
Using local information in a non-local wayfor mapping graph-like worlds�Gregory Dudeky, Paul Freedmanz, Souad Hadjresyy McGill Research Center for Intelligent Machines3480 University St., Montreal, Qu�ebec, Canada H3A 2A7z Centre de recherche informatique de Montr�eal3744, rue Jean-Brillant, Bureau 500, Montr�eal, Qu�ebec, Canada H3T 1P1AbstractThis paper describes a technique whereby anautonomous agent such as a mobile robot canexplore an unknown environment and make atopological map of it. It is assumed that the en-vironment can be represented as a graph, thatis, as a �xed set of discrete locations or regionswith an ordered set of paths between them.In previous work, it has been shown that suchworlds can be fully explored and described us-ing a single movable marker even if there areno spatial metrics and almost no sensory abil-ity on the part of the robot. Here we present anapproach to the exploration of unknown worldswithout such a movable marker which is simplybased on the structure of the world itself.Locations in the world are identi�ed by a non-unique \signature" that serves as an abstrac-tion for a percept that might be obtained froma robotic sensor. While the signature of anysingle location may not be unique, under appro-priate conditions the distinctiveness of a par-ticular set of signatures in a neighborhood in-creases with neighborhood size. By using a col-lection of non-unique local signatures we canthereby construct an \extended" signature thatuniquely determines the robot's position (al-though in certain degenerate worlds additionalinformation is required).1 IntroductionThe problem of exploring and mapping an unknownworld in an autonomous way is becoming increasinglyimportant especially for environments which are hostileor inaccessible [Almeida and Melin, 1989]. This explo-ration/mapping task appears to be simple if one imag-ines an idealized error-free robot with error-free (albeitlimited) perceptual capacities. In practice, the progres-sive accumulation of positional error makes the construc-tion of a map based on an absolute metric coordinate�This paper appears in the Proceedings of Int'l Joint Con-ference of Arti�cial Intelliegence, Chambery, France, Aug.1993.The �nancial support of NSERC is gratefully acknowledged.

system problematic at best. Furthermore, the de�nitionof a map in terms of speci�c locations or landmarks facili-tates person-machine interaction; it is much easier to tella robot to carry mail to the third o�ce \down the hall"or \to the foyer" than \to x-y coordinate (975,436)".In this paper, we address the \worst-case" problemby assuming that our mobile robot can obtain no metricpositional information whatsoever. We consider worldsthat can be abstracted as graphs composed of distinct lo-cations identi�ed by limited sensory cues and connectedby paths that provide only connectivity information. Ofparticular concern is the location identi�cation problem:when visiting a given location in the world, how can therobot determine whether or not it was already visitedand therefore already present in the map prepared thusfar ? We demonstrate that by augmenting local informa-tion about the location by information about its neigh-bours and their neighbours up to a given distance, itbecomes possible in many non-worlds to answer the loca-tion identi�cation problem correctly [Corneil and Kirk-patrick, 1980; Dudek et al., 1991b]. In this way, a map ofthe world may be obtained which faithfully models thelocations and their connectivity.2 Problem contextWe assume that the robot world is composed of a �-nite number of distinguishable locations connected bybi-directional paths. Such an world may be representedas a graph where vertices correspond to locations andedges correspond to paths1.For example, the world shown in Figure 1 may berepresented by a graph G = (V;E) where V is the set ofvertices v1; v2; ::; v6 and E is the set of edges where ei;jor (vi; vj) denotes the edge connecting vertices vi and vj.Locations are identi�ed by a non-unique signature, i.e.a set of characteristic features which may be reliably ob-tained from the robot's percepts. For our purposes here,we will further assume that upon arriving at a location,the robot can identify the number of paths leading toother locations. To simplify the exposition, we will con-sider that the signature of a location is the degree of1As consequence of this graph representation, there mayonly be one edge between adjacent vertices and thus worldsin which there are multiple paths between adjacent locationscannot be considered eg. graphs with cycles of length 2.
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Location 5Figure 1: An example of a real world (a), and its asso-ciated graph (b).the corresponding vertex (another example might asso-ciate signature with vertex colour). In addition, we shallassume that at each location, the robot is able to enu-merate the incoming/outgoing paths in a systematic way(eg. clockwise), relative to the path by which it arrivedat the location.As the robot performs the exploration, it records allthe information obtained whenever any action, sensingor motion (path traversal), is performed. By `remem-bering' all motion sequences, the robot may retrace anypreviously performed motion.3 Related workIn contrast to a geometric map, a topological map canbe de�ned [Davis, 1986] as a map including all �xed en-tities of the world such as distinguishable locations andregions, linked by topological relations eg. connectivity,containment. Advantages of such an approach includeits qualitative nature and attractive links to theories ofhuman cognition and mapping. Such a map is oftenrepresented as a graph where vertices are locations andedges their adjacency relations.Metric and topological information can be hierarchi-cally related, within the context of a multilevel rep-resentation theory of a large scale space 2 based onthe observation and re-acquisition of distinctive visualevents called landmarks [Chatila and Laumond, 1985;Kuipers and Byun, 1988]. It is often assumed that dis-tinctive locations can be robustly found, that they are2A \large-scale" space is a space whose structure is at asigni�cantly larger scale than the observations available at aninstant [Kuipers and Byun, 1988].

not too numerous, and that no two locations can be con-fused [Schwartz and Yap, 1987; Leonard and Durrant-Whyte, 1991]. Clearly, this last assumption is an ideal-ization of a real robot exploring a real world; not makingit leads to serious complications [Basye and Dean, 1990].For example, the TOTO robot [Mataric, 1990] is areal device that creates a topological map (a graph) asit explores its world. As landmarks are detected, theybecome nodes in the graph along with their qualita-tive properties, i.e. type (left wall, right wall, corridor)and associated compass bearing. A clever \truth main-tenance" protocol is invoked to ensure that the samelandmark does not become multiple nodes in the graph.This approach illustrates several important componentsof topological mapping and involves substantial domain-dependent processing.The work of [Dudek et al., 1991a] deals with explo-ration using markers and is directly related to the ap-proach described here. The same assumptions apply asto the nature of the world to be explored and the percep-tual capabilities of the robot but in addition, the robotis equipped with at least one recognizable marker whichcan be put down or picked up. This physical markermakes vi distinctive according to the others vertices, andtherefore represents a `temporary' signature of that loca-tion. It is shown that such worlds can be fully exploredand described in limited complexity using a single mov-able marker (like a pebble) even if there are no spatialmetrics and almost no sensory ability on the part of therobot.The marker-based analysis requires that the robot beable to reliably place, identify and recover the markersit uses for exploration. In this paper, we show how map-ping can be accomplished without such markers eventhough individual locations may not be uniquely identi-�able.4 The mapping algorithmThe exploration and mapping algorithm has essentiallytwo stages. First, the robot, starting from an arbitrarylocation, explores its (unknown) world by visiting all lo-cations. Information thus obtained is then used to gen-erate a model of the observed connectivity3.As described above, we shall assume that the robot isequipped with a sensing device which is used, at eachlocation, to determine the number of incoming/outgoingpaths and enumerate them in a consistent manner eg.clockwise. The number of paths then de�nes the signa-ture of the location, i.e. the degree of the correspondingvertex in the map. Since this is often inadequate touniquely identify a vertex (or equivalently, to uniquelyspecify connectivity) we shall also exploit signature in-formation about the location's neighborhood.While the exploration takes place, the robot con-structs a data representation called the \explorationtree" which includes, at the end of the exploration, theset S of all possible world models (i.e maps) consistent3Recall that between any two adjacent locations, there isat most one edge.



with the robot's observations. This set of solutions iscalled the \solution universe".If S contains more than model, then the robot mustrely on additional knowledge about the world such as thetotal number of locations, information about the prob-ability distribution of location signatures, or perhapssome compass measurements, to identify that modelwhich best represents the connectivity information in theworld.4.1 The exploration treeThe exploration tree refers to the collection of possiblehypotheses about the world the robot is exploring, giventhe data accumulated thus far in the exploration. Itis incrementally constructed while the exploration takesplace. The root of the tree is just the initial location fromwhich the exploration began. A level in the tree corre-sponds to the traversal of a previously unexplored edge.The nodes belonging to a given level of the explorationtree represent possible partial models of connectivity inthe world, according to the locations visited thus far.Nodes corresponding to the current level of explorationare called frontier nodes. Leaf nodes represent possiblemodels (complete con�gurations) of world connectivity.A given node in the exploration tree is considered to bea leaf node (i.e. a possible model) if there are no pathsstill to be traversed4.Our notation is as follows:� vertices corresponding to locations in the world aredenoted by v1,v2, : : :� vertices associated with nodes in the explorationtree are denoted by vj1, vj2, : : :, where vji correspondsto the jth visit of location vi. Since a given locationmay be visited several times as part of the explo-ration, we can have several associated vertices inthe exploration tree nodes corresponding to di�er-ent visits of that vertex.A correct model is characterized by the fact that whenthe robot visits a given location multiple times, it `rec-ognizes' that these are all visits to the same location.That is, there exists a correspondence between v1i (the�rst visit to the location corresponding to vertex vi) andvki (the kth visit) for all k, and an absence of other (in-correct) correspondences. To guarantee successful ex-ploration, i.e. exploration leading to the creation of asolution universe S which necessarily contains a modelof existing connectivity in the world, two problems mustbe addressed:1. How can the robot know when all of the locationsin the world have been visited ?2. When a location is visited, how can the robot knowwhether or not it represents a location previouslyvisited and is therefore already present in the ex-ploration tree ? We shall call this the location iden-ti�cation problem.4This is because in the exploration tree, the robot only`knows' whether or not there are paths still to be traversedassociated with a location previously visited, not whether ornot there are extra locations to visit.

Many possible exploration strategies are possible (evenstochastic ones) but for simplicity, we will consider aFIFO (�rst-in �rst-out) traversal of new edges. Thisguarantees that all edges will be explored, although per-haps not optimally. In Figure 2, we illustrate how therobot explores the world shown in Figure 1, by showingthe robot motions and the associated actions to con-struct the exploration tree. In this example, the explo-ration tree has only one branch and the solution universecontains just one possible solution which is the leaf of thetree, the framed node.The second problem is more complex since locationidenti�cation must be performed with very limited infor-mation. Indeed, by associating the signature of a loca-tion with vertex degree, the robot cannot always knowwhen it is visiting a location for the �rst time or not.For example, in a world which contains cycles, the robotwill inevitably re-visit some locations. That is, when therobot visits a given location, it could either be the �rstvisit to a new (previously un-visited) location, or a re-visit to any of the locations that have the same signature(i.e. that appear the same). Thus, when the robot visitsa location, it must consider all possible ways of addingvertices to the frontier nodes in the exploration tree.Three classes of errors or mis-identi�cations can bede�ned when the robot visits a given vertex vi. (Errorsassociated with paths (edges in the exploration tree) aresubsumed within this classi�cation.) These are as fol-lows.E1 Errors of type old-looks-new. A vertex vi is as-sumed to be a new vertex even though it has beenvisited before (i.e. a failure in correspondence). Inthis case, an additional vertex is added to representthe current location even though a vertex for thecurrent location has already been created.E2 Errors of type mis-correspondence. A vertex viis \recognized" as a known vertex vj (j 6= i) eventhough, in reality, it is another old vertex vk (i.e.the robot has confused two existing nodes). Thus,an erroneous edge is added to the world.E3 Errors of type new-looks-old. A vertex vi is as-sumed to be an already visited vertex { an old vertex{ even though it is new. In this case, the map willhave a missing vertex relative to the real world.Branches in the exploration tree are created as a re-sult of modelling the true topological structure of theworld, or by making one or more correspondence errorsof di�erent types. In most cases, branches arising fromerrors eventually terminate due to inconsistencies result-ing from the incorrect topology induced by the error(s).For example, the robot connects two vertices v1 and v2during the exploration of v1 and then realizes that itis a wrong connection during the exploration of v2. Ofcourse, the development of any branch is halted once thefrontier node has no more paths to traverse.The exploration tree will always contain a branch forwhich no errors are committed, i.e. a branch leading toa leaf which faithfully describes the connectivity in theworld.
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Each encircled graph represents a node of the exploration tree.

The motion of the robot is shown by :Figure 2: An exploration tree for the world shown in Figure 1.4.2 The extended signatureTypical exploration trees usually include branches thatare subsequently pruned (i.e. they develop inconsisten-cies before they lead to a complete model). This can beobserved in the tree shown in Figure 3. The major rea-son for this is the weakness of the signature informationused by the robot for addressing the location identi�-cation problem; incorrect hypotheses regarding vertexcorrespondences cannot be avoided based on local per-ceptual input. To make the exploration more robust ande�ective, we shall now exploit non-local information byde�ning an extended signature incorporating signatureinformation about a location's neighbours.We begin by de�ning the initial (zero'th) neighboursN0(u) of a vertex u as follows:N0(u) = fug (1)(2)Then its immediate neighbours N1(u) may be de�ned asfollows: N1(u) = fv 2 V j(u; v) 2 Eg (3)
We can then de�ne the immediate `outgoing' neighboursN2(u) of those vertices in N1(u) as follows:N2(u) = fv 2 V j v 2 f[N1(N1(u))� u]gg (4)Note that we take care to exclude u from this list, inthe case where there exists a cycle involving u and somevertex in N1(N1(u)).More generally, we de�ne Nm(u) to be the mth neigh-bours of u:Nm(u) = fN1(Nm�1(u)) �\ Nm�2(u)g: (5)To make the vertex matching in the exploration treemore robust, we will now go beyond local signature infor-mation (vertex degree) to consider an extended signaturede�ned in terms of the signatures of the neighbours of alocation. For example, suppose that we have two verticesu and v and we wish to establish whether they refer, infact, to the same physical location. If they have identicalsignatures (degrees), then we consider their immediateneighbours, N1(u) and N1(v). If the immediate neigh-bours also have identical signatures and appear in the
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the signature tree of vertex v1Figure 4: An example of signature tree.same con�guration, then we consider N2(u) and N2(v),and so on.We may de�ne the extended signature of a vertex u interms of the signatures of its neighbours up to a givendistance m as follows:Sig0(u) = (deg(u)) (6)Sigm(u) = (Sigm�1(u); (deg(v))) 8v 2 Nm(u) (7)where deg(v) denotes the degree of vertex v. For exam-ple, for the graph in Figure 1, the extended signaturesof the vertex v1 are as follows:Sig0(v1) = (2) (8)Sig1(v1) = (2; (3; 2))Sig2(v1) = (2; (3; 2); (1; 1;1)) (9)This extended signature may be also be viewed as a sig-nature tree, where the root represents the degree of ver-tex u and nodes belonging to a level i in this tree rep-resent the degrees of the ith neighbours of u; see Figure4. Note that a node's extended signature is generally onlyunique with respect to a speci�c reference edge. Consideras root a vertex with degree d, with d possible extendedsignatures. In Figure 5, we illustrate how any extendedsignature may be obtained from any other extended sig-nature by circularly re-ordering its edges. Consequently,when comparing two vertices, the robot must take intoconsideration all possible re-orderings of their extendedsignatures. More precisely, if the extended signaturesare isomorphic, then the two vertices might correspondto the same location, i.e. we must consider extendedsignatures involving more neighbours.4.3 Algorithm detailsThe exploration algorithm functions by creating a sub-section of the world for which there exists a known map.Initially, this is simply the robot's starting location. Asthe exploration proceeds, this map is gradually expanded
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Three distinct representations for the signature of vertex  Figure 5: An example illustrating that the signature treeis invariant under circular re-ordering.by adding new vertices and their connectivity to the mapalready established. When a location is visited and a newvertex in the map is postulated, its relationship to theset of known vertices must be established and the corre-spondence (if any) with any other vertex must be veri�ed(using the signature and extended signature analysis).When the robot visits a location corresponding to anew vertex u, it starts by ordering the incident edges eiaccording to the \reference" edge e0 by which it arrivedat u (eg. using a clockwise ordering). (Note that the\reference edge" is only de�ned by the robot's own his-tory { the reference edge is not perceptible in the graphitself.) The robot then examines these edges (except e0)sequentially by traversing each one to visit the vertex atthe other end. The process of traversing the ith edge eimay be described as follows:1. Traverse edge ei to reach the other vertex v andcompute deg(v).2. Verify if edge ei is already connected to anothervertex w in the exploration tree (for each model).If yes, verify the validity of the connection bycomparing the extended signatures of v and w:Sig(v)andSig(w); if they are di�erent, then rejectthe proposed connection.3. If edge ei is `free', i.e. not already connected to an-other vertex, compute C(ei), the set of all possibleconnections, which includes:� connections to previously visited vertices viwith Sig(vi) = Sig(v) and with a `free' inci-dent edge. For each such vi found, create anew node in the exploration tree by adding anedge connecting v to vi.

� a connection to a new vertex w. A new nodeis created in the exploration tree by adding anedge connecting v to w.The cost of this exploration process in terms of actualedge traversals by the robot (mechanical complexity) de-pends only to the search strategy used by the robot inmoving through the world. The algorithm is compati-ble with almost any strategy that progressively traversesnew edges. Breath-�rst search provides a simple exam-ple.The computational cost of the mapping algorithm isa function of the number of nodes (possible world mod-els) in the exploration tree; the actual generation, main-tenance and comparison operations for extended signa-tures have low-order polynomial complexity. The num-ber of nodes in the exploration tree depends on the dis-tinctiveness of the perceptual information extracted ateach location. When insu�cient perceptual informationis available to constrain the growth in the explorationtree various pruning or deferred expansion strategies arepossible.Full details about the algorithm with some completeexamples may be found in [Dudek et al., 1993].5 Coping with ambiguity in locationidenti�cationDespite the availability of an extended signature, am-biguity may still remain in location identi�cation. Asa result, the universe of possible solutions S may con-tain various models which are equivalent insofar as theextended signature is concerned, of which just one faith-fully re
ects the connectivity in the world (for examplea simple cycle of either three or four vertices). In thissection, we consider additional information (in additionto location signature) that makes it possible to identifythe the correct model in S.As we have shown, the presence of cycles in the worldgives rise to an exploration tree of in�nite size, due to theexistence of a branch of in�nite length, correspondingto the case where every visited vertex is considered tobe new. Hence, the exploration procedure must electto cease exploration even though some possible modelshave not been fully explored.One cue as to when to stop exploration and selectappropriate model(s) is prior knowledge of the number oflocations N in the world. For example, this might be thecase when the robot is exploring a multi-
oor buildingwhere all 
oors have the roughly the same number ofo�ces. This implies that the exploration process canterminate as soon as all nodes in the exploration treehave at least N vertices, i.e. as soon as nodes whichcontain edges still to be traversed have more than Nvertices.Another possible cue is prior knowledge of the pla-narity of the world being explored. We may often assumethat the world to be explored is planar (topologicallyspeaking) and hence a simple planarity test may su�ceto distinguish between equivalent models. Indeed, if Nis also known, then we demonstrate elsewhere [Dudek etal., 1993] that our algorithm leads to a unique (correct)



solution (or multiple isomorphic correct solutions).Perhaps most important is the fact that alternativebranches in the exploration tree correspond to assump-tions regarding the existence (or non-existence) of mul-tiple locations in the world that are perceptually indis-tinguishable. If the likelihood of such occurences can beestimated then alternative worlds in the exploration treecan be ranked in terms of their overall likelihood.6 Discussion and ConclusionsIn this paper, we have described how a robot with limitedperceptual capacities may explore and faithfullymap thetopology of unknown graph-like worlds. The approachis based on aggregating non-local information to com-pensate for potentially ambiguous local perceptual in-formation. Locations in the world are identi�ed by anon-unique \signature" that serves as an abstraction fora percept that might be obtained from a robotic sensor.While the signature of any single location may not beunique, under appropriate conditions the distinctivenessof a particular set of signatures in a neighborhood in-creases with neighborhood size. By using a collectionof non-unique local signatures we can thereby constructan \extended" signature that uniquely determines therobot's position (although in certain insu�ciently richworlds additional information is also required). The al-gorithm makes use of no metric information such as thedistances of the paths traversed, but the availability ofsuch measurements would simplify the mapping prob-lem.The worst case behavior of the algorithm is clearlyproblematic. For example, there can be multiple embed-dings of the same graph, leading to multiple topologicalmodels of the unknown world. For example, for regu-lar graphs every location is identical to every other andthe number of possible models grows initially as O(k!)for level k of the exploration tree (although keeping onlyone or two models is su�cient to express both all thestructure that the robot has observed and all that itcan accomplish given the limited percepts it has made).This initial explosive growth is reduced once the treedepth exceeds the vertex degree (i.e. very early for pla-nar graphs). This di�culty is not surprising since un-der such circumstances we are attempting to construct amap from no knowledge about where we are or how weare moving { anything is possible. Thus the di�cultyis not intrinsic to this algorithm but rather to the im-poverished stimuli. In worlds where more information isavailable and various places are distinguishable the treegrows much more slowly and there are several signi�-cant sub-cases of interest. One notable class of worldsare those where a pair of uniquely distinguishable ver-tices exist. In such cases a single unique solution will beproduced [Dudek et al., 1993]. We are now using an im-plementation of our algorithm written in C to examineissues relating to the growth of the exploration tree andthe solution space for di�erent kinds of environments.
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