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Abstract

This paper describes a technique whereby an
autonomous agent such as a mobile robot can
explore an unknown environment and make a
topological map of it. It is assumed that the en-
vironment can be represented as a graph, that
18, as a fixed set of discrete locations or regions
with an ordered set of paths between them.
In previous work, it has been shown that such
worlds can be fully explored and described us-
ing a single movable marker even if there are
no spatial metrics and almost no sensory abil-
ity on the part of the robot. Here we present an
approach to the exploration of unknown worlds
without such a movable marker which is simply
based on the structure of the world itself.

Locations in the world are identified by a non-
unique “signature” that serves as an abstrac-
tion for a percept that might be obtained from
a robotic sensor. While the signature of any
single location may not be unique, under appro-
priate conditions the distinctiveness of a par-
ticular set of signatures in a neighborhood in-
creases with neighborhood size. By using a col-
lection of non-unique local signatures we can
thereby construct an “extended” signature that
uniquely determines the robot’s position (al-
though in certain degenerate worlds additional
information is required).

1 Introduction

The problem of exploring and mapping an unknown
world in an autonomous way is becoming increasingly
important especially for environments which are hostile
or inaccessible [Almeida and Melin, 1989]. This explo-
ration/mapping task appears to be simple if one imag-
ines an idealized error-free robot with error-free (albeit
limited) perceptual capacities. In practice, the progres-
sive accumulation of positional error makes the construc-
tion of a map based on an absolute metric coordinate
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system problematic at best. Furthermore, the definition
of a map in terms of specific locations or landmarks facili-
tates person-machine interaction; it is much easier to tell
a robot to carry mail to the third office “down the hall”
or “to the foyer” than “to x-y coordinate (975,436)”.

In this paper, we address the “worst-case” problem
by assuming that our mobile robot can obtain no metric
positional information whatsoever. We consider worlds
that can be abstracted as graphs composed of distinct lo-
cations identified by limited sensory cues and connected
by paths that provide only connectivity information. Of
particular concern is the location identification problem:
when visiting a given location in the world, how can the
robot determine whether or not it was already visited
and therefore already present in the map prepared thus
far 7 We demonstrate that by augmenting local informa-
tion about the location by information about its neigh-
bours and their neighbours up to a given distance, it
becomes possible in many non-worlds to answer the loca-
tion identification problem correctly [Corneil and Kirk-
patrick, 1980; Dudek et al., 1991b]. In this way, a map of
the world may be obtained which faithfully models the
locations and their connectivity.

2 Problem context

We assume that the robot world is composed of a fi-
nite number of distinguishable locations connected by
bi-directional paths. Such an world may be represented
as a graph where wvertices correspond to locations and
edges correspond to paths!.

For example, the world shown in Figure 1 may be
represented by a graph G = (V, F') where V is the set of
vertices vi,vs,..,vs and E is the set of edges where ¢; ;
or (v;, v;) denotes the edge connecting vertices v; and v;.

Locations are identified by a non-unique stgnature, i.e.
a set of characteristic features which may be reliably ob-
tained from the robot’s percepts. For our purposes here,
we will further assume that upon arriving at a location,
the robot can identify the number of paths leading to
other locations. To simplify the exposition, we will con-
sider that the signature of a location is the degree of

1 As consequence of this graph representation, there may
only be one edge between adjacent vertices and thus worlds
in which there are multiple paths between adjacent locations
cannot be considered eg. graphs with cycles of length 2.
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Figure 1: An example of a real world (a), and its asso-

ciated graph (b).

the corresponding vertex (another example might asso-
ciate signature with vertex colour). In addition, we shall
assume that at each location, the robot is able to enu-
merate the incoming/outgoing paths in a systematic way
(eg. clockwise), relative to the path by which it arrived
at the location.

As the robot performs the exploration, it records all
the information obtained whenever any action, sensing
or motion (path traversal), is performed. By ‘remem-
bering’ all motion sequences, the robot may retrace any
previously performed motion.

3 Related work

In contrast to a geometric map, a topological map can
be defined [Davis, 1986] as a map including all fixed en-
tities of the world such as distinguishable locations and
regions, linked by topological relations eg. connectivity,
containment. Advantages of such an approach include
its qualitative nature and attractive links to theories of
human cognition and mapping. Such a map is often
represented as a graph where vertices are locations and
edges their adjacency relations.

Metric and topological information can be hierarchi-
cally related, within the context of a multilevel rep-
resentation theory of a large scale space 2 based on
the observation and re-acquisition of distinctive visual
events called landmarks [Chatila and Laumond, 1985;
Kuipers and Byun, 1988]. It is often assumed that dis-
tinctive locations can be robustly found, that they are

2A “large-scale” space is a space whose structure is at a
significantly larger scale than the observations available at an
instant [Kuipers and Byun, 1988].

not too numerous, and that no two locations can be con-
fused [Schwartz and Yap, 1987; Leonard and Durrant-
Whyte, 1991]. Clearly, this last assumption is an ideal-
ization of a real robot exploring a real world; not making
it leads to serious complications [Basye and Dean, 1990].

For example, the TOTO robot [Mataric, 1990] is a
real device that creates a topological map (a graph) as
it explores its world. As landmarks are detected, they
become nodes in the graph along with their qualita-
tive properties, i.e. type (left wall, right wall, corridor)
and associated compass bearing. A clever “truth main-
tenance” protocol is invoked to ensure that the same
landmark does not become multiple nodes in the graph.
This approach illustrates several important components
of topological mapping and involves substantial domain-
dependent processing.

The work of [Dudek et al., 1991a) deals with explo-
ration using markers and is directly related to the ap-
proach described here. The same assumptions apply as
to the nature of the world to be explored and the percep-
tual capabilities of the robot but in addition, the robot
is equipped with at least one recognizable marker which
can be put down or picked up. This physical marker
makes v; distinctive according to the others vertices, and
therefore represents a ‘temporary’ signature of that loca-
tion. It is shown that such worlds can be fully explored
and described in limited complexity using a single mov-
able marker (like a pebble) even if there are no spatial
metrics and almost no sensory ability on the part of the
robot.

The marker-based analysis requires that the robot be
able to reliably place, identify and recover the markers
it uses for exploration. In this paper, we show how map-
ping can be accomplished without such markers even
though individual locations may not be uniquely identi-

fiable.

4 The mapping algorithm

The exploration and mapping algorithm has essentially
two stages. First, the robot, starting from an arbitrary
location, explores its (unknown) world by visiting all lo-
cations. Information thus obtained is then used to gen-
erate a model of the observed connectivity®.

As described above, we shall assume that the robot is
equipped with a sensing device which is used, at each
location, to determine the number of incoming/outgoing
paths and enumerate them in a consistent manner eg.
clockwise. The number of paths then defines the signa-
ture of the location, 1.e. the degree of the corresponding
vertex in the map. Since this is often inadequate to
uniquely identify a vertex (or equivalently, to uniquely
specify connectivity) we shall also exploit signature in-
formation about the location’s neighborhood.

While the exploration takes place, the robot con-
structs a data representation called the “exploration
tree” which includes, at the end of the exploration, the
set S of all possible world models (i.e maps) consistent

®Recall that between any two adjacent locations, there is
at most one edge.



with the robot’s observations. This set of solutions is
called the “solution universe”.

If S contains more than model, then the robot must
rely on additional knowledge about the world such as the
total number of locations, information about the prob-
ability distribution of location signatures, or perhaps
some compass measurements, to identify that model
which best represents the connectivity information in the
world.

4.1 The exploration tree

The exploration tree refers to the collection of possible
hypotheses about the world the robot is exploring, given
the data accumulated thus far in the exploration. It
is incrementally constructed while the exploration takes
place. The root of the tree is just the initial location from
which the exploration began. A level in the tree corre-
sponds to the traversal of a previously unexplored edge.
The nodes belonging to a given level of the exploration
tree represent possible partial models of connectivity in
the world, according to the locations visited thus far.
Nodes corresponding to the current level of exploration
are called frontier nodes. Leaf nodes represent possible
models (complete configurations) of world connectivity.
A given node in the exploration tree is considered to be
a leaf node (i.e. a possible model) if there are no paths
still to be traversed?.

Our notation is as follows:

e vertices corresponding to locations in the world are
denoted by wvy,vs, ...

e vertices associated with nodes in the exploration
tree are denoted by v], v%, ..., where v! corresponds
to the j* visit of location v;. Since a given location
may be visited several times as part of the explo-
ration, we can have several associated vertices in
the exploration tree nodes corresponding to differ-
ent visits of that vertex.

A correct model is characterized by the fact that when
the robot visits a given location multiple times, it ‘rec-
ognizes’ that these are all visits to the same location.
That is, there exists a correspondence between v} (the
first visit to the location corresponding to vertex v;) and
vE (the kth visit) for all k, and an absence of other (in-
correct) correspondences. To guarantee successful ex-
ploration, 1.e. exploration leading to the creation of a
solution universe S which necessarily contains a model
of existing connectivity in the world, two problems must

be addressed:

1. How can the robot know when all of the locations
in the world have been visited 7

2. When a location is visited, how can the robot know
whether or not it represents a location previously
visited and is therefore already present in the ex-
ploration tree ? We shall call this the location iden-
tification problem.

*This is because in the exploration tree, the robot only
‘knows’ whether or not there are paths still to be traversed
associated with a location previously visited, not whether or
not there are extra locations to visit.

Many possible exploration strategies are possible (even
stochastic ones) but for simplicity, we will consider a
FIFO (first-in first-out) traversal of new edges. This
guarantees that all edges will be explored, although per-
haps not optimally. In Figure 2, we illustrate how the
robot explores the world shown in Figure 1, by showing
the robot motions and the associated actions to con-
struct the exploration tree. In this example, the explo-
ration tree has only one branch and the solution universe
contains just one possible solution which is the leaf of the
tree, the framed node.

The second problem is more complex since location
identification must be performed with very limited infor-
mation. Indeed, by associating the signature of a loca-
tion with vertex degree, the robot cannot always know
when it i1s visiting a location for the first time or not.
For example, in a world which contains cycles, the robot
will inevitably re-visit some locations. That 1s, when the
robot visits a given location, it could either be the first
visit to a new (previously un-visited) location, or a re-
visit to any of the locations that have the same signature
(i.e. that appear the same). Thus, when the robot visits
a location, 1t must consider all possible ways of adding
vertices to the frontier nodes in the exploration tree.

Three classes of errors or mis-identifications can be
defined when the robot visits a given vertex v;. (Errors
associated with paths (edges in the exploration tree) are
subsumed within this classification.) These are as fol-
lows.

E1 Errors of type OLD-LOOKS-NEW. A vertex v; 1S as-
sumed to be a new vertex even though it has been
visited before (i.e. a failure in correspondence). In
this case, an additional vertex is added to represent
the current location even though a vertex for the
current location has already been created.

E2 Errors of type MIS-CORRESPONDENCE. A vertex v;
is “recognized” as a known vertex v; (j # i) even
though, in reality, it is another old vertex vy (i.e.
the robot has confused two existing nodes). Thus,
an erroneous edge is added to the world.

E3 Errors of type NEW-LOOKS-OLD. A vertex v; is as-
sumed to be an already visited vertex —an old vertex
— even though it is new. In this case, the map will
have a missing vertex relative to the real world.

Branches in the exploration tree are created as a re-
sult of modelling the true topological structure of the
world, or by making one or more correspondence errors
of different types. In most cases, branches arising from
errors eventually terminate due to inconsistencies result-
ing from the incorrect topology induced by the error(s).
For example, the robot connects two vertices v; and vs
during the exploration of v; and then realizes that it
is a wrong connection during the exploration of vy. Of
course, the development of any branch is halted once the
frontier node has no more paths to traverse.

The exploration tree will always contain a branch for
which no errors are committed, 1.e. a branch leading to
a leaf which faithfully describes the connectivity in the
world.
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Figure 2: An exploration tree for the world shown in Figure 1.

4.2 The extended signature

Typical exploration trees usually include branches that
are subsequently pruned (i.e. they develop inconsisten-
cies before they lead to a complete model). This can be
observed in the tree shown in Figure 3. The major rea-
son for this is the weakness of the signature information
used by the robot for addressing the location identifi-
cation problem; incorrect hypotheses regarding vertex
correspondences cannot be avoided based on local per-
ceptual input. To make the exploration more robust and
effective, we shall now exploit non-local information by
defining an eztended signature incorporating signature
information about a location’s neighbours.

We begin by defining the initial (zero’th) neighbours
No(u) of a vertex u as follows:

No(u) = {u} (D)

(2)

Then its immediate neighbours Ny (u) may be defined as
follows:

Ni(u) ={v e V](u,v) € F'} (3)

We can then define the immediate ‘outgoing’ neighbours
Ns(u) of those vertices in Ny (u) as follows:

No(u) = {v e V [ v e {[NM(Ni(u)) —ul}} (4)
Note that we take care to exclude u from this list, in
the case where there exists a cycle involving u and some
vertex in Np(Ny(u)).

More generally, we define N, (u) to be the m!* neigh-
bours of u:

N () = {N1 (N1 () = (] Nm—z(w)}. (5)

To make the vertex matching in the exploration tree
more robust, we will now go beyond local signature infor-
mation (vertex degree) to consider an extended signature
defined in terms of the signatures of the neighbours of a
location. For example, suppose that we have two vertices
u and v and we wish to establish whether they refer, in
fact, to the same physical location. If they have identical
signatures (degrees), then we consider their immediate
neighbours, Ny(u) and Ny(v). If the immediate neigh-
bours also have identical signatures and appear in the
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same configuration, then we consider Na(u) and Na(v),
and so on.

We may define the extended signature of a vertex u in
terms of the signatures of its neighbours up to a given
distance m as follows:

Sigo(u) = (deg(u)) (6)
Sigm(u) = (Sigm-1(u), (deg(v))) Vv € Npn(u) (7)
where deg(v) denotes the degree of vertex v. For exam-

ple, for the graph in Figure 1, the extended signatures
of the vertex vy are as follows:

Sigo(v1) = (2) (8)
Sigl(vl) = (2a(3’2))
SigZ(Ul) = (2a(3’2)’(1’1’1))

9)

This extended signature may be also be viewed as a sig-
nature tree, where the root represents the degree of ver-
tex u and nodes belonging to a level 7 in this tree rep-
resent the degrees of the i*? neighbours of u; see Figure
4.

Note that a node’s extended signature is generally only
unique with respect to a specific reference edge. Consider
as root a vertex with degree d, with d possible extended
signatures. In Figure 5, we illustrate how any extended
signature may be obtained from any other extended sig-
nature by circularly re-ordering its edges. Consequently,
when comparing two vertices, the robot must take into
consideration all possible re-orderings of their extended
signatures. More precisely, if the extended signatures
are isomorphic, then the two vertices might correspond
to the same location, 1.e. we must consider extended
signatures involving more neighbours.

4.3 Algorithm details

The exploration algorithm functions by creating a sub-
section of the world for which there exists a known map.
Initially, this is simply the robot’s starting location. As
the exploration proceeds, this map is gradually expanded
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by adding new vertices and their connectivity to the map
already established. When a location is visited and a new
vertex in the map is postulated, its relationship to the
set of known vertices must be established and the corre-
spondence (if any) with any other vertex must be verified
(using the signature and extended signature analysis).

When the robot visits a location corresponding to a
new vertex u, it starts by ordering the incident edges e;
according to the “reference” edge eg by which it arrived
at u (eg. using a clockwise ordering). (Note that the
“reference edge” is only defined by the robot’s own his-
tory — the reference edge 1s not perceptible in the graph
itself.) The robot then examines these edges (except eg)
sequentially by traversing each one to visit the vertex at
the other end. The process of traversing the ith edge e;
may be described as follows:

1. Traverse edge e; to reach the other vertex v and
compute deg(v).

2. Verify if edge e; i1s already connected to another
vertex w in the exploration tree (for each model).
If yes, verify the validity of the connection by
comparing the extended signatures of v and w:
Sig(v)andSig(w); if they are different, then reject
the proposed connection.

3. If edge e; is ‘free’; 1.e. not already connected to an-
other vertex, compute C'(¢;), the set of all possible
connections, which includes:

e connections to previously visited vertices wv;
with Sig(v;) = Sig(v) and with a ‘free’ inci-
dent edge. For each such v; found, create a
new node in the exploration tree by adding an
edge connecting v to v;.

e a connection to a new vertex w. A new node
is created in the exploration tree by adding an
edge connecting v to w.

The cost of this exploration process in terms of actual
edge traversals by the robot (mechanical complexity) de-
pends only to the search strategy used by the robot in
moving through the world. The algorithm i1s compati-
ble with almost any strategy that progressively traverses
new edges. Breath-first search provides a simple exam-
ple.

The computational cost of the mapping algorithm is
a function of the number of nodes (possible world mod-
els) in the exploration tree; the actual generation, main-
tenance and comparison operations for extended signa-
tures have low-order polynomial complexity. The num-
ber of nodes in the exploration tree depends on the dis-
tinctiveness of the perceptual information extracted at
each location. When insufficient perceptual information
is available to constrain the growth in the exploration
tree various pruning or deferred expansion strategies are
possible.

Full details about the algorithm with some complete
examples may be found in [Dudek et al., 1993].

5 Coping with ambiguity in location
identification

Despite the availability of an extended signature, am-
biguity may still remain in location identification. As
a result, the universe of possible solutions S may con-
tain various models which are equivalent insofar as the
extended signature is concerned, of which just one faith-
fully reflects the connectivity in the world (for example
a simple cycle of either three or four vertices). In this
section, we consider additional information (in addition
to location signature) that makes it possible to identify
the the correct model in 5.

As we have shown, the presence of cycles in the world
gives rise to an exploration tree of infinite size, due to the
existence of a branch of infinite length, corresponding
to the case where every visited vertex is considered to
be new. Hence, the exploration procedure must elect
to cease exploration even though some possible models
have not been fully explored.

One cue as to when to stop exploration and select
appropriate model(s) is prior knowledge of the number of
locations N in the world. For example, this might be the
case when the robot is exploring a multi-floor building
where all floors have the roughly the same number of
offices. This implies that the exploration process can
terminate as soon as all nodes in the exploration tree
have at least N vertices, i.e. as soon as nodes which
contain edges still to be traversed have more than N
vertices.

Another possible cue is prior knowledge of the pla-
narity of the world being explored. We may often assume
that the world to be explored is planar (topologically
speaking) and hence a simple planarity test may suffice
to distinguish between equivalent models. Indeed, if N
is also known, then we demonstrate elsewhere [Dudek et
al., 1993] that our algorithm leads to a unique (correct)



solution (or multiple isomorphic correct solutions).

Perhaps most important is the fact that alternative
branches in the exploration tree correspond to assump-
tions regarding the existence (or non-existence) of mul-
tiple locations in the world that are perceptually indis-
tinguishable. If the likelihood of such occurences can be
estimated then alternative worlds in the exploration tree
can be ranked in terms of their overall likelihood.

6 Discussion and Conclusions

In this paper, we have described how a robot with limited
perceptual capacities may explore and faithfully map the
topology of unknown graph-like worlds. The approach
is based on aggregating non-local information to com-
pensate for potentially ambiguous local perceptual in-
formation. Locations in the world are identified by a
non-unique “signature” that serves as an abstraction for
a percept that might be obtained from a robotic sensor.
While the signature of any single location may not be
unique, under appropriate conditions the distinctiveness
of a particular set of signatures in a neighborhood in-
creases with neighborhood size. By using a collection
of non-unique local signatures we can thereby construct
an “extended” signature that uniquely determines the
robot’s position (although in certain insufficiently rich
worlds additional information is also required). The al-
gorithm makes use of no metric information such as the
distances of the paths traversed, but the availability of
such measurements would simplify the mapping prob-
lem.

The worst case behavior of the algorithm is clearly
problematic. For example, there can be multiple embed-
dings of the same graph, leading to multiple topological
models of the unknown world. For example, for regu-
lar graphs every location 1s identical to every other and
the number of possible models grows initially as O(k!)
for level k of the exploration tree (although keeping only
one or two models 1s sufficient to express both all the
structure that the robot has observed and all that it
can accomplish given the limited percepts it has made).
This initial explosive growth is reduced once the tree
depth exceeds the vertex degree (i.e. very early for pla-
nar graphs). This difficulty is not surprising since un-
der such circumstances we are attempting to construct a
map from no knowledge about where we are or how we
are moving — anything is possible. Thus the difficulty
is not intrinsic to this algorithm but rather to the im-
poverished stimuli. In worlds where more information 1s
available and various places are distinguishable the tree
grows much more slowly and there are several signifi-
cant sub-cases of interest. One notable class of worlds
are those where a pair of uniquely distinguishable ver-
tices exist. In such cases a single unique solution will be
produced [Dudek et al., 1993]. We are now using an im-
plementation of our algorithm written in C to examine
issues relating to the growth of the exploration tree and
the solution space for different kinds of environments.
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