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Abstract

We describe an interactive system that models regions of
an urban environment, such as a group of tall buildings.
Traditional image-based modeling methods often cannot
model such large areas due to error accumulation and lim-
ited camera field of view. Our approach widens the camera
field of view by constructing a 360 degree panorama from
ground-level images and uses a high resolution orthorecti-
fied aerial image to provide the building footprints. Users
draw the building outlines in the aerial image and select
a point as the approximate ground camera location. The
method automatically extracts roof corners in the ground
images and registers the panorama to the aerial image ac-
cording to geometric constraints. The height of each build-
ing is calculated from an estimated camera pose. The re-
sulting textured model of the buildings is constructed of pla-
nar surfaces.

1. Introduction

3D scene reconstruction from images is a classic prob-
lem in computer vision. While significant progresses have
been made, accurate large-scale urban modeling still poses
difficult problems that require skill and time to overcome.
The presented method focuses on the modeling of a large
urban area of multiple tall buildings.

Existing methods for large-scale modeling mostly de-
pend on remote sensing techniques such as stereoscopic aer-
ial images and airborne LIDAR. A good survey is presented
in [8]. However, the models generated by these methods
lack facade information. In [6, 15], ground-level laser scan-
ners are used together with images to create excellent mod-
els but these systems require laser scanners. Our method
only requires an off-the-shelf camera and an aerial image to
create textured three-dimensional scene models.

There is much prior research related to architectural
modeling with images. Some methods are based on self-
calibration techniques [2, 7, 11]. Since only image infor-
mation is used, they often suffer from erroneous feature
matchings and some ambiguities in the computation. For-
tunately, man-made environment is often highly structured.
Parallel and orthogonal relationships between lines and sur-
faces are abundant. In [4, 5], these geometric constraints
are input by users. In [17], vanishing points corresponding
to orthogonal directions are automatically detected. Using
such prior knowledge about the scene, these approaches are
often more robust. However, most of the aforesaid methods
are intended to model a single building or part of a build-
ing. Due to error propagation, they are difficult to scale up
to model a larger scene, such as a group of tall buildings.

To overcome error propagation, some researchers uti-
lized GPS and compass sensors [16]. These instruments
can help provide camera pose. Other researchers realized
that an orthorectified aerial image is also very helpful. In
[6], the model acquired by ground-level laser scans is ad-
justed to match an overhead aerial image. From building
outlines in an orthorectified aerial image, we can identify
the footprints(up to a common scale) of the buildings, in-
cluding such information as the width of a building and the
distance between buildings. These measures are used as
constraints on the model to be constructed. Current remote
sensing technologies provide high resolution aerial images
that are inexpensive and widely available. Internet down-
loads 1 of orthorectified aerial images are available for all
major US cities with resolutions as high as one-foot per
pixel. Such images are provided from the United States Ge-
ographic Survey. One aerial image is shown in Fig. 1(a).

Another inherent problem in large-scale modeling is the
limitation of the camera field of view. Many methods re-
quire that some minimum numbers of features providing
geometric constraints be contained in each image. This can

1Such as http://earth.google.com and http://terraserver.microsoft.com



be difficult to achieve when buildings are large and streets
are narrow. Panorama is hence used by some researchers
in architectural modeling[14, 16]. By stitching multiple im-
ages taken with a rotating camera, a panorama can have a
360 degree field of view providing sufficient features for
modeling wide-area scene.

Our method combines ground-level panoramas and an
orthorectified aerial image. The aerial image provides us
the buildings footprints. The panorama enables us to esti-
mate the building heights. In [12], D.P.Robertson and R.
Cipolla used a map in a similar way as we use the orthorec-
tified aerial image. The difference is that they estimated the
camera pose for each ground view separately whereas we
combine the constraints from all the ground images taken
at the same viewpoint so that the estimated camera pose
is more accurate. More importantly, we automate the ap-
proach to register the panorama to the aerial image whereas
in [12] the registration between ground views and the map
is done manually.

In our system, users need only draw the building out-
lines in the aerial image and click one point to indicate the
approximate camera location (not necessary accurate). The
system then automatically creates a photorealistic 3D model
of a group of buildings and computes the optimal camera
pose. Since the model and the camera are registered to
a global world frame, it is quite feasible to extend the 3D
model by adding more panoramas.

The rest of the paper is organized as follows: Section
2 presents an overview of our approach. Section 3 briefly
describes how to create panoramas. In section 4, we show
the method to extract roof corners in the ground-level im-
ages. The algorithm to automatically register the panorama
to the aerial image is described in section 5. Then a bun-
dle adjustment process to refine the initial camera parame-
ter estimates is described in section 6. Section 7 explains
the procedure of actually creating the 3D model, and some
experimental results are provided in section 8. The paper is
closed by a conclusion in section 9.

(a) (b)

Figure 1. (a)An aerial image. (b)Roof corners
of a tall building are on the sky boundary.

2. Overview of our approach

Our approach is based on three reasonable assumptions
about the building outline in an orthorectified aerial image.
(1)Each corner on the outline corresponds to a 3D roof cor-
ner. (2)Each line segment of the outline is the orthographic
projection of a 3D horizontal line joining two roof corners.
(3)There is a vertical wall plane passing each such line seg-
ment.

The first two assumptions are valid for most buildings
and a few exceptions will not impair our method. These
assumptions imply that there is a mapping between the fea-
tures (corners and line segments) in the aerial image and the
features in the ground-level images. This mapping relation-
ship helps us estimate the camera pose. The last assumption
is only used for coarse model generation. Approaches to
capture more detailed structure by combining images from
multiple panoramas will not be covered in this paper. The
outline of our approach is as follows:

1. Construct a panorama from a set of ground-level im-
ages taken by a rotating camera. This process allows
for the estimation of the camera focal length and the
relative rotation between the images.

2. Extract roof corners in the ground-level images.

3. Find the correspondences between the roof corners in
the ground-level images and the corners on the build-
ing outlines in the aerial image. Simultaneously, we
obtain an initial estimation of the ground-level camera
pose relative to the world frame.

4. Refine the estimated camera parameters through a bun-
dle adjustment process.

5. Compute the height of the buildings and create the tex-
tured 3D model.

3 Panorama construction

The images taken by a camera rotating around a single
view point are related by a homography between each other
[7]. We number these images and take the first as the ref-
erence image and regard its camera frame as the reference
camera. We call the camera frame of image i as camera i.
Suppose p and p′ are the homogeneous coordinates of two
corresponding points in image i and image j respectively,
we have:

p = Hjip′ (1)

and
Hji = K (Ri)

T RjK−1, (2)



where

K =

 f 0 cx
0 f cy
0 0 1

 , (3)

is the calibration matrix of the camera and Ri is the rotation
matrix from camera i to the reference camera. Our goal at
this step is to compute the focal length f and the rotation
Ri from each camera i to the reference camera. This can
be achieved in the process of constructing a panorama. The
technology of panorama construction has matured and we
apply the same method as in [3]. In practice, the camera
can be rotated on a tripod but our experiments show that we
obtain satisfying results even when the camera is held by
hand.

4 Feature extraction in ground- level images

Building roof corners and edge segments are the only
salient features that can be seen in both the aerial image and
the ground-level images. The next step of our approach ex-
tracts roof corners from the ground-level images. Unlike
general corner detection, in the case of tall buildings, this
detection is simplified since most of the roof corners are
on the boundary between the sky region and the building
area. An example is shown in Fig. 1(b). In these cases, sky
regions can be robustly segmented. Therefore, feature ex-
traction has two steps: sky region detection and roof corner
extraction from the sky boundary.

4.1 Sky detection

The sky region has several salient characteristics. (1)It is
a homogeneous area (we assume an absence of small clouds
in the image). (2)Its color has strong blue component.(The
dominant color may be sampled for specific sky conditions.)
(3)The sky always extends to the upper image border. Ac-
cording to these observations, our sky detection method has
the following steps:

First, the image is divided into square patches (for
1600 × 1200 images, we choose 6 × 6 as the square size).
For the pixels within each patch, compute the variance vr,
vg , vb and the mean mr, mg , mb of the three color com-
ponents. The patches with all vr, vg , vb values below an
upper bound (such as 5) and mb above a lower bound (such
as 100) are kept as candidate sky patches.

Next, the connected candidate patches are merged if the
difference between their means of each color component is
smaller than a threshold (such as 5). In this way, we group
candidate patches into several contiguous regions among
which the ones adjacent to the upper image border are kept
as the sky regions.

Since the sky region obtained so far is composed of
square patches, its boundary is not the accurate sky bound-

ary (see Fig. 2(a)). Hence, in the third step we apply graph
cut [13] to compute a tighter segmentation in the area sur-
rounding the initial boundary. An example of the final
boundary is shown in Fig. 2(b).

Our method is a relatively simple method to segment the
sky. More sophisticated approaches [9]are available to im-
prove the robustness.

(a) (b)

Figure 2. (a)Initial sky boundary. (b)Final sky
boundary

4.2 Roof corner extraction

The boundary of the sky region is composed of the out-
line of buildings and the edges of vegetation. The roof cor-
ners are the junctions of the line segments on the building
outline. To detect roof corners, we first distinguish building
outline from the rest of the sky boundary. This is possible
since the building outline is composed of straight-line seg-
ments whereas the edges of vegetation are generally irregu-
lar. Therefore, our approach is to find a polygonal approx-
imation of the sky boundary and we treat the long line seg-
ments of the polygon as belonging to the building outline.
The algorithm to detect roof corners proceeds as follows.

The method of [10] is applied to find the optimal polyg-
onal approximation of the sky boundary. Line segments
longer than a threshold (50 pixels for 1600 × 1200 im-
ages)are treated as building edges. Long edge segments
of structures such as power poles and long protuberances
on the roof are detected (and rejected) by finding pairs of
line segments with their maximum perpendicular distance
within a threshold. Next, we merge adjacent line segments
that can be approximated by a single line. Among the re-
maining line segments, each one is regarded as part of the
building outline and their endpoints are kept as roof corners.

The same roof corners may be visible in multiple images.
To identify these correspondences, corners in each ground-
level image are transferred to its adjacent images by using
Eq. 1 and the spatially approximate corners are treated as
the projections of the same 3D roof corner.

The output of this stage is a set of corners in the ground-
level images. Each corner corresponds to a unique 3D point



and is saved together with the identity of its supporting im-
age. In Fig. 5(c)- 5(d), the detected roof corners are marked.

5 Corner matching between the ground im-
ages and the aerial image

We note that many of the detected corners in the ground-
level images are not roof corners; they arise from occlu-
sions or structures on the roof. In addition, some real roof
corners may not be detected since they fall inside the build-
ing areas. Furthermore, unlike traditional feature matching,
color information cannot help here. Despite these difficul-
ties, automatic correspondence detection is still possible by
exploiting camera geometry.

5.1 Coordinate system and parameteriza-
tion of the reference camera pose

We set up the world frame in the following way. Imag-
ine the image plane of an orthorectified aerial image as the
ground plane. The world origin is set to right above the ori-
gin of the aerial image. The height of the world origin above
the ground plane is the same as the height of the camera
center (approximately the height of a human). The x and
y directions of the world frame are parallel to the x and y
axis of the aerial image. Therefore, the world frame differs
from the reference camera frame by a 3D rotation and a 2D
translation.

Like many other architectural modeling approaches, we
first detect the vanishing point of the 3D lines perpendicu-
lar to the ground plane in the reference image, and call it the
vertical vanishing point. In our case, this point is detected
efficiently because many of the line segments on the build-
ing outline detected in the previous stage are projections of
vertical 3D lines. We use the approach in [1] to detect the
vertical vanishing point from these line segments.

Suppose the rotation from the world frame to the refer-
ence camera frame is Rw = [r1, r2, r3], where ri is the ith
column of Rw. It is well known [7]that given the vanishing
point v of the world z axis, we can compute r3:

r3 = K−1v. (4)

and r3 is the direction of the world z axis in the reference
camera frame. So once we get the vertical vanishing point,
there is only 1 DOF left to determine Rw: the rotation of the
world frame around its z axis. Let r3 = (r13, r23, r33)T. It
is easy to test that

R0
w =

1
λ

 r13r33 −r23 λr13

r23r33 r13 λr23

−r2
13 − r2

23 0 λr33

 (5)

is a possible instance of Rw, where λ =
√

r2
13 + r2

23 (if
r2
13 + r2

23 = 0, we can choose the identity matrix as R0
w).

Hence, we can express the family of Rw as:

Rw(α) = R0
w

 cos α sinα 0
− sinα cos α 0

0 0 1

 . (6)

Given α and the location of the camera center in the aer-
ial image o = (ox, oy)T (the orthographic projection of the
camera center on the ground plane), the pose of the refer-
ence camera in the world frame is fully determined. In other
words, it can be parameterized by θ = {α, ox, oy}.

5.2 Pose estimation of the reference cam-
era

When a user draws the building outline in the aerial im-
age, the system detects the corners on this outline. These
corners correspond to 3D roof corners. From a specific
camera location, many of them will not be seen in the
ground-level images since they are occluded. Suppose we
are given the reference camera pose θ. We check whether
the line segment connecting each corner with the camera
location in the aerial image crosses any line segment of
the building outline. If it does, then we simply regard
it as an invisible corner otherwise it is visible. We col-
lect all the visible corners at the given reference camera
pose and denote them as C = {ci, i = 1, . . . , n}. Let
P = {pj , j = 1, . . . ,m} be the set of corners detected
in the ground-level images.

Assume the corresponding corner of ci is pj in ground-
level image k. We note that although we do not know the
height of the 3D roof corner corresponding to ci, we know
it is on the 3D line perpendicular to the ground plane at ci.
The ray from the camera center O to the image point pj

should intersect with this 3D line. This is shown in Fig. 3.
Assume p′j is the orthographic projection of pj onto the
ground plane and o is the camera location in the aerial im-
age. We call the angle between op′j and oci in the aerial
image as the angle difference between ci and pj and denote
it as ∆ij . For a pair of correct corner matches, ∆ij = 0.
Given the reference camera pose θ, this angle is easily com-
puted. The direction of the ray Opj in the world frame is
[7]

d = RT
wRkK−1pj (7)

and

∆ij(θ) = arccos

( −→
op′j ·

−→oci

|
−→
op′j ||

−→oci|

)
, (8)

where
−→
op′j = (dx, dy)T and −→oci = ci − o.

Therefore, given θ, a method to find the corresponding
corner for ci is to find the corner pj in the ground-level im-
ages which has the minimum angle difference with ci. In



Figure 3. The ray from the camera center o to
the image point pj should intersect with the
3D line L if pj is the corresponding corner of
ci. o′ and p′j are the projection of o and pj onto
the ground plane.

other words, the correct camera pose θ should minimize the
angle differences for all pairs of real corner matches. We
call a pair of corner matches with ∆ij(θ) smaller than a
threshold δ (5 degree in our experiment) as a candidate cor-
ner match under θ. In a statistical sense, the correct estima-
tion of the reference camera pose is the one that generates
the largest number of candidate corner matches and mini-
mizes the sum of the angle differences of all these matches.
For each corner ci in the aerial image, we denote

Di(θ) =

{
min
pj∈P

(∆ij(θ)) if min
pj∈P

(∆ij(θ)) < δ;

δ else.
(9)

Then the reference camera pose is estimated as

θ̂ = argmin
θ

(∑
ci∈C

Di(θ)

)
. (10)

To solve Eq. (10), we simply do an exhaustive search of
θ = {α, ox, oy}. In our experiments, α ranges from 0 to 360
degrees with a search step of 0.5 degrees. The search range
of the camera location is a window centered at the location
selected by the user in the aerial image. The window size is
200× 200(corresponds to a 60× 60m2 area on the ground)
and the search step is 2-pixels for both ox and oy .

5.3 Finding corner matches

Once θ̂ is found, a method to detect the corresponding
corner for each ci ∈ C is to find the corner pj ∈ P with the
minimum angle difference with ci. However, this approach
may fail when a “noise” corner is very close to the correct
one. As shown in Fig. 5(d), A is the correct corner corre-
sponding to a corner c in the aerial image, but B may have
the smallest angle difference with c due to errors in the esti-
mated camera parameters (K and Rj). Fortunately, we have
another cue to help us select the correct corner in this case.

According to the second assumption we made in section 2,
if two corners in the aerial image are on the same line seg-
ment, their corresponding corners are also connected by an
obvious boundary in the ground-level images. Hence, if we
know C is the corresponding corner of a corner c′ in the aer-
ial image that is connected with c, then we know A must be
the correct corresponding corner for C since it is connected
with C by an obvious boundary whereas B is not.

To utilize this connection constraint, first we judge
whether there is an obvious boundary between any two cor-
ners in the ground-level images by computing the average
intensity gradient along the line segment connecting them.
(If they are on different images, we transfer one corner to
be in the same image as the other.)

Given the estimated reference camera pose θ̂, the prob-
lem of finding the correct corner match assignment is to find
the match that satisfies the connection constraints and mini-
mizes the sum of angle differences between all pairs of cor-
ner matches. This optimization is achieved by constructing
a graph and finding a shortest path.

We sort the set of corners C in the aerial image into a
clockwise order based on the angles formed by the posi-
tive x direction in the aerial image to the lines connecting
them with the camera location (see Fig. 4(a)). For each
corner ci ∈ C, we find all of its candidate correspond-
ing corners in the ground-level images (the corners with an
angle difference with ci smaller than δ) and denote them
as Si = {sk

i , k = 1, 2, . . . ,mk}. If there are no can-
didate corresponding corners, then we regard this corner
as occluded and delete it from C. The angle difference
∆ik between each sk

i with ci is also stored. The union
V = S0∪S1∪ . . .∪Sn∪S′

0 is the set of nodes in the graph.
Note that the nodes in S′

0 = {(sk
0)′, k = 1, 2, . . . ,m0} rep-

resent the same corners as the nodes in S0. We add these
extra nodes because the corners in C form a cycle.

For any two adjacent corners ci and ci+1 in C, edges
are created between the nodes in Si and Si+1. An edge is
created between any sj

i ∈ Si and sk
i+1 ∈ Si+1 as long as

they do not represent the same corner in the ground-level
images. If ci and ci+1 are connected in the aerial image
while the corners represented by sj

i and sk
i+1 are not con-

nected by an obvious boundary in the ground-level images,
the cost for the edge connecting these two nodes is set to
∆ij + ∆(i+1)k + δ. In other cases, the cost of the edge be-
tween sj

i and sk
i+1 is ∆ij + ∆(i+1)k. δ in the edge cost of

the former case is also the threshold for judging candidate
corner matches. Here it serves as the penalty for breaking
the connection constraint. The constructed graph is shown
in Fig. 4(b)

Finally, find the shortest paths from sk
0 to

(
sk
0

)′
in the

graph for all sk
0 ∈ S0 and compute their costs. The standard

shortest path algorithms (such as Dijkstra’s algorithm) need
to be slightly modified to ensure that no multiple nodes rep-



resenting the same corner in ground-level images appear in
the path. Among all the shortest paths, the one with the low-
est cost is kept. The corresponding corner of each ci ∈ C is
the corner in Si and on this path.

(a) (b)

Figure 4. (a)Sort the corners in the aerial im-
age into a clockwise order where o is the cam-
era location. (b)The constructed graph.

6 Bundle adjustment

At this point, all the parameters of the cameras were de-
termined. this section describes a nonlinear optimization
to refine these initial estimations so that the geometric con-
straints can be satisfied as well as possible. The parameters
to be optimized include the camera focal length, the rota-
tion Rifrom camera i to the reference camera, the rotation
Rw from the world frame to the reference camera frame and
the 2D location o = (ox, oy)T of the camera in the world
frame. (The height of the camera remains set to 0 since the
world frame is constructed so that the camera center is on its
XY plane). There are four sources of constraints to satisfy.

Firstly, during panorama construction, corner matches
were detected between adjacent ground-level images.
These matches constrain the relative rotations between
ground-level camera frames. Suppose corner p in image i
matches corner p′ in image j. This produces the following
constraint:

p = KRT
i RjK−1p′. (11)

Secondly, the roof corner correspondences between the
aerial image and the ground-level images are detected.
These correspondences constrain the reference camera pose
in the world frame. Assume that corner p in ground-level
image i corresponds to corner c = (cx, cy)T in the aerial
image. The 2D line connecting p and the vertical vanishing
point v in image i is the projection of the vertical 3D line
L that passes c on the ground plane. In other words, all the
points on L are projected onto the line −→pv in image i, in-
cluding the 3D point q = (cx, cy, 0)T on L. The fact that
the projection of q in image i lies on the line −→pv provides

the constraint:

(p× v)TPi(cx, cy, 0, 1)T = 0, (12)

where Pi is the projection matrix of camera i

Pi = KRT
i

[
Rw| −Rw(ox, oy, 0)T

]
. (13)

The vertical vanishing point v in image i is

v = KRT
i Rw(0, 0, 1)T = KRT

i r3, (14)

where r3 is the third column of Rw.
Section 2 states the assumption that each line segment

on the building outline in the aerial image is the ortho-
graphic projection of a horizontal 3D line. This places a
constraint on the 3D model to ensure that the two roof cor-
ners on this line segment have the same height.This is im-
portant in generating a visually pleasing model. Suppose
ci = (ci

x, ci
y)T and cj = (cj

x, cj
y)T are connected corners

in the aerial image. pi and pj are their corresponding cor-
ners in the ground-level image i and image j respectively.
Transfer corner pi and pj to the reference ground-level im-
age according to Eq. (1). Denote their corresponding points
in the reference image as p′i and p′j . The direction of the
horizontal 3D line passing through ci and cj in the world
frame is d = (ci

x − cj
x, ci

y − cj
y, 0). The vanishing point v

of this direction in the reference ground level image should
lie on the line connecting p′i and p′j . This leads to the fol-
lowing constraint:

(p′i × p′j)
TKRwd = 0. (15)

The last constraint relates to the vertical vanishing point.
In section 5.1, in detecting the vertical vanishing point, a set
of line segments are found in the ground-level images that
are the projection of 3D vertical lines. The fact that the ver-
tical vanishing point is on each of these lines constrains the
reference camera pose. Suppose one of these line segments
is in ground-level image i. p1 and p2 are its two endpoints.
Then we have

(p1 × p2)Tv = 0, (16)

where v is the vertical vanishing point in image i and it can
be computed with Eq. (14).

Given the above constraints, Levenberg-Marquardt is
used to do bundle adjustment [7]. Camera radial distortion
is also rectified during this process [7]. In addition, since
the resolution of the aerial image is limited and the hand-
drawn building outline may not be accurate, the building
corners in the aerial image are adjusted around their initial
user-determined positions. This is done by treating the co-
ordinates of each corner ci in the aerial image as unknowns
and adding the following constraint:

wi(ci − c′i) = 0, (17)



where wi is a large weight and c′i is the initial coordinates
of the corner, as indicated by the user. In our experiment,
we choose wi = 300, so that the adjustment for each corner
is within 2 pixels.

7 3D model construction

The building outlines in the orthorectified aerial image
provide the dimensions of the building footprints in the XY
horizontal plane (up to a common scale). With the third
assumption in section 2, that there is a vertical wall-plane
passing through each line segment on the building outline
in the aerial image, we can already build a “2.5D” model of
the buildings that is composed of vertical wall-planes with
an unknown height. To create a complete 3D model, the
height of each building must be computed.

For each corner c in the aerial image, assume it has a cor-
responding corner p in ground-level image i. The direction
of the ray from the camera center to image point p in the
world frame is d = RT

wRiK−1p. The height of the roof
corner c is hence the height of the intersection point of this
ray with the 3D line passing through c and vertical to the
ground plane. In the case that these two lines do not exactly
intersect in the 3D space due to errors, find the 3D point on
the ray d that has the minimum perpendicular distance to
the vertical 3D line. Take the height of this 3D point as the
height of the corner c. Denote d = (dx, dy, dz)T. It is easy
to prove that this height is

h =
dzdx(cx − ox) + dzdy(cy − oy)

d2
x + d2

y

. (18)

Note that the height computed above is not the height
from the ground plane, but relative to the world origin.
Since the world origin is set to the same height as the cam-
era center, the obtained height for all roof corners is less
than the height from the ground plane by a common amount
(approximately the height of a human).

Our method does not model the rooftops of the build-
ings since roof details on a tall building cannot be seen from
ground level. Therefore we simply add a flat polygon on the
top of the building as a roof. Once the 3D model is com-
plete, the known camera pose relative to the model is used to
do projective texture mapping. The final textured 3D model
is output as a VRML file.

8 Experiment

The prototype system was tested on a variety of scenes.
Fig. 5 shows the results of modeling a large environment
with two panoramas. Fig. 5(a) shows the building out-
line provided by user interaction. The stitched panoramas
are shown in Fig. 5(b). Each is composed of 20 images.

Fig. 5(c) - 5(d) are two of them. The detected roof corners
are marked in these images. Note that many of these de-
tected corners are false roof corners. However, the method
correctly found the camera poses. The estimated camera lo-
cations are shown in Fig. 5(e) as the cyan balls. Fig. 5(e)
- 5(h) show several synthetic views of the 3D model.

Two strategies are used to evaluate the results. The first
verifies the constructed model dimensions by measuring the
actual buildings with an accurate laser range finder. After
multiplying by a common scale (1-foot per pixel), the aver-
age errors in the x and y dimensions of these buildings are
around 0.5 meters. These errors largely depend on the reso-
lution of the aerial image. The average error of the building
heights is around 1.0 meter. For example, the actual height
of the building in Fig. 5(d) is 22.8m while the height com-
puted by our method is 22.0m.

The second strategy is to use image geo-referencing to
verify the accuracy of the geometry model. By projecting
the aerial and ground images onto the geometry models, the
errors resulting from model reconstruction become visible.
This approach reveals the overall qualitative accuracy that
includes small-scale building features.

After the user interaction, the modeling process takes
about 10 minutes on a 3GHz Pentium 4 computer for one
panorama with the image resolution of 1600× 1200. Most
of the computation is spent on the final bundle adjustment.

9 Conclusion

This paper presents a 3D architectural modeling method
that only requires a hand-held digital camera and a high res-
olution othorectified aerial image. Combining information
from both ground-level images and the aerial image, the
method not only generates 3D geometry but also provides
photo-realistic texture for building facades and overcomes
the error accumulation problem in extended environment
modeling. The height accuracy of the resulting model is
within 5% based on our experiments with actual measure-
ments. The modeling process is automatic once the user
provides the building outlines in the aerial image. With fur-
ther automation of the building segmentation in the aerial
image, the user interaction can be eliminated to achieve a
fully automated modeling system. This is the direction of
our current efforts.

Another limitation to automation is that the automatic
roof corner detection method is only suitable for tall build-
ings, where most of the roof corners appear on the sky
boundary in the ground-level images. For short buildings,
many of their roof corners may lie inside building areas,
requiring the user to manually select roof corners in the
ground-level images.However, once selected, the roof cor-
ners in ground-level images can still be automatically reg-
istered to the corners in the aerial image and the 3D model



are created without further manual work.
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Figure 5. (a)Aerial image. (b)Panoramas. (c)-
(d)Ground-level images. (e)-(h)Several syn-
thetic views of the 3D model. The two cyan
balls in (e) indicate the two camera locations


