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Introduction 
 

 Educational researchers have become increasingly aware of the problems and biases which 
can be caused by missing data.  Significant advances have been made in the last 15 years regarding 
methodologies which handle responses to these problems and biases.  Unfortunately, these 
methodologies are often not available to many researchers for a variety of reasons (e.g., lack of 
familiarity, computational challenges) and researchers often resort to ad-hoc approaches to handling 
missing data, ones which may ultimately do more harm than good (Little & Rubin, 1987; Graham, 
Hofer, Donaldson, MacKinnon, & Schafer, 1997; Schafer & Graham, 2002).  There is a need to 
make available workable methodologies for handling missing data.  Multiple imputation is one such 
method.   

Multiple imputation can be used by researchers on many analytic levels.  Many research 
studies have used multiple imputation (e.g., Graham et al., 1997; Wayman, 2002a) and good general 
reviews on multiple imputation have been published (Graham, Cumsille, & Elek-Fisk, 2003; 
Graham & Hofer, 2000; Schafer & Olsen, 1998; Sinharay, Stern, & Russell, 2001).  However, 
multiple imputation is not implemented by many researchers who could benefit from it, very 
possibly because of lack of familiarity with the technique.  A paper which provides a more basic 
computational description than has previously been presented would be a helpful addition to this 
literature and might invite more researchers to explore and understand the technique.  Therefore, the 
objective of this paper is to help familiarize researchers with the basic process of multiple 
imputation, including a data example which will guide the reader through the multiple imputation 
process. 

This paper will first present a brief discussion of some missing data issues.  Following this 
will be a description of the workings of the multiple imputation process, with a data example 
interspersed throughout the description to provide illustration and clarity.  Finally, the paper will 
conclude with a brief discussion of issues surrounding this particular analysis. 

 
 

Missing Data 
 

Methods for Treatment of Missing Data 
 The intent of any analysis is to make valid inferences regarding a population of interest.  
Missing data threatens this goal if it is missing in a manner which makes the sample different than 
the population from which it was drawn, that is, if the missing data creates a biased sample.  
Therefore, it is important to respond to a missing data problem in a manner which reflects the 
population of inference. 
 It is important to understand that once data are missing, it is impossible not to treat them – 
once data are missing, any subsequent procedure with that data set represents a response in some 
form to the missing data problem.  As a result, there are many different methods of managing 
missing data, of which multiple imputation is one.  I will present only a brief discussion of missing 
data methods here before proceeding to the multiple imputation example.  More thorough 
discussion of missing data methods can be found in Graham et al., 2003; Graham & Hofer, 2000; 
Little and Rubin, 1987; Schafer, 1997; and Schafer and Graham, 2002, to name a few. 
 Some of the most popular missing data methods involve ad-hoc deletion or replacement of 
missing data.  These methods typically edit missing data to produce a complete data set and are 
attractive because they are easy to implement.  However, researchers have been cautioned against 



 3

using these methods because they have been shown to have serious drawbacks (e.g., Little & 
Schenker, 1995; Graham & Hofer, 2000; Graham et al. 1997; Schafer & Graham, 2002).  For 
example, handling missing data by eliminating cases with missing data (“listwise deletion” or 
“complete case analysis”) will bias results if the remaining cases are not representative of the entire 
sample.  This method is the default in most statistical software.  Another common method available 
in most statistical packages is mean substitution, which replaces missing data with the average of 
valid data for the variable in question.  Because the same value is being substituted for each missing 
case, this method artificially reduces the variance of the variable in question, in addition to 
diminishing relationships with other variables.  Graham et al. (2003) referred to these traditional 
methods as” “unacceptable methods.”  Examples of other unacceptable methods include pairwise 
deletion and regression-based single imputation. 
 Additionally, there exist more statistically principled methods of handling missing data 
which have been shown to perform better than ad-hoc methods (e.g., Little & Rubin, 1987; Graham 
et al., 1997; Schafer & Graham, 2002).  These methods do not concentrate solely on identifying a 
replacement for a missing value, but on using available information to preserve relationships in the 
entire data set.  Maximum likelihood estimation is one such method.  This method requires 
specification of a statistical model for each analysis and is a sound method for treating missing data, 
but is often difficult to implement for less-advanced analysts.  The Expectation Maximization (EM) 
algorithm is another method which has been applied to missing data, but obtaining standard errors 
using EM involves auxiliary methods such as bootstrapping.  The topic of this paper, multiple 
imputation, is a statistically principled method which is more commonly used because of ease of 
use and available software.   
 
Mechanisms Responsible for Missing Data 

Whether implementing multiple imputation or some other method of dealing with missing 
data, it is important to understand why the data are missing.  Graham et al. (2003) described that 
missing data can informally be thought of as being caused in some combination of three ways: 
random processes, processes which are measured, and processes which are not measured.  Modern 
missing data methods generally work well for the first two causes, but not for the last.  More 
formally, missing data mechanisms are commonly described as falling into one of three categories, 
described by Little and Rubin (1987) thusly: 

First, data can be “Missing Completely at Random”, or MCAR.  When data are MCAR, 
missing cases are no different than non-missing cases, in terms of the analysis being performed.  
Thus, these cases can be thought of as randomly missing from the data and the only real penalty in 
failing to account for missing data is loss of power. 
 Second, data can be missing “Missing at Random”, or MAR.  In this case, missing data 
depends on known values and thus is described fully by variables observed in the data set.  
Accounting for the values which “cause” the missing data will produce unbiased results in an 
analysis. 
 Third, data can be missing in an unmeasured fashion, termed “nonignorable” (also called 
“Missing Not at Random” (MNAR) and “Not Missing at Random” (NMAR)).  Since the missing 
data depends on events or items which the researcher has not measured, this is a damaging situation. 

Graham & Donaldson (1993) referred to missing data mechanisms as “accessible” and 
“inaccessible.”  An accessible mechanism is one where the cause of missingness can be accounted 
for.  These situations encompass MCAR and most MAR circumstances.  An inaccessible 
mechanism is one where the missing data mechanism cannot be measured.  These situations include 
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nonignorable mechanisms and MAR mechanisms where the cause of missingness is known, but is 
not measured. 

As Graham and Hofer (2000) state, the missing data mechanism is rarely completely 
inaccessible.  Often, the mechanism is actually made up of both accessible and inaccessible factors.  
Thus, although a researcher may not be confident that the data present a purely accessible 
mechanism, covering as much of the mechanism possible will usually produce sound results 
(Graham et al., 1997; Little, 1995; Rubin, 1996).  A sensitivity analysis conducted by Graham et al. 
(1997) showed that the effects of an inaccessible mechanism are often surprisingly minimal in the 
implementation of multiple imputation.  Thus, encountering a situation where a portion of the 
missing data is inaccessible should not discourage the researcher from applying a statistically 
principled method.  Rather, the attitude should be to account for as much of the mechanism as 
possible, knowing that these results will likely be better than those produced by naïve methods such 
as listwise deletion. 
 
A Brief Overview of Multiple Imputation 

In multiple imputation, missing values for any variable are predicted using existing values 
from other variables.  The predicted values, called “imputes”, are substituted for the missing values, 
resulting in a full data set called an “imputed data set.”  This process is performed multiple times, 
producing multiple imputed data sets (hence the term “multiple imputation”).  Standard statistical 
analysis is carried out on each imputed data set, producing multiple analysis results.  These analysis 
results are then combined to produce one overall analysis. 

Multiple imputation accounts for missing data by restoring not only the natural variability in 
the missing data, but also by incorporating the uncertainty caused by estimating missing data.  
Maintaining the original variability of the missing data is done by creating imputed values which 
are based on variables correlated with the missing data and causes of missingness.  Uncertainty is 
accounted for by creating different versions of the missing data and observing the variability 
between imputed data sets.  

It is important to note that imputed values produced from an imputation model are not 
intended to be “guesses” as to what a particular missing value might be, rather, this modeling is 
intended to create an imputed data set which maintains the overall variability in the population 
while preserving relationships with other variables.  Thus, in performing multiple imputation, a 
researcher is interested in preserving important characteristics of the data set as a whole (e.g., 
means, variances, regression parameters).  Creating imputes is merely a mechanism to deliver an 
analysis which makes use of all possible information. 

 
Why Multiple Imputation? 
 Multiple imputation is an attractive choice as a solution to missing data problems because it 
represents a good balance between quality of results and ease of use.   
 The performance of multiple imputation in a variety of missing data situations has been 
well-studied and it has been shown to perform favorably (Graham et al., 1997; Graham & Schafer, 
1999; Schafer & Graham, 2002).  Multiple imputation has been shown to produce unbiased 
parameter estimates which reflect the uncertainty associated with estimating missing data.  Further, 
multiple imputation has been shown to be robust to departures from normality assumptions and 
provides adequate results in the presence of low sample size or high rates of missing data. 

Multiple imputation also represents a tractable solution to missing data problems.  This 
procedure is computationally simpler than other statistically principled methods such as maximum 
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likelihood estimation, and as will be shown later, is a method which is intuitive and easy to 
understand.  Although the statistical principles behind multiple imputation are not trivial, user-
friendly software exists1 which employs these procedures such that the researcher can concentrate 
on learning and implementing the process of multiple imputation rather than the underlying 
statistics.   

Finally, one of the great appeals of multiple imputation is that the required user interaction is 
familiar to many researchers – multiple imputation produces full, complete data sets on which to 
perform analyses, and these analyses can be performed by nearly any method or software package 
the analyst chooses. 

 
The Multiple Imputation Process 

 
 Multiple imputation is a surprisingly intuitive procedure.  Imagine that you began an 
analysis with only common sense and a good introductory regression class in your arsenal.  
Preparing your data for analysis, you notice quite a few missing values.  You know that this is 
commonly dealt with by ignoring cases with missing values, but you’re uncomfortable with this 
because you believe an analysis using only complete cases will produce misleading conclusions.  
You decide to explore better methods of dealing with the missing data.   

Your first idea is to consider ways to substitute values, thus constructing a complete data set.  
Initially, you think you may try substituting the mean of the variable for each missing data point.  
This is a good start, but it substitutes the same number for every missing value.  In using mean 
substitution, you see that you not only have artificially reduced the variance of that variable by 
creating the same value for every missing data point, but your “guess” is not very educated – you 
haven’t utilized any information that other variables could lend.   

You move on, thinking you might use a regression line to solve these problems, using 
predictors that you know are related to the missing data.  The regression line produces values which 
vary from one another and it also lends values which are “educated guesses”, or values which use 
the interrelationships present in the variables.  That seems better than mean substitution, but you are 
uncomfortable with this method also because you feel you are making up data.  These values you’re 
plugging in are estimates, not real data, so you think there is variability you’re not accounting for, 
variability due to estimating missing data.  But how would you do this? 

Suddenly it hits you: since estimates vary, why use just one estimate?  Why not produce 
many estimates of the same data point?  What if you could create different versions of your 
regression line?  This would produce different plausible versions of the substituted values, and thus, 
different plausible versions of how the data might appear in the population.  Averaging over these 
versions would make you more comfortable with your conclusions; observing how these versions 
vary from one to the other would offer an estimate of the extra variance you are introducing because 
of missing data estimation. 
 You have just invented multiple imputation.  But how exactly is this implemented in 
practice?  The next few sections will elaborate on the basic premise described above, detailing the 
three steps needed to implement multiple imputation: First, we must create imputed data sets which 
are plausible representations of the data.  Second, we must perform the chosen statistical analysis on 
each of these imputed data sets.  Third, we must combine the results of these analyses (“average” 

                                                           
1 For instance SAS, S-Plus, and NORM (Schafer, 1999) are some.  Reviews and discussion of software for multiple 
imputation are given in Hox (1999) and Schafer & Graham (2002). 
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them) to produce one set of results.  The example chosen to illustrate these steps is a simple one, 
estimating the overall mean of a nationally-administered reading test. 
 One cautionary note: Schafer and Olsen (1998) point out that like any statistical technique, 
multiple imputation depends on some assumptions, and responsible use of multiple imputation 
involves a basic understanding of these assumptions and their implications.  Since the goal of this 
paper is a basic, clear presentation of the process, these assumptions are not discussed here, and 
many other statistical issues regarding multiple imputation have been intentionally avoided (see 
Rubin, 1987; Little & Rubin, 2002; Schafer, 1997). 
 
Creating Imputed Data Sets 
 The first step in multiple imputation is to create values (“imputes”) to be substituted for the 
missing data.  In order to create imputed values, we need to identify some model (we’ll call it a 
regression line) which will allow us to create imputes based on other variables in the data set 
(predictor variables).  Since we need to do this multiple times to produce multiply-imputed data 
sets, we will identify a set of regression lines which are similar to but different from each other.   

We can think of these regression lines as presenting different versions of what the actual 
equation for the missing data might be – plausible, believable regression lines.  Producing a few 
believable versions of the data will allow us to average over these versions later, producing better 
estimates.  Discussion of exactly how this set of regression lines is identified is beyond the scope of 
this paper; for this paper, we will assume this set is easily produced2.  The number of imputed data 
sets to create is up to the analyst.  Commonly, researchers choose between 3 and 10 data sets. 

Our regression lines will need predictor variables to help preserve relationships in the data.  
These variables should be chosen either because they are correlated with the missing variable, the 
reason for missingness, or both.  For example, if the missing variable of interest is a high school 
achievement test score, variables such as the student’s previous test scores could be included since 
they are likely correlated with achievement test scores.  Using the same example, suppose students 
are more likely to be missing the achievement test if they are in the upper grades.  Grade in school 
could then be included in the imputation model as a reason for missingness.  Although not detailed 
here, choosing variables to include in the imputation model is important and the reader is directed to 
further reference (Collins et al., 2002; Wayman, 2002b). 

In this example, the variable of interest is a nationally-administered reading test score, 
herein referred to as the “national test” and given in normal curve equivalents (NCEs) (see 
Appendix A for a description of the data).  Almost 15% of the data on this test is missing.  Four 
variables were chosen for the imputation model: score on a locally administered reading test (“local 
test”) grade, gender, and special education status (in practice, more variables would be included).  
There is evidence of missing data bias, as males, special education students, and students who did 
poorly on the locally-administered test typically did worse on the nationally-administered test.  
These groups also were more likely to have missing values (See Appendix A).  To illustrate the 
data, Table 1 lists a subset of participant data from this data set. 

 

                                                           
2 Methods to create statistical models which impute values are not trivial, and understanding these methods is certainly 
not unimportant.  Since software exists which helps the user with such computations, this discussion will proceed 
assuming the analyst will have the ability to easily create imputation models.  Further reference on this topic can be 
found in Rubin (1987); Little & Rubin (2002); and Schafer (1997). 
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Table 1     
Selected Data From Full Data Set 
 

Grade Gender Special Ed Local Score National Score 
8 F no 345 Missing 
8 M no 325 30 
8 M no 308 18 
8 M yes 300 Missing 
8 M no 369 40 
8 F yes 360 10 
7 F no 314 45 
7 M yes 291 Missing 
7 F no 303 10 
7 F no 407 92 
7 M no 375 93 
7 F no 334 Missing 
6 F no 348 56 
6 M yes 383 32 
6 F no 376 60 
6 F no 310 Missing 
6 F no 383 Missing 

 

 For this example, we will create three imputed data sets.  Imputation was done using the 
NORM software program (Schafer, 1999), available free at www.stat.psu.edu/~jls/misoftwa.html3.  
The regression lines4 to impute national test scores from grade, gender, special education, and local 
test scores are: 
 
(1) National Score = -135.78 + .31(Grade) + 1.14(Male) + -10.68(Special Ed) + .50(Local Score) + error 
(2) National Score = -133.40 + .34(Grade) +   .81(Male) +   -9.96(Special Ed) + .50(Local Score) + error 
(3) National Score = -131.51 + .11(Grade) + 1.43(Male) + -10.19(Special Ed) + .49(Local Score) + error 
(Note:  Male=1, Female=0;  Special Ed=1, not Special Ed=0) 
 
 If the analyst had to do the imputation by hand, (s)he would begin by identifying cases 
which were missing the national test.  For each of these participants, the analyst would observe that 
participant’s values for grade, gender, special education, and local test, fill these values into the first 
regression line, add a random error5, and compute predicted values.  These predicted values would 
be substituted for the missing values to create the first imputed data set.  The same procedure would 
be followed using the second regression line to create the second imputed data set, and also for the 
third. 
                                                           
3 Step-by-step tutorials for using NORM are found in Graham et al. (2003) and Schafer and Olsen, (1998). 
4 The regression lines are presented in this paper for illustration purposes.  In practice, the analyst rarely sees the 
imputation models, nor has the need to work with computations from the imputation model.  These computations are 
done by the software and imputations are automatically created.   
5 A random error is added to every imputed value in order to maintain the natural variability in the data set. If error is 
not added, participants with equivalent predictor values would receive the same imputed value.  Commonly, these errors 
are drawn from a normal distribution. 
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To illustrate, consider the first student shown in Table 1, an eighth-grade female not in 
special education who scored 345 on the local test, but is missing the national test.  In order to 
produce an imputed value for this student, we would substitute these values into the first regression 
equation.  We also need to randomly draw an error value to use in this equation (we drew 3.71).  
Thus, the imputed value for this student is 42.91, figured thusly: 

 
42.91 = -135.78 + .31(8) + 1.14(0) + -10.68(0) + .50(345) + 3.71. 
 
We ignore the students who are not missing the national test and proceed to the next student 

missing the national test, an 8th grade male in special education who scored 300 on the local test 
(see Table 1).  Again, we need to randomly draw an error value for the equation; that value is 2.86.  
The imputed value for this student is 10.02, again figured thusly: 

 
10.02 = -135.78 + .31(8) + 1.14(1) + -10.68(1) + .50(300) + 2.86. 
 
This procedure would continue for each of the 2894 other students in the data set who are 

missing the national test score.  Once this procedure is finished, each missing score has an imputed 
value substituted for it, resulting in a fully-complete imputed data set.  Note that all of these 
imputations were created using the first imputation equation, so this procedure has produced 
imputed data set #1. 

Since we have chosen to work with three imputed data sets, we must create two more.  To 
begin creating the second imputed data set, we will follow the same procedure, but this time using 
Equation 2.  Once again, we start with the first student shown in Table 1, the eighth-grade female 
not in special education who scored 345 on the local test.  We  randomly draw an error for this 
imputation (we drew 0.45), resulting in an imputed value of 42.27: 

 
42.27 = -133.40 + .34(8) + 0.81(0) + -9.96(0) + .50(345) + 0.45. 
 
As before, we would continue to use this equation to impute values for each student missing 

the national test score, resulting in imputed data set #2.  Like imputed data set #1, the second data 
set is a plausible, but different representation of the population.  Imputed data set #3 would then be 
created using Equation 3, in the same fashion as the first two data sets.  Figure 1 illustrates the 
process of producing imputed data sets. 

 

 



Figure 1.  An Illustration of the Process of Creating Imputed Data Sets. 
 
 
 
 
 
 
 
      
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Grade Gender Special 

   Ed 
Local 
Score 

National 
Score 

8 F   No 345 ???? 
8 M   No 325 30 
8 M  Yes 300 ???? 
7 F   No 314 45 
7 M  Yes 291 ???? 
7 F   No 303 10 
7 F   No 334 ???? 
6 M  Yes 383 32 
6 F   No 376 60 
6 F   No 310 ???? 
6 F   No 383 ???? 

Grade Gender Special 
Ed 

Local 
Score 

National 
Score 

8 F     No 345 36.23 
8 M     No 325 30 
8 M    Yes 300 14.38 
7 F     No 314 45 
7 M    Yes 291 11.09 
7 F     No 303 10 
7 F     No 334 29.74 
6 M    Yes 383 32 
6 F     No 376 60 
6 F     No 310 23.34 
6 F     No 383 55.78 

Grade Gender  Special   
     Ed 

Local 
Score 

National 
Score 

8 F     No 345 42.91 
8 M     No 325 30 
8 M    Yes 300 10.02 
7 F     No 314 45 
7 M    Yes 291 13.26 
7 F     No 303 10 
7 F     No 334 18.15 
6 M    Yes 383 32 
6 F     No 376 60 
6 F     No 310 27.70 
6 F     No 383 53.57 

Grade Gender Special 
Ed 

Local 
Score 

National 
Score 

8 F     No 345 42.27 
8 M     No 325 30 
8 M    Yes 300 8.25 
7 F     No 314 45 
7 M    Yes 291 27.43 
7 F     No 303 10 
7 F     No 334 38.97 
6 M    Yes 383 32 
6 F     No 376 60 
6 F     No 310 29.18 
6 F     No 383 67.13 

National Score = -135.78 + .31(Grade) + 1.14(Gender) + 
-10.68(Special  Ed) + .50(Local Score) 
+ error       

National Score = -133.40 + .34(Grade) + .81(Gender) + 
-9.96(Special  Ed) + .50(Local Score) 
+ error        

National Score = -131.51 + .11(Grade) + 1.43(Gender) +  
-10.19(Special  Ed) + .49(Local Score) 
+ error



Analyzing Imputed Data Sets 
 Once the imputed data sets have been created, the analysis of choice  is conducted separately for 
each data set.  This analysis can be any analysis you would perform if there were no missing data (e.g., 
means, regression, ANOVA), in fact, analysis proceeds just like there were no missing data, except the 
analysis is performed on each imputed data set.  Point estimates and variances of these point estimates 
will be collected from the analyses for combination in the next step. 
 To illustrate, consider a very simple analysis which computes the overall mean of the national test.  
For each imputed data set, we will compute a separate mean and variance; these sets of estimates are then 
saved so they can be combined to produce an overall estimate of the mean and an overall estimate of the 
standard error (see next section).  The results of this analysis are as follows: 
 

Imputed Data Set #1:  Mean = 37.8105, Variance = .0187 
Imputed Data Set #2:  Mean = 37.8488, Variance = .0185 
Imputed Data Set #3:  Mean = 37.8166, Variance = .0185 

 
Combining Analysis Results 

Once the analyses have been completed for each imputed data set, all that remains is to combine 
these analyses to produce one overall set of estimates.  Combining the estimates from the imputed data 
sets is done using rules established by Rubin (1987).  These rules allow the analyst to produce one overall 
set of estimates like that produced in a non-imputation analysis.  In our example, we will use these rules 
to combine the three sets of means and standard deviations listed above to produce one overall mean and 
the variance (or standard error) of that mean. 

First we will combine the means.  Rubin’s rules specify that combining the estimates of the 
parameter of interest (in our example, the mean) is accomplished simply and intuitively by averaging the 
individual estimates produced by the analysis of each imputed data set.  In mathematical terms, this is 

written generally: ∑
=

=
K

k
kK 1

ˆ1 θθ , for K imputed data sets and point estimates $θk  of some parameter of 

interest θ . 
In our example, K =  3 and the values of $θk  are the means from each imputed data set.  Thus, the 

estimate of the overall mean is 37.8253, produced simply by averaging the means calculated from the 

three imputed data sets:  .8253.37)8166.378488.378105.37(
3
1

=++=θ    

Thus, our estimate of the true average national test NCE is about 37.8. 
The total variance of θ  is equally intuitive, but requires more computation.  For K imputed data 

sets, the total variance of θ  is given by the formula BKWT )1( 1−++= , where ∑
=

−=
K

k
kWKW

1

1 , the 

average of the K  imputed variances, and ∑
=

− −−=
K

k
kKB

1

21 )ˆ()1( θθ .  In plain English, this means that the 

total variance of our estimate is made up of the two components we know we should account for: a 
component which preserves the natural variability and an additional component which estimates 
uncertainty caused by missing data.  The part of T which measures the natural variability in the data is W , 
the “within-imputation” component.  This component is analogous to the variance we would produce if 
we did not need to account for missing data, and is found by merely averaging the variance estimates 
from each imputed data set.   The part of T which measures uncertainty introduced by missing data 
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involves B , the “between-imputation” component, which measures how the point estimates vary from 
data set to data set.  If the estimates vary greatly from data set to data set, then uncertainty due to 
imputation is high and B is large.  If, however, the parameter estimates are all very similar, there is less 
uncertainty, and B is low.   

In our example K  = 3 , the $θk ’s are the means from the imputed data sets, 8253.37=θ  from 
above, and the values of kW  are the variances from each imputed data set.  First, we compute W  from the 
formula given above by averaging the variance estimates from the imputed data sets.  This produces an 
estimate of the within-imputation variance: 0186.)0185.0185.0187(.3/1 =++=W .  Next, we will 
compute B  in order to estimate the between-imputation component: 

))8253.378166.37()8253.378488.37()8253.378105.37(()13( 2221 −+−+−−= −B .  Simplifying, we get 
.00042.))0087.()0235(.)0148.)((2/1( 222 =−++−=B   Finally, we must substitute our within and 

between components W  and B  into the formula for the overall variance T, so 
.0192.)00042)(.31(0186. 1 =++= −T   Taking the square root of the variance gives us the standard error 

of the mean, .1384. 
The result of our work is that we have produced an estimate of the overall mean NCE on the 

national reading test (37.8253) and an estimate of the variance of this mean (.0192).  These numbers look 
the same as if we had not employed multiple imputation and used a more naïve method such as listwise 
deletion.  However, the estimates obtained using multiple imputation represent an attempt to account for 
sample bias, and we thus believe these estimates are closer to the true population values than, say, 
estimates using listwise deletion would be. 

 
 

Discussion 
Discussion of Results 
 In our example, data were missing from a national reading assessment.  The assessment and the 
missing data were thought to be correlated with gender, grade, special education status, score from a local 
reading test, so these variables were used to help account for missing information from the national test.  
A basic analysis – computing the overall mean – was undertaken to describe the process of multiple 
imputation.  Given the goals of this paper, the analysis and imputation were understandably rudimentary, 
but the example still provides good illustration of some important concepts. 
 As stated earlier, multiple imputation (MI) almost always produces estimates which are more 
representative of the population than do the more popular methods of handling missing data, listwise 
deletion (LD) and mean substitution (MS).  Means and standard errors were also computed using these 
methods in order to illustrate earlier points regarding multiple imputation: 
 

Listwise Deletion (LD): Mean: 38.83, Standard error: 0.146 
Mean Substitution (MS): Mean: 38.83, Standard error: 0.124 
Multiple Imputation (MI): Mean: 37.83, Standard error: 0.138 

 
 One criticism of LD and MS is that both produce biased point estimates because both assume that 
the missing set of participants is similar to the set with valid values.  Since males, students in higher 
grades, students participating in special education, and students with lower local test scores had lower 
average national test scores, and since these students were more likely to be missing the national test, that 
assumption is suspect.  Given this bias description, we would assume that the sample of students with 
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valid values would be an artificially higher-scoring sample, thus biasing upward any estimate of mean 
national test score.  In fact, the overall mean calculated using MI is a full NCE lower than that calculated 
using LD or MS6.  This is expected, since MI attempts to account for the sample bias described here. 
 Since MS handles missing data by substituting the same value for each missing data point, 
standard error estimates from the MS method are necessarily biased downward.  This is illustrated in our 
results.  Standard error estimates obtained using MS are 0.022 (15%) and 0.014 (10%) less than the LD 
and MI estimates, respectively.   
 It is interesting to note that although the MI method has an extra component estimated in the 
standard error (the component estimating uncertainty due to missing data) the standard error from MI is 
still lower than the standard error produced by LD.  This is not generally the case, but is not uncommon, 
and the reasons can be seen by examining the MI variance computation.  From the data example, we see 
that the “within” variance estimate (the average of the variance estimates from the imputed data sets) is 
0.186.  Taking the square root of this variance gives a standard error of .136, lower than the LD standard 
error of .146 because the MI method is taking advantage of more participants.  The between-imputation 
component of the overall MI variance is fairly small, so the overall MI standard error results in a smaller 
number than the LD standard error.  In sum, even though best estimate of the population standard error 
(MI estimate) contains an extra term due to uncertainty, in this example it is still lower than the LD 
estimate, which suffers from a lower sample size due to attrition. 
 A final note: the one-NCE difference in parameter estimates between MI and the other methods is 
not large, but is important because of what it suggests.  The simplicity of this example – one of moderate 
missingness and using only four variables in the imputation model – suggests that performing this 
analysis in earnest might well uncover a greater degree of missing data bias, not only in the overall 
estimates, but in relationships among variables.  In practice, this analysis would be undertaken with 
greater care and complexity than that illustrated here.  The next section discusses such considerations. 
 
Extending the Example 
 The aim of this paper was to provide a basic, conceptual overview of how multiple imputation 
works.  Since this example was chosen for ease of illustration, the analysis would be more complicated if 
it were conducted in actual practice, and there would be further issues for the analyst to consider.  
Although detailed illustration and discussion of these issues is beyond the scope of this paper, it will be 
helpful to point out a few of these issues. 
 It is important to choose a good, inclusive imputation model.  The example presented here used 
only four variables to impute the national reading test, but in practice, there would likely be many more 
variables included.  As discussed earlier, missing data situations usually involve a combination of 
accessible and inaccessible mechanisms, and the analyst’s aim is to account for as much of the accessible 
mechanism as possible.  Thus, the analyst would likely identify an imputation model with more variables, 
possibly using interactions, and would invest time in deciding which variables were best for this model.  
In this application, the analyst might concentrate more on variables correlated with the national reading 
score than variables correlated with missingness – Collins et al. (2002) suggested that in the presence of 
moderate missing values (less than 25%), variables correlated with the outcome of interest are more 
impactful than those correlated with missingness. 
 For illustration purposes, this example used cases which were not missing the imputation variables 
(grade, gender, special education, local score; see Appendix A), but in reality, these variables also contain 

                                                           
6 The mean using mean substitution is necessarily equal to the mean using listwise deletion, because mean substitution replaces 
every missing value with the mean, computed listwise.  In this example, mean substitution was accomplished by substituting 
38.83 for every missing value. 



 13

missing data.  In practice, analysts typically impute missing imputation variables along with the missing 
outcome variables.  This practice produces better results than the alternative of ignoring potentially useful 
predictor variables (Little, 1992, Schafer & Graham, 2002), but the analyst should take care that 
missingness in the imputation variables is not too high and that these variables themselves are imputed 
efficiently. 
 When performing multiple imputation, it is important to assess the quality of the imputation 
models.  The NORM software, for example, uses a Bayesian simulation process called Data 
Augmentation to draw models (in the example, illustrated as regression lines) to create imputes (Schafer, 
1997).  This process is assessed using diagnostic tools provided in NORM (Schafer, 1997; Schafer & 
Olsen, 1998).  For example, it is important in Data Augmentation that the models used for imputation be 
independent of one another; the NORM software provides methods for assessing this. 
 
 

Summary 
In this paper, I have attempted to provide a basic and clear description of the ideas behind and 

process of multiple imputation.  The description offered here is mostly conceptual, aimed at providing a 
clear understanding of the basic ideas of multiple imputation, a good base from which to learn more about 
the use of multiple imputation, and an understanding for reading research which uses multiple imputation.   
 Not long ago, missing data was viewed as something to discard.  Researchers knew the bias 
problems this presented, but there were no methods available to account for missing data bias.  Today, 
however, researchers are not bound by such constraints.  Methods such as multiple imputation are 
available and usable for most researchers, so there is no need to publish studies which suffer from sample 
bias. 
 Since missing data have been handled ad-hoc for so long and since multiple imputation and other 
statistically principled procedures are relatively new, some are skeptical about the validity of their use.  
Skepticism about any methodology which is unfamiliar and is presented as an improvement upon 
traditional methodologies is understandable and often necessary.  However, it is important to reiterate that 
the superiority of multiple imputation to traditional methods is based on mathematical fact, not belief or 
opinion.  It is likely that other missing data methods will be developed which are superior to multiple 
imputation, but until such methods are available, multiple imputation provides a good solution to missing 
data problems. 

There are many issues and aspects regarding multiple imputation which I was unable to discuss 
here, given the goals and length of the paper, and the user would be well-advised to pursue further 
learning about multiple imputation before delving into an analysis.  Still, I believe this paper provides a 
good conceptual understanding of multiple imputation and it is my hope this paper can contribute to better 
research which informs the ultimate goal of everything we do – improving educational outcomes for 
children. 
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Appendix A – Description of Sample 
The data for the examples used in this paper come from a large school district in the United States.  

Variables used for these examples included a participant’s grade, gender, participation in special 
education, normal curve equivalent on a nationally-administered reading test, and raw score on a locally-
administered reading test.  Local test scores ranged between 232 and 430, but approximately 95% of the 
data fell between 303 and 383. 

The sample was restricted for these examples in order to provide the clearest possible explanation.  
Participants were included if they were in grades 6, 7, or 8, and were not missing responses for gender, 
special education status, and local reading test.  There were 19373 participants in the resulting sample, 
2896 (15%) of whom were missing the national test score.  Table 2 describes the sample. 

 
Table 2    
Description of Sample 
 

  

Variable N Average NCE for 
National Test 

Percent Missing 
National Test 

Grade    
              6 5897 (30%) 39.59 11% 
              7 7002 (36%) 38.18 17% 
              8 6474 (33%) 38.79 16% 
    
Special Education    
             Yes 3657 (19%) 20.47 22% 
             No 15716 (81%) 42.68 13% 
    
Gender    
             Male 9888 (51%) 36.85 18% 
             Female 9485 (49%) 40.76 12% 
    
Local Test  67.=ρ   
Total 19373 38.83 15% 

 


