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1. Introduction

There are many deep reasons why the Mathematical Analysis of the Navier-Stokes equa-
tions fits in the theory of Dynamical Systems.

At the level of first principles the Navier-Stokes equations can be deduced from the
Boltzmann equation which is obtained from a Hamiltonian system describing the evolution
of molecules of gaz. To do so, one takes in account the magnitude of N the Avogadro
number of the order of 10** and considers the Boltzmann-Grad limit N — oo.

On the other hand, fluids described by the incompressible Navier Stokes may exhibit
very complicated chaotic or self organized structures when the Reynolds number turns
out to be very large. Commonly these situations are called “turbulent” and the present
challenge is the construction of equations that will be used to compute the evolution of
some type of averaged quantities.

Therefore the Navier Stokes equations appear to be one of the main pieces of a
sequence of equations:

Hamiltonian system of particles

4

Boltzmann equation

4

Navier Stokes equations

4

Models of turbulence

each of them being deduced from the previous one by some averaging process where the
notion of irreversibility is embedded.

Irreversibility at the level of the Boltzmann equation and its relation with the irre-
versibility at the level of the compressible Euler equation, the compressible or incompress-
ible Navier Stokes equations, are by now well understood and will be recalled in section
3.3; the solutions are related to the notion of semiflow and global attractors which can be
extended from finite to infinite dimensional systems.

It is more difficult to understand how the Boltzmann equation can be obtained
as the limit of the genuinely reversible system, which describes the flow at the level of
molecular dynamics. As will be shown, this can be done by some averaging process where
the self interaction of the molecules and therefore the non linearity of the problem plays
a crucial role so that the limit is in agreement with the appearance of irreversibility. This
will be explained in section 3.2.



Much more difficult and unsolved questions arise when the macroscopic fluid be-
comes turbulent and when some type of averaging is necessary for quantitative or quali-
tative results. In spite of being the very end of the hierarchy, this step shares in common
some points with the previous one.

It is an averaging process and the “turbulent model” starts to be efficient when the
original Navier Stokes are outside the reach of direct numerical simulations.

In this averaging appears a problem of moments and of closure and the search for
something that would play the role of the thermodynamical equilibrium.

However this is not easy for the following reason.

There is up to now no well defined notion of equilibrium and relaxation to this
equilibrium with something that would play the role of the entropy.

The parameters that would lead to turbulent phenomena are not so clearly identified
as in the previous step of the hierarchy. In some sense they are less universal and more
local.

In this process the dynamical point of view is also essential:

The introduction of randomness requires the construction of a “canonical measure”
on the set of solutions. This leads to the adaptation of the Birkhoff ergodic theorem to
the Navier Stokes equations. The structure of the turbulent spectra which would play the
role of the thermodynamical equilibrium has been the object of phenomenological studies
initiated by Kolmogorov and Kraichnan (for the two dimensional flow) and it is only to
the best of our knowledge, in the frame of statistical semiflows defined on a periodic box
that some “spin-offs” of this theory can be proven in full rigor. The structure of the
turbulent spectra also leads to the notion of degrees of freedom and exponential decay
after the Kolmogorov or Kraichan cut-off wave number. Here also some counterpart of
these notions can be proven in full rigor provided the global attractors or exponential
attractors of the semiflow are introduced.

Eventually (this is the last chapter of this presentation) at very large scales one
observes coherent structures (the classical examples are the Jupiter red spot or the anti-
cyclone of the Agores). These structures are generated through turbulent processes but
play the role of metastable thermodynamical equilibriums. Up to now there has been no
dynamical derivation for their appearance and stability; however, some notions of entropy
and “negative temperature” inherited from statistical mechanics are used and motivated
by comparison with the evolution of point vortices which are a “canonical Hamiltonian”
system.

As a consequence this contribution is organized as follow. In chapter 2 the basic
mathematical properties of the Navier Stokes equations are presented. Relations between
compressible and incompressible equations are given and the emphasis is put on the finite
time stability (which very often in its mathematical formulation concerns the regularity
and uniqueness of solutions).

One should keep in mind that local results for smooth solution go back to Lichten-
stein (1927). The fact that these results cannot always be global in time is well understood
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on the example of the appearance of singularities (in particular shock waves) for the com-
pressible Euler equation. On the other hand:

1) The existence of a global in time weak solution for the 3 dimensional Navier Stokes
equation has been proven by Leray. His notion of weak solution (1934) preceded both the
introduction of the Sobolev spaces (Sobolev 1936) and the distributions (Schwartz 1944).
However, in spite of several interesting improvements, the question of the existence of a
global in time smooth solution remains essentially open. An interesting instability result
of Lions and DiPerna described in section 2.4 may give some clues to the reason why the
regularity of the solution of the Navier Stokes equation is “hard” to prove.

ii) For the compressible Euler equation the only convenient global solution is the
weak solution. Here also one should keep in mind that the only available result goes back
to J. Glimm (1965) and that it has never been improved.

The existing and non existing results for these macroscopic equations which are at
the center of the hierarchy give some indication on what could be proven above and below.

Chapter 3 is concerned with the hierarchy from the Hamiltonian system of particles
to the macroscopic equation with an essential intermediate step of the introduction of
the Boltzmann equation. First it is shown how to derive the Boltzmann equation from a
Hamiltonian system of particles using the BBGKY hierarchy. It is important to observe
in this section how the fact that the initial problem is non linear is in agreement with the
appearance of an irreversible process with a nontrivial entropy from a reversible process.
Then, following Hilbert, Chapman, Enskog and a series of more recent contributions, the
relations between kinetic and macroscopic equations are explained. It is important to
notice that most of the rigorous results are the counterpart of the classical results of the
previous section for the Navier Stokes equation.

Chapter 4 is a short introduction to turbulence. To introduce the Reynolds stress
tensor a classical model of turbulence (the &, e model ) is presented. Through the study of
the Reynold stress tensor, with the use of the Wigner transform, a local notion of turbulent
spectra appears. The necessity of introducing some randomness is compared with the use
of defect measures.

In chapter 5 connection is made with dynamical systems to prove some of the basic
properties of turbulent spectra. For sake of simplicity (many results of this section have
been adapted to other configurations) one considers a flow in a periodic box with some
time independent low frequency external force.

First the classical phenomenological derivation of the Kolmogorov and Kraichnan
inertial range and dissipative wave numbers is given. Then the global attractor and some
rigorous properties for the invariant measure are given and counterparts (in this setting) of
the phenomenological results are proven—some in full rigor, others with natural hypotheses.

The comparison of the evolution of the flow with the solution of a finite dimensional
dynamical system has led many authors to the introduction of the notion of “inertial
manifold.” This notion, which works well for a series of equations (for instance Kuramoto-
Sivashinsky) as discussed in section 5.5, does not seem effective for the Navier-Stokes
equation due to intermittency in turbulence. This section is concluded with a description
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of a more robust and flexible object: the exponential attractor, which with some gen-
eralization of the Mané projection theorem yields equivalent finite-dimensional “inertial”
dynamical systems.

The last chapter concludes the description of the hierarchy by the introduction of
objects which in some sense are even more coarser than the coherent structures. A short
state of the art in conjunction with the dynamical system of interacting particles is given.

As a large part of the material of this contribution is classical it is useful to conclude
the introduction with some references:

The up to date but classical theory on Navier Stokes equation can be found in the
books of P. Constantin and C. Foias, “Navier-Stokes Equations” and the book of P.L.
Lions, “Mathematics Topics in Fluid Mechanics, Volume 1, incompressible models.”

The presentation of the ¢ — k model of Launder and Spalding follows the book of
Mohammadi and Pironneau Analysis of the K-Epsilon Turbulence Model. Of course this
is not the only (or the always more relevant) model. Besides the ideas given here many
other approaches have been tried including the use of renormalization group (cf. Orzag
and Yakhot [YO]). However the k — ¢ model seemed well adapted to the introduction of
the problematic of turbulence.

The authors found in the technical report of Besnard, Harlow and Rauenzahn, Spec-
tral Transport Model for Turbulence [BHRZ] the use of the Wigner transform for the anal-
ysis of the local turbulent spectra. In spite of the fact that this is a very natural approach
it does not seem to have appeared anywhere else.

Section 5 borrows many ideas and most of the presentation to the review article of C.
Foias What do the Navier -Stokes equations tells us about turbulence [Fo]. Eventually basic
ideas and a systematic presentation on the notion of attractors and of inertial manifolds
are an essential part of the books by A.V. Babin and M.I. Vishik, Attractors of Evolu-
tion Equations, and by Temam on Infinite Dimensional Dynamical System in Mechanics
and Physics [BV4]. The notion of the exponential attractor itself appears in the more
recent book by Eden, Foias et al., Fxponential attractor for dissipative evolution equations
[EFNT].

Up to now very few mathematical books have considered the question of coherent
structure; however, most of the material of chapter 6 can be found in Chorin, Vorticity and
Turbulence [Cho] or in Marchioro and Pulvirenti, Mathematical theory of incompressible
non viscous flurds|MaPul].

In 87 and 99 years passed away to Scientists whose contributions, as we try to
explain, were corner stones for the present theory: Jean Leray and Andrei Nikolaevich
Kolmogorov. We think that their pictures should be present in this review article on
Navier-Stokes equations.

Acknowledgements First the authors wish to thank profusely Professor Ciprian
Foias for his encouragments and suggestions. Furthermore, as said above, part of this
presentation owes much to his review article ”What do the Navier-Stokes equations tell us
about turbulence”.



Several sections of this presentation result joint work or long discussion with friends
and colleagues. For instance the chapter 3 is an upshot of a long term project of C. Bardos
with Francois Golse and Dave Levermore, results on rotating fluids are in the core of a
project of B. Nicolaenko with Anatoli Babin and Alex Mahalov. The chapter on coherent
structures in this presentation follows discussions with Marie Farge who introduced these
concepts in our community. Finally we ow to Uriel Frisch a general approach on turbulence.
It is a pleasure for us to thank all of them.
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2. Euler and Navier Stokes Equations: scaling parameters, regularity and
stability results, theorems and counterexamples

2.1. Introduction

The macroscopic description of the fluid is the cornerstone of the analysis of the hierar-
chy. It i1s at this level that the Reynolds number and Mach number are the most easily
defined. Relations between compressible and incompressible equations are a clue to the
understanding of the different types of limits of the kinetic equation as described in the
next chapter. The present chapter is organized as follows. In the second section as an
introduction, the relation between compressible and incompressible equations is derived
at a formal level. Rigorous proof of convergence can be found in Klainerman and Majda
[KM] or in Benabdallah-Lagha [Ben|. The next section is devoted to the entropy which is
used to show that the compressible Euler equation is an hyperbolic system, to prove some
results of uniqueness and finite speed of propagation. These properties will be used in the
next section where physical sufficient conditions for loss of regularity are given.

The Section 2.4 is devoted to the incompressible Euler equation in 2 and 3 space
variables. In 2 space variables the conservation of the vorticity along the trajectories of the
flow is a precious information which gives in particular global (in time) regularity results.
Nevertheless the question of the large time stability (in higher norms) remains open and
this is in full agreement with the ideas exposed in the chapter 6.

In 3 space variables, the local in time existence of a smooth solution can be obtained
by an adaptation to pseudodifferential operators of the Cauchy-Kowalevski theorem and
by now it is a very classical result. On the other hand the existence of a solution in the
large and the possible loss of regularity remains a completely open problem. The difficulty
of this problem can be illustrated by a very explicit example of instability due to P.L.
Lions and R. DiPerna which is given.

This example is also used to illustrate the difficulty of analyzing the regularity of
the weak solution of the 3 dimensional incompressible Navier-Stokes equations which is
considered in the Section 2.5, where some conditional results are given. For the authors,
at present, the most striking one is the contribution of Constantin and Fefferman [CF].
They have shown that loss of regularity (or stability) is induced by strong oscillations in
the direction of the vorticity.

This result should be combined with the a complementary point of view contained
in a series of papers by Babin, Mahalov and Nicolaenko, motivated by the rotating Euler
and Navier-Stokes equations in the atmosphere. These authors have studied the effect of
the presence of a large Coriolis term (or large rotation frequency). They have shown that
high-frequency oscillations induced by this term do stabilize the three dimensional Euler
or Navier Stokes equation [BMN1-3]. Of course in this situation the Coriolis force is an
external force. However it may appear that large vorticity could play the same role and in
the end lead to regularity results for the classical Navier Stokes equations.



2.2. Compressible and incompressible equations

At the macroscopic level, the most universal equations of fluid dynamics are the compress-
ible Navier Stokes equations. They involve, as unknowns, p, u, 6 and p the density the
velocity, the temperature and the pressure.

In this contribution emphasis is put on the notion of hierachy of equations therefore
the state law which gives the pressure in term of temperature and density will be the
Mariotte law for the perfect gases:

Re
e

R is the gas constant and ¢ its molecular weight.
As it will be shown in the section 3.3 the evolution equation for a perfect gas are
derived from the Boltzmann equation when the Knudsen number goes to zero. With a

b

convenient scaling this limit produces the following equations:

Otpe + V- (peue) =0, (2.2.1)
Pe (8,5 + uE-Vgg)uE + Vipe = €V [vo(ue)], pe = pebe , (2.2.2)
%pe (8,5 + uE-Vx>9€ + pebVyue = e%ya(ue):a(ue) + eV, [kV.0.]. (2.2.3)

The numbers er and ex are the viscosity and thermal diffusivity they are proportional to
¢ the Knudsen number which is the ratio between the mean free path (the mean distance
travelled by a molecule of fluid between two successive collisions and the characteristic
size of the domain where the interaction takes place). Observe that the ratio between the
viscosity and the thermal diffusivity is an € independent number. In fact it is one of the
characteristic number of the fluid and it is called the Prandtl number; o(u) denotes the
strain-rate tensor given by

oij(u) = (ul, +ul,) — 2V, udij . (2.2.4)

In a compressible fluid one also introduces the Mach number Ma which is the ratio of the
bulk velocity to the sound speed and the Reynolds number Re which is a dimensionless
reciprocal viscosity ev of the fluid. These numbers in consistency with the derivation of
the above equations from the Boltzmann equations (cf. section 3.3 and [LL]) are related
by the formula

e="—. (2.2.5)

When the Reynolds number goes to infinity the equations (2.2.1)...(2.2.3) reduce to the
compressible Euler equations

Otp + V- (pu) =0, (2.2.6)
p(0 + u-Vy)u+ Vi(pd) =0, (2.2.7)
2p(0r + u-Vi)0 4 pVe-u = 0. (2.2.8)
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On the other hand the incompressible Navier Stokes equation can also be deduced
from the above equations when the Mach number goes to zero. More precisely, consider in
three space variables, for time of the order of (¢)~! the solutions of the equations (2.2.1),
(2.2.2), (2.2.3).

Assume that the velocity, the fluctuation of density and temperature are also of the
order of ¢, introduce the change of functions:

pe = po + epelet, ), u.=euc(et,x), 6. =6+ eée(et,x), (2.2.9)

and observe that if these functions converge (for ¢ — 0) in a convenient topology their
limit satisfy the following system of equations

Ol + 0-Vyi + Vop = vAd,  Vya=0, (2.2.10)

Vx(/)oﬁ + 909) =0 ’

(2.2.11
5(040 + - V,0) = kA6, (2.2.12
(

)
)
where (2.2.10) is a standard version of the incompressible Navier Stokes equation, (2.2.11)
is the Boussinesq relation between the fluctuations of density and temperature and (2.2.12)
is the equation for the temperature. For v = 0 the system becomes the incompressible
Euler equation.

Most of the above equations are non linear and this is one of the main reasons why
analytical solutions almost never exist. Therefore the analysis relies on estimates usually
called a priori estimates and the connection between the different type of equations also
explain if these estimates are difficult to obtain for some equation (E) it will also be difficult
to obtain for any other family (E.) which in some sense converge to (E) e—independent
estimates of the same type.

2.3. Entropy and the stability of the compressible Euler equations

Observe any smooth solution of (2.2.6), (2.2.7) and (2.2.8) satisfies the entropy relation

ol

OipS + V- (upS) = 0 with pS = plog % (2.3.1)

Since S is a convex function of the principal variables

Jul? 3
prpus (5= + 36)
one can show that the corresponding linearized system is hyperbolic. As a consequence
one obtains the existence and stability of smooth solutions of the system (2.2.6), (2.2.7)
and (2.2.8) for smooth initial data. One can also in the same situation prove the finite
speed of propagation of localized perturbations of the constant state, and (cf. Sideris [S])
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the appearance after a finite time of singularities. This correspond in particular to the
generation of shock waves. In the presence of such singularities the relation (2.3.1) is no
more valid and both on physical and mathematical ground it has to be replaced by the
relation:

OpS + V- (upS) <0 (2.3.2)

which describes the decay of entropy (observe that the mathematical and physical entropy
are of opposed sign, this is due to the fact that mathematicians do prefer to consider
convex functions). The entropy decay can also be used to prove a stability result between
regular solutions and weak solutions which satisfy (2.3.2) (cf. Dafermos [Dal).

However from the mathematical point of view the situation is far from being sat-
isfactory. The existence for all time of weak solutions has only been proved in one space
variable by Glimm [G] in 1965 and in spite of tremendous efforts involving the best mathe-
maticians of our generation the problem remains widely open. No progress has been made
concerning the existence of global in time weak solution of the genuine compressible Euler
equation since the work of Glimm. Furthermore one of the basic tools of this approach, in
one space dimension, is the introduction of the space of functions with bounded variation.
This approach seems quite natural to deal with shocks. Unfortunately it has been proven
by Rauch [Ra], that no estimate of this type would be valid in higher dimension.

2.4. Stability and instability of the incompressible Euler equation

In the previous section it has been shown that the incompressible Navier Stokes or Euler
(v = 0) equations (equation (2.2.10) above) are the incompressible limit of the correspond-
ing compressible equations. The necessity to have at our disposal viscosity independent
results lead to the consideration of the incompressible Euler equation which in 2 and 3
space variables is

Oru +u-Veu = —Vep, Veru=20 (2.4.1)

with, if a boundary is present, an “impermeability boundary condition”
u-n=20

on the boundary of the domain (77 is the outward normal to the boundary). However for
sake of simplicity some of the present analysis is done for domains with no boundary (all
space or space periodic solutions).

The relation V,-u = 0 can be viewed as a constraint and p the pressure is in this
point of view the Lagrange multiplier of this constraint.

With the introduction of the vorticity (or V x u) w = V x u the above equation can
also be written

Ow+u-Vow—w-Vou=20

Veu=0, curlu=w, uwurn=0 onof.

(2.4.2)
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The second line of (2.4.2) defines a —1 order pseudo-differential operator w
K(w) = u. This observation has important consequences both at the level of abstract
geometry and analysis:
“1)” The expression

{u,w} =u-Vyw—w-Vyu

has the formal properties of a Poisson bracket and the Euler equation can be written
in the form:
w=—{u,w}.

Therefore it may have in some sense an hamiltonian structure.

In fact it is natural, and this will be used in others subsections, to introduce the
trajectories of the particles of the flow (or the Lagrangian coordinates) defined by the
relation:

#(t, X) = ult, 2(t, X)), z(0)=X.

The mapping
Gi: X —a(t,X)

is a volume preserving (use the relation Vyu = 0 and u-7 = 0 on the boundary) isomorphism
of the domain of definition €2 of the fluid.

On the other hand one can define in terms of energy the Riemannian distance
between the identity and any volume preserving G isomorphism of {2 according to the
formula:

T
Eg = min// |G(t, X)|?dX dt (2.4.3)
QJO

with G(t,.) ranging over the C'! volume preserving transformation of  with the initial
and final conditions:

G(0,X) =X, G(T,X) = Gr(X).

A standard variational computation shows that if (X,t) — G(¢, X) is an extremal for the
action given by (2.4.3) then ‘
u(t, ) = GG (1, 0)

is a solution of the Euler equation. Systematic extensions of this point of view can be
found in Abraham Marsden and Arnold Khesin ([AM], [AK]) and are used to characterize

the stability of some stationary solutions.

“ii)” It is easy to see that, in d-dimension, for initial data in a enough regular Sobolev
space (for instance H*(R?) with s > %—I— 1) the problem (2.4.1) has a unique solution
continuously defined in the same space for a finite time interval (0,7) with

1

T>C .
[w(, 0)| 22+ (R

Results of this type were already obtained by Lichtenstein in 1925 [Lic] (in a less
elaborate language).
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However the problem of the existence of a solution in the large is still widely open
and there is no, at variance with the compressible case, a proof of the appearance of
singularity or a good physical reason for such an event.

When the space dimension is equal to 2 the term w-V, u disappears from the equation
(2.4.1). In fact w = curlu remains perpendicular to the plane where the fluid evolves. The
equation (2.4.1) becomes:

Ow(,t) +u - Vyw(z,t) =0 (2.4.4)

and w is conserved along the trajectories of the particles of the fluid:
i = u(a(t), 1)

and remains bounded in L* for all time. This is enough to prove the existence of a weak
solution (cf. Yudovich [Y]). However the proof of the uniqueness in a convenient class is
slightly more elaborated (cf. also [Y]) and to prove the persistence of the regularity of the
solution with smooth initial data one has to face the following problem: The estimate

w=VxueL™ (2.4.5)
which comes from (2.4.4) is simply not enough to imply that
Vpu € L™ (2.4.5)

and (2.4.5) seems compulsory for any boot-strap argument for the proof of the regularity.
However a more precise use of (2.4.4) gives according to Wolibner [Wo] a regularity result
as follows:

Theorem 2.1 Consider the solution of the 2d incompressible Euler equation in a bounded
domain §) of diameter L with an “impermeability boundary condition”. Assume that the
initial vorticity is in the Holder space C%*(Q). Then one has the following uniform (in
time) estimate:

IV x u(,t)]|coary < C|V xul(.,0)]|coa (2.4.6)
with a(t) = aexp{—=Ct[|V x u(.,0)|[z= ()}

Proof Observe that the Green function of the Laplace operator with Dirichlet boundary
condition is of the following form
1
G(x,z) = —2—10g|:1; —z| + (z, 2) (2.4.7)
7
with v(x,y) being a smooth function and that

u(x,t) = /Q V x G(x,2)V X u(z,t)dz . (2.4.8)

iFrom (2.4.7) and (2.4.8) one deduces the estimate:

T —y
Vau(z) — Veu(y)| < C|V % ulge(ayle — y|log (' - |> (2.4.9)
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with D denoting the diameter of €. Since the vorticity is constant along the trajectories
of the flow one can use in the relation (2.4.9) the estimate

IV % u(ot)| e = |V x ul., 0)|pe (2.4.10)

and for the Holder norm of the curl, the estimate:

[V ule(t),t) = ¥ x uly(t), )]
2(t) — y({)]

IV X ulel00) = < u(y(0). 0] Js(0) =0}

2(0) = y(O)I° [2(t) — y(1)]°®

where #(t) and y(t) denotes Lagrangian coordinates as introduced above. With

p(t) = [2(t) —y(?),

uses the estimate (2.4.9), (2.4.10) and by comparison with the solution of the differential
equation

(2.4.11)

@ _ ig@bg(@) (2.4.12)
obtains:
<|x(0)l—)y(0)| em IV xHlLo o) > |x(t)l—)y(t)| > <|x(0)l—)y(0)| eCtlwule(m, (2.4.13)

Since D is the diameter of the domain ) where the particles live one has

|2(0) — y(0)|

<1
D

and therefore the first term of (2.4.13) goes very rapidly to 1 and the last one very rapidly
to zero when t — co. Eventually one deduces form (2.4.13) that:

2(0) — yO1"
FOETCECE A

which gives (2.4.6) and by classical Holder estimates for elliptic operators:

(2.4.14)

ect|v><u|Loo(Q)

Vot o (g € C————IV X ulot)| —crvxutyma, < |V X u(0)lca . (24.15)

Cla
Now this relation can be used to prove that for any finite time the solution remains in the
same regularity class as the initial data.

Remark 2.2 The estimates (2.4.15) do not prevent the measure of the regularity to
deteriorate very rapidly for ¢ — oo even according to the rate

()| crra =

14



Such a behavior is not incompatible with the following facts:

i) An example due to Bahouri and Chemin [BaCh] of a flow with an initial vorticity
in L*> (but not in an Hoélder class) shows that (2.4.14) is optimal.

ii) The singular behavior (for t — oo) of the Holder norm of the curl implies that
due to the corresponding loss of compactness the omega limit set of the family V x u(x, )
which exist for the weak*L*> topology may not be approached in the strong L? norm.
Such an observation would be consistent with the appearance of some coherent structures
as described in the chapter 6.

As said above in three space variable the problem is locally in time well posed in
H*(R?) for s > 3 (or in C'1*). In fact it seems much more “physical” to believe that
eventually the loss of regularity would be governed by the “sup norm” of the vorticity. It
turns out that such a result is true and has been proven by Beale, Kato and Majda [BKM]
with an extension of the method of the proof of the Theorem 2.1 For sake of simplicity
the proof is done for periodic solutions defined in the “flat torus” R3\Z?, extension to
bounded domain or to the whole space are just technical.

Theorem 2.3 (Beale, Kato, Majda): Let u € C°([0, T[; H*(R*\Z?)) be a solution of the
three dimensional incompressible Euler equation. Suppose that there exists a time T such
that the solution cannot be continued up to T = T, and assume that T, is the first such
time. Then one has for w(x,t) =V X u(x,t),

T*
/ ()| oo dt = o0, (2.4.16)
0

and in particular
lim sup ||w(t)|| = = oo. (2.4.17)

*

Proof Start from the standard estimates in H?(R?*\Z?)
14
2 dt

Then as in the proof of the Theorem 2.1 introduce the Green function G(x,y) of the

Laplacian, defined on the function with mean value zero and observe that one has:

lullzrs < ClIVeullze ullZs (2.4.18)

u(xz,t) = /RS\ZS V x Gz, y)w(y,t)dy . (2.4.19)

Furthermore for « # y G(x,y) is very smooth (analytic) and for & near y one has :

11
4r |2 — yl

G(l‘,y) = + ’7(1’,y) (2'4'20)

with v(x,y) smooth. As a consequence one can prove the following estimate:
Vol < Clog(l + ||ul|gs)||w]|ze - (2.4.21)
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Therefore one deduces from (2.4.18) and (2.4.21) and for HUH%B > 1 an estimate of the
following type:
Allullfs < Cllw(t)lloollullzs log ||ull % (2.4.22)

which gives by integration:

cf:O llw(e)ll oo ds
le(®)lle < (lutto)ll =) - (2.4.23)

and proves the theorem.

Eventually the fact that existence of a regular solution is a difficult problem is
illustrated by the following

Theorem 2.4. (P.-L. Lions and R. DiPerna):
i) For each 1 < p < oo,t >0 and each € >0, § > 0 there exists a smooth periodic
solution of the 3d periodic incompressible Euler equation

O +u-Vou=—Vep, Veu=0 (2.4.24)

which satisfies the estimates:

[w(0) ][ <€ and = < [lu(t)||ws - (2.4.25)

| =

ii) There exist solutions of the periodic 3d incompressible Euler equation with a
vorticity linearly increasing in time, according to the formula:

IV 5 u(t)][ g = |V % w(0)]|2 - (2.4.26)

iii) There exists no continuous smooth function, ¢(t, s) independent of the Reynolds
number v such that one has for smooth solution of the 3 space periodic Navier Stokes
equation the estimate:

[u()llwrr < @, [[u(0)lwre) - (2.4.27)

Proof Let uf(x3) be a 22 dependent smooth periodic function and similarly let
ud(x1,22) be a (21, 22) dependent smooth periodic function. Then

U(x17x27x3) = (Ul(l’l,1}2,1}3),u2($1,$2,$3),U3($1,$2,$3))

! ; ) (2.4.28)
= (u7(22), 0, uz(21 — tuy(z2), v2))

is a periodic smooth solution of the 3 dimensional Euler equation with constant pressure.
Now introduce 6 € [0, 1] such that

0#3, 1<-—7 1<p< (2.4.29)

Pick two e-dependent families:
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6/2

u(l)’e(:zjg) uniformly smooth away from zero and behaving near 0 like (e* + 22)%/? and

ug’e(:pl , ¥ ) uniformly smooth away 0 behaving near 0 like (e+ 27 4+ 22)?~/2. Consider the
corresponding solution of the Euler equation constructed according to the recipes (2.4.28)

Ue(x17x27x3) = (ui(l’l,1}2,1}3),u;(l’l,$2,$3),u§($1,$2,$3)) : (2430)

Explicit computation show that on one hand U(0) is uniformly bounded in W' and that
on the other hand, for any ¢t € R, ¢t # 0 and uniformly for € small enough one has:

/ |0p,us (1)|F dq dag das =
RS /Z?
€ € E/ € €
/ [0, uy (21 — tuy (22), @2) (1) (22) = Duyuy (w1 — tu) “(2), @2)|? dwy da
R2/Z2

et [ 0 o) )P e o

|21 [P |2 |P

oo | |
|2]<6 (€2 4 |x|2)(§—9)p (€2  a2)1—3)p

dl’l dl’z .

(2.4.31)
Now when € goes to zero the right hand side of (2.4.32) behaves like the integral

|
/0 7r3(1_9)prdr

and therefore goes to infinity for p > %(1i9)'

The same method can be used to prove the item ii) with e fixed and ¢ going to
infinity. Finally if a function ¢(t,s) independent of the viscosity would satisfy (2.4.27)
then letting the Reynolds number go to infinity in the Navier Stokes equation one would
contradict the item i) and the proof is complete.

The item iii) gives some evidence to the difficulty of proving the existence of smooth
solutions for the 3d Navier Stokes equation and could introduce the next section.

2.5. Existence and regularity results for the 3d Navier Stokes equation. The
weak solution of J. Leray

In this section it is assumed that the viscosity is non zero (finite Reynolds number) and
therefore the equations of the motion in R? are

Oru +u - Vou —vAzu=—Vep, Vieu=0 (2.5.1)

Assuming that the solution is smooth and multiplying (2.5.1) by u one obtains the local
balance of energy

(O +u -V — vA)L|u)? + v|Veul? + V- (pu) = 0 (2.5.2)
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which by integration from 0 to ¢ and over R? produces the a-priori estimate.

t
%/ |u(:1;,t)|2d:1;—|—1// el ey () s = %/ (e, 0)2de.  (253)
R3 0 R3
The presence of the term
t
v [0 ()

plus some weak time regularity ensure enough compactness property to prove, with initial
data
Uo(l') S Lz(Rz)v Viug =0,

the existence of a weak solution
u(.,t) € Cow(Ry; LA(R*)) N LA(R4; HY(R?)); Voou=0. (2.5.4)

In (2.54), C\w(R4; L*(R?)) denotes the space of function defined in R4 with value in
L?(R?)) and continuous with respect to the L? weak topology. This is the basic result of
Leray (1934). However, as known, even for smooth initial data it has not been possible
to prove that the solution will be smooth for all time. Furthermore the class of solutions
constructed by Leray is not regular enough to afford a proof of uniqueness (in the same
class); also it is not regular enough to show that it satisfies the conservation of energy
(2.5.3), a fortiori it is not known if it satisfies the local balance of energy (2.5.2).

The following comments are usually made:

1) The instability theorem of P.L. Lions and R. DiPerna proven above shows that
uniform estimates (with respect to ) are not available and suggests that the dependence
of the regularity with respect to the viscosity may be difficult to control.

2) Some simple regularity results can easily be obtained, for instance:

i) If the initial data belongs to the space H¥(R?) with k > 5/2 then the solution is
smooth during a finite time |0, T'[ with T independent of v.

ii) If at the time #; the weak solution (which belongs to C°(Ry; L*(R?)) ) is in H'
then it is smooth on a interval ¢;,7T,, with T, > t; > 0 depending on v and on the norm
of u(t1) in the space H' .

iii) The conjunction of the point ii) with the fact that u is in L*(RS; H'(R?))
implies that the solution will become eventually smooth for ¢ large enough (how large, up
to now, is an open problem).

This also implies that the set of points where the weak solution may be singular is
small. In fact this idea already was present in the original work of Leray and was refined by
several authors. On its present form this refinement culminate with the work of Caffarelli,
Kohn and Nirenberg [Ca(Ni] where it is shown that if singularities exists for the Leray
solution they should be contained in a set of Hausdorff measure smaller or equal to 1 in
R? x R. Later on Sohr and von Wahl [SW] proved for the pressure associated to the
Leray solution, the estimate:

p e L3(Qx]0,T])
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which allowed Fanghua Lin [Lin] to produce a simpler proof of the result of [CaKni].

3) With the item ii) the smoothness is realized if one shows that the weak solution
1s bounded in

L=(R}, H'(RY)).
Observe that with the divergence free condition one has

/ |V,u(z)|? de :/ IV x ul*dz. (2.5.5)
RS RS

The right hand side of (2.5.5) is usually called the enstrophy and from the Navier Stokes
equation one deduces for w = V X u the equation:

Ow+u-Vow—w-Vou—vAgw=0. (2.5.6)

The energy estimates implies the estimate:

T
1// / |(w - Vyu)(a,t)|dedt < C’|u0(:1;)|2L2(R3) . (2.5.7)
0 RS

Introduce the direction ¢ of the vorticity defined by

jw(, )] wl@ ) £0, (2.5.8)
E(x,t) =0 if w(a,t)=0.

Multiplying the equation (2.5.6) by &(x,t) one obtains (formal computation is done first
then a rigorous proof can be obtained by a regularization process):

(O +u-Vy —vAy)|w|+ 1/|w|_3|Vx§|2

+ Z(W%M — wrwy)OwrOiw; < |w - Vyul. (2.5.9)
ikl

In agreement with the convexity of the function w +— |w| the last term of the left hand side
of (2.5.9) is non negative and with the energy estimate this give the bound:

/|w(:1;,t)| dr < C’/RS{|u0(:1;)|2 + |wo(x)|} du . (2.5.11)

Observe that among the quantities which have been shown to be uniformly bounded are

sup/ |V x u(x,t)|dx and / (/ IV x u(x,t)|? de) dt
RS 0 RS

t>0

while the typical one which is missing for global regularity is

sup/ IV x u(z,t)|> de < C.
R3

t>0
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The gap is not that big but seems very difficult to fill.

4) It was already observed in by Serrin [Se] and by Kaniel and Shinbrot [KS] that
in dimension 3 the supplementary hypothesis:

2
u(e,t) € L0, TH(LT(@)), 2+ <1, >3

was sufficient to ensure the persistence of regularity and the uniqueness. The marginal
case is s = 2 and r = oo, result which has been recently improved by Kozono and Taniuchi
[KT]. Introducing the space BMO (cf. [St]) which contains L they have shown, in the
spirit of the Beale Kato Majda theorem (theorem 2.4) that the condition

T
/0 a2 g pgodt < oo

was enough to ensure the persistence of regularity up to the time 7.

In the same spirit it should also be observed that another sufficient condition for the
uniqueness and regularity have been obtained for solutions with value in L3*(R?). Since
the transformation:

(u(z,t),p(x,t)) = Qu(Az, \2t), N2 p(Ax, \t))

preserves both the solution of the Navier Stokes equation and the norm of u in
L>(0,00, L*(R?) this space seems to play a crucial role for the analysis of the problem.
Such point of view introduced by Kato and Ponce [KP] and Weissler [We] involved several
contributions from Calderon [Cal], Cannone [Can] and culminated with the work of G.
Furioli, G. Lemarrié et E. Terraneo [FLT]. Once again the gap between uniform bound in
L? and L? seems small.

Eventually the derivation of the relation (2.3.10) let appears some relation between
the regularity of the solution and the regularity of the direction of the vorticity and in fact,
more precisely, one has:

Theorem 2.5. (Constantin and Fefferman):
i) For any Leray solution of the 3d Navier Stokes equation one has:

T
C
/ dt/ |Vo(z,t)|? da dt < —/ {luo(2)|* + |V x ug(2)|} dz.  (2.3.11)

0 {(@0)slw(z,0]>0) vl Jro

ii) Assume that the direction of the vorticity of the weak solution u is uniformly
lipschitz with respect to x when the modulus of this vorticity is large; this means that
there exist two positive finite constants C' and p such that one has

V(x,y,t) € (R3)2 x R {Jlw(z,t)] > Q and |w(y,t)| > Q}

= (2.5.12)

|z —y|
P

|sin g(z, y,1)] <
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with ¢(x,y,t) denoting the angle of the two vectors w(x,t) and w(y,t). Then the vorticity,
if bounded for t = 0 in L?*(R?) remains bounded in the same space for t > 0 and therefore
the solution is “regular”.

Remark 2.6. The significance of the relation (2.5.11) is: in regions of high vorticity the
direction of the vorticity is regular in an averaged sense but uniformly with respect to the
initial data and with a % dependence with respect to the viscosity.

The significance of the assertion ii) is that singularities (or loss of control of the
regularity) to appear need both large (in modulus) vorticity and large oscillations of the
direction of this vorticity.

Proof As above the proof is made with a-priori estimates which are later used for
rigorous proof with the introduction of some regularization process. Here the emphasis is
put on the a-priori estimates.

First, observe that the relation (2.5.11) is just a direct consequence of the estimate
(2.5.10). Second, to make the proof simpler and to focus on the key point it is assumed
that the estimate (2.5.12) is valid not only at points (x,y) where the vorticity is greater
than € but everywhere. Releasing this is hypothesis implies the introduction of terms
which are quadratic with respect to the w instead of being cubic and which can be easily

handled.

Therefore one writes for the formal estimate:
8t/ |w(x, t)]* + 1// \Vew(z,t)]? de < / |(wVpu,w)|de. (2.5.13)
R3 R3 R3

The last term of the right hand side is cubic with respect to w. In fact it involves the
strain matrix:

S(a,t) = {3(Vou + (Vau)) () = S(w) (2, 1)

where appears the direction

w(x,t)
4) —
of the vorticity. With
A Yy N N N N
§ =1 and M(g,w) = s 0@ xw) + ([ xw) @]
one has 5 p
N )
ty=—PV. | M t)—=
S(e.t) = 3= PV [ MGl + .00 1%
and

V)l = | 3= [ Gle ) le +t) () d]

(2.5.14)
= |w(x,t)|2%‘ /Rs(yf7§(:1;,t))(yf,w(x + y,t),ﬁ(x,t))‘ 5%
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It is in this last term that the hypothesis is used because

(9, 8@, 1))(g, wlz +y,1), E(x,1)] < |w(z +y,t)[sin(€(z +y,1),{(z, )] < Cly| (2.5.15)

and therefore in the equation (2.5.14) the order of the singularity has been reduced. This
equation becomes:

[(wVuw)| < Clw(x,t)]? /RS |w(z + y,t)||;l—|y2 = Clw(x, t)]* (2, 1) (2.3.16)

for which the following estimate can be easily obtained:

| (x,t)]|r2 = {/RB dx(/RS w(z+ = y,t)|j—?§>2}% (2.5.17)

< (el 2)3 (oot z2)

With the Cauchy-Schwartz relation and the Gagliardo-Nirenberg inequality which is
presently used in the following form:

(] |w<x>|4dx)% <c( |vxw<x>|2dx)%( /. |cu<ac>|2dac)i
one obtalns :
[ JwVaoldr <€ [ fotaPI= n.t)de
< (/. |w<x>|4dx)%ru<x,t>up (2.5.18)

1

< </R3 |wa(:1;)|2 dx>%</RS |w(:1;)|2 dx)Z<Hw(.,t)HL1>§(Hw(-at)HL2>

Wl

Eventually the uniform estimate on the L' of the curl is used (cf. (2.5.10)), giving:

| T < ([ SstaPde)t ([ et as)

o [ VetoPan) ([ e )

< 5/ |wa(:1:)|2d:1;—|—01/_3</ |w(:1;,t)|2d:1;>
2 Jrs R

w
i

w(.,t)Hp)%

(I

oot

(2.5.19)

Wt

The term
/ |Vow(z)|? da
RS
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is in the equation (2.5.13) balanced by the viscosity and therefore one obtains for the
enstrophy the relation:

L d

N |w(z,t)|* de + %/ |Vow(z, )] de
dt Jgs R®

< C</R |w(:1;,t)|2d:1;> (/R |w(:1;,t)|2d:1;>

(2.5.20)

W0

Since one has

/OT </RS (e, ) da) L <T5 </OT /RS w(a,1)|* da dt>§ (2.5.21)

one concludes the proof with the estimate of energy and the Gronwall lemma.

Remark 2.7 In fact the uniform lipschitz condition can be relaxed what really matter is
an estimate of the type

(Gl + 1), (2, 1))] < Clol + y, DIy (2.5.22)
which is much weaker (valid for two vectors of opposite direction).

The above results should be compared with the analysis done by Babin Mahalov
and Nicolaenko [BMN1,2] who, motivated by the geophysical applications, consider the
Navier Stokes equation with a large Coriolis force:

Ot +u - Vpu + 2Qpes X u — vAzu+Vep =F, Veou=0 (2.5.23)

In (2.3.23) e3 is the vertical unit vector and §2g is the frequency of the background rotation
which introduces a Coriolis force which is assumed to be large compared to the other
parameters of the flow. A detailed analysis is done in the case of a periodic domain or
stress-free boundary conditions.

In fact the linearized version of the equation (2.5.23) was studied (c¢f Arnold and
Khezin [AK]) by Sobolev who started from an analysis done by Poincaré and who applied
it to the description of the behaviour of fuel tanks of rotating projectiles. The work of
Sobolev was done in Kazan around 1942 and by that time classified. It was declassified
in [Sob]. In the extension of this analysis to the genuine non linear equation (2.5.23)
Babin Mahalov and Nicolaenko used a sharp Fourier analysis involving small denominators
and a Diophantine condition on the incommensurability of the condition on the domain
geometrical parameters.

It is shown in [BMN1], [BMN2] and [BMN3] that the solutions of the 3-D Euler or
Navier Stokes equation of uniformly rotating fluids can be decomposed into the sum of
the following terms : a solution of the 2-D Euler (or Navier Stokes) system with vertically
averaged initial data, a vector field explicitly expressed in terms of phase and a small
remainder term. In the course of the proof [BMN1] [BMN2] have obtained the following
stability-regularity results:
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i) Whatever the size of the smooth initial data the life span of the corresponding
regular solution of the Euler equation is ensured to go to infinity when €y goes to infinity.
ii) For non zero but fixed viscosity v, whatever the size of the smooth initial data, the
corresponding classical Leray solution of the 3-D Navier-Stokes system becomes smooth
(for T<t< oo) for Qo large enough. This is true for all domain geometrical parameters.
Specifically:
Theorem 2.8. Let v >0, o > 1/2, |JU(0)||o < M, and

T+1
sup/ |F||2_ dt < Mp ~ VT. (2.5.24)
T JT

Let Q¢ > Qf (Mu, Mg, ,v). Then solutions of rotating Navier-Stokes equations for any
periodic domain parameters are regular for all t and

u(t)|la < M, Vt> 0. (2.5.25)

Theorem 2.9. Let v > 0 and conditions of Theorem 2.6 hold. Let ||[u(0)|lo < Mo,
T = |w(0)||2/v. Then, for every fixed Qo > Q) with Q) = Q{(MF,) and for any weak
solution u(t) of rotating Navier-Stokes equations which is defined on [0,T] and satisfies
the classical energy inequality on [O,T], the following is true: u(t) can be extended to
0 <t < 400 and it is regular for T<t< +o0; it belongs to Hy and ||u(t)||1 < C1(Mp1,v)
for every t > T.

In particular, Theorem 2.8 relies on the global regularity of a “2-1/2 dimensional”
limit nonlinear Navier-Stokes equation as {9 — oo, [BMN2].

These results are not conditional, in contrast to the work of Constantine et al.,
with the following remark. In the rotating equation (2.5.23) when the vorticity g is
large, but bounded, the highly oscillatory (in time) solution is regular. One can show
that (2.5.23) is equivalent to a Navier-Stokes equation without Coriolis term, with a base
steady flow (—Qoy, +Q0x,0) of vorticity 2Qpes, plus spatially periodic perturbations of
vorticity wy. Then if |w;| is not too large with respect to ||, with |Q¢] > 1, one proves
[BMN2] that the corresponding Navier-Stokes system stays smooth for all times (w; is not
a small perturbation). Note that the perturbed wy-flow is genuinely 3 dimensional. The
technique of bootstrapping regularity of solutions of 3-dimensional Navier-Stokes equations
by perturbation from limit equations has been done in various contexts: thin domains
[RS], helical flows [MLT?]. In these previous works, limit equations are 2-D Navier-Stokes
equations for which global regularity is well known. In [BMN2], for the first time, the
limit equations are genuinely 3-dimensional, but with restricted wave-number interactions
in B(u,u) (“2-1/2 dimensional”). Their global existence is nontrivial and requires dyadic
decomposition methods and Littlewood-Paley theory [St].

Similar results for more general Boussinesq equations of geophysics can be found in

[BMN4-8].
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3. Hierarchy of Equations
3.1. Introduction

As said in the general introduction one shows that, with the Boltzmann equation, the
Navier-Stokes and Euler equations can be derived from a genuine Hamiltonian system of
N interacting particles.

This Hamiltonian system is the beginning of the hierarchy. The end of the hierarchy
is the introduction of turbulent models which are in some cases constructed with a statistic
description of the fluid. In this case some basic properties of dynamical systems like the
ergodic hypothesis are involved and some “magic” numbers like the Kolmogorov exponent
appears.

Eventually one should observe that the different steps of the hierarchy share in
common several features like the evolution of the notion of entropy and the recurrent use
of moments or averages.

3.2 The Boltzmann-Grad Limit

The purpose of this section is to provide a rapid overview of the derivation of the Boltzmann
equation from molecular dynamics.

The points that should be emphasized are the following:

i) In this problem there are two natural parameters N the number of particles and
o the radius of these particles. N is a very large number and o (expressed in common
units, such as centimeters) is very small; Consider a rarefied gas in a box whose volume is
lem? at room temperature and atmospheric pressure. Then N ~ 10%°, ¢ = 107 %cm and
No? = 1m? is a sizable quantity. Therefore it is natural to consider situations where

lim No?
N —oc0,0—0
is strictly positive and finite. This gives the mean free path and the Knudsen number.

ii) The transition from a reversible problem to a irreversible problem is made by an
averaging process which takes in account the self interaction of the particles of the media.

The direction of the time appears because one obtains an equation for averaged
quantities at time ¢ > 0 only keeping information on averaged quantities at time ¢ = 0.
The same construction should be possible for negative time but would lead to a Boltzmann
equation with negative term that would therefore increase the mathematical entropy.

iii) On one hand the nonlinearity helps because at variance with diffusion approx-
imation of reversible linear systems (as presented in Chapter 2) the entropy at the level
of the Boltzmann equation (a quantity which naturally decays) is the limit of a quantity
which, due to the non linearity, is not conserved by the molecular dynamics. Therefore
this does not contradict strong convergence results.

iv) On the other hand non-linearity creates also a limitation on the obtaining of
rigorous results based on strong convergence because such results would be, when the
kinetic limit is involved, in contradiction with the instabilities of the compressible and
incompressible Euler equations described in the previous section
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At present there are two types of rigorous results. Both involve regular quantities
and therefore they should be kept away from the limits leading to singular solutions of the
compressible Euler equation and there are two ways to do so.

The first one (Lanford [Lal) is to start from very regular initial data and prove
the results for a very small time that would avoid the time where the compressible Euler
equation may present singularities. The second one is to consider a dilute gas (Illner and
Pulvirenti [IP]) in an infinite media which will never behave like the solution of the com-
pressible Euler equation and therefore global-in-time convergence proof can be obtained
in this case. However since this regime does not lead to the Fluid dynamics equations it
should not be considered as a pertinent step for our hierarchy.

Below only a formal proof is given following the Section 2.2 of Cercignani, Illner
and Pulvirenti [CIP]. The convergence proofs quoted above can also be found in this book.
In any case for the derivation it is both natural and compulsory to invoke the BBGKY
hierarchy named after Bogoliubov, Born, Green, Kirkwood and Yvon. This point of view
was discovered by Yvon in 1935 and rediscovered independently eleven years later by
Kirkwood, Born and Green on one side and by Bogoliubov on the other. It is in the
construction of the BBGKY hierarchy that the Boltzmann entropy (which as explained
in the previous section is simply related to the macroscopic entropy) appears as a limit
process which is not in contradiction to the derivation of a reversible system from an
irreversible one.

The starting point is the consideration of a family of NV particles of radius o which
evolve freely in the whole space and interact through elastic collisions.

More precisely if two particles with incoming velocity (§,&.) and centers x and
x4 collide (i.e. |z — x4] = o) then the outgoing velocities (¢',¢)) compatible with the
conservation of mass momentum and energy are given (in term of the incoming velocities)
by the formula:

€€l (6 &)
r—a*

with w=—+—, (3.2.1)

|z — 2]
Go=Gotwlw- (-6

For obvious reason the above problem is called the hard sphere model. Other models are
based on mass points interacting with central forces. However in this case the Boltzmann
Grad limit is more difficult to obtain and to the best of our knowledge it is up to now only
done with the introduction of a ad hoc cutt off (cf [Ce] page 59).

N is the Avogrado number and it is of the order of 10** and o is of the order of
10~® meters while No? is of the order of 1 square meter. This means that the Boltzmann
equation should be derived from the molecular dynamics by letting N go to infinity, o to
zero and letting No? go to a positive finite constant which is the inverse of the Knudsen
number.

It is convenient to denote by

25 =A{z1,22, .,z ={(x1,6), (22,&2), ..., (25,E5)} € (R3 X R3)8,
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the variables of the s dimensional phase space and by P*(z1, 23, ..., z5) the probability of
having jointly the s particles at the point {zy,xs, ..., x5} with velocity {&;, &2, ..., &}

It is assumed that these functions are symmetric with respect to their arguments
(observe that if such a property is true at some time it is conserved for all time by the
collision rule given by (3.2.1) ) and are equal to zero on one hand for s > N and on the
other hand for

z¢ N, A ={z° such that V1 <¢,5 <, (2; # 2j) |a; —xj| > 0}. (3.2.2)

The meaning of equation (3.2.2) is that it is assumed that the particles do not penetrate
one into the others. Furthermore one has

P3(z%) :/ PN (21,29, 000y 25y Zo 415 ooy ZN) H dz; . (3.2.3)
(R?xR2)N == (s+1)<G<N

Since the particles evolve freely in AV one has
N
0PN (w,v,t) + > &0y, PN (2,0,1) = 0. (3.2.4)
1

This equation has to be accompanied by suitable initial and boundary conditions.

To take into account the fact that the shocks between the particles are elastic it is
assumed that the distribution P? is invariant under the transformation induced by such
shocks, i.e., PV (z) = PN (2') for any pair (z,2') defined by the following relations:

i) There exists a pair (7,7), 7 # j such that |z; — ;| = o (i.e., z € IAN).

ii) 2’ is given in terms of z by the formula

2 = {21,22, censy (l’z,fz — wi]‘(wi]‘ . Vi]‘), censy (l‘i,f]‘ —I—wl‘]‘(wi]‘ . VZ‘]‘), ...,ZN},
T — X (3.2.5)
Vii=6& — &5, wi = 717
J J J |$z _$j|

which is simply the translation at the level of probability distribution of the formula (3.2.1).

For the initial data it is assumed that P™(zy, 2o, ..., 2y, 0) is a probability density
which is invariant under any permutations of the variables z;. Even better it is assumed
that this probability is factorized:

PY(z1,22,0028,0) = [ £(2), f(zj)zo,/ f(2)dz = 1. (3.2.6)

R2xR?
Following [CIP] the equation (3.2.4) is integrated over AY with respect to the variables
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and one obtains:

s N
oy P? —I—/Z&aleN H dZ]‘ —I—/ Z fkakaN H dZ]‘ =0. (327)
=1

(s+1)<j<N k=(s+1) (s+1)<j<N

Since the boundary of the integration domain is characterized by the relation |z; —z;| = &
it depends (even for 7 < s) upon x;. Therefore one obtains for the second term of the left

hand side of (3.2.7)

N
/giaxiPN I d=¢o.pP - > /P(SH)&-wmdaikd@“k (3.2.8)

(s+1)<j<N k=s+1

with w;; denoting the outer normal to the sphere of radius ¢ and center z and do;; being
the surface element on the same sphere. The second integral term of (3.2.8) is easier to
compute because it involves the integration of a derivative taken with respect to one of
the integration variables. One obtains:

/ﬁkakaN II = Z/P(Sﬂ)ﬁk rwig doig dEp,
=1

(s+1)<j<N

. (3.2.9)
+ Z /P(8+2)§k cwip dogg dég dz; d; .
i=st+1,ik
Therefore with (3.2.8) and (3.2.9) the following relation is deduced from (3.2.7):
s s N
atP8‘|’Z€iaxiP8 = Z Z /P(SH)Vik ‘wikdokdEy
=1 . t=1 k=s+1 (3210)
+5 D, /P(8+2)Vki rwikdoipdy duid; da; .
i=st+1,ik

In the above equation Vi = &; — &k is the relative velocity of the ¢th particle with respect
to kth particle. The relations w;; = —wi; have been used to replace & - wir by %Vik C Wik
Observe that with the boundary condition PY(z) = PN (2') with 2/ given by (3.1.4), the
last term of the right hand side of (3.2.10) is identically zero.

Observe also that the first integral in the right hand side of (3.2.10) is the same no
matter what the value of the dummy index k is. This index can be abolished; x,, &, is
written in place of x, & and (3.2.10) is transformed into:

OP° + ) 60n P* = (N — ) Z/P(SH)VI‘-M do; dé. . (3.1.11)
i=1 i=1
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In (3.2.11) the arguments of Pt are (21,29, ..., 25, 2« = (24,&,)) while V; and n; are
defined by the relation:
T — Tk (3.2.12).

g

w; =

We separate the contribution of the two hemispheres S_ii_ and S’ respectively defined by
Vi-w; >0 and V; - w; < 0. In addition we remark the relation do; = o?dw; where dw; is
the surface element on the unit sphere described by w; and eventually we obtain

AP +3 60, P = (N —s5)a* 3 ( / / PV Vo] oo .
i=1 =1 YRI5y

—/ / PV, ;| dw; dE,)
R3 JS_

where PG+ means that in PGTY the argument &; and {* are replaced by the following

o1es:
5; = gl _wi(wi ) ‘/;)7
5; = & ‘|’wi(wi ) Vl)

At this point a choice in the direction of the time has been made because the velocities
after the shock have been express in term of the velocities before the shock. The above
integrals can be changed into an a single integral by changing w; into —w; in the second
integral. The index ¢ in w; can be dropped provided the argument z, in the second integral
of the ith term is replaced by

(3.2.13)

(3.2.14)

Ty = T; — WO

while x, is replaced by x; + wo in the first integral. These computation leads to a system
of N equations for N unknown P?:

0P+ &i0e, P :(N—s)ﬁZ/R . (PETY |V — PV Vi) dusde, (3.2.15)
i=1 Y RXS5?

=1

which is called the BBGKY hierarchy.

The Boltzmann limit is obtained by letting N go to infinity and ¢ to zero with the
condition:
limNo? = ¢!

and the initial data:

PY= T fGz). f(zj)zo,/f(zj)dzjzy (3.2.16)

If we assume (this is one of the main object of the contributions of Landord and Illner and
Pulvirenti) that the convergence (for s fixed and N going to infinity)

lim Py = P°
Nl—r>noo N
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holds for any s in a convenient topology, we can deduce from (3.2.15) an infinite set of

equations (for 1 < s < o)

s - s _ 1 - s+1)’ s+1
0P+ &0, P* = QZ/RSW (P [Viws| — PGV [Viwi|)dwid, (3.2.17)
=1 =1

which is called the Boltzmann hierarchy.

”

This derivation is completed by the three following statements.
1)” Introduce the Boltzmann equation for hard spheres which will also be considered
in the next section:

1
OF +v-V,F = ~C(F), (3.2.18)
€

F(0,z,v) = F"(x,v) >0, (3.2.19)

where the collision operator C'(F') is quadratic and given (with an abuse of language)

by
C(F)=C(F,F) = //(F{F’ —FF)|(vy —v) - w|dwduv; . (3.2.20)

with the F, Fy, F" and F] appearing in the integrand understood to mean F(t,z,-)
evaluated at the velocities v, vy, v" and v] respectively, where the primed velocities

are defined by
v =v4ww (v; —v), v = v —ww-(v1 —v), (3.2.21)

for any given (v,v1,w) € RPx RP x SP~1. Use the fact that for smooth initial data
close to an absolute Maxwellian (p, and 6, are constant)

P Ly,,2
M= ———exp(—=|v]*/0,). 3.2.22
s (=4l /6) 3:292)
the Boltzmann equation (3.2.18) has a unique smooth solution (defined at least
during a finite time).
i1)” For smooth initial data the Boltzmann hierarchy has a unique solution (defined
at least for a small time).

i) If F(z,t) = F(x,£,t) is the corresponding solution of the Boltzmann equation
then the unique solution of the Boltzmann hierarchy with initial data given by

P21, 2,25, 2) = | (=) (3.2.23)

is given by the same factorization:

Pz, 2,25, 20 t) = ] F(zist). (3.2.24)
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The item i) is now classical in theory of Boltzmann equation (Ukai [U] or Nishida
and Imai [NI]).

The item ii) has been solved by Lanford and Illner and Pulvirenti under weaker
hypothesis than the one needed to prove the convergence of the PR. The item iii) is
obtained by direct inspection.

As a consequence under convenient hypothesis the function PR (z1, ..., z,, t) converge
to a function
Pz, ez t) = [ Flzit)
1<i<s

with f(z,t) solution of the Boltzmann equation. This implies in particular that the function
P1(z,t) converges to the solution of the Boltzmann equation and that the P§; factorize at
the limit. Such a property is called propagation of chaos.

It is important to notice that the above convergence does not contradict the ap-
pearance of the decay of entropy for solution of the Boltzmann equation. On one hand it
should be observed that for any solution of the Liouville equation and for any function F
one has

d
%(/ F(PY (21,22, 2n0t) [] dzi> = 0. (3.2.25)
(R3xR3)N 1SN

On the other hand (this is just obtained by Fubini Theorem and change of variables) for
any solution of the Boltzmann equation one has

%</(R3><R3) flogf(z,t)dz> <0 (3.2.26)

with a strict inequality whenever f is not an absolute maxwellian.
Eventually with (3.2.25) one has

/ f(z,t)1log f(z,t)dz < / f(z,0)log f(z,0)dz
(R® xR?)

(R3xR3)
e '
= _ (P"(z1,22,...2n,0)) log(P" (21, 22, ...2n,0)) dz;
N J Jwsxrs)n 1<1:£N (3.2.27)
1
:N// (PN(ZDZQ,...ZN,t))log(PN(ZhZZ,...ZN,t)) H dz; .
(REXRDT 1<i<N
However,

| reoos s
R3xR3
is not the limit of

HN(PN)(t):%//(RSXRS)N(PN(Zl,...,ZN,t))log(PN(zl,...,ZN,t)) I =
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but of
7' - | /(RngS)Nw}V(z,t))1og<P}V<z,t>>dz.

And according to the Proposition 3.1 (below) one has H*(P')(t) < HN(PY)(t) with strict
inequality unless P'(¢) is factorized. Therefore the strong convergence of P'(¢) does not
contradict the decay of entropy of the solution of the Boltzmann equation. In fact one
observes also that the factorization property given for PV at time ¢ = 0 is immediately
lost for t > 0 but is recovered for the limit of P (¢) (s, t > 0 fixed and N going to infinity).

Proposition 3.1 Suppose that PV is a symmetric probability density on the phase space
and that P*® are the s particles distribution function associated with PN . Then

H'(P') < HY(PY)

with equality if and only if

for almost all z.

Proof Note that for «,y > 0 one has (with the right hand side equal to zero for y = 0
and to —oo for y > 0 and « = 0):

x
x—yZylog;.

Therefore one has

= (ﬂPl(Zi))—PN(Z) dz> [ PN(z)log w dz (3.2.28)
PN(z)

=1

and this relation is equivalent to the relation:
/PN(Z)log PY(z)dz > N.H'(P')

with equality only when the middle term of (3.2.28) is zero, i.e; when factorization occurs.

Remark 3.2 Rigorous proofs contain many more ingredients however two points should
be stressed.

1) Since the Boltzmann equation is quadratic it involves only binary collision there-
fore an important step is to prove that other events can be excluded and this is a direct
consequence of the following theorem (cf. [CIP], page 65): “The set of points that are led
into a multiple collision under forward or backward evolution of the dynamical system and
the set of points such that where there is a cluster of collision instants under forward and
backward evolution are of measure zero in the phase space.”

32



2) The solution of the BBGKY hierarchy can be written in an integrated form (or
weak form) leading first to a formal series expansion:

0o 4 tn1
Py (z)(z%,t) = / dt / dt / dt,
M) ,;) o o T (3.2.29)

Sult = 1)@y St — 120 QT4 So(t2) P (27,0)

with Py, = 0 for s > N, with 5, and @7, operators describing the advection and the
collisions. It is in the uniform estimate of the right hand side of (3.2.29) that the hypothesis
on the data or on the small time intervals of validity does appear.

3.3 The Fluid dynamics limits

Continuing the hierarchy we return to the equation (3.2.18):

.F, +v-V,F, = 2C(F.). (3.3.1)

€

whith C'(F') denoting the collision operator given by (3.2.20) and

€= lim No?.
N—o0,0-0

The equation (3.3.1) (cf [Go] for details in the following discussion) shows that

1
—//F1|(U1 —v) - w|dw duvy
€

is homogenous to a frequency. If the variation of F' in ¢ and in = are not too fast, this
frequency is the reciprocal of the averaged time between two successive collisions undergone
by the same typical particle under the distribution F moving with speed v.

However this frequency depends on the particle distribution itself, which makes it
difficult to use this expression as a tool to discriminate between various qualitative behavior
of this particle distribution. Rather, pick an averaged macroscopic density p, an averaged
temperature 6, and choose a macroscopic lenght scale A, (for instance the size of the
domain where the flow takes place or the average size of 0,F/F at t = 0. Then rewrite
the equation (3.3.1) for the dimensionless number density




and obtain:
1
K,

where K, the (dimensionless) Knudsen number is the ratio of the collision mean free time
to the macroscopic time scale.

O F + 0V, F=—C(F). (3.3.1)

All hydrodynamic limits of the Boltzmann equation consist in considering this di-
mensionless form and in discussing the limit as K, (and possibly other parameters) tend
to 0. Physically, this means that a great number of collision take place in the gas per unit
of (macroscopic) observation time.

Observe that this is not in contradiction with the usual phrase about the Boltzmann
equation which applies to gases in a state of low density because one has:

No?
K, ~
{ e

The analysis done below applies also to other collision operators which are intro-
duced either for physical or numerical reason. Therefore it is interesting to select the basic
properties of the operator which are used at different steps:

i) conservation properties and an entropy relation that implies that the equilibria
are Maxwellian distributions for the zero-th order limit;

ii) the derivative of C'(F) satisfies a formal Fredholm alternative with a kernel related
to the conservation properties of (i).

Properties (i) are sufficient to derive the compressible Euler equations from equation
(3.2.1) (Theorem 3.3). The compressible Euler equations also arise as the leading order
dynamics from a systematic expansion of F' in e.

Properties (ii) are used to obtain the Navier-Stokes equations; they depend on a more
detailed knowledge of the collision operator. The compressible Navier-Stokes equations
arise as corrections to those of Euler at the next order in the Chapman-Enskog expansion.
This expansion shows that in a compressible gaz the Knudsen and Reynold number are
of the same order. To recover directly from the Boltzmann equation the incompressible
Navier- Stokes equation one also introduces the Mach number Ma which is the ratio of the
bulk velocity to the sound speed and the Reynolds number Re which is a dimensionless
reciprocal viscosity of the fluid. These numbers (cf. [LL]) satisfy the relation

e="—. (3.3.2)

Therefore when € goes to zero, to obtain a fluid dynamical limit with a finite Reynolds
number, the Mach number must vanish too.

The compressible Euler limit

The integral of any scalar or vector valued function f(v) with respect to the variable v is

denoted by (f);
(fy =1 flv)dv. (3.3.3)

R3
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Use of Fubini theorem and change of variable to show that the operator C' satisfies
the conservation properties

(C(F)) =0, (C(F)=0, (v*C(F))=0. (3.3.4)

which are the simple translation at the level of the function F' of the corresponding prop-
erties for the system of particles of the previous section. As a consequence one has the
following conservation laws:

O(F)+ V- (vF) =0,
G(WF)+ V- (v@vF)=0, (3.3.5)
QLo F) + V- (vioPF) = 0.

Similarly it has been observed in the previous section that (C'(F')log F') is non-positive,
this implies the local entropy inequality

Oi(Flog F) 4+ V- (vFlog F) = (C(F)log F) < 0. (3.3.6)

A more detailed analysis shows that

(C(F)logF) =0 (3.3.7)
implies that F' is a Maxwellian:
F— P v = ul® 398

The parameters p, v and 6 introduced at the right side of (3.3.8) are related to the
fluid dynamics moments giving the mass, momentum and energy densities:

(Fy=p, (WF)=pu, (3P["F)=p(zlul*+30).

They are called respectively the (mass) density, velocity and temperature of the fluid. In
the compressible Euler limit these variables are shown to satisfy the system of compressible
Euler equations (3.3.11 below).

The main obstruction to proving the validity of this fluid dynamical limit is the
fact that, as said in the section (2.4), the solutions of the compressible Euler equations
generally become singular after a finite time. Therefore any global (in time) convergence
proof cannot rely on uniform regularity estimates. A reasonable assumption would be that
the limiting distribution exists and that the relevant moments converge pointwise.

Theorem 3.3 Let F.(t,x,v) be a sequence of nonnegative solutions of the equation

1
O F. +v-V,F. = ~C(F.), (3.3.9)
€
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such that as € goes to zero, F, converges almost everywhere to a nonnegative function F.
Moreover, assume that the moments

(Foy,  (F),  (wouvF),  (up]'F),
converge in the sense of distributions to the corresponding moments
(F), (WF), (wovF),  (v]p]'F);
the entropy densities and fluxes converge in the sense of distributions according to
gi_r>1r(1)<F€ log F.) = (F log F) , }i_1r>1r(1)<vFE log F.) = (vF log F);
while the entropy dissipation rates satisty

limsup (C(F) log Fe) < (C(F) log F) .

e—0

Then the limit F(t,x,v) is a Maxwellian distribution,

plt, ) v —u(t @)
F(t =" — 3.3.10

(o0) = G = () (3:3:10)
where the functions p, u and 6 solve the compressible Euler equations,

Op+ Vi (pu) =0,

Oc(pu) + V- (pu @ u) + Vi(pf) =0, (3.3.11)
Or(p(5lul® +36)) + V- (pu(5lul* + 36)) = 0
and satisty the entropy inequality,

2/3 2/3

0 <,010g <p7>> + V.- <,0u log <p7>> <0. (3.3.12)

Proof  Multiplying (3.3.9) by €(1 + log F,) and integrating over v gives the entropy
relation

e<8t<Fe log F.) + V- (vF. log Fe>> — (C(F.)1og F.). (3.3.13)

Letting € go to zero in (3.3.13) and using the convergence assumptions of the theorem
regarding the entropic quantities shows that the limiting distribution F' must satisfy

0 <limsup (C(F.) log F.) < (C(F)log F). (3.2.14)

e—0

But the entropy dissipation rate of C'(F) is non-positive by assumption, so (3.3.14) implies
(C(F)log F) = 0. The characterization of equilibria (3.3.8) then gives that for almost
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every (¢, x) the distribution F' is a solution of the equation C'(F') = 0 and is a Maxwellian
distribution with the form (3.3.10).
The system of local conservation laws

O(Fe) + Vo (vF,
O (vF) + V- (v @ v F,

8t<2|v| F.
+V, (v 2|v| F,

)
)
: (3.3.15)
)

is not closed. Each of these equations for the determination of the time derivative of a
moment involves the knowledge of a higher order moment. However, if the convergence
assumptions of the theorem regarding these moments are used, one can pass to the limit of
€ going to zero and replace F, by F, as given by (3.3.10), in these equations. A system of
five equations for the five unknowns {p, uy, uz,us, 8} is obtained which is the compressible

Euler system (3.3.11).
Finally, utilizing the entropy dissipation property

(C(Fe)log F.) <0, (3.3.16)
equation (3.3.9) leads to the inequality
O (Felog Fe) + V- (vF:log F) <O0. (3.3.17)

Once again using the convergence hypothesis of the theorem regarding the entropy densities
and fluxes along with the form of F' given by (3.3.10), this inequality gives the classical
entropy inequality (3.3.12).

The compressible Navier-Stokes limit

In the derivation of the compressible Euler limit the main ingredient turned out to
be the identification of the equilibrium points of the collision operator. Such points, as
observed, are the maxwellian:

p v —uf?
Mp,u,0) = Wexp <—%T> : (3.3.18)

As said above the Navier Stokes equation is derived as an higher order approximation,
either as it is done in the present section as a second order approximation for the solution
of the Boltzmann equation or as it will be done in the next section for fluctuations near an
absolute maxwellian. Therefore the properties of the Frechet derivative (involved in higher
order expansion) appear in the present section. Denote by M the absolute maxwellian
p =1, u=080=0) and consider perturbations of the form:

F=M(+f)
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with f in the Hilbert space L3, defined by the scalar product

(Floh = (Fahy = / F(0)g(v) M(v) do (3.3.19)

The linear and quadratic operators L and () are defined according to the formula:

1 2 1
O+ ) = —C(MEM) + —COMFMf) = Lf+Q(f.f)  (33.20)

Direct computation shows that L is given by the expression:

Lf= //Ml(f{ +f = fi+ (v —v) wldwdv; . (3.3.21)

It is a self adjoint Fredholm operator in the space L3,. Its kernel is the 5 dimensional space
spanned by the functions {1, vy, vy, v3,|v|?} . Furthermore it is a non positive operator.
The vector or tensor valued functions

A(v) = (5lv =3)v, Bv)=veuv -3l (3.3.22)
are orthogonal to the kernel of L; therefore the equations
L(A") = A, L(B') =B, (3.3.23)

have unique solutions in Ker(L)™.
The rotationally invariance of the collision operator implies that these solutions are
given by the formula:

A'(v) = —a(]v])A(v) and B'(v) = —3(|v])B(v) (3.3.24)

with « and 3 denoting two positive functions (¢f Chapman and Cowling [ChCo] for their
explicit computation) and the formulas:

ve = SBEIBE)P). ke = o) AW®)P) (3.3.25)

define two numbers which in some sense are the “universal” viscosity and heat conductivity.
A function H.(t,x,v) is said to be an approximate solution of order p to the kinetic
equation (3.3.1) if

OH. + v-VoH, = ZC(H.) + O(e"), (3.3.26)
€

where O(eP) denotes a term bounded by € in some convenient norm. An approximate
solution of order 2 will be constructed in the form

H.=M/(1+eg.+ ezwe) , (3.3.27)
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where (pe, ue,0:) solve the compressible Navier-Stokes equations with dissipation of the

order € (denoted CNSE,):

Otpe + V- (peue) =0, (3.3.28)
1
Pe (8,5 + uE-Vl,)uE + Vi(pebe)eVy - [1:02 o(u.)], (3.3.29)
1 1
%pe <8t + uE-Vx>9€ + pebVyue = 6%1/*962 o(ue):o(ue) + eV [k0E Vib,]. (3.3.30)

The Chapman-Enskog derivation can be formulated according to the following the-
orem.

Theorem 3.4 Assume that (pe,uc,0.) solve the CNSE,. Then there exist g. and w, in
Ker(Li,. u.6.))” such that H., given by (3.3.27), is an approximate solution of order 2 to
equation (3.3.1). Moreover, g, is given by the formula

V)-V,0.

= =40 82 BVIBV)iotue) = 00 2ol V) 2 (3331)

Proof. In the computation below the subscript € is omitted in the notation of the local
maxwellian M(,_ ..., in the variable V' and in the linearized collision operator L, .. 4.)-

Setting the form (3.3.27) for an approximate solution of order two into (3.3.26)
yields the formula

(O +v-Vyu)M 6(8,5 +v-Vy)(Mg)

- T (3.3.32)
— L(g) + ¢(L(w) + 1Q(g,9)) .

A direct derivation of (3.3.18) gives the formulas

1
M, 00 = (V] = $)5M;

1

Vo

utilizing these shows that the contribution of the first term on the left side of (3.3.32) is
given by the formula

oM =V

(O +v-Vy) M _ (Or +v-Vy)p LY (0 +v-Vy)u

M p Ve

The CNSE, are used to replace the time derivatives of the functions p, v and € by expres-
sions involving only spatial derivatives. This introduces terms of order €, corresponding to

the right side of the equations (3.3.29) and (3.3.30), into (3.3.33):

(8,5 + vi)G

+ (VPP -2 7 (3.3.33)

(8,5 + va)M

) \VA
M -2

Vo

B(V):o(u)+ A(V)- +eR, (3.3.34)
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with

svio(u)io(u) + Vi [k, V. 0]

+GIVE-1) pr

. (3.3.35)

;From (3.3.32) and (3.3.34) it follows that the term of order one with respect to € has to
be given by the formula (3.3.31). To complete the proof one must show the existence of
a function w that cancels the term of order one in (3.3.32). This amounts to proving the
existence of a solution to the equation

Liw)= R+ 2F ”'ij)(Mg) ~1Q(g,9). (3.3.36)

Such a solution exists if and only if the right side of (3.3.36) is orthogonal to the kernel of
L and this (details of the computation are omitted (cf [BGL1])) turns out to be realized
when (pe, u,,0.) are solution of the CNSE,

Remark 3.5 Analysis of the above computation shows that the existence of an
expansion of the form

M:(1+ eg. + ezwe)

for a solution of the Boltzmann equation with (p, ue, 6¢) solution of “some” compressible
Navier Stokes equation is possible if and only the viscosity v and the thermal diffusivity &

are given by the formulas:
1 1

v = 1/*69?, and kK = m*eﬂ? (3.3.37)

i From the formula (3.3.37) one deduces two important facts. First the ratio of the viscosity
and the thermal diffusivity is an “absolute” number (independent of the Knudsen number
and of the temperature) given by:

Vg

Pr=—

Rox
and therefore defined by the collision operator. Second when the Knudsen number goes to
zero the viscosity goes also to zero at the same rate. Therefore it does not seem possible to
derive directly a Navier Stokes equation with a finite Reynolds number from the Boltzmann
equation. The way to do it is to consider that the Mach number is also of the order of
and then according to the relation e = Ma/Re one obtains at the limit the incompressible
Navier Stokes equation and this is the object of the next section:

The incompressible Navier-Stokes limit

i From formula e = Ma/Re, one deduces that in order to obtain a fluid dynamics regime
(corresponding to a vanishing Knudsen number) with a finite Reynolds number, the Mach
number must vanish and to realize distributions with a small Mach number it is natural
to consider them as perturbations about a given absolute Maxwellian (constant in space
and time). By the proper choice of Galilean frame and dimensional units this absolute
Maxwellian can be taken to have velocity equal to 0, and density and temperature equal
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to 1; it will be denoted by M. The initial data F.(0,x,v) is assumed to be close to M
where the order of the distance will be measured with the Knudsen number. Furthermore,
if the flow is to be incompressible, the kinetic energy of the flow in the acoustics modes
must be smaller than that in the rotational modes. Since the acoustics modes vary on
a faster time scale than rotational modes, they may be suppressed by assuming that the
initial data is consistent with motion on a slow time scale; this scale separation will also
be measured with the Knudsen number. Thus, solutions F; to the equation

1
e, F. +v-V,F. = =C(F.), (3.3.38)
€

are sought in the form

Fo=M(1+ege). (3.3.39)
and one has the

Theorem 3.6. Let F.(t,x,v) be a sequence of nonnegative solutions to the scaled kinetic
equation (3.3.38) such that, when it is written according to formula (3.3.39), the sequence
g. converges in the sense of distributions and almost everywhere to a function g as € goes
to zero. Furthermore, assume that the moments

(G Waeh s (0Ovgey . (olofgey
(L7HA®)) @vgey - (L7HA@)) Qge, ge))y -
(L7HB(v) @ vgehy »  (LTHB()) Q(ge, 9e))u

converge in D'(R} x R?) to the corresponding moments

(s oy  (0@0vg),  (v[o]g),,
(L7HA@) @vghy s (LTHAW®) Q(g,9)) »
(L7 (B(v)) @ vg)y »  (LTHB(©)Q(g,9)) »

Then the limiting g has the form
g:p—l—v-u—l—(%|v|2—%)9, (3.3.40)

where the velocity u is divergence free and the density and temperature fluctuations, p
and 0, satisfy the Boussinesq relation

Veu=0, Velp+6)=0. (3.3.41)
Moreover, the functions p, u and 6 are weak solutions of the equations
Oru + u-Vou + Vpep = v Au, g(@,ﬁ + u-Vlﬂ) = ke AB, (3.3.42)

with v, , ks given by (3.3.25) and p denoting the pressure which as usual in the
incompressible case is the Lagrange multiplier of the constrain V;-u = 0.
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Proof of Theorem 3.6  Setting (3.3.39) into (3.3.38) gives

1
Gatge —I_ U'nge = EL(QE) —I_ %Q(gtﬂge) . (3343)

Multiplying this by e, letting € go to zero, and using the moment convergence assumption,
yields the relation
L(g)=0. (3.3.44)

This implies that g belongs to the kernel of L and thus can be written according to the
formula (3.3.40).

The derivation of (3.3.41) starts from the equations for conservation of mass and
momentum associated with (3.3.43):

Ea75<96>M + v96"<U96>M = 07 (3345)

€0y(vge )y, + Vi (v @vge),, =0. (3.3.46)

Letting € go to zero above (understanding the limit to be in the sense of distributions)
gives the relations

Ve (vg), =0, Ve (v @wg),, =0.
When g is replaced by the right side of (3.3.40) these become (3.3.41).

The limiting momentum equation is obtained from

Du(vg )y, + %vx-@ @ gy, =0 (3.3.46)
by first separating the flux tensor into its tracefree and diagonal parts:
0u(vg e + Ve (0 @0 = 3ol Dgdy + =Valb Pl = 0. (3.3.47)
This is best thought of as being in the form
u(vg.). + %Vx-<B(v)ge>M b Vap =0, (3.3.48)

where the pressure is given by p. = ¢ '(|v]*gc),,. In the same spirit, the limiting tem-
perature equation is obtained by combining the density and energy equations for (3.3.38)
as

OU(310F = 3)gedy + - Ve (), = 0. (3.3.49)

Utilization of the moment convergence assumption and the limiting form of ¢ given by
(3.3.40) provides the evaluation of the distribution limits

gi_rf(l) O (vge)y, = O (vg),, = Owu,

3.3.50
liy (S0P — $)gcdy = (3P — 2)ghy = 3046, (3350
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As is classical (since the contribution of Leray) in most treatments of the incompressible
Navier-Stokes equations, the pressure term that appears on the right side of (3.3.48) will
be eliminated upon integrating the equation against a divergence free test function.

To complete the proof of the Theorem 3.6, the limits of the moments e ' (B(v)ge),,
in (3.3.48) and e~ ! = (A(v)ge )y, in (3.3.49) have to be estimated. Start from the identities
(recall that L is self-adjoint)

(A(v)ge)y = (LTHA@) Llg ) - (B(0)gehy = (L7 (B(v)) L{ge))us -

and eliminate L(g.) using equation (3.3.43),

1
€dige +v-Voge = —L(gc) + 3Q(9e, ge) -

€
The convergence assumptions of the theorem then imply that the limiting moments may
be evaluated by
o1 . -1
finy < (A@)ge)y = liny Ve (0 @ L7HAQ)) geu
— gl_rf(l) %<L_1(A(U)) Q(g€7q€)>M )
X (3.3.51)
lim ~(B(v)ge)y = lim Vi (v @ L7 (B(v)) ge)y,

e—0 €
. -1 .
The limiting form (3.3.40) and the Boussinesq relation (3.3.41) imply that

Ve (v @ LTHA(@v)) g)y = (L7 (A()) @ v(5]0]* = §)) - Vab

— _{a(o]) A(v) @ A(v)}y - Vib (3.3.52)

This expression gives the thermal diffusion term appearing in the second equation of sys-
tems (3.3.42). Even more directly, the limiting form (3.3.40) implies

V(v © L7HB(0)) ghy = (L7 (B(v) € (v 0 0))y : Veu

— _(B(Jo]) B(v) © B(v)}y : Vi (3.3.53)

After applying a divergence, this expression gives the viscous term appearing in the first

equation of systems (3.3.42).

Next, consider the moments (L™ (A(v)) Q(g,9)),, and (L™ B(v))Q(g,9)),,; these
may be evaluated by using the fact that C'(F') vanishes for all Maxwellians . The first and
second differentials of M, , g, computed at the point (1,0,1) are

dM =M (dp + v-du + (o[> — 2)d6) , (3.3.54)

M = M (dp+ v-du + (L[o|2 — 2)d8)”

o TR (3.3.55)
+ M (d&p +v-d*u+ (50" = 5)d*6) .
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Comparison of (3.3.54) with the limiting form (3.3.40) shows that a correct choice of
parametrization leads to dM = Mg and d*M = Mg*. Twice deriving the formula that
states Maxwellians are equilibria for the collision operator then gives

0=d*C(M)=D*C(M):(dM Vv dM) + DC(M)-d*M

9 ) (3.3.56)
=D*C(M):(MgV Mg)+ DC(M)-(Mg~).
Applying the definitions of L and @, this becomes simply
Q(g,9) = —L(g*). (3.3.57)

Using relation (3.3.57) and the self-adjointness of L, the desired moments are found to be
W (A(0) Qg 9)hy = —HI (AW Le))y = — HA@) )y = ~5ub,  (33.59)

HL7 (B()) Qo )y = — ML (B) L(g )y = —2(Bo)g*)y = —Blu).  (33.59)
Formula (3.3.58) gives the term u-V,6 while (3.3.59) gives the term u-V,u. The proof of

Theorem 3.6 is now complete.

Remark 3.7

Any proof concerning the fluid dynamical limit for a kinetic model will, as a by-
product, give an existence proof for the corresponding macroscopic equation. However,
up to now no new result has been obtained by this type of method. Uniform regularity
estimates would likely be needed for obtaining the limit of the nonlinear term. These
estimates, if they exist, must be sharp because, as explained in the previous chapter, the
solutions of the compressible nonlinear Euler equations become singular after a finite time
and the solutions of the incompressible Euler equation (if not singular) may exhibit serious
instabilities.

In agreement with these observations and in the absence of boundary layers (full
space or periodic domain), the following theorems are proved and were quoted in the
previous chapter:

i) Existence and uniqueness of the solution to the compressible, or incompressible
Navier Stokes equation, for a finite time that depends on the size of the initial data,
provided this initial data is smooth enough (say in H® with s > 3/2). This time of
existence is in both cases independent of € and when € goes to zero the solutions converge
respectively to the solution of the compressible Euler equations or to the solution of the
incompressible Navier Stokes equation.

ii) Global (in time) existence of a smooth solution to the compressible or the incom-
pressible Navier Stokes equations provided the initial data is small in a convenient norm
enough with respect to the viscosity.

These points have their counterparts at the level of the Boltzmann equation and at
the level of the macroscopic limit of the corresponding solutions:

i) Existence and uniqueness (under stringent regularity assumptions) during a finite
time independent of the Knudsen number, was proved by Nishida [N] (cf. also Caflisch
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[Cal]). When the Knudsen number goes to zero this solution converges to a local thermo-
dynamics equilibrium solution governed by the compressible Euler equations.

ii) Existence of a global in time smooth solution of the Boltzmann equation provided
the fluctuation (with respect to an absolute maxwellian) of the initial data is small enough
compared to the inverse of the Knudsen number.

The above consideration can be adapted to the rescaled equations

1
¢ F. +v-V,F. = -C,(F.) (3.3.60)
€

with initial data of the form

F.=M(1+¢€g.). (3.3.61)

It is easy to adapt the result of Nishida and to prove that with an initial data which is
a smooth fluctuation of an absolute Maxwellian there will exist a finite time say, T = T*
such that on the interval (0, 7%) the statement of Theorem 3.6 (which corresponds to r =1
in (3.3.61)) can be rigorously proven, furthermore in this case if g, is small enough at ¢t =0
the above results holds for 7% = oo (cf [BU]J). Similarly for » > 1 it is possible to show (cf.
Bellouquid [Be]) that the solution of the Boltzmann equation will be smooth for all time
and will converge to the solution of the Stokes equation.

Using a method with many similarities to Leray’s, R. DiPerna and P.-L. Lions [dPL1]
have proved the global existence of a weak solution to a class of normalized Boltzmann
equations, their so-called renormalized solution. This solution exists without assumptions
concerning the size of the initial data with respect to the Knudsen number.

In this case it is natural to conjecture that the DiPerna-Lions renormalized solutions
of the Boltzmann equation converge (for all time and with no restriction on the size of the
initial data) to a Leray solution of the incompressible Navier-Stokes equations. However, no
complete proof is available and some partial results may be found in [BGL3] and [BGL4](in
particular for the Stokes limit with » > 1) in (3.3.61).

4. Turbulence and turbulence modelling

4.1 Introduction and the example of the &£ — ¢ model

Phenomena described by the Navier Stokes equation, may become, in particular for
very large Reynolds numbers extremely complicated (as said in the introduction the world
“turbulence” which is never completely defined is used in these situations). In the mean
time the persistence of the divergence free condition and the fact that the energy remains
bounded implies that it is the vorticity which becomes in some places very important both
in size and in variation of its direction. This gives to the trajectories of the fluid some
important averaging effects which correspond in the case of finite dimensional system to a

45



complex system ( notes, written by Leonardo da Vinei, quoted by several authors seem to
indicate that he had already an intuition of this complexity.)

Therefore a first natural approach is the assumption that what we observe can be
described by a statistical turbulence. Namely it is assume that the velocity of the fluid is
a random variable given by the formula:

u(z,t,w) =Ulx,t) + u(x, t,w) (4.4.1)

with @(xz,t,w) denoting a random variable of mean value zero and that it is only the
knowledge of the averaged value that will be important for applications. Equation for this
averaged value would be some super Navier Stokes equation and would play for the Navier
Stokes equation the role played by the Navier Stokes equation itself for the Boltzmann
equation or by the Boltzmann equation for the equation of a system of N molecules.

A theoretical reason for the study of such equation would be the idea that serious
mathematical progress is obtained first in coarser descriptions, because this level contains
as a limit the more detailed one; for instance no progress on the proof of the regularity
of the 3d Navier-Stokes equations was ever derived from the mathematical analysis of
the Boltzmann equation and at variance the results on the Boltzmann equation can be
viewed as adaptation (even if some of them are highly non trivial) of known results on
the Navier-Stokes equations. Therefore one may think that progress in the understanding
of turbulence may be a compulsory step in solving the classical open problems for the 3d
Navier-Stokes equations like the existence of smooth solution in the large.

Inserting the right hand side of (4.4.1) in the Navier and denoting by (.) the average
with respect to the random variable w gives the equation:

QU + U -V,U — vAU + UV,U + V(i @ i) = —V, P, (4.1.2)

which contains a “closure” problem because (@ @ @) which is called the Reynolds stress
tensor is not expressed in term of U.

However by a change in the pressure the Reynolds stress tensor can be always chosen
to be traceless and therefore if one assumes

i) That this stress tensor depends only on V,U

and

ii) That the mapping V,U — (4 ® @) is invariant under galilean transformations
(isotropy assumption) one finds out that this Reynolds tensor is indeed proportional to
V.U +1V, U ie.

(a0 @u) = vp(z,t)(VeU +' V. U) (4.1.3)

The scalar o(x,t) depends on the time and the position and is hopefully positive. This
correspond to the introduction of a turbulent viscosity. In spite of the absence of complete
rigorous derivation some rule are used for practical computations. The most common
one being probably the & — e model introduced by Landauer and Spalding in 1972 [LS]
and widely used in numerical simulations. The basic idea is that the turbulent diffusion
depends only on the fluctuation of energy (at variance with other part of the subject and
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other section of this monograph here the turbulent energy is denoted k and not €) and the
fluctuation of enstrophy

~ 14 ~
b= L), e = L(Val)
then a dimension analysis gives for vr(x,t) an expression of the form

k2
vy = ¢,— .
€

To determine the functions k and € one introduces an equation for u by subtracting the
equation (4.1.2) from the basic Navier Stokes equation with solution U + @ this gives the
equations:

and for w =V x u
Ow+u-Vi(VxU)+(U4u)Vyw——(VxU+o)Veu—wV,U—vAu = -V x VR, (4.1.5)

The equation (4.1.4) is multiplied by @ and the equation (4.1.5) is multiplied by ©. Basic
assumptions (with up to now no rigorous justifications ) are made concerning the approx-
imation of the terms

() + (U + a)Vath)

by terms of the form
Oi(¢) + UNVe(¢) = vrA(Y)

according to the convection of a passive scalar by a random field. Eventually an ergodicity
hypothesis is used to replace random averages by spatial averages when needed and the
following system is obtained.

2

k
AU + UV U + YV, P — vA,U — V,(c, |

€

(V.U + %,0))) = 0.

k? k?
Ok + UV, k — 02 VLU 4+ (VU2 — Vi [er o Vok] + e = 0, (4.1.6)
€ €
Lk k2 2
e+ UV, e — %I%U (VLU = Ve Vie] + cz% —0.
€

with ¢; denoting several positive constants which are determined either by experiment or
by phenomenological considerations.

It is known that there exist some cases where the above derivation is not valid (in
particular near the walls). Even if the most convenient hypothesis are assumed, many
important gaps remains in the proof of the validity of the k — ¢ model.

i) It is assumed that the velocity of the fluid is a random variable u(x,¢,w). This
seems reasonable keeping in mind a generalization of the Birkhoff ergodic theorem to the
Navier Stokes flow. However this ergodic theorem (to be stated) requires the existence of
a nontrivial invariant probabilistic measure and the definition of such a measure is (for
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many reasons) a widely open problem, some partial results having been obtained by Foias
[F1-2] Foias and Prodi [FP] and by Fursikov, Vishik et al. ¢f [VF1-3] and [EF] ). Some of
these results will appear in the next chapter.

ii) There is no universal parameter like the Knudsen number or the Mach number,
and since macroscopic phenomena are involved the Reynolds number which would be the
best candidate to measure the relaxation to turbulence is a local quantity. In fact it is the
fluid self interaction which is responsible of the relaxation to “turbulence”.

iii) There no evident rigorous formulation that would play the role of the thermo-
dynamical equilibrium and no trend to relaxation like the decay of entropy at the level of
the Boltzman equation.

4.2 Wigner Transform and Defect measures for the Reynolds tensor

Since there is no complete mathematical theory that even in some particular cases
would produce an expression for the turbulent Reynolds tensor. Several ideas may be used;
many of them do have in common the introduction of the two points spatial or temporal
correlation function:

. r . r . e . e
<u(:1; + _7t) ® u(:z: - _7t)> or <u(:1:,t + _) ® u(:z;,t - _)>

2 2 2 2
such quantities are the object of many experimental measurements which do involve Fourier
transform, which for instance in the spatial configuration is:

(R(z,k,1)) = /R ek ((x + %,t) @ tilx — g,t)>dr (4.2.1)

With the inverse Fourier transform one deduces the relation:

(iia,t) @ i, 1)) = <%>3/RS<R(:1;,k,t)>dk. (4.2.9)

In fact the two above formulas turn out to be the Wigner transform and its recip-
rocal. Along this line it is important to keep in mind the fact that the Wigner transform
provides (for the energy) some type of local high frequency expansion.

The tensor valued function R(:Jc,k,t), or its average plays for the Navier Stokes
equation the role assumed by the thermal equilibrium (Maxwellian for instance) at other
level of the hierarchy.

Since it involves only the fluctuation one may assume that it is invariant under
Galilean transformation and this would lead for instance in 3 dimensions, to the formula:

: E(klet)  kok
R(kavt):W( - |k|2)

(4.2.3)

where E(|k|,x,t) is a scalar function called the energy spectra of turbulence.
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Of course with the assumptions that R(x, k,t) is invariant under Galilean transfor-
mations and depends only on

k= 4(aP), e= (Vi + V")

and on the tensor

(V.U + V,U)

one recovers the formula: )

R(z,t) ~ —(V,U +'V,U) (4.2.4)

€

In spite of its long history, the statistical approach does not seem to be compulsory
to introduce turbulent effect and it is important to observe that all the issues raised
for statistic family of solutions do have their counterpart when one considers the family
of defect measure of a sequence u, of deterministic solutions of Euler or Navier-Stokes
equations which are uniformly bounded in energy

sup / [up(z,t))? de < C < oo (4.2.5)
Q

i>0,n

and which do not uniformly satisfy other “regularity” estimates. More precisely only the
energy estimate

t
%/ |un(:1;,t)|2 d:z;—l—l/n/ /Hqun(:p,s)Hz drds < %/ |u(:1;,0)|2 dx (4.2.6)
Q 0 Q Q

remains valid and it is assumed that the viscosity v, is either zero or goes to zero. In this
case, modulo the extraction of a subsequence, u,, converges “weakly” to a function U(x,t)
which satisfies also the estimate (4.2.5). However due to the likely lack of compactness it
may happen that

lm wp(2,t) @ up(a,t) # Ulx,t) @ Uz, t) (4.2.7)

n— 00

and the difference

R(xz,t) = lim up(x,t) Qup(x,t) — Uz, t) @ Uz, t)

n— 00

= lim (un(x,t) = U(x,t)) @ (up(x,t) — Ulz,1))

n— 00

(4.2.8)

is a measure valued positive tensor which is zero only in case of strong convergence. It is
called the defect measure and has been introduced for related purpose by several authors
(cf for instance [G] and [Tar]). The limit U(x,t) is the solution of the “turbulent” equation:

QU +U-VoU +VuR+V,P=0,V, U =0. (4.2.9)

with R being like in the random case the Reynolds stress tensor.
This tensor may be present:
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When wu,(z,t) is a sequence of Leray solutions of the Navier-Stokes equations in R?
with the same given regular initial data and a sequence of viscosities v, which goes to zero
with n. Because in this situation the global existence of a smooth solutions of the Euler
equations remains an open problem.

It 1s almost surely present in the following situations:

” 1)” When u,(x,t) is a sequence of solutions of the Euler equations (or of the Navier-
Stokes equations with viscosity going to zero) with initial data u,(0,?) uniformly
bounded in L? but not in a more regular space (for instance when the initial data
exhibit large oscillations).

ii)” When both large time behavior and zero viscosity limit are simultaneously
considered.

iii)” Even for finite time, for the solutions u,(x,t) of the Navier-Stokes equations
in a bounded domain €2 when the viscosity v, goes to zero and when a viscous

boundary condition

Un(x,t) =0 for x € 92 (4.2.10)

is prescribed. It this situation a boundary layer appears near the boundary but
due to the non linearity of the problem this boundary layer (at variance with what
happens for linear problems) may propagate inside the domain. It has been recently
proven by Asano and Caflisch and Sammartino (cf. [CS]) that such a phenomena is
not present, but only for small time and analytic initial data.

Assuming that in all of the above cases the weak limit U(x,t) of the sequence u,(x,t)
is a smooth function, the following “conjectures”, which are the deterministic counterpart
of the “folklore” of statistical turbulence, should be studied.

One introduces the sequence of functions
Up = Uy — U

which converges weakly to zero and which plays the role of the fluctuation and its Wigner
transform

Ra(z, k1) :/ e R ((ii(2 + =, 1) @ ((iin(x — =, ) dr, R(z,k,t) = lim E,(,kt).
R3

2 2 n—oo
(4.2.10)
which is the analogous of (4.2.1).
The local turbulent energy and turbulent enstrophy could be defined as

=1 lim |u, —UP; e=1 lim v|V x (u, — U)J

€ =3

It this context exactly as in the case of the random solution one may assume (and
may in the future in some case prove) a galilean invariance hypothesis which gives:

: E(klot),  kok
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leading as above to the introduction of the turbulence spectrum. Furthermore the galilean
invariance implies that the Reynolds tensor itself can be as above written as

R(z,t) = —vp(z, ) (V.U +' V,.U)

The next step in this analysis should be to prove that the scalar vp(x,t) is non negative.
This does not result from the positivity of the defect measure R itself. Explicit model
of this weak convergence can be constructed for the dispersive limit of the KdV equation
or for the non linear Schrodinger equation and show that the appearance of analogous
phenomena (positive diffusion) are possible but not systematic.

4.3 The Kolmogorov Kraichnan Theory

Another approach to the closure problem is the direct analysis of the turbulence
spectra E(x,t, k) introduced above under the galilean invariance hypothesis. This program
was initiated by Kolmogorov in 1941 and stimulated many further researches.

With the following assumption:

There exists a region (called the “inertial range” 0 < k; < |k| < ky where E(|k|, z,1)
depends only on |k| and on

d, 2
e = S {lafe 1))

a dimensional analysis gives the formula

E(k) = Cla,t)es k|5 (4.3.1)

with C(z,t) a dimensional number.

This is the famous Kolmogorov law. It is independent of the equation of motion;
no mechanical explanation for its validity in three dimension has yet been offered here. It
is well verified both by physical and numerical experiments. (quoted from Chorin [Cho]
page 52)) and furthermore it will lead to an analysis of the degree of freedom of the fluid.

In fact the intrinsic nature of the turbulent spectra should be present in the case
where the action of the macroscopic part of the fluid U on the stress tensor (4 @ @) is
replaced by the action of an external force f on random fluctuations of mean value zero.
It turns out that in this configuration, with a fluid evolving in a D = 2 or D = 3 periodic
domain the analysis is both relevant and simpler. For formal and rigorous results it will use
the dynamical aspect of the Navier Stokes flow and this is the object of the next chapter.
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5 Invariant measures, Attractors, and evaluation of the number of degree of
freedom of the flow

5.1 Introduction and formal derivations

In this section the solutions of the Navier Stokes equations in a bounded domain
with a time independent forcing term are considered. This forcing term can be either
distributed in the domain or located on the boundary. However, for sake of simplicity,
only the case of an internal force acting on a fluid defined in a periodic domain

Q=10,L)"
is described. Therefore, the equations are
Outu-Vou—vAu+ Vyp=f,Vyu=0, u(z,0) = ug. (5.1.1)

Using the Galilean invariance one can assume without loss of generality that

/Qf(:z;)d:z; —0, and /Qu(x)dx = 0. (5.1.2)

The phase space H is defined as the L?-completion of smooth periodic divergence free
functions satisfying (5.1.2) and P denotes the orthogonal projection of (L%([0, L])P)?)
onto H (Leray Projection). The following standard notations are used:

Au = —Au, B(u,v) = P[(u- V,v)],

() = 77 /[ ), (w,0) = 74 /M]d Veule) : Veo(e)dz, (513

o

ul = ((u,0)2 .

[N

|u| = (uvu)

1
The operator A is selfadjoint positive and the domain of A2 coincides with the space

i
V = HnH(Q), |u]®> = |[AZu|*. The quantities ;|u|* and |u|? represent the kinetic
energy and the enstrophy per unit mass of the flow described by u. Eventually the following
identities are recalled:

(B(u,v),v) =0, if D =2,3, (5.1.4)

(B(u,u), Av) + (B(u,v) + B(v,u), Au) =0if D = 2. o
Ignoring in the present section the difficulties related to our incomplete knowledge of the
regularity and uniqueness of the solutions of the Navier Stokes equation and making the
convenient regularity hypothesis, one describes the solutions of (5.1.1) with the introduc-
tion of a non linear semiflow

u(t, ) = S(t)uo(x) (5.1.5)
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and defines the global attractor A as follows: the global attractor A for the semiflow
{S(t)}+>0 is a compact set in the space H, A C H such that

SHA=A Vt>0 (5.1.6)

and A attracts all bounded sets of H, i.e., for all B C H bounded, for all e > 0, there exists
Ty = Ti(e,B) such that, for t > Ti(e,B), S(t)B s included in an e-neighborhood of A.

When the viscosity is large enough (small Reynolds numbers) A is reduced to the
unique solution of the time independent equation

u-Vou —vAu+Vyp=f, Viru=0. (5.1.7)

However, as is the case in finite dimensional models (like the Lorentz attractor [Lo]),
which is constructed as the simplest Galerkin approximation of the Boussinesq equation),
the structure of the complexity of A increases with the Reynolds number.

The first steps in this process are described by adaptation to the Navier Stokes
equation of the standard bifurcation theory and could be found for instance (with other
references in Chossat and Iooss [Chl]). Then the trend toward the complexity of the at-
tractor should be understood by the introduction of a cascade of bifurcations. However
rigorous construction of bifurcations after the second order seem to be out of the scope of
our present knowledge and are in any case very different from the analysis in a turbulent
regime which is the goal of the present section.

Observe that the complexity depends on the viscosity v, the size of the box L
and the magnitude of the driving force f; therefore, it should be described in terms of
a dimensional number depending on these three quantities. Such a number is called the
generalized Grashoff number. In dimension 2 it is given by the formula:

e RS 519

14

and in dimension 3 it is convenient to replace the above definition by the formula:

_ Ljﬂ - L_Z(/Q(_A—lf)(x) +f(2))dx)

14

N[ —=

G (5.1.9)

14

For large Grashoff number the fluid should become ergodic and define an intrinsic
probability measure.

More precisely, one assumes the following ergodicity hypothesis Herg;:

There exists a unique probability measure i on the phase space H invariant under
the action of the Navier Stokes semiflow such that, for almost any initial data ug € H and
any functional ®(u) representing some physical quantity associated with the fluid flow w,

(®(up)) = lim (%/0 CI)(S(t)uo)dt> :/HCID(uo)d/,L(uO). (5.1.10)

T—o0
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Using the Fourier series representation:

u(z) = Y ag(u)eTre (5.1.11)

kezD

one can define, for any 0 < x1 < K2, Uk, xs

Uy wa(2) = Y ag(u)eTFT (5.1.12)

k1 <R <Kz

and assume Herg-is (ergodicity and isotropy hypothesis) the existence of a positive func-
tion E(x)(> 0) such that one has:

1 T Ko
lim —/ |(S(t)u0,€17,{2)|2dt:/ |u0m7ﬁ2)|2d,,b(u0):/ E(k)dk. (5.1.13)
0 H K

1

As in the previous chapter, the function E(k) is called the energy spectrum of the turbulent
flow produced by f. It gives an intrinsic (if not rigorous, see below) definition of an object
which adapts to the present context the definition given in (4.2.3). The fact that Fourier
series representation is used instead of Fourier transform creates no problem, and the fact
that the function E can be defined in term of the modulus of the wave number corresponds
to the isotropy hypothesis made in section (4.2). Therefore, the question raised there can
be addressed in the present context and leads to formal and in some cases rigorous results.
Observe that one has immediately:

1 T Ko
i 7 [ NS Ouon Pt = [ Juon, olPdituo) = [ 2B (5.0.14
T—)OOT 0 H K1
and
1 T Ko
lim —/ [(AS(t)uo,, x| dt :/ | Ao, ) [P dpiuo) = / w*E(r)dr (5.1.15)
T—oo T 0 ’ H 7 K1

5.2 Kolmogorov and Kraichnan inertial range.

This section is devoted to the construction of the inertial range. The argument is
inspired by the classical ideas of Kolmogorov and Kraichnan and we follow the exposition
done in [Fo]. It is assumed that f = fy ., where kg is of the order of 27 /L (the lowest
wave number).

For k1 and k9 given, the following notations are used:

Ve = U0k, V= Ugy o)y V> = Upy,o0 - (5.2.1)
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First the case D = 2 is considered; therefore, with (5.1.4) one deduces from the energy
balance equation (for k1 > ko) the relation:

v 4y 2
5&””” = —v|Av["=(B(v<,v<), Av) + ((B(v,v) + (B(v>,v) + B(v,vx)), Avc) (5.2.2)
+((B(v,v) + (B(v<,v) + B(v,v<)), Avs ) — (B(v>, 05 ), Av).
Taking the average in the sense of (5.1.10) one obtains:
0 = —{|Ao[*)~{((B(v<,v<), Av)) + (B(v + vs, v +05), Ave)) (5.2.3)

H((B(v +v<,v +v<), Avs ) = ((B(vs, vs ), Alve +0))).

Now assume that at these wave numbers k and 2« the enstrophy is in average carried only
from low wave numbers to high wave numbers (Kraichnan’s cascading scenario), then one

has
((B(v+vs,v+vs),Ave)) ~ 0 and (((B(vs,vs ), A(ve +v))) ~0 (5.2.4)

so that
v(|Av*) =~ —(((B(v<,v<), Av))) + ((Bv + ve,v + ve), Avs ). (5.2.5)

Thus, as long as
2K
v(|Av|?) = 1// ¢ E(&)dE ~ vi°E(k) (5.2.6)
is small compared to the two terms of the right hand side of (5.2.5), one has
(Blv<,v<), Av))) = ((Bv +ve, v+ vg), Avs ). (5.2.7)
The left-hand side represents the mean enstrophy/ mass passed per unit time from the
component with wave number less than  to wave numbers living in [2k,4k). Let n denote
the constant dissipation of enstrophy resulting from Kraichnan scenario. Let also k1 be

the smallest wave number from which the Kraichnan scenario is valid. Then writing (5.2.6)
for k = 27k, (5 = 1,2...) and summing up, one obtains:

V<|Au'€1700|2> i _<((B(u07'€1 > uoﬂil)? Auﬁ172fi1)> =~n (528)

so with the assumptions that k; ~ ko ~ 27/L, , L >> 1,
A l) v [ €BQEE [ EB@d = vlAuP).  (529)
K1 TTF

This last quantity is the dissipation (due to viscosity) of the enstrophy / mass per unit
time of the whole fluid flow. As long as

v’ E(k) << 1, (5.2.10)
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the component with wave number in [r, 2r) is just transferring enstrophy with the constant
rate ~ n from lower wave numbers to higher wave numbers.

Following Kraichnan [KR1] and Frisch, Nelkin and Sulem [FNS] we inject into the
above formulas a phenomenological description of turbulence. To start, observe that the
wave number & has the physical dimension of (length)™! and the component with wave
number & is considered to represent eddies of linear size about % Thus, as a function of z,
the component u, 2, is thought to represent the system of eddies of linear size € (1/2x,1/x].
The transfer of enstrophy is considered to be produced by the breaking of the eddies into
eddies of linear size < 1/2k. This breaking is assumed to occur after the eddy travels a
distance comparable to its linear size. Since the energy/ mass of the eddies with linear
size € (1/2r,1/k] is in average about

/ " B(6)dE ~ kE(r). (5.2.11)

the average velocity of those eddies is about

Vi ~ (vE(x))2 . (5.2.12)

Therefore the time necessary for the eddies to travel their linear size is about

o=

b o (1/5) Vi = 1/(rV) = 1/ (2 E(r)?) (5.2.13)

On the other hand, the enstrophy / mass of the eddies with linear size € (1/2r,1/k] is
2K
| B = ). (5.2.14)

According to the breaking mechanism the mean dissipation of the enstrophy /mass per
unit of time should thus be

3E 3
g o t (5] (kE(r))? (5.2.15)
which gives
05
E(x) ~ —. (5.2.16)

According to the previous arguments, one expects (5.2.16) as long has k > r¢ and (5.2.10)
1
hold. Using (5.2.16) one finds that (5.2.10) is equivalent to k% << 13 /v, that is:

=

K< Ky = (:—3>

(5.2.17)

The equation (5.2.17) defines the Kraichnan dissipation wave number [Krl]. For larger
wave numbers the viscosity forces become dominant.
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In the three dimensional case, D = 3, the role played by the enstropy in the preceding
argument is taken over by the energy. Consequently, one starts with

/ " EB(6)dE = —((Bloc,v)ov) + (Bloe +v.va +0),0,)) (5.2.15)
and then writes:

(Blv<,ve),v)) = —((Blv< +v,0< +v),v0)) == € = v{[ul?) (5.2.19)

provided that
v’ E(k) << ¢ (5.2.20)

Here € represents the mean dissipation of energy /mass per unit of time. The Kraichnan
mechanism now leads to the estimate

e — (kE(r))?2k, (5.2.21)
that is,
2
€3
B(r) ~ — (5.2.22)
K3
for A
VK3 e: << ¢ (5.2.23)
that is,
1
€ =
K<< Ko = (V—3) + (5.2.24)

This number k. is called the Kolmogorov wave number . The spectra given by (5.2.23)
and (5.2.16) are respectively the Kolmogorov spectrum for turbulence and the Kraichnan
spectrum for 2D turbulence.

The wave number where the mechanism described above holds (in or 2D is the
wnertial range of turbulence. The empirical evidence for the existence of the Kolmogorov
inertial range of turbulence is much stronger than that for the existence of the Kraichnan
inertial range of turbulence; this may be due to the fact that we have at our disposal more
experiments in D = 3 than in D = 2. Furthermore both the phenomenological theory and
the rigorous mathematical analysis described below indicate for D = 2 the existence of a
logarithmic correction.

5.3. Kolmogorov -Kraichnan waves numbers and asymptotic Degrees of Free-
dom

In almost all cases the use of the primitive Navier Stokes equation for the compu-
tation of a flow Direct Navier Stokes Simulation DNS introduces a discretization which
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involves a finite number of degrees of freedom. Evaluation of the order of magnitude of
this number is the first step of the computation. It turns out that there are several ap-
proaches for this evaluation, some based on the heuristic argument as a continuation of the
above discussion and others based on some more mathematically tractable objects like the
notion of attractors. At the present, to the best of the knowledge of the writers, no formal
mathematical derivation of the relation between the different approaches exists; derivations
should come from a better understanding of the ergodic aspect of the theory. However
surprisingly (or not surprisingly?) the different approaches lead to very similar estimates.
The heuristic approach is discussed below as a continuation of the previous section, and
the more mathematical approach will be one of the main the objects of section 5.4.

The mean dissipation of energy /mass per unit of time which appears in the evalu-
ation of the Kolmogorov scaling law and of the Kolmogorov dissipation wave number can
be evaluated with the following heuristic argument:

If -
e = %/ E(r)dr (5.3.1)

is the average of the energy /mass in a turbulent fluid flow with an average dissipation
rate

€= V/Oo w*E(r)dr, (5.3.2)

then t. = ¢/e should represent the characteristic time for the dissipation of energy and the
characteristic mean velocity should be U = v/2e. The corresponding length [ = Ut, can be
viewed as the average distance travelled by the turbulent eddies until they dissipate. So

vz Ul

€~ —

= (5.3.3)

This is the Kolmogorov estimate for energy dissipation in a turbulent fluid flow. Since U
and L are the characteristic velocity and length for the flow one introduces the Reynolds
number

_UvL

Re = (5.3.4)

14

and obtains with (5.2.24), (5.3.3) and (5.3.4) the following formula for the Kolmogorov

wave number:
3
Lk, ~ (Re)* . (5.3.5)
Above it has been observed and used that in D = 2 the enstrophy dissipation
v = (|Aul*) (5.3.6)

has to be considered instead of the energy dissipation. However the same analysis leads in
this case to the same formula:

Lk, ~ (Re)% (5.3.7)
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The dissipation length is therefore given by

1
ly=—for D=2

’f‘l" (5.3.8)
le=—Tfor D=3.

Ke

(cf. Foias [Fo]). Since structures of size less than I, (resp. [.) correspond to wave numbers
which are in the dissipative range, they are rapidly annihilated by viscous effects and
therefore are of no dynamical consequence. On the other hand, any eddy of size [, (resp
[c) will be tracked at some grid point. One expects that the degrees of freedom of a 2D
resp. 3D flow should be at most about

<Z_>2 = <Llin)2 for D =2
2 . (5.3.9)
<Z> = <L/€E)3 for D =3

or with (5.3.5) and (5.3.7) (Re)% for D = 2 and (Re)% for D = 3.

Assuming that the non linear semiflow has a compact global attractor A one could
use the fractal dimension of this attractor as an alternate definition of the number of
freedom of the turbulent flow. Recall that the fractal dimension of a compact subset A of
a Hilbert space H is defined by the formula:

dy(A) = lim sup w

s log 1 (5.3.10)
where, for § > 0, Ns is the smallest number of balls of radii equal to § needed to cover
A. The fractal dimension can be oo even if its Hausdorfl dimension is 0 (cf. [BEFN]).
Moreover (cf. [EFNT, FO, BEFN]), if dj;(A) < oo there is a dense set of orthogonal
projections P (Mane’s projection) in H of rank < 2dy(A) + 1 with a Hélder continuous
pseudo inverse

Pl A—H PoP'=14. (5.3.11)

Therefore, the fractal dimension is a better indicator than the Hausdorff dimension of the
number of parameters necessary to describe a set as well as the dynamics it may carry.
This observation is particularly important for the ezponential attractor which is introduced
in section 5.5.

Furthermore it is appropriate to mention that exponential attractors are probably
more relevant than the global attractor A itself. These are outgrowths of A, still with frac-
tal dimension but attracting all solutions at an exponential rate. Moreover, the estimates
for their fractal dimension are as sharp as the one for dy(A).

The notion of the number of determining nodes should be halfway between the
concept of degrees of freedom according to Landau and Livschitz and the dimension of
the attractor. The points of a fixed finite set F in the domain of the fluid are called
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determining nodes whenever, for any two solutions u, v of the Navier Stokes equations, the
convergence on F implies the global convergence of these solutions, i.e.:

lim (u(t,a) —v(t,a)) =0 (in RP°)Va ¢ F = tlglglo lu(t,.) —v(t,)|g =0 (5.3.12)

t—o0

Eventually it is worth mentioning that a theorem of Takens [Ta] asserts that generi-
cally one node should suffice, but it is not known if the Navier Stoke is generic in the sense
of Takens.

For dimension of the attractor and for the number of determining modes, rigorous
results are available. They are not as precise for determining modes as for the dimension
of the attractor (cf. [JT] and [CDT]) but in any case they are more tractable than the
heuristic estimates of Kolmogorov and Kraichnan.

Finite fractal dimension for the attractor raises the following deeper questions, which
are partially answered in Section 5.5:

(i) Can we imbed the attractor in a smooth finite-dimensional manifold;

(ii) Are the dynamics on the attractor equivalent to the dynamics of a finite differen-
tial dynamical system (also called “inertial dynamical system”) on such a finite-
dimensional manifold.

5.4 Mathematical tools for rigorous results

In this section the dynamical system point of view is systematically used to produce
some estimates on the number of degrees of freedom. As said above the approach differs
from the historical approach of Kolmogorov and Kraichnan but the results are in extremely
good agreement.

At first glance a complete justification of the above analysis should include at least

i) The use of regular semi flow

ii) The existence and uniqueness of the probability measure p on the phase flow
satisfying the hypothesis Herg (cf. formula (5.1.9)).

However:

i) As discussed at length in previous sections the existence of a “better” solution
than the Leray weak solution is for D = 3 still an open problem.

ii) Furthermore, nobody has ever come close in proving even for D = 2 the existence
of a probability measure p satisfying the hypothesis Herg and even more the hypothesis
Herg-is.

To partly overcome these difficulties one proceeds as follows:
1) As usual, weak solutions of (5.1.1) are considered for D = 3. However, classical

energy estimates show the existence of an absorbing ball B bounded in H such that for
any solution u(t) of (5.1.1) there exist a o which depends on the solution such that:

t >ty = u(t) € B. (5.4.1)
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All these solutions always converge in the weak topology of H to a maximal weakly compact
set A C B with the property that if ug € A then there exists a (weak) solution u defined
for —o0o < t < oo bounded in H such that «(0) = ug. By definition this set is the global
attractor of the weak semiflow associated to the equation (5.1.1). It contains a dense open
(for the weak topology of H) subset Areg with the property that for ug € Areg the solution
u with this initial condition (at ¢ = 0) is unique and analytic on a time interval 0 € (¢1,t2).
In the case D =2 B is a bounded subset of V' and therefore is compact in H, A coincides
with Areg and is the usual global attractor of the dissipative evolution equation. For
precise results in dimension 3 the extra hypothesis A = Areg or equivalently B C V will
be necessary.

2)“Weak stationary statistical solutions of the Navier Stokes equation” are defined
as probability measures p on H which satisfy the following relations:

/ Jul?u(du) < 0o, p(A) = 1 (5.4.2)

and

[ @) + (Bl ) = £. @' wl(au) =0 (5.4.3)

for all test functionals ® : H — R which are Gateaux differentiable in H at any point
u € V with derivative &’ bounded on subsets of V. In dimension 2 stationary statistical
solutions coincide with probability (Borel) measures which are invariant for the non linear
semiflow, 1.e.,

/@(S(t)u)du = /q)(u)d/,L, vt > 0.

Rigorous mathematical treatment of this notion appeared in Foias [Fo] and were developed
by several authors; in particular it was shown first by Foias [F1] [F2] that such measures
are solutions of the Hopf equation. The latter was also studied by Fursikov Vishik [FV1-3]
and Fursikov Ehmanuilov [FE]. Finally one observes that the support of the measure is
the global attractor A.

3) Eventually the notion of a generalized limit is used and denoted Limp_ .

With this notion the following result is a soft hybrid of both Birkhoff ergodic theorem
and Krylov-Bogoliubov theory:

Theorem 5.1 For any (weak) solution u defined on (0, c0) with initial data at t = 0,
there exists a stationary statistical solution p such that

LimT_mo%/O D (u(t))dt :/@(u)du. (5.4.4)

With this statement one can easily and rigorously prove still with energy estimates the
following
Theorem 5.2 In dimension D = 2 the set

1 T
Range(n) = {LimT_mof/ 1/|A5(t)u0|2dt,u0 € H} (5.4.5)
0
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coincides with the set

[ vt Patan
where u runs over all probability (Borel) measures invariant for the semiflow S(t), t > 0.

Since the driving force f is assumed to be localized to the low frequency modes, the
only quantities which characterize the flow are the size of the “box” L, the viscosity v and
the L? norm of f, and this leads to the introduction of a dimensional number called the
generalized Grashoff numbers constructed with these quantities:

L? L? 1
G = 1/|2f| :1/_2</ f(:z;)f(:z;)d:z;>2 for D =2,
[0,L]*
P ) (5.4.5)
Go= = [ AT e A 2 dor D=3

and rigorous estimates on
—/ v|A(S(t)uo)w,00l?dt, for D =2 and —/ v[|(S(t)uo)s,00|*dt for D =3

leads (cf. [FMT] to almost rigorous evaluation of Kraichnan and Kolmogorov wave numbers
in term of the Grashoff number:

1 1
CoG6 L™ <k, <C1G3L'D =2
. (5.4.6)

1 1
CoGHL™' <k, <C1GZL7'D=3.

In (5.4.6) Cp and C; denote universal constants; for D = 2 the ergodicity hypothesis Herg
is assumed and in dimension D = 3 a regularity hypothesis is added.

For a large enough wave number (after Kolmogorov or Kraichnan dissipation wave
number) the dissipation effect dominates, and this should imply an ezponential decay for
the turbulent spectra (of course with the assumptions that f = fy ., and that G >> roL).

Then (Juy,0|?) for £ >> ry; and (Juy,o|?) for £ >> k. are very small due mainly to
the viscous dissipations, and these averages should behave like the Fourier components of
the linear equation

du
o +rvAu=0fort >0 (5.4.7)

leading to an expression of the form:

E(k) ~ C4 exp—C'2<i)2 for K >> Kk, for D =2
o 5.4.8
. (5.4.8)
E(k) ~ Cyexp —C’g(—) for kK >> k. for D = 3.

€
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Such results are not proven (and in some cases may be false) (c¢f. [SR] and [Ma]). However
it is important to notice that weaker (not too weak) forms of (5.4.8) can be obtained at
least for D = 2 with full mathematical rigor.

Phenomenological analysis and numerical experiments lead to the idea that (5.4.8)
should be replaced by estimates of the form

E(k) ~ C1E(ky)(K/ky)" exp [3(( ) for K >> Kk, for D =2
" (5.4.9)
E(k) ~ C1E(ke)(R/Re)" exp —5(;) for k >> k. for D = 3.

For the case D = 2 recall the “phenomenological relation” (cf. (5.2.16))

The proof of (5.4.9) with D = 2 is equivalent to the obtention of the estimate:

1

2 L
o @ v —BrLG™
/|A Pt o pe(du) ~ ~ 0G0 )L2(1+a)e AulG 3 (5.4.10)

The approach is based on Gevrey spaces (it follows [FT3] and it seems that the potential
of the method is not yet fully exploited). It starts from the relation:

1
J 1At < 200 [ 14T P () with 6> 0. (5:411)

A slight improvement of the proof in [Cha] leads to the estimate:

l\)|)—l

|eTTesoat 25 4% |2 < () Gz— Vue A (5.4.12)

under the assumption that

CiG>1and G > Lkg. (5.4.13)
By integrating (5.4.12) with respect to p, using (5.4.11) one obtains for a =1

1 2 .
/|A§u,{7oo|2/,L(du) < coGzﬁe_GﬂoglGH)LT. (5.4.14)

Observe that except for the constants (they should have a uniform dependence on the
Grasshoff number) an estimate of the type (5.4.9) for D = 2 has been proven.

Eventually the weakest form of (5.4.9) is the analysis of the power spectrum of the
velocity at a given point, namely the expression:

—zwt 2 .
P(w) = Tlgnoo f‘/ )j(:zjo)dt‘ , 7=1.223. (5.4.15)
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Once again, for D = 2, it can be rigorously proven that m(dw) = P(w)dw defines a positive
Borel measure on R such that

/ e~%olwly, (dw)<CG2 (log CG+1)
—ee (5.4.16)

o = C—G—2(10g+ cG+1)7!
14

The Kraichan-Kolmogorov approach gave, in section (5.2), an estimate of the num-

ber of degrees of freedom in terms of the Reynolds number as (Re)% for D = 2 and (Re)%
for D = 3. The dimension of the attractor gives an alternative way of measuring the
number of degrees of freedom of the flow. Even if this approach is completely different,
what is striking is the fact that it leads to the same type of estimates if one observes that
the Reynolds number which appears in this derivation is bounded by the Grashoff number:

2
Re < CGs.

First results for the attractor in dimension 2 were obtained by O. Ladyzhenskaia
[LA1-4] and by Foias and Temam [FT2].

More precisely, in dimension 2 the global attractor is perfectly defined (with no
extra hypothesis), is compact in H and its fractal dimension can be estimated in terms of
the Grashoff number according to the formula:

drr(A) < oG (log(e1G) +1)3 (5.4.17)

This estimate was obtained by [CFT2] in (1988). Observe that (5.4.17) differs from the
Kraichnan estimate by a logarithmic term which cannot be present when directly derived by
the arguments of section (5.3.). However, remarkably, in a follow up of [CFT], K. Okhitani
has shown [Ok| that a more careful analysis within Kraichnan heuristic framework does
yield the logarithmic corrective term. More recently, V.X. Liu [LI] presented a proof that

dy(A) > ¢ G% with, for the driving force, a well chosen eigenvector of A.

For D = 3 one assumes that the attractor A is a bounded subset of V' (consequence
of conjectured but non proven regularity results).

Then one defines the quantities:

4
5

€ = hm / vL™ / (Vyu : Vyu(a t))4d:1;dt] ) (5.4.18)
UOEA
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With a slight improvement (made possible by [EFT]) of the result in [CFT] one shows,
that
dy(A) < co(Lke), (5.4.19)

however with € larger than the one given by the Kolmogorov scaling law.

The proofs of (5.4.17) or (5.4.19) use some of the basic tools of dynamical systems
extended to infinite dimensional spaces, and therefore this justifies that a short description
of the proof of (5.4.17) be given below.

Sketch of proof of the estimate of the fractal dimension of the D = 2
attractor

Inspired by methods of finite dimensional dynamical systems, one first introduces
the derivative DS(t,ug) of the flow S(¢) as the solution of the equation:

O — vAG + &V (S(H)uo) + (S(H)uo)Ved + Vip =0, V¢ =0,

qb(O,:z;) = f c [{7 (DS(t7u0)€) — Qb(t,l‘) ‘ (5420)

The operator DS(¢,ug) is compact in V' and one can introduce the infinite sequence

ar(t,ug) > az(t,ug).... > ap(t,ug) > ... > 0.

1
of eigenvalues for the self adjoint positive operator (DS*(t,ug) o DS(t,ug))2. Classical
Lyapunov numbers would be defined as:

1
t

An(ug) = tli)nglo{ozn(t,uo)} , and pn(ug) = log Ap(uo) (5.4.21)

However such pointwise Lyapunov numbers may not exist (since we do not know the
existence of a canonical ergodic measure p on A), therefore one uses a topological version
of uniform (global) Lyapunov numbers introduced in [CF1] and expanded in [EFT]. Let:

Pr(t,uo) = a1(t,ug)az(t,ug) - - - ap(t, ug); (5.4.22)

mi(t) = sup{Pr(t,uo) : ug € A}; (5.4.23)

because of the subexponential identity 7 (t + s) < 7 (t)7r(s), it can be shown that the
following limit exists:

Il = lim (mr (1)1 (5.4.24)

— 00

One can then define recursively the uniform Lyapunov numbers Ay, k= 1,2,..;
Ay =T, MA; =1, ..., A ... Ap =TI, ... (5.4.25)
and the uniform (global) Lyapunov exponents are defined by:
fm =log Ay, m > 1; (5.4.26)
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equivalently:
p1 F pro 4 g = tlgglo T log 7k (1) (5.4.27)

These exponents converge to —oo as k — oo. Then, with some further hypotheses on the
uniform differentiability of S(¢) with respect to ug in A, one uses classical fractal geometry
arguments ([CF], [DO], [EFT]) to cover A by iterations of increasingly refined families of
balls; each ball of radius € centered at some wug is deformed by DS(#;ug) into an ellipsoid
whose principal axes are aq (¢, ug)e, ..., an(t,ug)e,. ... The scaling laws of such coverings
yield estimates on the Hausdorff and Fractal dimensions of A according to:

Theorem 5.3 ([CF1], [T], [EFT]) If for some n > 1

1+ p2 4 e+ g1 < 0; (5.4.28)
then
gy < 0, Hatpet et )y (5.4.29)
|1
and

i) The Hausdorff dimension of A is less than or equal to

(p1 + p2 4 oo i)+

n+ (5.4.30)

|Hnt1]

ii) The fractal dimension of A is less than or equal to
max (j+ PLTH2 T )y (5.4.31)
1<5<n |Mn+1|
where

fint+1 = lim sup % log [sup Oy (T uo)} ) (5.4.32)

t—00 uo €

Next introduce an m-dimensional volume element in V' spanned by m independent
elements &1, &, ..., & denote Uj(t) = DS(t, ug); and observe that a variant of the classical
Liouville theorem gives:

|U1(t) A e AU (B)[am v < HEL(E) A e A (B)|am v exp (/0 Tr(DS(7,ug) 0 Qm(T))dT>

(5.4.33)
In (5.4.33) Q. (7)) denotes the projector on the space spanned by Uy (7),... A Uy (7). For
the Lyapunov exponent describing the evolution of the “volume element” one shows the
relation:

t1 A pote b < g =

1 1
lim sup sup sup (—/ Tr(DS(7,ug) 0 Qm(T))dT> :
t—=00 up€A eV, [¢)<1,1<i<m 0

(5.4.34)
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To estimate the quantity
t
/ Te(DS(r,up) 0 Qu(7))dr
0

one introduces an orthonormal (in V') basis of @, (7))V, {¢;(7)} and uses the relation:

Tr(DS(r,u0) 0 Qm(7)) = Y (DS(r,u0)¢;, Ad;) =

1<j<m

> {—vlAg;|* + B(;, ¢;), Au)}.

1<j<m

(5.4.35)

With the properties of the quadratic advection operator B in dimension 2 one has:

1 1
1<j<m L4 (Q)

with
pla) = Z |6j(2)?, ofx) = Z V()] (5.4.37)

The proof is completed with the two following estimates:

> JAgi(2) = Cam? (5.4.38)
1<j<m

where A\ is the first non zero eigenvalue of Stokes operator A and

1
IpILoom)SC(lJrlOg(A—l > [Ag(x)]?) (5.4.39)
1<j<m

which comes from the log-singularity of the Green function in two space variables and which
in a weaker form is due to Brezis and Gallouet [BG] (alternative proofs of (5.4.39) can be
found in Lieb [Lie] and Constantin [Co]). This is the very estimate which is responsible
for the log correction in (5.4.17)

5.5 Exponential Attractors.

As observed in the previous section, the viscous effects make the fluid dependent on
a finite number of degrees of freedom and therefore there are good reasons to develop the
analogy with finite dimensional dynamical systems and even to try to reduce the Navier
Stokes flow to a flow on a finite dimensional manifold. According to this idea several
authors ([FST], [CFT]) proposed the notion of inertial manifold closely related to the
eigenmode decomposition of the linear operator A.
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Consider a semi flow S(t), in a Hilbert space H, generated by an evolution equation
of the form

uy + vA(u) + B(u) = F (5.5.1)

where A is (as is the case for the Navier Stokes equation) a linear self adjoint operator
and B a lower order non linear operator. Introduce an orthogonal decomposition of the
Hilbert space H into the space spanned by the first NV eigenvectors of A and its orthogonal
complement. Denote by Py and (}n the two corresponding projections and observe that
the equation (5.5.1) is then decomposed into a system of two equations according to the
formula:

p = Pnu,

Pt +vA(p) + Pn(B(u)

:QNuv
u)) =Pnf (5.5.2)
a+vA(q) + Qn(B(u)) =Qn .

Then one says that the above spectral decomposition defines an inertial manifold M if
there exists a Lipschitz map ® : Py H — @)y H with the following properties:

q
)
)

M = Graph (®) = {(p,®(p)), p€ PvH} (5.5.3)

S(HM C M ¥t >0 (5.5.4)

which attracts uniformly exponentially all solutions of the equation (5.5.1).

The existence of the inertial manifold would imply not only that the dynamics are
finite dimensional but also that it is completely described by the evolution of the first N
eigenmodes (in periodic configuration of the first N Fourier modes).

The existence of such an invariant manifold has been proved for several equations
like the Kuramoto-Sivashinsky [FNST], the Ginzburg Landau equations [CFT] or a hyper-
dissipative version of the Navier Stokes equation (cf. [CF2] and [MP]). However, it has
never been established for the genuine Navier Stokes equation even in two space variables
(published claims are incorrect) and besides technical difficulties this fact can explained as
follows:

A consequence of the existence of an inertial manifold is that the higher order modes
(of order greater than N) are completely driven by the lower order modes; in the “folklore”
of the field they are “slaved modes” and this property seems to be in contradiction with
current phenomenological theories of turbulent intermittencies.

Recalling that such theories rely on averaged properties: spectral modes of arbitrar-
ily large frequency and non small amplitude may appear intermittently in physical space
with a small probability and such occurrence makes impossible a rigorous description of
the dynamics of infinite dimensional system by a N modes dynamical system.

Therefore, Eden, Foias et al. [EFNT] have proposed a more physical and more
robust (under perturbations) notion which is the ezponential attractor:

Definition 5.4 Let {S(t)}¢>0 be a Lipschitz continuous semiflow with a positively
invariant compact set X, X C H, S(t)X C X for every t > 0. A compact set My is called
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an exponential attractor for S(t) if

i) A=No(SH)X) C Mo,

i1) S(t)(Mo) C Mo Vt >0,

i11) Mo has finite fractal dimension dp(Mpy)

i) dist (S(t)Xo, Mp) < Ce P for convenient constants C' and G

(5.5.5)

Exponential attractors are fractal objects which not only contain the ultimate attractors
but capture important slow scale transient dynamics. Clearly exponential attractors are
not unique; by definition any two exponential attractors are exponentially attracted to
each other. The major difference between exponential attractors and the global attractor
is that the latter may only attract at an algebraically slow rate (there are examples to that
effect, [Kos]). The major difference between inertial manifolds and exponential attractors
is that the latter do not assume any global slaving of small scales. As a consequence,
the exponential attractors can deal with cases where an exponential convergence is not
restricted within a smooth manifold structure. As far as the theory goes, it might well be
a fractal set. The physical relevance of exponential attractors for Navier-Stokes turbulence
is discussed in [EFNS].

The existence of an exponential attractor, its dimension and the value of the con-
stants C' and [ appearing in (5.5.5, (iv)) can be obtained by an iterative covering process
(cf. [EFNT] ) from a dichotomy principle, called the squeezing property.

Because of its importance, we recall its definition.

Definition 5.4 Discrete squeezing property (DSP). In the context of Definition 5.1
one will say that a semiflow S(t) satisfies the weak discrete squeezing property if there
exists an orthogonal projection Py of rank N and a positive time t, such that the relation

[P (S(teJuo — Py (S(t)vol < [Q@N(S(ts)uo — @ (S(Es)vol (5.5.6)
implies the relation
|(S(ts)uo — (S(ts)vo| < duog — vo| with 0 < 4§ < 1. (5.5.7)

The condition (5.5.6) can be rephrased as “when the difference between two solutions is
mainly concentrated in small scale modes” and the consequence (5.5.7) means that the
difference is contracted in time during some past (from ¢ = 0 to ¢,). Strong versions of the
squeezing property go back to [FT1] and O. Ladyzhenskaia [La2].

For the proof of the (DSP) property a convenient tool is the quantities:

At ou,0) = 1O = v @ _ o)

= T —o@F ~ [w(DP (5.58)
o Alu(t) — o] |Ale()]
u(t) — v(t)]? w(t)]]?

Hlt ) = T o T e (5.5.9)
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defined for two solutions wu(t), v(t) with w(t) = u(t) — v(t). Now, for the D = 2 Navier
Stokes equation, the squeezing property is deduced from the energy estimate:

d G?*v
L)+ oAt ) o) < S o) (5.5.10)
which leads to: -
lw(t.)|? < exp[(~CvN + Cy L—Zy)t*] x |w(0)]*. (5.5.11)

The same estimates can also be obtained for the enstrophy.

Exponential attractors constructed with the DSP have fractal dimensions higher (as
a function of the Grashoff number) than the estimates of dp(A) for the global attractor
which relies on Lyapunov number techniques. Eden et al. ([EFN] [EFNT]) give an al-
ternative construction of exponential attractors based on the concept of outer Lyapunov
exponents and outer Lyapunov dimension. The outer Lyapunov exponents are defined as
in the beginning of Section 5.5, but with the “sup over vy € A” replaced by “sup over
up € X7 in Eqn. (5.4.23) and (5.4.32), where X is the positively invariant compact set
of the semiflow S(¢). The outer Lyapunov dimension doz, of Mg is given by a formula
identical to (5.4.31), with the p; replaced by outer Lyapunov exponents. In principle,

dF(.A) S doL(Mo); (5.5.12)

but in terms of the practical estimates which both use the trace operator formulas (5.4.34),
the two dimensions above are indistinguishable. In that sense, such exponential attractors
have optimal outer Lyapunov dimension.

Eventually one recovers also for the fractal dimension of the exponential attractor
(which contains the global attractor) an estimate in

2 1
G3(logG +1)3 (5.5.13)

in agreement with (5.4.17).

Recently, Le Dung and Nicolaenko [LDN] have demonstrated that exponential at-
tractors are objects as universal as global attractors for dissipative infinite dimensional
dynamical systems: no squeezing properties, nor fine structure of Lyapunov exponents are
required. They extend the theory of exponential attractors from the Hilbert space setting
to the Banach space setting. The only requirements are for the semiflow to be C'! in some
absorbing ball and for the linearized semiflow at every point inside the absorbing ball to
split into the sum of a compact operator plus a contraction. In some sense, [LDN] estab-
lish a global exponential dichotomy for infinite-dimensional dissipative dynamical systems;
however, the exponential attractor Mg is not in general a smooth manifold.

Let E be a Banach space, U C E an open set and S : U — E a C! map. We
consider the discrete dynamical system {S"}72, generated by S.

We start with the assumption that there is a compact connected subset X C U
and S : X — X and S possesses a universal (global) topological attractor A which is a
compact, connected set given by

A= ﬁ S™(X). (5.5.14)
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We denote by L(E) the space of bounded linear maps from FE into itself. For a
given positive real A we denote by L5(E) the set of maps L € L(E) such that L can be
decomposed as L = K + C with K compact and ||C|| < A. Here ||C|| denotes the norm of
the operator C.

The main result of [LDN] is the following

Theorem 5.5 If there exists A € (0,1) such that D, S(x) € LA(E) for all z € X,
then the discrete dynamical system {S™}°2 | possesses an exponential attractor.

Define S as the map induced by Poincaré sections of a Lipschitz continuous semiflow
S(t), t > 0, at the time ¢t = T* for some T* > 0; that is, S := S(T™). We consider the
discrete semigroup {S" }, >0 generated by S. Once the existence of exponential attractors
for the discrete case is proved, the result for the continuous case follows in a standard
manner (e.g. see [EFNT]). We have

Theorem 5.6 Let X be an absorbing set for a continuous semiflow S(t). Suppose
that there is a T* > 0 such that S = S(T*) satisfies the condition of Theorem 5.4. Assume
further that the map F(x,t) = S(t)x is Lipschitz from [0,t] x X into X for any T > 0.
Then the flow {S(t)}>0 admits an exponential attractor M.

An immediate consequence of the above is the existence of exponential attractors
for the fast-rotating 3D Navier Stokes equations (2.5.23) investigated in [BMN1], [BMN2].
This is the only known rigorous result of its kind for genuinely 3-D Navier-Stokes-like
equations.

In the absence of an inertial manifold one would like to address the following ques-
tion: Is there a natural way of reconstructing the dynamical system without recourse to
the underlying equation?

Once the existence of an exponential attractor of an infinite dimensional dynamical
system is established, the next stage is to unravel the dynamics on this set. A natural way
is to show that the infinite dimensional dynamical system is inertially equivalent to some
finite dimensional one:

Definition 5.7 [EFNT] [Chapter 10] Two dynamical systems are inertially equiv-
alent if:

i) they have a common exponential attractor
ii) the dynamics on that exponential attractor coincide.

First, one can imbed the fractal exponential attractor M into an Euclidean manifold
with a Mané Projection P which admits a continuous pseudo-inverse when restricted to
PM; note that Mané’s projections are dense:

Theorem 5.8 (Modified Mané’s theorem, [BEFN]) Let H be a separable Hilbert
space, Y a fractal compact subset of H such that dp(Y) = D. If Py is an orthogonal
projection with rank N > [2D + 1], then for every § € (0,1) there exists an orthogonal
projection P = P(9) such that

|IP— Py|| <& (Ker P)NY = {0}. (5.5.15)
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The procedure of constructing a finite dynamical system which is inertially equiva-
lent to an infinite dimensional one can be roughly described as follows ([EFNT, Chapter
10]).

First we start out with a dissipative dynamical system associated to a PDE written
in the evolution form du/dt = F(u), u(0) = wug, and project the evolution equation on
M via Mané’s projection P onto a system of ODE’s on an Euclidean space of dimension

N =[2D + 1]. On PM, this dynamical system is well defined by:
9 = PF{(Plm) " (1)}

x(0) = Pu(0). (5.5.16)

The next step is to extend that dynamical system to a generalized dynamical system defined
everywhere in RY. The solutions of the generalized system of ODE’s so obtained may not
be unique and differentiable (for the definition and construction of such a generalized
system, see [EFNT, Chapter 10]. However, one can show that the solutions exist globally
in time and are attracted exponentially to PM. It is possible to show that the projected
system of ODE’s generates a generalized dynamical system on the Euclidean space; the
continuity points of that system form a dense G subset of RY.

The next step is to lift the generalized dynamical system back to the infinite dimen-
sional space by the lifting P~!. Unfortunately, without further properties on the inverse
of the Mané projection, we cannot proceed with such a lifting to obtain a dynamical
system which admits the set M as an exponential attractor in a Banach space context.
Remarkably, this is true in a Hilbert space.

It was shown in [EFNT, Chapter 10] that this lifting is possible if a Holder-Mané
projection theorem can be established; that is, if one can show that there is a Mané
projection P whose inverse is Holder continuous on PM. Recently, in [FO] such a theorem
is proven by Foias and Olsen for the case of infinite dimensional Hilbert spaces. We remark
here (see [EFNT, Appendix A]) that there are counterexamples where P! cannot be
Lipschitz so that the best result can only be where P! is Holder continuous.

Theorem 1.1 in [FO] considers a real Hilbert space H and X C H such that dp(X) <
m/2, where dp denotes the fractal dimension. Then for any orthogonal projection P of
rank m and § > 0 there is an orthogonal projection P such that ||[P — P|| < § and P|x has
Holder inverse.

Combining the discussion in [CENT, Chapter 10], [FO, Theorem 1.1] and Theorem
5.4 [LDN], we can conclude that

Theorem 5.9 For a Hilbert space H, let the semiflow S(t) satisfy the conditions of
Theorem 5.4 and M be an exponential attractor for S(t). Then S(t) admits an inertially
equivalent generalized dynamical system in H of dimension [2dp(M) + 1].

Here, [dp(M)] denotes the largest integer which is less than or equal to dp(M).
There is reasonable hope to extend the above result to inertially equivalent dynamical
systems which are locally of the Caratheodory-type on local pieces of smooth manifolds.

72



6 Coherent Structures in two space variables

Physical observations, illustrate by the figure 1 and numerical simulations illustrated
by the figure 2 and studied for for instance in Farge et al [KF], [FCH], [FGMPW], [FSK]
and Marcus [Mar], show the persistence in two spaces variables of coherent structures the
most classical one being the Jupiter red spot (cf. Ingersol and Ingersol and Cuong [In],
[InC]) or the anticyclone of the Acores. In both cases the problems are 3d but due to the
smallness of the thickness of the atmosphere they are mostly driven by two dimensional
dynamic as said in section 2.5 (cf equation (2.5.23) and related works [BMN1] for instance).

The Jupiter Red Spot
by courtesy of the Jet Propulsion Laboratory Pasadena

A Coherent structure generated by a numerical simulation
by courtesy of Marie Farge and Nicholas Kevlahan
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These coherent structure present an alternative for what would the thermodynamical
equilibrium for turbulent flow.

The mathematical construction of these structures relies up to now on the mini-
mization of some type of entropy which would be related to conserved quantities unless
the flow becomes turbulent. In this sense these structures are related to the theory of turbu-
lence. However there are by themselves very regular. It is the transient regime and not the
structures themselves which is related to turbulence. Eventually question of a mathemat-
ical relation between these objects and the one described in the previous sections (global
attractors, turbulent energy spectra etc..) seems to be completely open.

Consider the solutions of the 2d Euler equations in an open set 2 with boundary
09 and impermeability boundary condition

u-n=0on 0f) (6.1.1)

with 7 denoting the outward normal. Of course the condition (6.1.1 ) is omitted when
there is no boundary or in particular when Q = R? and in the periodic case = R?\Z?.
Finally for the sake of clarity € is assumed to be simply connected (even if some interesting
examples for the theory do appear in non simply connected domains like the annulus cf.

[CLMP]).

6.1 Stability of stationary solutions

The geometry of 2 dimensional incompressible Euler equation is characterized by
two following fact.
i) As already said in section 2.3 the vorticity is conserved along the trajectories of
the flow:
Ow + uVew =0 (6.1.2)

and

ii) With the divergence free condition and the impermeability boundary condition
(when some boundary OS2 is present) the existence of a scalar stream function ¥ such that
one has

u(x,t) =V U(x,t). (6.1.3)

The current and vorticity corresponding to a vector field u will be denoted in this section
v, and w, and if there is no risk of confusion the indices © will be omitted.

The first consequence of (6.1.2) and (6.1.3) is that the stationary solutions are char-
acterized by the fact that the gradient of their current and their vorticity are everywhere
colinear and that gives (no proof is needed) the:

Theorem 6.1 A divergence free vector field u*(x1,x2) is a stationary (time inde-
pendent ) solution of the 2d Euler equation if and only if there exists a real (in general
multivalued valued) function G~ which relates the current ¥* and the vorticity w* ac-
cording to the formula:

T = G(w) = G(—A,T7). (6.1.3)
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Remark 6.2 The above theorem gives a criteria used in numerical codes or physical
experiments to detect if a solution of the Euler equation comes close to a stationary state:
The plot of the points ¥(x,t),V X u(x,t) for t fixed and « € § should form a graph.

The second consequence of the Euler equation itself and of the relation (6.1.2) is the

Proposition 6.3 or any real valued function ¢ the quantity

— 4 [ lute.tBde [ o7 % utz e (6.1.4)

is conserved whenever u is a smooth solution of the Euler equation. In particular if u* is
a stationary solution the quantity:

H(u) = H(ux) = %/Q(IU(CL‘J)I2 — [u*(2)*)dx + /Q P((V xu(x,1)) — (w))dz  (6.1.5)

is also conserved.

Remark 6.4 As shown by a basic example due to Scheffer [Sche] and Shnirelman
[Shni] the conservation properties are not always true they require some regularity which
are in particular ensured when the vorticity belongs to L>(§2). This will be assumed in
all this section.

The energy which appears in (6.1.4) is given in term of the vorticity by the formula:

= %/Q Ju(a,t)[*de = %/Q((—A)—lw(.,t))(x)w(.,t))dx (6.1.6)

with (—A)~! denoting the inverse of the Laplacian with Dirichlet boundary condition, or
in terms of Green function:

(-8)7)@) = [ Vieplndy, 6.17)
Observe that one has:

/Qu*(:zj)( (x,t) — /V_\I/ (V, U*(x) =V, U(x,t))dx

(6.1.8)
—/ Gw*)(w —w")dx
Q
Eventually with ¢ in (6.1.5) such that
o'(s) = —G(s (6.1.9)

H(u) - /|u:1;t—u )2 da — /¢ Jw — w*)da
/¢ (,1)) — o(w”))dw (6.1.10)
4 [ e t) = @)Pde 3 [ 6 (€t -



where £(x,t) is a real number which depends on the values of w(x,t) and of w*(x). The
right hand side of (6.1.9) plays the role of a Liapounov functional and one has

Corollary 6.5 Any stationary solution of the Euler equation is stable both for pos-
itive and negative time for the H'(Q) norm, under perturbations with uniformly bounded
vorticity, if one of the two conditions are satisfied:

i) The function G' with G appearing in (6.1.3) is strictly convex.

ii) There exists a large enough constant C' such that

~G'(s) > C.

Proof: The result is a consequence of the existence of two strictly positive constants
«a and ( such that one has

a(fu(t, ) = u* ()72 + lo(t, ) =@ (T2 (0) < [H(u) — H(u")]

) , . (6.1.11)
< Blult, ) = w* (2 + lwt ) =«  (lz2(a)

The existence of 3 is always ensured by the conservation of the L™ norm of the vorticity.
The existence of « is trivial in the case i). In the second case consider the quantity

H(u") — H(u)
and use the Poincaré inequality to bound

Jut, ) = u ()L

_%/gqu”(ﬁ(x,t))(w —w*)idx.

The above theorem due to Arnold extends a series of results on linear stability
obtained already in the last century by Rayleigh and others. On the other hand it is
important to observe that any stationary state which satisfies the hypothesis of the above
corollary is stable in the H'(2) norm both in the future and in the past. This implies that
such a solution cannot be an attractor in the future for this norm; However this observation
does not prevent the same solution to be an attractor in a weaker norm. And eventually
the notion used in this chapter may differ from the one introduced before. One could
try to find a stationary (may be unstable) solution with the property that “most” (in a
convenient way) solutions would come very often in an arbitrarily small neighborhood of
this solution. Therefore the criteria proposed here will differ from the one given in previous
section:

6.2 Criteria for attractor

In this section are described some classical criteria for the w limit set of a family
of solution of the 2d Euler equation. First acting as mathematician we give the recipes
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and then try to justify them. As in the theory of turbulence the reader should keep in

mind the fact there are no up to now dynamical proof of the validity of these recipes. The

arguments given are borrowed from other fields of physics, mostly statistical mechanic.
Considered here are families of solutions u, with initial data, current and vorticity:

Y converging

u?, 00 w0 and the limit points of the sequence w,(x,t), for t — co, and for w!

to w? in L>(Q) weak* are analyzed.

Observe that

1) Weak* L°°(Q2) convergence to a stationary state (u*,w*) satisfying the hypothesis
of the corollary 6.4 does not contradict the fact that this stationary solution is stable both
in the past and in the future (the topologies are different).

ii) Even when the initial data converge in a very strong norm no uniform (with
respect to time) estimate are available (cf. remark 2.1 of section 2.4 )) the only thing
which is sure is that the curl remains uniformly in time bounded in L>(2). Let

€ — 0andt; —»

such that u(.,t;) converges to a stationary solution u* in Weak* L>°(2) then the following
identities are true (the index ¢ being omitted in what follow):

lim/QHue(:z;,ti)”zdx:/Q||u0(:1;)||2d:1; (6.2.1)

and

lim/Qwie(x,t)dx :/Qwoi(x)dx (6.2.2)

(the sign + refers to the absolute value of the positive and negative part of the vorticity).
On the other hand for a genuinely non linear function F', due to the lack of compactness,
one may have:

lim/QF(we(x,t))dx %AF(wo(x))dx. (6.2.3)

However for a convex function F' the relation
lim/ Fwe(x,t))dx > / F(w®(2))dz (6.2.4)
Q Q

remains always valid. Therefore according to the intuition one should introduce the “en-
tropy” and defines as a “good guess ” the natural stationary solution as the one which
minimizes the quantity

/Q|(w*($))|10g(|(w*($))|dw
under the constraints:
[ @lds = [ 1o (6.2.5)
and

/ijt(x)dx :/Qwoi(x)dx (6.2.6)+
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A simple variational computation which uses in particular the formula (6.1.6): shows that
any solution of this minimization problem should satisfy the equation:

—AY(z) =cpe PV —c e’V p =0 on 09 (6.2.7)

In (6.2.7) c4 are the two Lagrange multipliers of the two constraints (6.2.6)+ while 3 is
the Lagrange multiplier of the constraint (6.2.5). The above equation is called (according
to the scientists who introduced it in the field) the Joyce Montgomery equation and it has
been widely studied (ref [JM]). In the special case where the vorticity is of constant sign
it is reduced to the so called mean field equation:

(B
Y= T xp(—Bv)da

(6.2.8)

In the absence of dynamical proofs, numerical simulations and experiments have been done
producing excellent agreement with the “attractor 7 computed with the above recipe.

A more detailed construction has been proposed by Robert and Sommeria [Ro], [Ro-
Sol, Miller et al [MiWeCr| and others (the initial idea probably going back to Linden-Bell
[LiB]) with the purpose of preserving all conserved quantities of the form

/Q flwe(a,t))de Vf

and therefore not to exclude in some cases strong convergence for ¢t; — co.

It is described below.

The starting point is the introduction of a family of solutions with initial vorticity
w? uniformly bounded in L>(Q):

Ve —oco< —q<wl(z) <g<oo (6.2.9)

converging to w? in weak* L>°(Q2). Up to the extraction of a subsequence such convergence
is characterized by a Young measure dv(y), and one has:

€E—> 00

weak” lim f(w(z)) = _‘1 Ffy)dv(y)s (6.2.10)

The strong convergence being characterized by the points where dv(y), = dy,). With
(6.2.10) one can defined a measure of mass 1 with support on the interval | — ¢, ¢[ according
to the formula:

/ F(y)dno(y) = ﬁ / da /R F)du(y). (6.2.11)

and introduce the “reference measure” measure do = dx @ drg:

/Q Rf(l’,y)ddo :/le' _q f(x,y)dﬂ'o(y) (6.2.12)
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Now the recipe goes as follow:
Among the measures which are absolutely continuous with respect to do:

du(z,y) = p(z,y)do

select the one which minimize the so called Kullback entropy:

K = [ do [ ptas)ostpte.v))do

under the followings constraints:
i) A consequence of the definition of p with Young measures:

/ ple,y)dv(y)e =1, de—ae
R

/ pla,y)dx = |9, / drodr — a.e.
Q Q

ii) The conservation of real valued functions of the vorticity:

(6.2.13)

VﬂAAﬂmmmszmmmw (6.2.14)

iii) The constraint of conservation of energy:

/ (6.2.15)
with w(x) :/ yp(a,y)dv(y)s

—q

As in the Joyce Montgomery equation a variational computation is easily done and implies
that the function p(x,y) is a solution of the following system:

e@(¥)—By¥(x)
,0(51/’7 y) = fR ea(y)—ﬁyw(l’)dy(y)x

A(a) = fR yeaw)—ﬁyw(x)d,,(y)x
N (l’) o fR ea(y)_ﬂyw(l’)dy(y)x

(6.2.16)

In the above system the function a(y) is the multiplier of the constraints (6.2.14) while
the number 3 is the Lagrange multiplier of the energy constraint (6.2.15). These equations
are called the Miller-Robert equations.

The second equation of (6.2.16) has to be complemented by the boundary condition
b = 0 on 0f) and then, since it is on the form

— A = G(¥) (6.2.17)
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it defines the current of a stationary state.
Writing the second equation (6.2.16) in the form

Z(:z:):/ ea(y)—ﬁyw(x)d,/(y)x
R

—Ay(x) = —td log Z

(6.2.18)

using classical rules of differentiation and Cauchy Schwartz estimates on e proves that for
> 0 the function G is strictly decreasing and strictly increasing for § < 0. Therefore
for # > 0 it satisfies the stability criteria of Arnold (Corollary 5.4) and it cannot be an
attractor for strong norms. Such a contradiction may not be present when 3 is negative
and small. This same remark applies to the mean fields equation and this emphasizes
the importance of the case 3 < 0 which (cf. below) can be interpreted in the frame of
statistical physic as a negative temperature. As a conclusion the Miller Robert solution
(which preserves all the conserved quantities) with 3 < 0 seems to be the best candidate
for a strong attractor. )

Both the Joyce-Montgomery mean Field equation and the Miller-Robert equation
(with the boundary condition ¢» = 0 on 92 have been the object of intensive study (cf.
[CLMP] and others..). As far as existence an uniqueness is involved the increasing mono-
tonicity of the function G(1) simplifies the analysis of the problem:

—A¢ = G(Y), Yjpa =0 (6.2.19)

One has the following

Theorem 6.6. For § > 0 both the mean field equation and the Miller Robert
equation do have a unique solution.

The proof of this theorem is by now classical one could look at the book [MaPu]
or the papers [CLMP] and [Kielfor details and references. Cagliotti-Lions-Marchioro and
Pulvirenti and Kiessling have also studied with some details the case of § < 0 and found
much different situations including existence and uniqueness in the case of the ball for
[ > —8m, non existence in star shaped domains for 4 small enough (with Pohozaev identity)

6.3 Some heuristic justification for the construction of the attractors

As said above there is no up to now mechanical justification of the introduction
of the solutions defined by the equations of Joyce and Montgomery Miller Robert et al...
The arguments given rely on the analysis of some special type of solution and some limit
process. Along this line the construction of Miller and Robert can be related to a notion
of “concentration” of stationary states and a construction starting with piecewise con-
stant initial vorticity. At variance the initial construction for the mean field equation was
initiated by Onsager with the introduction of point vortices and a limit process for the
corresponding Gibbs measure [On]. Once again in relation with dynamical systems and
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for a rapid introduction of the notion of negative temperature we shortly review Onsager
approach and its further extensions.

The first idea is the introduction of solutions of the two dimensional Euler equation
as finite sum of say N vortex points located at the points:

wi(t) = (wi, (1), iy (1))

with intensity a(v),.
To do so the Green function of the Laplacian is decomposed into its smooth and
singular part according to the formula:

Vie.y) = —5-logle —y] +3(e.v) (6.3.1

and 3(z, z) is denoted v(x). Next one introduces the Hamiltonian

N
1
H(zy,29,....,aN) = I Z a;a;V(ry, ;) + Z a;y(x (6.3.2)
tj=1;1#7 =1
and the corresponding Hamiltonian system defined in QY
d
zd_ i1 — axQH
; (6.3.3)
i iy = — 0O H
a dtx 3 t1

The main difficulty in the analysis of the above systems comes from the log singularity of
the Hamiltonian, this is the reason why in the definition of this Hamiltonian the constraint
1 # 7 is prescribed and that for ¢t = 0 all the z; are assumed to be different. Then one can
show that (6.3.3) has a local in time solution which remains in Q. However this system
may collapse in a finite time if two points collides. But if all the intensities a; have the
same sign the conservation of the Hamiltonian implies global existence for the solution of
(6.3.3). The connection of the above system with the solutions of the Euler is therefore
not easy to establish and it is illustrated at best by the following result due to Marchioro
and Pulvirenti [MaPu] page 165 which is quoted with no proof.

Theorem 6.7 Denote by =.(x) the characteristic function of the ball of center x
and radius €, introduce N points x; € €2, assume that € is small enough to ensure that
all the balls of radius € and center z; are small enough and contained in §) and consider
the vorticity w.(x,t) of the uniquely defined solution of the Euler equation with initial
vorticity

N
€Y aiE(w (6.3.4)

=1
then as long (with respect to time t) as the system (6.3.2) does not develop collapses one
has, of course in the sense of distributions:

N
11_I>I(l)we x,t) = Z (6.3.5)
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The justification of the mean field equation which correspond to non negative vor-
ticity is done with the introduction of the Gibbs measure associated to the Hamiltonian
system (6.3.3) which is formally an invariant measure for the Euler equation.

MQ’B’N(dmd:ﬁz...dwN) =Z, B(N)_le_BazH(xl’xQ’me)dwldw?---dl'N- (6.3.6)

Since  is defined in term of the Hamiltonian H of the system it is invariant; Z B(N)_l

is a normalizing constant which is given by:

ZmANy*:iANe”aH“““”wmdmdm”dav. (6.3.7)
and which has to be finite. Indeed one has: )

Lemma 6.8 7 B(N)_l < oo if and only if § € ( — CYSQ—”N,OO>. Moreover, in this
range of “temperature,” the following estimates hold:

Z, (Nt < C(5, N o)) (6.35)
with C’(B, Na, Q)N a constant depending only on the product 3, No and on |Q|.

This lemma is quoted from [CLMP] (cf. also [Kie]) where the proof, obtained with
standard estimates, can be found.

As in the derivation of the Boltzmann equation in section (3.2) the limit of

/,LQ’B’N(dl'l drs...dzy)

is considered when N — oo and o — 0 with the introduction of the “marginals:”

/,L?’ﬁ’N(d:Jcl drg..dry) =

~2 (6.3.9)
d:z;ld:z:g...dxj/ drjiidejys..denZ, B(N)_le_ﬁa H(w1,02,...2N)
QN-—J ’

and the relations .
B = (N, [ (fixed) and o = N (6.3.10)

i From the above lemma one deduces (cf. also [CLMP] and [Kie] for proofs and details)
the following:
Theorem 5.9 Assume that ) is a simply connected domain, let 3 € (—8m, 00), and
assume that the equation
o—Bv
fQ e~ 8% dx

has a unique solution (condition automatically fulfilled for 3 > 0) then in the sense of
measures one has

— A = (6.3.11)

. J
lim M?767N(d$1d$2...d$N) = H;/}(:Jcl) (6.3.12)

6:6N,a=%,]\7—>oo i—1
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Observe that as in the derivation of the Boltzmann equation a factorization process related
to the minimization of some entropy appears in the proof.

As a conclusion once again one should observe the following facts:

i) The above derivation contains no mechanics.

ii) On the other hand a justification of the relevance of the equation (6.3.11) may
come from the following interpretation of the Theorem 5.9. (quoted from [MaPu] page 262

“What is expected to happen is the following. The vortices are distributed according
to the Gibbs distribution. When N is large they fluctuate very little. With very large
probability they arrange themselves to form the solution of the mean field equation.”

iii) As shown by Majda and Holen [MaHo| the two above constructions (Onsager
Joyce and Montgomery on one side and Miller Robert Sommeria on the other side) produce
the same solution if and only if the density p(x,y) given by (6.2.16) is statistically sharp
i.e. if one has:

with w(x) = —A(x) given by the second equation of (6.2.16).
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