanges local out- 
liers with the other computing nodes. A point is deemed to be a global outlier 
if every distributed node believes it to be an outlier based on its local model 
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of normalcy. While such an approach will only find approximate outliers, the 
authors show that this heuristic works well in practice. While the authors report 
that to find exact outliers they need to exchange a large summary which leads 
to excessive communication, it could be possible to exchange only decisive 
parts of the summary, instead of the entire summary, in order to more accu- 
rately detect the true outliers. Furthermore, their in-memory summaries are 
large, as they summarize a large amount of dependency information. Reducing 
this memory requirement could potentially allow the use of this algorithm in 
resource-constrained domains. 

EMERALD is an approach for collaborative intrusion detection for large net- 
works within an enterprise [42]. This approach allows for distributed protection 
of the network through a hierarchy of surveillance systems that analyze network 
data at the service, domain, and enterprise-wide levels. However, EMERALD 
does not provide mechanisms for allowing different organizations to collabo- 
rate. Locasto et a1 [33] examine techniques that allow different organizations 
to do such collaboration for enhanced network intrusion detection. If organi- 
zations can collaborate, then each can build a better model of global network 
activity, and more precise models of attacks (since they have more data from 
which to estimate the model parameters). This allows for better characterization 
and prediction of attacks. Collaboration is achieved through the exchange of 
Bloom filters, each of which encodes a list of IP addresses of suspicious hosts 
that a particular organization's Intrusion Detection System (IDS) has detected, 
as well as the ports which these suspicious hosts have accessed. The use of 
Bloom filters helps both to keep each collaborating organization's information 
confidential and to reduce the amount of data that must be exchanged. 

A major limitation of this approach is that information exchanged may not 
be sufficient to identify distributed attacks. For example, it is possible that 
an attack may originate from a number of hosts, none of which are suspicious 
enough to be included on any organization's watch list. However, the combined 
audit data collected by each organization's IDS may be sufficient to detect that 
attack. To implement such a system, two problems must be addressed. The 
fist is that each organization may collect disjoint sets of features. Collaborating 
organizations must agree beforehand on a set of common features to use. Some 
ideas for common standards for intrusion detection have been realized with the 
Common Intrusion Detection Framework (CIDF) [31]. The second problem is 
that of the privacy of each organization's data. It may not be practical to use 
Bloom filters to encode a large set of features. However, techniques do exist 
for privacy-preserving data mining [28,23,32] that will allow organizations to 
collaborate without compromising the privacy of their data. 

There have been other approaches for detecting distributed denial-of-service 
attacks. Lee et a1 have proposed a technique for detecting novel and distributed 
intrusions based on the aforementioned CIDF [31]. The approach not only 
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allows nodes to share information with which they can detect distributed attacks, 
but also allows them to distribute models of novel attacks. Yu et a1 propose a 
middleware-based approach to prevent distributed denial of service attacks [45]. 
Their approach makes use of Virtual Private Operation Environments (VPOE) 
to allow devices running the middleware to collaborate. These devices can act 
as firewalls or network monitors, and their roles can change as is necessary. 
Each device contains several modules, including an attack detection module, 
a signaling module for cooperating with other devices, and policy processing 
modules. 

Some work in network intrusion detection has been done in the domain of 
mobile ad hoc networks (MANETs) [47, 181, where nodes communicate over 
a wireless medium. In MANETs, the topology is dynamic, and nodes must 
cooperate in order to route messages to their proper destinations. Because of 
the open communication medium, dynamic topology, and cooperative nature, 
MANETs are especially prone to network intrusions, and present difficulties 
for distributed intrusion detection. 

To protect against intrusions, Zhang at a1 have proposed several intrusion 
detection techniques [46,47]. In their proposed architecture, each node in the 
network participates in detection and response, and each is equipped with a 
local detection engine and a cooperative detection engine. The local detection 
engine is responsible for detecting intrusions from the local audit data. If a node 
has strong evidence that an intrusion is taking place, it can initiate a response to 
the intrusion. However, if the evidence is not sufficiently strong, it can initiate a 
global intrusion detection procedure through the cooperative detection engine. 
The nodes only cooperate by sharing their detection states, not their audit data, 
and so it is difficult for each node to build an accurate global model of the 
network with which to detect intrusions. In this case, intrusions detectable only 
at the global level (e.g. ip sweeps) will be missed. However, the authors do point 
out that they only use local data since the remote nodes may be compromised 
and their data may not be trustworthy. 

In another paper [IS], Huang and Lee present an alternative approach to 
intrusion detection in MANETs. In this work, the intrusions to be detected are 
attacks against the structure of the network itself. Such intrusions are those 
that corrupt routing tables and protocols, intercept packets, or launch network- 
level denial-of-service attacks. Since MANETs typically operate on battery 
power, it may not be cost effective for each node to constantly run its own 
intrusion detection system, especially when there is a low threat level. The 
authors propose that a more effective approach would be for a cluster of nodes 
in a MANET to elect one node as a monitor (the clusterhead) for the entire 
cluster. Using the assumption that each node can overhear network traffic in 
its transmission range, and that the other cluster members can provide (some 
of) the features (since the transmission ranges of the clusterhead and the other 
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cluster members may not overlap, the other cluster members may have statistics 
on portions of the cluster not accessible to the clusterhead), the clusterhead is 
responsible for analyzing the flow of packets in its cluster in order to detect 
intrusions and initiate a response. In order for this intrusion detection approach 
to be effective, the election of the clusterhead must be fair, and each clusterhead 
must serve an equal amount of time. The first requirement ensures that the 
election of the clusterhead is unbiased (i.e. a compromised node cannot tilt the 
election in its favor), and the second requirement ensures that a compromised 
node cannot force out the current clusterhead nor remain as clusterhead for an 
unlimited period of time. There is a good division of labor, as the clusterhead 
is the only member of the cluster that must run the intrusion detection system; 
the other nodes need only collect data and send it to the clusterhead. However, 
a limitation of this approach is that not all intrusions are visible at the global 
level, especially given the feature set the detection system uses (statistics on the 
network topology, routes, and traffic). Such local intrusions include exploits of 
services running on a node, which may only be discernible using the content of 
the traffic. 

3. Clustering 
The goal in clustering is to partition a set of points into groups such that 

points within a group are similar in some sense and points in different groups 
are dissimilar in the same sense. In the context of distributed streams, one would 
want to process the data streams in a distributed fashion, while communicating 
the summaries, and to arrive at global clustering of the data points. Guha 
et a2 [17], present an approach for clustering data streams. Their approach 
produces a clustering of the points seen using small amounts of memory and 
time. The summarized data consists of the cluster centers together with the 
number of points assigned to that cluster. The k-median algorithm is used as 
the underlying clustering mechanism. The resulting clustering is a constant 
factor approximation of the true clustering. As has been shown in [16], this 
algorithm can be easily extended to operate in a distributed setting. Essentially, 
clusterings from each distributed site can be combined and clustered to find the 
global clustering with the same approximation factor. From a qualitative stand 
point, in many situations, k-median clusters are known to be less desirable than 
those formed by other clustering techniques. It would be interesting to see 
if other clustering algorithms that produce more desirable clusterings can be 
extended with the above methodology to operate over distributed streams. 

Januzaj et a1 [21], present a distributed version of the density-based cluster- 
ing algorithm, DBSCAN. Essentially, each site builds a local density-based 
clustering, and then communicates a summary of the clustering to a central 
site. The central site performs a density-based clustering on the summaries 
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obtained from all sites to find a global clustering. This clustering is relayed 
back to the distributed sites that update their local clusterings based on the dis- 
covered global clustering. While this approach is not capable of processing 
dynamic data, in [I 31, the authors have shown that density based clustering can 
be performed incrementally. Therefore, a distributed and incremental version 
of DBSCAN can potentially be devised. However, like the distributed version 
presented by Januzaj et al, we cannot provide a guarantee on the quality of the 
result. 

Beringer and Hullermeir consider the problem of clustering parallel data 
streams 151. Their goal is to find correlated streams as they arrive synchronously. 
The authors represent the data streams using exponentially weighted sliding 
windows. The discrete Fourier transform is computed incrementally, and k- 
Means clustering is performed in this transformed space at regular intervals 
of time. Data streams belonging to the same cluster are considered to be cor- 
related. While the processing is centralized, the approach can be tailored to 
correlate distributed data streams. Furthermore, the approach is suitable for 
online streams. It is possible that this approach can be extended to a distributed 
computing environment. The Fourier coefficients can be exchanged incremen- 
tally and aggregated locally to summarize remote information. Furthermore, 
one can potentially produce approximate results by only exchanging the signif- 
icant coefficients. 

4. Frequent itemset mining 

The goal in frequent itemset mining is to find groups of items or values that 
co-occur frequently in a transactional data set. For instance, in the context 
of market data analysis, a frequent two itemset could be {beer, chips), which 
means that people frequently buy beer and chips together. The goal in frequent 
itemset mining is to find all itemsets in a data set that occur at least x number 
of times, where x is the minimum support parameter provided by the user. 

Frequent itemset mining is both CPU and 110 intensive, making it very costly 
to completely re-mine a dynamic data set any time one or more transactions are 
added or deleted. To address the problem of mining frequent itemsets from dy- 
namic data sets, several researchers have proposed incremental techniques [lo, 
1 1,14,30,43,44]. Incremental algorithms essentially re-use previously mined 
information and try to combine this information with the fresh data to efficiently 
compute the new set of frequent itemsets. However, it can be the case that the 
database may be distributed over multiple sites, and is being updated at different 
rates at each site, which requires the use of distributed asynchronous frequent 
itemset mining techniques. 

Otey et a1 [38], present a distributed incremental algorithm for frequent 
itemset mining. The approach is capable of incrementally finding maximal 
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frequent itemsets in dynamic data. Maximal frequent itemsets are those that 
do not have any frequent supersets, and the set of maximal frequent itemsets 
determines the complete set of frequent itemsets. Furthermore, it is capable of 
mining frequent itemsets in a distributed setting. Distributed sites can exchange 
their local maximal frequent itemsets to obtain a superset of the global maximal 
frequent itemsets. This superset is then exchanged between all nodes so that 
their local counts may be obtained. In the final round of communication, a 
reduction operation is performed to find the exact set of global maximal frequent 
itemsets. 

Manku and Motwani [35], present an algorithm for mining frequent itemsets 
over data streams. In order to mine all frequent itemsets in constant space, 
they employ a down counting approach. Essentially, they update the support 
counts for the discovered itemsets as the data set is processed. Furthermore, 
for all the discovered itemsets, they decrement the support count by a specific 
value. As a result, itemsets that occur rarely will have their count set to zero 
and will be eventually eliminated from list. If they reappear later, their count 
is approximated. While this approach is tailored to data streams, it is not 
distributed. The methodology proposed in [38] can potentially be applied to 
this algorithm to process distributed data streams. 

Manjhi et a1 [34], extend Manku and Motwani's approach to find frequent 
items in the union of multiple distributed streams. The central issue is how to 
best manage the degree of approximation performed as partial synopses from 
multiple nodes are combined. They characterize this process for hierarchical 
communication topologies in terms of a precision gradient followed by syn- 
opses as they are passed from leaves to the root and combined incrementally. 
They studied the problem of finding the optimal precision gradient under two 
alternative and incompatible optimization objectives: (1) minimizing load on 
the central node to which answers are delivered, and (2) minimizing worst-case 
load on any communication link. While this approach targets frequent items 
only, it would be interesting to see if it can be extended to find frequent itemsets. 

5. Classification 
Hulten and Domingos [19], present a one-pass decision tree construction 

algorithm for streaming data. They build a tree incrementally by observing 
data as it streams in and splitting a node in the tree when a sufficient number 
of samples have been seen. Their approach uses the Hoeffding inequality to 
converge to a sample size. Jin and Agrawal revisit this problem and present 
solutions that speed up split point calculation as well as reduce the desired 
sample size to achieve the same level of accuracy [22]. Both these approaches 
are not capable of processing distributed streams. 



298 DATA STREAMS: MODELS AND ALGORITHMS 

Kargupta and Park present an approach for aggregating decision trees con- 
structed at distributed sites [26]. As each decision tree can be represented as 
a numeric function, the authors propose to transmit and aggregate these trees 
by using their Fourier representations. They also show that the Fourier-based 
representation is suitable for approximating a decision tree, and thus, suitable 
for transmission in bandwidth-limited mobile environments. Coupled with a 
streaming decision tree construction algorithm, this approach should be capable 
of processing distributed data streams. 

Chen et a1 [8], present a collective approach to mine Bayesian networks from 
distributed heterogeneous web-log data streams. In their approach, they learn 
a local Bayesian network at each site using the local data. Then each site iden- 
tifies the observations that are most likely to be evidence of coupling between 
local and non-local variables and transmits a subset of these observations to a 
central site. Another Bayesian network is learned at the central site using the 
data transmitted from the local sites. The local and central Bayesian networks 
are combined to obtain a collective Bayesian network, that models the entire 
data. This technique is then suitably adapted to an online Bayesian learning 
technique, where the network parameters are updated sequentially based on new 
data from multiple streams. This approach is particularly suitable for mining 
applications with distributed sources of data streams in an environment with 
non-zero communication cost (e.g. wireless networks). 

6. Summarization 

Bulut and Singh [6], propose a novel technique to summarize a data stream 
incrementally. The summaries over the stream are computed at multiple resolu- 
tions, and together they induce a unique Wavelet-based approximation tree. The 
resolution of approximations increases as we move from the root of the approx- 
imation tree down to its leaf nodes. The tree has space complexity O(logN), 
where N denotes the current size of the stream. The amortized processing cost 
for each new data value is O(1). These bounds are currently the best known for 
the algorithms that work under a biased query model where the most recent val- 
ues are of a greater interest. They also consider the scenario in which a central 
source site summarizes a data stream at multiple resolutions. The clients are 
distributed across the network and pose queries. The summaries computed at 
the central site are cached adaptively at the clients. The access pattern, i.e. reads 
and writes, over the stream results in multiple replication schemes at different 
resolutions. Each replication scheme expands as the corresponding read rate 
increases, and contracts as the corresponding write rate increases. This adaptive 
scheme minimizes the total communication cost and the number of inter-site 
messages. While the summarization process is centralized, it can potentially 
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be used to summarize distributed streams at distributed sites by aggregating 
wavelet coefficients. 

The problem of pattern discovery in a large number of co-evolving streams 
has attracted much attention in many domains. Papadimitriou et a1 introduce 
SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series) [40], a com- 
prehensive approach to discover correlations that effectively and efficiently 
summarize large collections of streams. The approach uses very less memory 
and both its memory requirements and processing time are independent of the 
stream length. It scales linearly with the number of streams and is adaptive and 
fully automatic. It dynamically detects changes (both gradual and sudden) in 
the input streams, and automatically determines the number of hidden variables. 
The correlations and hidden variables discovered have multiple uses. They pro- 
vide a succinct summary to the user, they can help to do fast forecasting and 
detect outliers, and they facilitate interpolations and handling of missing values. 
While the algorithm is centralized, it targets multiple distributed streams. The 
approach can potentially be used to summarize streams arriving at distributed 
sites. 

Babcock and Olston [3], study a useful class of queries that continuously 
report the k largest values obtained from distributed data streams ("top-k mon- 
itoring queries"), which are of particular interest because they can be used to 
reduce the overhead incurred while running other types of monitoring queries. 
They show that transmitting entire data streams is unnecessary to support these 
queries. They present an alternative approach that significantly reduces com- 
munication. In their approach, arithmetic constraints are maintained at remote 
stream sources to ensure that the most recently provided top-k answer remains 
valid to within a user-specified error tolerance. Distributed communication is 
only necessary on the occasion when constraints are violated. 

7. Mining Distributed Data Streams in Resource 
Constrained Environments 

Recently, there has been a lot of interest in environments that demand dis- 
tributed stream mining where resources are constrained. For instance, in the 
sensor network domain, due to energy consumption constraints, excessive com- 
munication is undesirable. One can potentially perform more computation and 
less communication to perform the same task with reduced energy consumption. 
Consequently, in such scenarios, data mining algorithms (specifically clustering 
and classification) with tunable computation and communication requirements 
are needed [24,39]. 

A similar set of problems have recently been looked at in the network intru- 
sion detection community. Here, researchers have proposed to offload compu- 
tation related to monitoring and intrusion detection on to the network interface 
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card (NIC) [37] with the idea of enhancing reliability and reducing the con- 
straints imposed on the host processing environment. Initial results in this 
domain convey the promise of this area but there are several limiting criteria 
in current generation NICs (e.g. programming model, lack of floating point 
operations) that may be alleviated in next generation NICs. 

Kargupta et a1 present Mobimine [27], a system for intelligent analysis of 
time-critical data using a Personal Data Assistant (PDA). The system monitors 
stock market data and signals interesting stock behavior to the user. Stocks are 
interesting if they may positively or negatively affect the stock portfolio of the 
user. Furthermore, to assist in the user's analysis, they transmit classification 
trees to the user's PDA using the Fourier spectrum-based approach presented 
earlier. As discussed previously, this Fourier spectrum-based representation is 
well suited to environments that have limited communication bandwidth. 

The Vehicle Data Stream Mining System (VEDAS) [25], is a mobile and 
distributed data stream mining/monitoring application that taps into the contin- 
uous stream of data generated by most modern vehicles. It allows continuous 
on-board monitoring of the data streams generated by the moving vehicles, 
identifying the emerging patterns, and reporting them to a remote control ten- 
ter over a low-bandwidth wireless network connection. The system offers many 
possibilities such as real-time on-board health monitoring, drunk-driving detec- 
tion, driver characterization, and security related applications for commercial 
fleet management. While there has been initial work in such constrained envi- 
ronments, we believe that there is still a lot to be done in this area. 

8. Systems Support 
A distributed stream mining system can be complex. It typically consists 

of several sub-components such as the mining algorithms, the communication 
sub-system, the resource manager, the scheduler, etc. A successful stream 
mining system must adapt to the dynamics of the data and best use the available 
set of resources and components. In this section, we will briefly summarize 
efforts that target the building of system support for resource-aware distributed 
processing of streams. 

When processing continuous data streams, data arrival can be bursty, and the 
data rate may fluctuate over time. Systems that seek to give rapid or real-time 
query responses in such an environment must be prepared to deal gracefully 
with bursts in data arrival without compromising system performance. Babcock 
et a1 [I] show that the choice of an operator scheduling strategy can have sig- 
nificant impact on the run-time system memory usage. When data streams are 
bursty, the choice of an operator scheduling strategy can result in significantly 
high run-time memory usage and poor performance. To minimize memory uti- 
lization at peak load, they present Chain scheduling, an adaptive, load-aware 
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scheduling of query operators to minimize resource consumption during times 
of peak load. This operator scheduling strategy for data stream systems is 
near-optimal in minimizing run-time memory usage for single-stream queries 
involving selections, projections, and foreign-key joins with stored relations. 
At peak load, the scheduling strategy selects an operator path (a set of consec- 
utive operators) that is capable of processing and freeing the maximum amount 
of memory per unit time. This in effect results in the scheduling of operators 
that together are both selective and have a high aggregate tuple processing rate. 

The aforementioned scheduling strategy is not targeted at the processing of 
distributed streams. Furthermore, using the Chain operator scheduling strategy 
has an adverse affect on response time and is not suitable for data mining ap- 
plications that need to provide interactive performance even under peak load. 
In order to mine data streams, we need a scheduling strategy that supports 
both response time and memory-aware scheduling of operators. Furthermore, 
when scheduling a data stream mining application with dependent operators 
in a distributed setting, the scheduling scheme should not need to communi- 
cate a significant amount of state information. Ghoting and Parthasarathy [16], 
propose an adaptive operator scheduling technique for mining distributed data 
streams with response time guarantees and bounded memory utilization. The 
user can tune the application to the desired level of interactivity, thus facilitating 
the data mining process. They achieve this through a step-wise degradation in 
response time beginning from a schedule that is optimal in terms of response 
time. This sacrifice in response time is used towards optimal memory utiliza- 
tion. After an initial scheduling decision is made, changes in system state may 
force a reconsideration of operator schedules. The authors show that a decision 
as to whether a local state change will affect the global operator schedule can 
be made locally. Consequently, each local site can proceed independently, even 
under minor state changes, and a global assignment is triggered only when it is 
actually needed. 

Plale considers the problem of efficient temporal-join processing in a dis- 
tributed setting [41]. In this work, the author's goal is to optimize the join 
processing of event streams to efficiently determine sets of events that occur 
together. The size of the join window cannot be determined apriori as this may 
lead to missed events. The author proposes to vary the size of the join win- 
dow depending on the rate of the incoming stream. The rate of the incoming 
stream gives a good indication of how many previous events on the stream can 
be dropped. Reducing the window size also helps reduce memory utilization. 
Furthermore, instead of forwarding events into the query processing engine on 
a first-come first-serve basis, the author proposes to forward the earliest event 
first to further improve performance, as this facilitates the earlier determination 
of events that are a part of the join result. 
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Chen et a1 present GATES [7], a middleware for processing distributed data 
streams. This middleware targets data stream processing in a grid setting and 
is built on top of the Open Grid Services Architecture. It provides a high level 
interface that allows one to specify a stream processing algorithm as a set of 
pipelined stages. One of the key design goals of GATES is to support self 
adaption under changing conditions. To support self adaptation, the middleware 
changes one or more of the sampling rate, the summary structure size, or the 
algorithm used, based on changing conditions of the data stream. For instance, 
if the stream rate increases, the system reduces the sampling rate accordingly 
to maintain a real-time response. If we do not adapt the sampling rate, we 
could potentially face increasing queue sizes, resulting in poor performance. 
To support self adaptation, the programmer needs to provide the middleware 
with parameters that allow it to tune the application at runtime. The middleware 
builds a simple performance model that allows it to predict how parameter 
changes help in performance adaptation in a distributed setting. 

Chi et a1 [12] present a load shedding scheme for mining multiple data 
streams, although the computation is not distributed. They assume that the task 
of reading data from the stream and building feature values is computationally 
expensive and is the bottleneck. Their strategies decide on how to expend 
limited computation for building feature values for data on multiple streams. 
They decide on whether to drop a data item on the stream based on the historic 
utility of the items produced by the stream. If they choose not to build feature 
values for a data item, they simply predict feature values based on historical 
data. They use finite memory Markov chains to make such predictions. While 
the approach presented by the authors is centralized, load shedding decisions 
can be trivially distributed. 

Conclusions and Future Research Directions 
In this chapter, we presented a summary of the current state-of-the-art in 

distributed data stream mining. Specifically, algorithms for outlier detection, 
clustering, frequent itemset mining, classification, and summarization were 
presented. Furthermore, we briefly described related applications and systems 
support for distributed stream mining. 

First, the distributed sources of data that need to be mined are likely to span 
multiple organizations. Each of these organizations may have heterogeneous 
computing resources. Furthermore, the distributed data will be accessed by 
multiple analysts, each potentially desiring the execution of a different mining 
task. The various distributed stream mining systems that have been proposed 
to date do not take the variability in the tasks and computing resources into 
account. To facilitate execution and deployment in such settings, a plug and 
play system design that is cognizant of each organization's privacy is necessary. 
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A framework in which services are built on top of each other will facilitate rapid 
application development for data mining. Furthermore, these systems will need 
to be integrated with existing data grid and knowledge grid infrastructures [9] 
and researchers will need to design middleware to support this integration. 

Second, next generation computing systems for data mining are likely to be 
built using off-the-shelf CPUs connected using a high bandwidth interconnect. 
In order to derive high performance on such systems, stream mining algorithms 
may need to be redesigned. For instance, next generation processors are likely 
to have multiple-cores on chip. As has been shown previously [15], data mining 
algorithms are adversely affected by the memory-wall problem. This problem 
will likely be exacerbated on future multi-core architectures. Therefore, stream 
mining algorithms at each local site will need to be redesigned to derive high 
performance on next generation architectures. Similarly, with innovations in 
networking technologies, designs that are cognizant of high performance inter- 
connects (like Inhiband) will need to be investigated. 

Third, as noted earlier, in many instances, environments that demand dis- 
tributed stream mining are resource constrained. This in turn requires the de- 
velopment of data mining technology that is tailored to the specific execution 
environment. Various tradeoffs, e.g. energy vs. communication, communi- 
cation vs. redundant computation etc., must be evaluated on a scenario-by- 
scenario basis. Consequently, in such scenarios, data mining algorithms with 
tunable computation and communication requirements will need to be devised. 
While initial forays in this domain have been made, a systematic evaluation of 
the various design tradeoffs even for a single application domain has not been 
done. Looking further into the future, it will be interesting to evaluate if based 
on specific solutions a more abstract set of interfaces can be developed for a 
host of application domains. 

Fourth, new applications for distributed data stream mining are on the hori- 
zon. For example, RFID (radio frequency identification) technology is expected 
to significantly improve the efficiency of business processes by allowing auto- 
matic capture and identification. RFID chips are expected to be embedded in 
a variety of devices, and the captured data will likely be ubiquitous in the near 
future. New applications for these distributed streaming data sets will arise and 
application specific data mining technology will need to be designed. 

Finally, over the past few years, several stream mining algorithms have been 
proposed in the literature. While they are capable of operating in a centralized 
setting, many are not capable of operating in a distributed setting and cannot be 
trivially extended to do so. In order to obtain exact or approximate (bounded) 
results in a distributed setting, the amount of state information that needs to be 
exchanged is usually excessive. To facilitate distributed stream mining algo- 
rithm design, instead of starting from a centralized solution, one needs to start 
with a distributed mind-set right from the beginning. Statistics or summaries 
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that can be efficiently maintained in a distributed and incremental setting should 
be designed and then specific solutions that use these statistics should be de- 
vised. Such a design strategy will facilitate distributed stream mining algorithm 
design. 
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