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INTRODUCTION

Thermochronology, the use of temperature-sensitive radiometric dating methods to 
reconstruct the time-temperature histories of rocks, has proved to be an important means of 
constraining a variety of geological processes. In general, different depths within the Earth’s 
crust are characterized by different temperature regimes and processes. Within the upper 
crustal environment, temperature can often be used as a proxy for depth, so that reconstructed 
cooling histories may reveal a record of rock movement towards the surface. That portion 
of this process which involves temperature variations within the uppermost ~150–200 °C of 
crustal depth has been the basis for the application of low temperature thermochronology 
to a range of interdisciplinary problems in the Earth Sciences. The last fi fteen or so years 
have sparked widespread interest in this fi eld and this proliferation has been driven in 
part by advances in analytical techniques, numerical modeling, and fundamental changes 
of perspectives on the signifi cance of radioisotopic ages (e.g., McDougall and Harrison 
1999; Gleadow et al. 2002a; Farley 2002). One area of rapidly growing interest, which has 
provided unprecedented insights in this regard, has been the quantifi cation in time and space 
of surface processes and shallow crustal tectonism using low temperature thermochronology, 
often combined with complementary techniques structural analysis, geomorphic, numerical 
modeling, and cosmogenic isotope studies (e.g., House et al. 1998; Ehlers and Farley 2003; 
Belton et al. 2004; Ehlers 2005). 

One of the best established and most sensitive low temperature thermochronology 
methods available for reconstructing such histories in the upper ~3–5 km of the continental 
crust, over time scales of millions to hundreds of millions of years, is apatite fi ssion track 
(AFT) thermochronology which responds to temperatures of typically <110 ± 10 °C. 

As for other thermochronological methods, fi ssion track analysis involves a geological 
dating technique in which the retention of radioactive decay products is sensitive to elevated 
temperatures. Monitoring the degree to which a particular dating system has remained 
closed with respect to retention of the daughter products enables the history of exposure to 
elevated temperatures in the geological environment to be quantifi ed. In many cases, such 
thermochronometers give rise to apparent ages, which only rarely relate to the time the system 
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was initiated. These apparent ages refl ect the record of the thermal and tectonic processes 
which have controlled the evolution of such environments and the resulting long-term 
denudation patterns at the Earth’s surface, rather than the original formation or depositional 
ages of the rocks involved. In most cases, the apparent AFT ages obtained are “mixed” ages, 
which refl ect some integrated product of the low temperature thermal history of the crust. 
Only in relatively few situations do they directly date a particular discrete geological event 
involving rapid cooling. Therefore, the signifi cance of regional AFT patterns is not always 
obvious and non-specialists have often found such seemingly intractable and unwieldy data 
diffi cult to interpret, resulting in an inability to fully visualize the implications of the results. 

In this paper we show how large regional AFT data sets assembled from surface samples 
collected from southeastern Canada, southern and eastern Africa, and southeastern Australia, 
can be presented in ways that their patterns of variation can be readily understood. This allows 
useful geological information to be extracted in a format that can be readily combined with 
other large-scale data sets, e.g., digital elevation and heat fl ow. The terranes investigated 
mainly comprise crystalline rocks where conventional stratigraphic markers and cross-cutting 
relationships which might be useful for reconstructing their regional Phanerozoic tectonic 
and exhumation history are largely absent. Imaging and visualizing that part of the thermal 
history information contained in the AFT data therefore provides a regional framework, for 
quantifying the spatial coherence and variability in the timing and magnitude of cooling and 
crustal denudation, through a part of geological time, hitherto largely unconstrained in these 
terranes. 

APATITE FISSION TRACK THERMOCHRONOLOGY

The general principles of AFT thermochronology, the interpretation of data and their 
application to geological problems have been outlined in several works (e.g., Wagner and 
Van den haute 1992; Brown et al. 1994b; Gallagher et al. 1998; Gleadow and Brown 2000; 
Gleadow et al. 2002a; Tagami and O’Sullivan 2005; Donelick et al. 2005). The process of 
annealing and the ability to adequately constrain the thermal response of that behavior through 
experiments on laboratory timescales is the key to the investigation of thermal histories by 
fi ssion track studies. Briefl y, AFT annealing is a thermally activated process occurring over a 
range of temperatures typically up to ~100–120 °C over geological time scales. With increased 
levels of annealing, fi ssion tracks become progressively shorter and once a rock cools to 
the temperature range of relative track stability the tracks retain most of their full initial 
length. During annealing, tracks will shorten to lengths largely controlled by the maximum 
paleotemperature to which they have been exposed, so that fi ssion track lengths can be used to 
provide a measure of the amount of annealing that has occurred. Each individual track is added 
by a radioactive decay event at a different time, and thus experiences a different fraction of the 
thermal history. Hence, the lengths of individual tracks are related to the paleotemperatures 
experienced by samples over different time intervals. Because of the numerous possible time-
temperature paths experienced by a particular sample, it is clear that an AFT age alone can be 
interpreted in a number of ways (e.g., Gleadow and Brown 2000). Considering the AFT age 
and length data together however, refl ect a combination of the time over which tracks have 
been retained as well as the thermal history of the host rock over that period. Integration of 
the age and track length parameters can therefore place rigorous constraints on the history of 
cooling through the fi ssion track annealing zone, e.g., fast or slow cooling or more complex 
types (Gleadow et al. 1986). Since apatite is the mineral for which annealing systematics are 
best understood and because it typically contains uranium in the 1–100 ppm range and is a 
common accessory mineral in many rock types, AFT thermochronology is almost universally 
applicable to large areas of the Earth’s continental crust.
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THERMAL HISTORY MODELING

The kinetics of fi ssion track annealing can be studied at higher temperatures for times 
ranging from hours to years in the laboratory using controlled heating experiments on fresh, 
neutron-induced 235U fi ssion tracks. These are essentially identical to the natural 238U tracks 
used in geological dating. Such laboratory annealing studies have given rise to quantitative 
models of fi ssion track annealing in apatite (e.g., Laslett et al. 1987; Corrigan 1991; Crowley 
et al. 1991; Carlson et al. 1999; Donelick et al. 1999). These annealing models can in turn be 
used to calculate the AFT age and track length distribution with the least amount of variance 
that would result from any given thermal history on a geological time scale (e.g., Green et al. 
1989; Ketcham et al. 1999). In order to extract the most plausible thermal histories from the 
observed AFT data inversion modeling procedures are used. For modeling purposes various 
mathematical approaches for sampling time-temperature space have been described (e.g., 
Corrigan, 1991; Lutz and Omar 1991; Gallagher 1995; Willett 1997) and several software 
applications have been developed to automate the procedure (e.g., Crowley 1993; Gallagher 
1995; Issler 1996; Ketcham et al. 2000; Ketcham 2005). Where possible any additional 
geological information and temperature information can also be incorporated into models to 
provide more relevant time-temperature constraints. 

For the studies described here we have adopted the approach of Gallagher (1995) 
which uses the algorithm reported by Laslett et al. (1987) to simulate the time-temperature 
dependence of fi ssion track annealing in apatite as determined from a detailed set of laboratory 
experiments. The modeling procedure uses a stochastic search method for exploring a wide 
range of possible thermal histories with statistical testing of the predicted fi ssion track age and 
length parameters against the observed values. Since the possible solutions that satisfactorily 
match the observed data are not necessarily unique, a guided search by means of a genetic 
algorithm (Gallagher and Sambridge 1994) is used to sort through a large search (typically 
thousands) of potential thermal history histories. The maximum likelihood or probability 
of each time-temperature path is assessed, providing rapid convergence towards an optimal 
fi t of the observed data. The model thermal history procedure can be refi ned to be locally 
optimal and it is then possible to also defi ne the confi dence limits around a path (Fig. 1). 
The application of such inverse approaches to AFT modeling has generally focused on the 
thermal history inference for individual samples. Increasingly however, there is a necessity 
to consider the results of thermal history modeling in a more regional context, using larger 
sample arrays.

REGIONAL APATITE FISSION TRACK DATA ARRAYS

An important consequence of fi ssion track annealing is that fi ssion track ages in general, 
gradually decrease from some observed value at the Earth’s surface to an apparent value of 
zero at the depth where no fi ssion tracks are retained. The depth to the base of this fi ssion track 
annealing zone will depend on the geothermal gradient and the annealing properties of the 
particular apatites being studied (see below). The shape of an AFT age profi le, such as may be 
obtained in an area of high relief or from a deep borehole, will refl ect the thermal history of the 
rocks as they cooled through the annealing zone. Such profi les will vary for different thermal 
history styles (Gleadow and Brown 2000). 

The importance of such vertical arrays of samples is that they contain more information 
than that which can be obtained from any individual sample alone (Gallagher et al. 2005). 
Because of the fi xed geometric relationship that the samples have to each other, in most cases 
they are constrained to have followed essentially parallel temperature-time histories. Such 
a sampling approach does not lend itself so readily to large continental regions where there 
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Observed FT data:

Age :               69.6 Ma

Mean length:  12.24  µm

S.D.:                 2.47  µm

Predicted FT data:

Age  :              69.7 Ma

Mean length:  12.16  µm

S.D.:                 2.51  µm
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Figure 1. Time-temperature inversion modeling of apatite fi ssion track data. Panel (a) searching 
time-temperature space, here defi ned by two boxes, using a Monte Carlo approach for a best-fi t two 
stage thermal history from some 10,000 randomly generated paths. The dark grey paths are those that 
satisfactorily match the measured apatite fi ssion track data (age, mean confi ned track length and confi ned 
track length distribution). Panel (b) shows the optimal-fi t thermal history path determined by employing 
a guided search by means of a genetic algorithm (Gallagher and Sambridge 1994) and assessment of the 
maximum likelihood of each path, with the 95% confi dence limits around key points on the path. Panel (c) 
histogram showing the observed track-length distribution compared with that predicted from the optimal-
fi t thermal history path. The lowermost panel shows a numerical comparison of the input observed fi ssion 
track data and the predicted estimates of fi ssion-track age, mean track length and standard deviation of the 
track length distribution arising from the best-fi t thermal history path shown in (b) above. 
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is relatively little relief (or minimal deep borehole data) and for which the assumption of a 
common cooling history is clearly not appropriate. An alternative approach, suitable for the 
rapid interpretation of large regional data sets of outcrop samples, is to sequentially model the 
thermal histories for all samples in an array using a common search strategy. In this case the 
thermal histories are not constrained by neighboring samples, as they would be in a vertical 
profi le but are free to vary independently from each other. However, using common search 
parameters (e.g., fi ssion track age, mean track length and track length distribution) and model 
time-temperature space encourages consistency between the thermal histories for different 
samples, and will reveal similarities if such information is implicit in the data. The results 
of this modeling approach can then be interpolated spatially to link the paleotemperatures 
for individual samples over a consistent set of time steps. Note that this approach does not 
quantitatively link the thermal histories of nearby samples as in the partition modeling 
approach described by Gallagher et al. (2005). However, this does represent an end member 
case in that each sample is effectively allocated a separate partition. 

QUANTIFYING LONG-TERM DENUDATION

AFT thermal history information may be related to thermal relaxation following 
increased heat-fl ow (for example related to rifting), to localized magmatism, hot fl uid fl ow or 
to denudation at the land surface. Thermal modeling studies have thus far indicated however, 
that the direct thermal effects of rifting are unlikely to be signifi cant within the shallow crust 
environment (≤ ~10 km) of the onshore regions of margins (e.g., Buck et al. 1988, Gallagher 
et al. 1994b, Brown et al. 1994a). The movement of hydrothermal fl uids in former cover 
successions or structural pathways in crystalline basement may infl uence the AFT pattern in 
some cases but generally this is viewed as a more localized effect (e.g., Steckler et al. 1993; 
Duddy et al. 1994; Gleadow and Brown 2000; Gleadow et al. 2002b). Magmatism, also, 
is mostly restricted locally rather than regionally in the areas reported here. Hence, most 
cooling in the near-surface environment is dominated by tectonic and erosional denudation. 
Therefore, a principal assumption in our studies is that it is usually the amount of denudation 
and the pattern of tectonic offsets that causes the variation in apparent AFT ages at the land 
surface. Consequently, AFT data can be used to reconstruct regional denudation patterns (e.g., 
Gallagher and Brown 1999a,b). 

Assumptions and uncertainties

Paleotemperatures, heat fl ow and thermal conductivities. Estimates of long-term 
denudation are made by converting temperature histories (typically estimated to have an 
uncertainty of ~10 °C for the paleotemperature at any given point) to an equivalent depth 
history by making assumptions regarding past heat fl ow and surface temperatures, as well 
as the thermal conductivity of the material eroded (Gallagher and Brown 1999a; Gleadow 
and Brown 2000; Brown et al. 2002). Where vertical profi les are available paleogeothermal 
gradients may be estimated for time modeled maximum paleotemperatures prior to the onset 
of cooling (e.g., Brown et al. 2002; Gallagher et al. 2005). For most situations however, where 
only surface samples are available, it is diffi cult to constrain past paleogeothermal gradients 
and the thermal conductivity of the missing section explicitly, unless some form of joint 
modeling can be used (Gallagher et al. 2005). Region specifi c geothermal gradients may be 
extracted from the global heat fl ow data set of Pollack et al. (1993) and these data suggest 
that the range of continental gradients in Precambrian and Paleozoic crystalline terranes is 
relatively restricted (with a mean between ~20–30 °C·km−1) and that large anomalies are 
usually localized. Further, errors arising from anomalous transient thermal gradients could be 
signifi cant, but even in extreme cases are unlikely to be greater than a factor of ~2 (Gleadow 
and Brown 2000). In sedimentary basins where thermal conductivities are generally lower 
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however, geothermal gradients may be more variable and it may also be possible to estimate 
past gradients in conjunction with vitrinite refl ectance studies (e.g., Bray et al. 1992). 

Results using a constant as opposed to a spatially variable present day heat fl ow show that 
in general, the timing of enhanced episodes of denudation do not differ markedly, although the 
magnitude may vary (Kohn et al. 2002a; Gunnell et al. 2003; see also Fig. 2). This assumption 
along with others (e.g., assumed constant thermal conductivity of the eroded section, surface 
temperature and paleogeothermal gradient) clearly limit the accuracy of long-term denudation 
rate estimates, which are considered here only as a fi rst-order approximation (see also Brown 
and Summerfi eld 1997). 
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Figure 2. Long-term smoothed (spatially averaged) denudation chronology plots for Tasmania (a and b, 
modifi ed after Kohn et al. 2002) and the lowlands of western peninsular India (c and d, modifi ed after 
Gunnell et al. 2003). The spatial average (bold curve in all plots and light curve in plots a and b) is based 
on interpolating the results over each study area; the individual sample curve (very light curve in plot b and 
dashed curve, plots c and d) is the unweighted mean of the denudation chronology at individual locations; 
the weighted sample curve (plots c and d, thin solid line) is the mean denudation at individual locations, 
weighted by the uncertainty in the inferred thermal history for each location. The shaded area (plots c 
and d) is the standard error on the weighted mean estimate and is considered to indicate the magnitude of 
uncertainty inherent in the modeling procedure. Plots (a) and (b) also compare the effects of spatially and 
temporally constant heat fl ow (60 mW·m−2) and spatially variable but temporally constant (i.e., present 
day pattern) heat fl ow (Q). Use of different heat fl ow parameters leads to differences in magnitude of 
denudation rates but with no marked change in the timing of periods of accelerated denudation. The effect 
on denudation chronology of using initial track lengths of 16.3 µm (light line) and 14.5 µm (bold line) are 
also shown (plots a and b, and plot c versus d). The utilization of initial track lengths of 16.3 µm for thermal 
history modeling leads to the inference of major cooling and hence dramatically increased denudation rates 
during the mid to late Tertiary (see text for further discussion). 
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If paleogeothermal gradients were elevated at the time of a particular period of denudation 
compared to those of the present day then the actual magnitude of denudation would be lower 
(as would the calculated long-term denudation rate). For the terranes reported here we have not 
considered variations of heat fl ow with time, as we have no constraints on how this may have 
occurred, except perhaps at some of the rifted continental margins. As mentioned previously 
however, the infl uence of rift-related heat fl ow variations tend to be relatively minor in the rift 
fl anks where some of the onshore samples studied were collected (e.g., southeastern Australia, 
southern and eastern Africa) and is expected to be even less signifi cant elsewhere.

Compositional variations. Annealing properties of fi ssion tracks in apatite vary with 
duration of heating, chemical composition (Gleadow and Duddy 1981; Green et al. 1985; 
Barbarand et al. 2003) and mineralogical properties (Carlson et al. 1999). The total annealing 
temperature for chlorine-rich apatites for example, occur at higher temperatures ~110–150 °C 
compared to that in the more common fl uorine-rich apatites ~90–100 °C (e.g., Green et al. 
1985; Burtner et al. 1994). Although chlorine substitution probably exerts the most important 
effect, the possible infl uence of other trace elements (including rare earths) has also been 
reported (Barbarand et al. 2003). 

In the regions studied the rocks sampled are of limited compositional range (mostly 
granites and granodiorites) and the apatites they contain are mainly fl uorine-rich apatite. This 
has been confi rmed by electron microprobe analyses of a representative sampling of grains 
(mostly < 0.2 wt% chlorine) and the qualitative consideration of apatite solubility in that the 
track etching rate and etch pit size are known to correlate with chlorine content (Donelick 
1993; Barbarand et al. 2003). Fast etching grains, likely to be of more extreme composition 
and hence displaying different annealing properties (Burtner et al. 1994; Carlson et al. 1999), 
were generally avoided for the AFT analyses presented here. However, in the case study from 
southern Canada some higher chlorine content apatites were observed and their effect on the 
measured AFT parameters can be clearly seen (Plate I). For other areas studied we consider 
that the annealing properties of the apatites analyzed represent a coherent set in terms of 
their annealing properties and do not depart to a signifi cant degree from the Durango apatite 
composition of ~ 0.4 wt% chlorine upon which the Laslett et al. (1987) annealing model is 
based. It is probable that the average chlorine content will be lower than this Durango apatite 
value suggesting that paleotemperatures reconstructed on this basis may be too high in some 
cases, possibly by as much as ~ 10–15 °C, but are unlikely to be too low.

Modeling strategies. The annealing model of Laslett et al. (1987), the model adopted 
here to obtain long-term denudation rates, is formulated in terms of the current measured track 
length normalized to an initial track length. This is referred to as the reduced track length and is 
defi ned as r = l/l0, where l and l0 are the annealed and “unannealed” track lengths, respectively. 
In applications of the original model formulation, using an initial track length of 16.3 µm, 
the lack of low temperature annealing typically leads to the inference of major cooling in the 
geologically recent past (Kohn et al. 2002; Gunnell et al. 2003). This can be alleviated partly 
by considering what the initial track length parameter represents in these annealing models. 
Mean spontaneous track lengths from rapidly cooled geological samples rarely exceed ~14.5 
to 15 µm while the mean lengths from “unannealed” induced tracks are typically 16.3 ± 0.9 µm 
(Gleadow et al. 1986; Green 1988). Donelick et al. (1990) showed that the initial length of 
induced tracks is not constant over very short times and that room temperature annealing 
occurs in a matter of days. It is clear then, that the generally assumed initial track length is 
itself a variable, implying that 16.3 µm may not be the relevant unannealed track length over 
geological timescales. Hence, for geological timescales, spontaneous tracks may effectively 
be ~10% shorter than that observed on laboratory timescales for induced tracks (Gleadow et 
al. 1986; Laslett and Galbraith 1996, Ketcham et al. 1999). As a consequence, the Laslett et 
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al. (1987) model, based on the laboratory determined initial length does not appear to predict 
suffi cient annealing at temperatures lower than ~50–60 °C. 

As a model calibrated for reduced track lengths depends strongly on the assumed initial 
track length we have compared the effect of two initial track length values, i.e., 16.3 and 14.5 
µm on the modeled thermal histories of two different terranes (Fig. 2). The former value is that 
inferred for induced tracks, while the latter is consistent with the maximum value typically 
observed from spontaneous tracks in surface geological samples, assumed to have undergone 
little post-formation thermal disturbance. In considering regional denudation in this work we 
have used the latter value. It is acknowledged that this is a departure from an initial length of 
16.3 µm upon which the Laslett et al. (1987) model is based and that further refi nement and 
treatment of initial length estimates to account for the observed amount of annealing is required. 
Strategic approaches to tackle this problem have been outlined by Gunnell et al. (2003). 

Data for each sample from southern Africa, eastern Africa and southeastern Australia 
were modeled to produce optimal data fi tting thermal histories. As we are dealing entirely 
with surface or very shallow samples, we used a scheme to encourage cooling in the thermal 
history by starting models at high temperature and fi xing the present day surface temperature 
appropriate for the relevant study area. The points in-between can show cooling followed by 
reheating (e.g., a saw tooth pattern). Rapid temperature variations are damped out as these 
are poorly constrained by the original data and cannot resolve well the amount of cooling 
below the subsequent reheating event. Further, any temperature points less than the maximum 
of a more recent reheating event are moved so that the cooling only proceeds to 5 °C below 
the subsequent reheating maximum, but such that the rate of the previous cooling event is 
maintained. If there is more than one point in the cooling episode it is removed, as it makes 
no difference to the data fi t relative to the damped thermal history. This approach implicitly 
minimizes variations in the thermal history that are unconstrained by the observed data, e.g., 
multiple episodes of heating and cooling. 

Regional-scale imaging

A fl ow chart showing the various possible inputs and outputs which can be used 
in applying fi ssion track modeling to the imaging of thermal history, denudation and 
paleotopography estimates is shown in Figure 3. By combining denudation information 
with digital elevation data, it is possible to model the evolution of paleotopography. The 
paleotopography is estimated by “backstacking” the amount of section removed by denudation 
in a given time period onto the current surface elevation at that location and allowing the back-
stacked column to regain isostatic equilibrium (Brown 1991). This is achieved by using a 
regional fl exural isostasy using a thin plate model with an effective elastic thickness of 25 km 
(Gallagher and Brown 1999b). Estimating the paleotopography between data points requires 
adding the inferred overburden to a smoothed topographic surface and applying an isostatic 
correction. Such reconstructed “paleoelevation” estimates need to be interpreted with some 
caution as they only refl ect the passive response to denudation unloading and do not take into 
account any possible transient episodes of tectonic uplift, subsidence relative to the present 
land surface or correction for local deformation and/or faulting. 

As a consequence of propagating multiple sources of uncertainty from earlier stages, the 
farther removed the information sought is from the primary fi ssion track data (Fig. 3), the 
greater will be the cumulative uncertainties associated with them. These include the analytical 
uncertainties inherent in the data and the annealing model adopted, as well as uncertainties 
in assumptions regarding paleoheat fl ow, thermal conductivity, surface temperatures, thermal 
equilibrium in the crust when converting temperature to depth/denudation and isostatic 
mechanisms when calculating paleoelevation. Subject to an awareness of these various 
uncertainties a set of images can be constructed for any particular time-slice for which the 
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modeled temperature remains within the AFT annealing window (Fig. 4). The resulting 
individual time-temperature solutions can then be “stacked” and visualized as a sequence 
of regional time-slice images which, when combined into a computer animation depict how 
temperature, denudation and elevation of present day surface rocks have varied during their 
passage through the upper crust (e.g., Gleadow et al. 1996; Gallagher and Brown 1999a,b; 
Kohn et al. 2002). Although such images are extremely useful for visualizing the evolving 
thermal history for large regional data sets, they can only be considered as broad estimations 
because the process of bulk modeling and interpolation removes some of the detail that can be 
obtained during an assessment of the thermal histories of individual samples. 

To produce the images, interpolation of the modeled data was carried out with Generic 
Mapping Tools software (Wessel and Smith 1991) using an adjustable tension, continuous 
curvature surface gridding algorithm (Smith and Wessel 1990). Interpolation was performed 
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Figure 3. Flow chart showing the sequence of steps and possible inputs which can be used to determine 
geologically useful outputs from regional apatite fi ssion track data. It is also possible to display as images 
the regional thermal history, magnitude of denudation and paleotopography for different time slices (see 
text and Fig. 4 and Plates II-IV). Sources of error are cumulative so that uncertainties increase with 
each step away from the original apatite fi ssion track data (see text for further discussion on sources of 
uncertainty) (modifi ed after Kohn et al. 2002; Gleadow et al. 2002a).
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across regional data sets for any particular parameter in a time-slice, e.g., paleotopography, but 
masked to exclude regions where no data were available within a specifi cally defi ned distance.

Denudation chronologies

Thermal and denudation histories inferred from AFT data can also be summarized and 
made more accessible by presenting the results in terms of their spatially integrated denudation 
rate history. Whereas results from previously published work tend to emphasize the detailed 
aspects of cooling histories of individual samples, the more regional representation quantifi es 
the average denudation rate as a function of time from multiple samples. This approach takes 
the denudation chronology inferred for each sample and uses a nearest neighbor interpolation 
method (Sambridge et al. 1995) to produce a spatial grid of denudation at each time scale. 
This grid is then integrated spatially at successive time-slices to derive a regional denudation 
chronology. This scheme satisfi es the observed data exactly, and uses weighting based on the 
spatial distribution of the data points to perform interpolation. This method does not rely on 
splines (e.g., Mitas and Mitasova 1995), and so does not suffer from the common problem 
of unconstrained features in the interpolated fi eld. For the case histories presented from 
Tasmania, southeastern Australia and the lowlands seaward of the Western Ghats escarpment, 
India (Fig. 2) we interpolated the model results (e.g., paleotemperature, denudation) onto a 
grid, with a spacing of approximately 10 km. We generated these spatial grids for the results 
at 2 Ma intervals back to 300 Ma. 

One easy way of representing the results is to integrate the spatial denudation information 
for each time interval, to produce the locally averaged denudation rate as a function of time, 
or denudation chronology (e.g., Gallagher and Brown 1999a,b). In Figure 2 we represent 
the denudation chronologies both as the raw integrated estimates and fi ve point smoothing 
(i.e., over 10 Ma) on these estimates. The smoothing (the spatial average) is used because, 
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day surface rocks has varied through time. Such stacks can also be extended to image denudation and 
paleotopography (see Fig. 3 and text).
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although discrete short cooling episodes (and by inference denudation) can occur, there is 
some uncertainty on the timing, which is not incorporated into the interpolation/integration 
process. Thus, the amplitude of such rapid cooling/denudation may not be as high as implied 
by the raw estimates, or as rapid (Fig. 2b-d). The smoothed curves serve to highlight this 
implicit uncertainty. 

Clearly, as we are using interpolation, there will be some uncertainty and possible artifacts 
in the denudation chronology as a consequence of the interpolation procedure (e.g., Brown 
et al. 2001). There are various ways to assess this procedure, for example cross-validation 
and bootstrapping (Efron and Tibshirani 1993) or using kriging as the interpolation scheme 
(Isaaks and Srivastava 1989). We illustrate one very simple approach for western peninsular 
India (Fig. 2c,d) where we compare the denudation chronology determined from spatial 
interpolation and integration, with the denudation chronology averaged over the individual 
samples, with no interpolation. We also show a weighted average denudation curve, where the 
weighting is equivalent to the uncertainty on the individual thermal histories for each sample. 
Our motivation for this is that features, which consistently appear in the different estimates of 
the denudation chronology, are not likely to be artifacts of the interpolation process.

In making such fi rst-order long-term denudation reconstructions some of the assumptions 
as detailed above should be borne in mind, as all of them will introduce uncertainties. Such 
assumptions clearly limit the accuracy of the denudation magnitude and rates, although the 
timing of enhanced denudation phases appears to be robust to physically reasonable variations 
in these parameters. 

REGIONAL APATITE FISSION TRACK DATA ARRAYS

Southern Canadian Shield – record of a foreland basin across a craton

Geological overview. The Canadian Shield in Ontario consists mainly of the Archaean 
Superior Province and Proterozoic Southern Province (Fig. 5). To the southeast, the craton is 
bordered by the 1–1.3 Ga Grenville Province. The geological development of the shield has 
been discussed by Hoffman (1988), Thurston et al. (1991) and Lucas and St-Onge (1998).

Southeastern Ontario was subjected to rifting during the Late Proterozoic, resulting in the 
formation of graben structures such as the Ottawa-Bonnechère and Lake Timiskaming grabens 
(e.g., Kumarapelli 1985 and Fig. 5). Transition to a compressional regime followed during 
the Paleozoic, characterized by accretion of the Appalachian Orogen to the southeast. Three 
principal orogenic phases are usually distinguished: the Late Ordovician Taconic orogeny, the 
Late Devonian Acadian orogeny and the Carboniferous-Permian Alleghenian orogeny. On the 
shield itself, a number of structural arches developed during the Paleozoic. These represent 
areas of repeated cratonic uplift and criss-cross the craton in dominant northeast and northwest 
trends; basement arch movements may have been triggered and controlled by plate motions 
and related orogenic activity at or beyond the margins of the craton (e.g., Sanford et al. 1985 
and Fig. 5). Paleozoic intracratonic basins; Moose River Basin to the north, Williston Basin to 
the west and Michigan Basin to the south are located in depressions between the arches and 
surround the craton (Fig. 5), their formation is however poorly understood. While today the 
basins are deeply eroded, outliers of Mid-Ordovician sediments in Eastern Ontario suggest a 
greater paleo-extent of sediments and burial of parts of the craton during the Paleozoic.

Present day heat fl ow of both the Superior and Grenville Provinces is similar, with 
average values of 42 ± 10 mW·m−2 and 41±11 mW·m−2, respectively (Guillou-Frottier et al. 
1995; Mareschal et al. 2000). Major spatial and temporal variations are not observed, and the 
study area can be considered as a single heat fl ow province (Guillou-Frottier et al. 1995). 
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Sampling for this regional reconnaissance study focused on the exposed part of the 
Canadian Shield and the Grenville Province across Ontario, following major roads and 
extending from easternmost Manitoba to Ottawa (Fig. 5). Fernando Corfu also provided a 
series of apatite samples from the Berens River province in western Ontario (Fig. 5), from 
which U-Pb apatite studies had been previously carried out (Corfu and Stone 1998). Regional 
surface sampling is complemented by 19 samples from a 3440 m deep drillhole in the Sudbury 
Igneous Complex (Lorencak et al. 2004). 

Fission track results. AFT analysis was carried out on 93 samples and the regional 
distribution of central fi ssion track ages and mean track lengths for apatites are shown in Plate 
Ia and b respectively. Apparent AFT ages range from ~600–140 Ma and all are considerably 
younger than the age of crystallization or metamorphism of their host rocks. The oldest ages 
are found north of Lake Superior, mainly ~500 Ma and these decrease to ~350–400 Ma 
towards western Ontario and the Berens River area. A similar decrease in age is observed 
towards the east; northeast of Lake Superior and north of Lake Huron, where most apparent 
AFT ages fall around ~350–400 Ma. This pattern changes progressively towards southeastern 
Ontario. There, a relatively rapid decrease in apparent AFT ages across the southern Superior 
and Grenville Provinces, with the youngest ages of ~140−160 Ma are observed in the vicinity 
of the present-day sedimentary cover of the shield. 

Apatite chemistry was determined by electron microprobe analysis on representative 
samples and also estimated qualitatively from etch pit diameters in other samples. Most 
samples are fl uorapatite with only a trace of chlorine (up to 0.03 wt%). The exception is from 
a few samples surrounding Lake Nipigon in central Ontario (Plate I) from the Nipigon diabase, 
where apatite chlorine content of up to 1.0 wt% was measured.

Mean horizontal confi ned track lengths (HCTL) range from 13.8–10.5 µm. Most fall 
into the range of ~11.5–12.2 µm across much of central and western Ontario. One noticeable 
exception is the few samples from the relatively chlorine-rich apatites of the Nipigon diabase. 
A second group of relatively long mean HCTL is noticeable in the northeast of the study area 
along the Fraserdale Arch. Similarly to the apparent AFT ages however, the most prominent 
change in the mean HCTL pattern is observed towards the southeast, where the increase in 
mean track lengths mirrors the decrease of AFT ages.

Thermotectonic history. Thermal histories of areas in the study region featuring the oldest 
apparent AFT ages, immediately north of Lake Superior and between the Cape Henrietta 
Maria and Fraserdale Arches (Plate Ia) are diffi cult to constrain due to the lack of independent 
geological observations. Time-temperature models suggest a mid-Paleozoic heating-cooling 
event, during which some of the tracks were partially annealed, followed by cooling during the 
Late Paleozoic. Further north and west, where the apparent AFT ages decrease to ~350−400 
Ma, cooling was probably signifi cantly slower and extended into the Mesozoic.

By contrast, in the eastern half of Ontario geological information provides more independent 
controls for the modeled thermal histories. In the Lake Timiskaming Graben in eastern Ontario, 
Mid-Ordovician clastic sediments directly overlie the crystalline basement, implying that the 
present day outcrops of the shield must have been close to the surface in early Paleozoic time. 
Similarly, undeformed sediments of the same age range fi ll the ~450 Ma Brent impact crater in 
southeastern Ontario (Fig. 5). Such constraints can be included into time-temperature models, 
such as applied to the Sudbury profi le (Figs. 5 and 6) (Lorencak et al. 2004).

In the northeastern corner of the study area, along the Fraserdale Arch, a few samples 
display greater mean track lengths, but with apparent AFT ages in a range similar to the 
surrounding region (Plate Ia). Models suggest peak paleotemperatures of near-total annealing 
during Silurian-Early Devonian time, followed by Carboniferous cooling. 
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Progressing towards the south however, observed track length distributions change. 
While most of the region north of Lake Huron retains the record of a Paleozoic thermal event, 
progressive younger thermal overprinting is observed. This is documented by the decrease of 
apparent AFT ages towards the southeast (Plate Ia), until complete resetting is attained in the 
Grenville Province, as indicated by Mesozoic AFT ages and a signifi cant increase in mean 
HCTL (Plate Ib).

Geological implications of the thermal event, refl ected in the AFT data from southeast 
Ontario, can be found in the Michigan Basin immediately south of the study area. The basin 
contains ~4.5 km of Paleozoic sediments ranging in age from Late Cambrian to Pennsylvanian 
(Fischer et al. 1988). Only ~200 m of Pennsylvanian age section is preserved and this is 
directly overlain by local, thin Jurassic red beds. Nevertheless, evidence from organic 
indicators suggests a greater overburden existed in late Paleozoic time. Vitrinite refl ectance 
values (R0) of the surface rocks are >0.55 and the Thermal Alteration Index values (TAI) >2.5 
(Cercone 1984; Cercone and Pollack 1991). In the central and northern part of the basin, the 
oil window (R0 >0.65 or TAI >0.65) extends up to 500 m below the present surface (Cercone 
1984). Hydrocarbons from Silurian and Devonian strata similarly require either higher 
paleotemperatures for their in-situ generation or alternatively their upward migration by up 
to 2 km, in some cases through impermeable salt beds (Nunn et al. 1984). On the shield itself, 
AFT studies carried out on a vertical profi le from a 3440 m deep drill hole in Sudbury suggest 
Permo-Triassic heating followed by Late Triassic-Early Jurassic cooling (Lorencak et al. 
2004). This cycle has also been previously observed using AFT analysis in other parts of the 
shield and the Michigan Basin (Crowley 1991). 

The present data set also records Permo-Triassic heating followed by Late Triassic-Early 
Jurassic cooling; this is in accord with the geological observations described above and with 
the timing suggested by previous work. The most likely cause for a regionally coherent AFT 
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Figure 6. Modeled t-T paths from a near-surface sample in the Sudbury drill hole. Three equally possible 
best-fi t paths are shown, all overlapping within 95% confi dence intervals (represented by shaded areas) and 
each determined from 1500 model iterations, following the procedure of Gallagher (1995). Timing of the 
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Plate II. Images showing the reconstructed (a) paleotemperatures experienced by rocks now at the surface, 
(b) the amount of denudation, and (c) an estimated reconstruction of paleotopography for southern Africa 
for four three separate time-slices; Late Jurassic (150 Ma), mid Cretaceous (90 Ma) and Oligocene (30 
Ma). Paleotopography is based on “back-stacking” the present topography using the digital elevation data 
with the estimated amount of denudation and adjusting for an effective elastic thickness (Te) of 25 km 
(see Fig. 3 and Gallagher and Brown 1999a; Gleadow and Brown 2000). See also caption for Plate III for 
information on contouring procedure.

Plate III.  (caption continued from facing page)
Data Center, Boulder. Colorado, USA) Global Heat Flow data set and is compiled from the work by 
Pollack et al. (1993). White circles indicate measurement localities, (e) contour images of post Early 
Jurassic temperature evolution in fi ve time slices (180 Ma, 120 Ma, 90 Ma, 60 Ma and 30 Ma) of apatite 
fi ssion track samples from eastern Africa and (f) contour images of the amount of cumulative post Early 
Jurassic denudation occurring across eastern Africa. The slices were generated by contouring the product 
of paleotemperature estimates (e) geothermal gradient (based on estimates displayed in d). Contouring of 
data shown in (a) to (f) was accomplished using GMT-3 (Generic Mapping Tools version 3.0 (Wessel and 
Smith 1991) using the commands of Surface and Blockmean with a contour interval of 30″ (background 
topography as for Fig. 7). Areas of no data control have been masked out using the command psmask 
(GMT-3.0) using a confi dence interval of 1°. Note that only samples with age, track length and standard 
deviation information were used to generate the images shown in (e) and (f), therefore not all samples show 
in (a) were used for image compilation.
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of apatite fi ssion track mean lengths, (d) contoured present geothermal gradient values across eastern 
Africa used to derive the denudation estimates (see f). Data is from NGDRC’s (National Geophysical 

(caption continued on previous page)
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pattern is burial under a sedimentary cover. We suggest that burial by foreland basin sediments 
shed from the Alleghenian Orogen has left a thermal imprint on the underlying southern 
Ontario shield rocks. The thickness of the sediments was suffi cient to totally reset the AFT 
clocks (>~110 °C) in most of the Grenville Province. The thickness however rapidly decreased 
away from the orogen towards the north, resulting in only partial annealing of shield rocks on 
the southwestern fl ank of the Severn Arch, north of Lake Huron and east of Lake Superior. 
Along the Fraserdale Arch, and to the north of Lake Superior, no discernable thermal effect by 
the proposed burial is recorded by the AFT data.

In summary, the entire transect across the Canadian Shield in Ontario records a Paleozoic 
heating-cooling event, at least for the eastern half of the province, where the modeled time-
temperature paths are well constrained. This heating is most likely associated with burial 
under sedimentary cover related to the Taconic orogeny, which remains preserved in outliers 
on the shield. The thermal signature of this event is progressively overprinted in the southeast 
Ontario shield by later burial under Alleghenian foreland sediments. No evidence for thermal 
effects related to the Acadian orogeny has been observed. This may refl ect the possibility that 
none ever existed, that they are too subtle to be differentiated within the limits of modeling 
precision or that the effects of later thermal overprinting has removed such a record. It is very 
likely however, that large parts of the shield remained buried beneath a sheet of sediments 
throughout the Paleozoic and parts of the Mesozoic, as also implied independently by the work 
Patchett et al. (2004).

Southern Africa – formation and evolution of a continental interior

Geological overview. The pre-break-up geological evolution of southern Africa was 
dominated by the development of the Paleozoic-Mesozoic Karoo Basin. The Karoo Basin 
in South Africa formed as an extensive foreland basin ahead of the Cape Fold Belt (CFB) 
during the Early Permian (Tankard et al. 1982; Söhnge and Hälbich 1983). Thick sedimentary 
sequences accumulated along the southern margin of the CFB, but the sequence thins rapidly 
northwards forming a relatively thin cover (c. 1–2 km) over the Archaean and Proterozoic 
basement rocks in the cratonic interior. Remnants of the Permian Dwyka Formation tillites 
(basal Karoo) occur in exhumed paleovalleys where they underlie elevated river terraces 
(Martin 1953, 1973). These glacial deposits and striated bedrock surfaces, such as those 
exposed at Nooitgedagt (near Kimberly, South Africa), indicate that the present land surface 
represents an exhumed Permo-Carboniferous landscape in places (Visser 1987, 1995). The 
Clarens Formation aeoliantites (top Karoo) in South Africa (Dingle et al. 1983) have a 
maximum thickness of 300 m in the upper Orange River valley, but are generally about 100 
m thick. This unit indicates terrestrial, semi-arid paleoclimatic conditions across southwestern 
Gondwana from the latest Triassic to earliest Cretaceous. Sedimentation within the Karoo 
Basin was terminated abruptly by the eruption of voluminous and extensive lavas of the Karoo 
continental fl ood basalts (~183 Ma) and the Paraná-Etendeka CFB (~132 Ma), which are up to 
1.4 km thick in places (Erlank et al. 1984; Hawkesworth et al. 1992; Renne et al. 1996). After 
eruption of the Paraná-Etendeka fl ood basalts the surface geology is dominated by the thin 
(generally <200 m) Kalahari basin, which covers much of central southern Africa (Thomas 

Plate IV (on facing page). Images showing the reconstructed paleotemperatures experienced by rocks now 
at the surface, their cooling rate, amount of denudation, rate of denudation and an estimated reconstruction 
of paleotopography for southeastern Australia for four separate time-slices; Early Jurassic (200 Ma), Late 
Jurassic (150 Ma), mid Cretaceous (100 Ma) and Paleocene (60 Ma). Paleotopography is based on “back-
stacking” the present topography using the digital elevation data with the estimated amount of denudation 
and adjusting for an effective elastic thickness (Te) of 25 km (see Fig. 3; Gallagher and Brown 1999a; 
Gleadow and Brown 2000). See also caption for Late III for information on contouring procedure. Note 
samples from the Murray Basin area (Fig. 9) have not been included for generation of the image.
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and Shaw 1990). The age of the base of the Kalahari basin sequence is thought to be Late 
Cretaceous to earliest Tertiary (Ward 1988; Thomas and Shaw 1990; Partridge 1993).

Continental break-up. Continental rifting between South America and Africa began 
during the Middle Jurassic (~150 Ma) (Nürnberg and Müller 1991). The rifting seems to have 
propagated south from the Falklands Agulhas fracture zone northwards towards the Walvis 
Ridge-Rio Grande Rise. The oldest magnetic anomaly clearly identifi able on oceanic crust 
on both the African and South American plates is M4 (130 ± 1 Ma), while further north near 
the Walvis Ridge the oldest identifi ed anomaly is M0 (~125 Ma). Continental break-up was 
accompanied by syn- and post-breakup reactivation of pre-existing basement features such 
as the Central African and Mwembeshi shear zones (Coward and Potgieter 1983; Coward 
and Daly 1984; Daly et al. 1989) and involved signifi cant intraplate deformation within west, 
central and southern Africa (Fairhead 1988; Unternehr et al. 1988; Fairhead and Binks 1991; 
Binks and Fairhead 1992; Brown et al. 2000). This later period of intracontinental deformation 
has been ascribed to shear stresses related to major changes in the geometry and relative 
motions of the plates involved in the opening of the Central and South Atlantic ocean basins.

Although rifting began in the Middle Jurassic and break-up fi nally occurred during the 
Early Cretaceous the major volume of sediment within the Orange and Walvis basins was 
deposited during the Late Cretaceous-early Tertiary (Brown et al. 1995; Rust and Summerfi eld 
1990). Rust and Summerfi eld (1990) determined that this volume of ~2.8 × 106 km3 (adjusted 
to equivalent rock volume) is equivalent to an average depth of denudation of 1.8 km over the 
whole of the Orange River catchment (an area of 1.55 × 106 km2). The sedimentary record in 
the offshore basins clearly indicates that the continent has experienced very signifi cant amounts 
of denudation (an average of 1.8 km) since the Middle Jurassic-Early Cretaceous. However, 
the chronology and spatial distribution of onshore denudation are likely to have been highly 
variable, depending on the post break-up tectonics, the pattern of drainage development, style 
of landscape evolution, lithological heterogeneity and long-term climatic variations.

Fission track results. A substantial set of AFT data (several hundred samples in total) 
has been collected from southern Africa. While the coverage is still sparse over large areas, 
the available data do provide some important new insights into the timing and distribution of 
long-term denudation at a sub-continental scale. The stratigraphic ages of samples analyzed 
range from Precambrian (Namaqua metamorphic belt) to Late Triassic (Stormberg Group, 
Upper Karoo Sequence). Despite this wide range of stratigraphic ages virtually all samples 
analyzed yielded AFT ages ranging between 166 ± 6 Ma and 70 ± 5 Ma (i.e., Cretaceous), with 
a conspicuous lack of younger AFT ages. AFT ages predating break-up at ~134 Ma were only 
obtained from samples in the interior regions of the continent and at elevations in excess of 
~1500 m. Signifi cantly, however, this is not a general characteristic of the continental interior, 
as some of the youngest ages (~70 Ma) were obtained from samples 600 km inland. AFT ages 
generally increase systematically with increasing elevation for specifi c localities.

The fact that all of the AFT ages are signifi cantly younger than the stratigraphic age of 
the host rocks indicates that all the sampled rocks have been subjected to substantially higher 
temperatures in the past (mostly >~110 °C). Almost all the samples with Cretaceous AFT 
ages have mean confi ned track lengths >~12.5 to ~13 µm. The distributions of track lengths 
within these samples are generally unimodal with the mode between ~13 and 14 µm, and are 
generally negatively skewed with “tails” of shorter tracks (<~10 µm). This shows that most 
of the tracks have experienced only a moderate degree of thermal annealing (shortening) at 
temperatures <~70 °C. The majority of the samples must therefore have cooled from maximum 
paleotemperatures close to or greater than ~110 °C during the Cretaceous.

Quantitative images. Here we assumed that the eroded rock had an average thermal 
conductivity of 2.2 W·m·K−1 and used surface heat fl ow data from Brazil and southern 
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Africa (Pollack et al. 1993) to derive estimates of the near surface temperature gradient. This 
approach accounts for spatially varying thermal gradients. Temporally varying heat fl ow and 
conductivity values, as derived from an independent thermal model for continental rifting for 
example, could easily be incorporated into the methodology but have not been in this paper. 

In Plate IIa, we present maps showing the estimated paleotemperature at three times, 150 
Ma, 90 Ma and 30 Ma of rocks presently outcropping on the surface. The earliest time broadly 
represents the time of continental break-up around southern Africa. For regions covered by the 
Late Cretaceous-Tertiary Kalahari basin sediments within southern Africa (Thomas and Shaw, 
1990) paleotemperatures were set to the surface temperature during periods of deposition. The 
paleotemperature estimates were converted to equivalent depth as described above and maps 
representing the amount of denudation for each time are shown in Plate IIb and the estimated 
paleotopography in Plate IIc.

Thermotectonic history. At a regional scale the long-wavelength geomorphic response to 
continental rifting and break-up, indicated by the chronology and magnitude of denudation, 
varied signifi cantly along the margins. For example, the substantial amounts of post-rift 
denudation indicated for the southwestern African margin probably refl ects the geometry and 
timing of post-rift tectonic reactivation of major intracontinental structures (e.g., Raab et al. 
2002). Overall the AFT data from southern Africa are consistent with models of landscape 
development which predict a major phase of denudation following continental rifting (e.g., 
Kooi and Beaumont 1994; Gilchrist et al. 1994; Brown et al. 2002). The chronology and rates 
of denudation inferred from the AFT results are also broadly similar to estimates derived from 
the offshore sedimentary record (Brown et al. 1990; Rust and Summerfi eld 1990). However, 
the timing and distribution of denudation is not compatible with simple escarpment retreat 
models following break-up, which predict only moderate amounts (≤~1 km) of post-rift 
denudation inland of the margin escarpments. This is particularly true for southwestern Africa, 
and is partly a consequence of the post break-up tectonic history of the continental interior. 
A possible explanation of this discrepancy is that discrete tectonic episodes, inferred to have 
occurred during the Late Cretaceous and which included reactivation of major intracontinental 
structures, caused locally accelerated phases of denudation to be superimposed on the secular 
regional pattern. Alternative explanations for the observed pattern and history of denudation 
across the sub-continent which incorporate the recently documented dynamic uplift history of 
the African Superswell (e.g., Lithgow-Bertelloni and Silver 1998; Gurnis et al. 2000; Conrad 
and Gurnis 2003; Behn et al. 2004) during Cretaceous-Tertiary time will likely provide a 
more complete explanation for the spatially and temporally variable geomorphic history as 
documented using the regional imaging approach to analyzing thermochronologic data sets.

Eastern Africa – development of an intracontinental rift system

Geological overview. The crustal-scale mobile belts in East Africa formed during 
different Precambrian and early Paleozoic orogenic episodes (Shackelton 1986; Muhongo 
1989; Stern 1994; Noble et al. 1997). Following the latest of these events, the Pan-African 
(~900−550 Ma), eastern Africa underwent a period of relative quiescence. This resulted in a 
phase of extensive peneplanation (Stagman 1978; Wopfner 1986), which was fi nally disrupted 
in Late Carboniferous-Early Permian time when the embryonic motions of the break-up of 
Gondwanaland commenced and sediments started to accumulate in basins of eastern Africa 
(e.g., Stagman 1978; Lambiase 1989; Kreuser et al. 1990; Wopfner and Kaaya, 1991). 

The subsequent Phanerozoic geological history of eastern and central Africa has been 
dominated by continental extension (Daly et al. 1989; Lambiase 1989). This process has 
strongly infl uenced the regional geomorphology and led to the formation of widely recognized 
rift basins throughout East Africa (Reeves et al. 1987; Fairhead 1988; Daly et al. 1989; 
Lambiase 1989). It is also well documented that many post-Proterozoic faults that defi ne these 
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basins and adjacent horst blocks were formed by the reactivation of pre-existing structures in 
the mobile belts (e.g., Gregory 1896; Smith and Mosley 1993; Smith 1994). 

In Jurassic time the development of a triple junction centred on what is now the Lamu 
Embayment (Fig. 7) led to seafl oor spreading between Africa and Madagascar and the 
development of the East African passive margin (Reeves et al. 1987). The Anza Rift, which 
extends northwest from the Lamu Embayment as far as Lake Turkana (Fig. 7), is the failed 
arm of this Jurassic triple junction (Reeves et al. 1987). The Anza Rift was periodically 
reactivated with major periods of extension and sedimentation in the Early and Late 
Cretaceous and continuing through to Oligocene time (Reeves et al. 1987; Greene et al. 1991; 
Bosworth and Mosely 1994). The Cretaceous extensional episodes marked the eastern limit 
of intracontinental deformation in the west and central African rift system, which forms a 
series of rift basins and transform faults that developed in response to differential movement 
between continental fragments during opening of the South Atlantic Ocean (Fairhead 1988; 
Daly et al. 1989). Each of the rifting episodes in the Anza Rift led to regionally extensive 
erosional denudation of basement rocks in East Africa (Foster and Gleadow 1992a, 1993a, 
1996; Noble et al. 1997). 

In Late Oligocene to Early Miocene time, extension related to the Kenya Rift began in 
north Kenya (e.g., Morley et al. 1992). The present morphology of the Kenya Rift itself is 
a result of continental extension that has been taking place from Miocene to Recent times 
(Baker et al. 1972). A nascent continuation of the eastern branch of the East African Rift 
System, which represents an initial stage of development for a propagating rift, is observed in 
eastern Tanzania (Fig. 7). Some of the present topography and structural architecture of the 
Kenya Rift area is probably related to older rifts, such as the Anza Rift and Lamu Embayment 
(Reeves et al. 1987).

Fission track results. Over 430 AFT ages have been determined across eastern Africa and 
these are reported in several studies (Gleadow 1980; van den Haute 1984; Wagner et al. 1992; 
Foster and Gleadow 1992a, 1993a, 1996; Mbede et al. 1993; van der Beek 1995; Eby et al. 
1995; Noble 1997; Noble et al. 1997; van der Beek et al. 1998). About 350 of these results also 
have accompanying track length determinations and the localities for these samples are shown 
in Plate IIIa, along with the AFT data summarized in interpolated images presented in Plate 
IIIb-c. Sampling strategies varied according to the particular study, but where quantitative 
images were constructed (Plate IIIe-f) most samples used were based on data reported by 
Foster and Gleadow (1992a, 1993a, 1996), Noble (1997) and Noble et al. (1997). These 
samples were mainly derived from suites collected systematically with elevation or across 
important structural blocks and regional trends, and also sampled to provide insights into the 
low temperature thermal effects of rift propagation and the response of cratonic crust during 
Phanerozoic rifting episodes (Plate IIIa).

AFT ages are generally <250 Ma, with two prominent groupings (Plate IIIb): <100 Ma 
along the coastal area and in northern Kenya and ~100 to 250 Ma inland in Kenya (E39°:S5° 
and E37°:N4°), Tanzania (E35°:S7°), Rwanda (E30°:S9°) and northern Zimbabwe (E30°:
S16°). The youngest ages (≤50 Ma) are confi ned to the margins of Phanerozoic basins, i.e., the 
Anza Rift of Kenya (E34°:N4° to E40°:S4°), and the western branch of the East African rift 
system in southern Tanzania (E34°:S9°), and Malawi (E36°:S15°). The oldest ages (>300 Ma) 
are generally restricted to the Tanzanian craton of central Tanzania and southwestern Kenya 
(E33°:S5°). 

There are two signifi cant departures from this general pattern. Firstly, AFT ages in 
Burundi, adjacent to the western branch of the East African rift system and adjacent to 
Lake Rukwa in southwestern Tanzania are signifi cantly older than any other samples lying 
in proximity to extensional basins. Secondly, one AFT age on the eastern margin of the 
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Tanzanian craton (E35°:S6°) yields a signifi cantly younger age (~60 Ma) compared to all 
other cratonic samples.

In addition, the range of AFT ages can also be linked with changes in elevation. In 
general, youngest ages are found at lowest elevations, i.e., the coastal region (~35 to70 Ma) 
and increase towards the higher elevations of the continental interior (375 to 400 Ma). 

Mean HCTL range predominantly between 12 to 13 µm (Plate IIIc). A smaller number 
of samples located along the fl anks of the Anza Graben, in isolated areas on the Tanzanian 
craton and in southern Malawi yield longer mean HCTL between 13 to 14 µm. The lowest 
mean HCTL (~11 µm) are found in areas adjacent to the east-bounding fault of the Tanzania 
Craton, and in southeastern Kenya. The regional pattern of HCTL also appears to vary with 
elevation showing a decrease away from low-lying coastal areas (~13 to 14 µm) towards the 
higher interior of the continent (12–13 µm).

Quantitative images. The evolving temperature history of samples from eastern Africa 
is shown in Plate IIIe. Regional modeling suggests that during Early Jurassic time (180 Ma) 
rocks currently exposed along the eastern margin of the sampled area and northeastern margin 
of the Zimbabwe Craton (E30°:S16°) were at temperatures of >110 °C. It is important to note 
that modeling parameters have a predefi ned upper default value of ~110 °C, thus until samples 
record cooling below this temperature the modeling protocol assigns a value of 110 °C. By 180 
Ma samples on the eastern margin of the craton (E35°:S7°), in SW Kenya (E36°:S1°), southern 
Tanzania (E34°:S9°), and northern Zimbabwe (E30°:S16°) had cooled to below ~80 °C. At the 
same time, some areas of southwest Kenya (E35°:S1°) and central Tanzania (E34°:S4°) are 
predicted to have cooled to surface temperatures. Prior to the Early Jurassic the information 
provided by AFT data is limited and only the oldest rocks exposed in the western portion of the 
sample area were at or below 110 °C. 

During the period between 180 Ma and 90 Ma cooling continued, most notably around 
central Tanzania and southwestern Kenya, expanding the area over which rocks had cooled 
below ~100 °C. Also during this time interval the eastern margin of the study area and around 
the Malawi rift (E34°:S10°) does not appear to have undergone any cooling. This area most 
likely underwent some cooling at this time but remained at a temperature >110 °C. The 
cooling history between middle Cretaceous and the middle Tertiary (90 to 30 Ma) is much 
more pronounced along the coastal region, with a signifi cant number of samples cooling more 
rapidly from >~110 °C to <80 °C. At the same time the samples from southwestern Kenya 
(E35°:S1°) and central Tanzania (E34°:S4°) underwent more subdued cooling. By 30 Ma most 
rocks in the study area were close to surface temperatures however a number of important 
exceptions in Kenya (E35°:N4°, E38°:N1°and E39°:S4°) and central Tanzania (E35°:S6°) 
suggest that some areas have undergone signifi cant cooling in the last 30 Ma.

As shown previously, thermal histories can be used to estimate the amount and timing 
of denudation if a paleothermal gradient, paleosurface temperature and rock conductivity of 
the removed section is assumed (see also Fig. 3). It is noteworthy here that as the geothermal 
gradient varies across the area (Plate IIId) the resulting pattern of denudation will differ from 
the cooling histories shown in Plate IIIe (i.e., lower geothermal gradients result in higher 
estimates of the amount of denudation and vice-versa). The lowest geothermal gradients are 
found in Zimbabwe, central Tanzania and eastern Kenya, whereas the areas adjacent to rift 
margins have higher estimates. Time-slices for the denudation history of samples collected in 
eastern Africa are shown in Plate IIIf.

Areas in southwestern Kenya (E35°:S1°), central Tanzania (E34°:S4°) and Zimbabwe 
(E30°:S17°) are predicted to have had ~2 to 4 km of section removed since Late Jurassic time 
while the same areas experienced only 1 to 2 km of denudation since the mid Cretaceous (Plate 
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IIIf). By contrast, the coastal region of eastern Africa appears to have undergone ~6 km of 
denudation over the last 90 Ma.

Thermotectonic history. Previous geochronology studies for exposed rocks in eastern 
Africa generally yield Precambrian ages and therefore do not provide direct information on 
events occurring over the past ~500 Ma of geological history (e.g., Frisch and Pohl 1986; 
Munyanyiwa 1993; Möller 1995). The AFT data however, provide tectonothermal information 
for this signifi cant time period. The range and distribution of AFT parameters across eastern 
Africa indicate that the Phanerozoic regional history is complex and closely related to the 
development and reactivation of sedimentary basins (e.g., Foster and Gleadow 1992a, 1993a, 
1996). Another important feature is that the fi ssion track parameters determined for the 
Precambrian mobile belts and Archaean cratons (Tanzanian and northern Zimbabwe) are, at 
least in some areas, remarkably similar. This suggests that these areas also share segments of 
a common Phanerozoic low temperature thermal history. 

AFT data show that the post Pan African development of eastern Africa was characterized 
by long periods of slow cooling punctuated by at least four accelerated cooling events, 
commencing in Triassic (>220 Ma), Early Cretaceous (~140−120 Ma), Late Cretaceous-
Early Tertiary (~80−60 Ma) and Middle to Late Tertiary time (Wagner et al., 1992; Foster 
and Gleadow, 1992a, 1993a, 1996; Mbede et al., 1993; van der Beek, 1995; Noble 1997; 
Noble et al., 1997). For the most part the relatively rapid cooling is interpreted as resulting 
from episodes of increased denudation related to the formation and reactivation of high angle 
fault blocks that moved in response to intraplate stresses. The episodes of denudation are also 
broadly contemporaneous with the deposition of packages of clastic sedimentary rocks in the 
basins of eastern Africa (Fig. 8). The periods of relatively rapid cooling are likely to be due to 
denudation at rates >30 m/Ma because of the preservation of relatively long mean track lengths. 
The actual rates of denudation probably ranged between 30 to 100 m/Ma during episodes of 
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accelerated erosion (over periods of 10 to 20 Ma) and <5 m/Ma for the intervening times. This 
calculation is based on age versus elevation gradients and the timing of model histories and the 
geothermal gradients (Foster and Gleadow 1992a, 1993a, 1996; Noble 1997).

The last two episodes appear to be regionally more extensive. In most cases this is due to 
the removal of evidence for the older events by later denudation during the younger events. 
This is especially true for areas adjacent to the younger rifts, e.g., southeast coastal Kenya. The 
prominence of the last episode during Middle to Late Tertiary may also have been infl uenced by 
the regional interaction of plumes in eastern Africa during the later part of the Phanerozoic.

During Phanerozoic rifting in eastern Africa, it has previously been assumed that the 
Tanzanian and Zimbabwe Cratons have remained relatively inert (e.g., Muhongo 1989; 
Rach and Rosendahl 1989). The quantitative images however, clearly show that this is not 
the case and that periods of accelerated denudation and fault reactivation punctuated the 
tectonothermal history of the cratons at least since Mesozoic time (Plate IIIf) and even earlier 
(Noble et al. 1997). The timing of periods of denudation and fault reactivation are related to 
the tectonic evolution of East Africa and are contemporaneous with tectonic reactivation in 
the adjacent structural belts. 

Southeastern Australia – evolution of a complex rifted passive margin

Geological overview. During Paleozoic to mid Cretaceous time, Australia, Antarctica and 
New Zealand were joined together in eastern Gondwanaland. Throughout much of this time 
eastern Gondwanaland was a convergent plate margin whose architecture was shaped mainly 
by its convergence with oceanic plates driven from the Pacifi c region (Veevers 1984). As a 
result the Paleozoic fold belts and basins of eastern Australia record a series of subduction-
related deformational events. These include Early to Middle Paleozoic episodes responsible 
for formation and deformation of the Lachlan Fold Belt (Veevers 1984; Coney et al. 1990; 
Fergusson and Coney 1992; Gray 1997; Foster and Gray 2000) and the Late Permian to Early 
Triassic episodes which created the New England Fold Belt (Fig. 9) to the north and east (e.g., 
Harrington and Korsch 1985). The Lachlan Fold Belt is characterized by early to middle 
Paleozoic rocks including metamorphosed Cambrian through Devonian (primarily Ordovician) 
volcanic and cratonic-derived deep marine sedimentary rocks and extensive Early Silurian, 
Early Devonian and Late Carboniferous granitic rocks. By the Early to Middle Carboniferous 
all regional deformation within the Lachlan Fold Belt had ceased (Foster and Gray 2000). 

The New England Fold Belt is composed predominantly of the deformed and 
metamorphosed remnants of an accretionary complex initially formed during Late Devonian-
Early Carboniferous time. By the Late Carboniferous an extensional tectonic regime became 
predominant and numerous synkinematic S-type granites were intruded, mostly into the lower 
crust. Extension had ceased by the Late Permian and a major thrust-dominant contractional 
deformational event (Hunter-Bowen Orogeny) occurred accompanied by the intrusion of 
signifi cant volumes of Late Permian to Triassic magma (Collins 1991). The Sydney Basin 
is a foreland basin overlying basement rocks, in part consisting of the Lachlan Fold Belt to 
the west and the New England Fold Belt to the north (Fig. 9). Subsidence and deposition and 
subsidence in the basin of a thick sequence of marine and non-marine sediments commenced 
in the Early Permian and continued through to the Jurassic, with a possible hiatus in the Late 
Triassic (Mayne et al. 1974). Permian sedimentary rocks within the Sydney Basin were 
deformed during the Late Permian-Early Triassic Hunter-Bowen Orogeny.

In the Late Jurassic, extension between Australia and Antarctica initiated from west to 
east (Johnson and Veevers 1984; Norvick and Smith 2001), followed in the Early Cretaceous 
by rifting along the southern margin (Veevers et al. 1991). Break-up between the Australian 
and Antarctic plates subsequently occurred in the middle Cretaceous (~95 Ma) and is marked 
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by a major unconformity throughout the rift-related basins (Veevers 2000), e.g., Otway and 
Gippsland Basins located along the southern margin of Australia (Fig. 9a). However, the fi nal 
separation to open the Southern Ocean did not propagate through Bass Strait, but was offset to 
the south of Tasmania. The magnetic anomalies in the Southern Ocean suggest that spreading 
was very slow until the Eocene (Cande and Mutter 1982; Veevers 2000). During the mid-
Cretaceous (at ~105 Ma), subduction to the east of Australia ceased (Cande and Kent 1995). 
Subsequently, at ~100 Ma south- to north-directed continental rifting between Australia and 
the Lord Howe Rise/New Zealand began along what is now the eastern Australian margin. 
The timing of passive margin rifting along eastern Australia is well constrained by ocean fl oor 
magnetic anomalies and seismic data from the Tasman Sea rift (e.g., Weissel and Hays 1977; 
Veevers et al. 1991) which suggest spreading commenced at ~86 Ma and continued until ~62 
Ma (Cande and Kent 1995). The onset of fast spreading in the Southern Ocean leading to the 
fi nal separation of Australia and Antarctica in middle Eocene time is related to a signifi cant 
global plate rearrangement (e.g., Cande and Mutter 1982). Structure and topography of 
the present-day southeastern margin are believed to be predominantly controlled by Late 
Mesozoic-Early Tertiary rifting, further details of which are summarized by Johnson and 
Veevers (1984) and Lister and Etheridge (1989). 

Mobile belts, mostly Proterozoic crystalline terranes
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localities (~850) most of which were used for this study to construct the images shown in Plate IV. GB = 
Gippsland Basin, KI = King Island, MB = Murray Basin, SB = Sydney Basin, HOZ = hybrid orogenic zone 
(separating the Lachlan and Delamerian orogenic belts) and OB = Otway Basin.
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Fission track results. Most samples for AFT studies were collected from exposed granitic 
rocks of the Paleozoic to Mesozoic mobile belts on the mainland, as well as in Tasmania and 
some offshore islands, which are part of the continuous continental crust (Fig. 9a). A small 
number were collected from basement rocks intersected in shallow borehole occurrences 
(<100 m depth) beneath shallow cover. In some areas samples included various metamorphic 
and sedimentary lithologies, and in Tasmania, Jurassic dolerites, but overall, some 90% of 
the samples studied are rocks of granitic composition with a relatively limited compositional 
range. AFT data from ~830 samples (see Fig. 9b) were judged to be of suffi cient quality in 
both age and length data to be included in this study. Samples were excluded on the basis of 
having too few length measurements (<40) or too few grains counted (<6), or where obvious 
local geological disturbance, refl ected in anomalous AFT data had occurred, such as by young 
volcanic activity. 

Over the past ~25 years, several AFT studies have been carried out in areas bordering the 
southeastern continental margin (e.g., Gleadow and Lovering, 1978a,b; Moore et al. 1986; 
Dumitru et al. 1991; Foster and Gleadow 1992b, 1993b; O’Sullivan et al. 1995a,b, 1996a,b, 
1999a,b, 2000a,b,c; O’Sullivan and Kohn 1997; Gleadow et al. 1996, 2002b; Kohn et al. 1999, 
2002; Weber et al. 2004). Although the apparent AFT ages reported from these areas may 
range from mid-Paleozoic to Tertiary, they only rarely refl ect the formation or depositional 
ages of the host rocks sampled, which are mostly of Paleozoic age. Further, the AFT data often 
show broad spatial variations that refl ect their thermal and denudation histories. These have 
been interpreted in terms of a regional late Paleozoic cooling over the area modifi ed by later 
cooling events associated with continental rifting and break-up on the eastern and southern 
margins (Dumitru et al. 1991; Gleadow et al. 1996, 2002b; Kohn et al. 2002). The most 
important regional AFT variations include:

1.)  A tendency for the youngest ages ranging between ~50 to 100 Ma to be concentrated 
on and around the southeastern and eastern rifted margin of the continent. Many mean 
track lengths from these same areas are very long and often exceed 14 µm indicating 
that the apparent ages are actually dating the time of episodes of rapid cooling. Inland 
of the “young” age trend there is generally a belt of older ages and much reduced 
mean track lengths (<12.5 µm). Some of the individual length distributions for this 
region appear bimodal or unusually broad in character, indicative of mixed ages, 
intermediate between an older and younger value. 

2.)  A distinctly different pattern for Tasmania, south of the mainland, with ages across 
the island mostly <100 Ma and ranging between 30 and 250 Ma. Many of these 
young ages are also associated with long mean track lengths and narrow unimodal 
track length distributions, indicating that the ages refl ect episodes of rapid cooling 
(O’Sullivan and Kohn 1997). Some older ages and shorter mean track lengths similar 
to those observed in the inland trend on the mainland are found in the centre of 
Tasmania and on King and the Furneaux Islands within Bass Strait (see Fig. 9a and 
O’Sullivan et al. 2000c).

3.)  A relatively abrupt transition to much older ages (~300−400 Ma) in western Victoria 
going westwards along the southern margin of the mainland. This was fi rst reported 
by Foster and Gleadow (1992, 1993) who suggested that the transition coincided 
approximately with the terrane boundary between the early Paleozoic Delamerian (to 
the west) and Lachlan orogenic belts (to the east) and refl ected a change in the style 
of rifting along the southern margin to the west and east of a hybrid orogenic zone 
(Miller et al. 2004; also see Fig. 9a). The mean track lengths in the region of old ages 
are of generally intermediate values (12.5–13.5 µm) indicative of more prolonged 
cooling histories. 
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Southeastern Australia AFT age versus mean track length plots all show a characteristic 
“boomerang” trend with an upwards trend of longer track lengths to young ages (Gleadow et 
al. 2002b). This implies that the region has been widely affected by rapid cooling episodes 
with distinct differences in the timing of these rapid cooling episodes (defi ned by the track 
lengths clusters >14 µm) between different regions, with Victoria older than the remaining 
southeastern margin which in turn is older than Tasmania. 

Quantitative images. Using the approach described above (see also Fig. 3) the southeastern 
Australia AFT data set has been modeled to construct quantitative paleotemperature, cooling 
rate, amount of denudation, denudation rate and paleotopography images as a function of 
time and space. A series of four time-slice images at 200 Ma, 150 Ma, 100 Ma and 60 Ma is 
presented in Plate IV. For the construction of the images we have used a spatially constant 
present day heat fl ow and surface temperature, and a constant thermal conductivity of 2.5 
Wm−1K−1 (as used by Sass and Lachenbruch 1979 for the Eastern Heat Flow Province of 
Australia) to convert temperature to depth. It should be noted that samples from the Murray 
Basin area (Fig. 9b) were excluded in the construction of the quantitative images.

A remarkable feature of the time slice images presented is the sizeable area of present 
day surface rocks which were at paleotemperatures close to or greater than 110 °C at 200 Ma. 
Many of these areas had cooled to lower temperatures by 100 Ma, although parts of coastal 
eastern Australia and Tasmania still remained at relatively high temperatures into Early 
Tertiary time. In this analysis western Victoria stands out as one area where Paleozoic rocks 
have experienced relatively little thermal disturbance and have remained at relatively low 
temperatures since ~200 Ma (Plate IV). 

Converting the paleotemperature data into denudation estimates and taking into account 
the assumptions described previously, suggests that cumulative denudation in most parts of 
the study region was between ~2–4 km since ≥200 Ma. In some mainland coastal areas and 
over much of Tasmania however, this amount of denudation was mainly achieved over the 
past ~60 Ma. 

The visual pattern observed from the images displays clearly in time and space some of the 
main points arising from earlier studies, which indicate that since the end of orogeny, different 
regions of the mobile belt rocks of southeastern Australia record distinct episodes of accelerated 
denudation (e.g., O’Sullivan et al. 1996a, 2000b; Gleadow et al. 2002b; Kohn et al. 1999, 
2002). Such reported episodes occurred during Late Permian to Early Triassic (~265–230 Ma), 
middle Cretaceous (~100−85 Ma) and Paleocene to Middle Eocene (~60−45 Ma) time. 

Thermotectonic history. Late Permian to Early Triassic cooling in the Lachlan Orogen 
has been related to a far-fi eld denudational response associated with the Hunter-Bowen 
Orogeny (e.g., O’Sullivan et al. 1996a, 1999a; Kohn et al. 1999, 2002). By contrast, later 
mid Cretaceous cooling may have been caused by the cessation of dynamic platform tilting 
due to subduction in early Late Cretaceous time (e.g., Gallagher et al. 1994a; Waschbusch 
et al. 1999). This would have resulted in rebound, leading to km-scale denudation. Added 
to this is the effect of contractional deformation (~90−95 Ma) associated with inversion and 
reactivation along the eastern margin of the continent and the onset of rifting in the Southern 
Ocean and Tasman Sea (Hill et al. 1995). 

Van der Beek et al. (1999) analyzed the present day drainage pattern and denudation 
history of southeastern Australia and suggested that regional km-scale mid-Cretaceous uplift 
may not have taken place. Rather, they proposed that the observed cooling may have resulted 
from denudation related to base-level drops associated with rifting in the Bass-Gippsland 
basins to the south and the Tasman Sea to the east (Fig. 9a). The isolated occurrences of 
mid Cretaceous igneous rocks in southeastern Australia rule out the possibility that mid-
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Cretaceous cooling may be the result of cooling following a period of elevated heat fl ow 
linked to a magmatic event (Kohn et al. 2003).

In general, coastal plain areas exhibit a greater amount of denudation than those inland. 
But the complex nature of events associated with continental break-up and the formation of 
new-rifted margins is highlighted by fact that times of rapid cooling may pre-date and postdate 
the actual time of seafl oor spreading onset in the adjacent ocean basins (Plate IV). 

The difference in timing of cooling episodes between different areas is also demonstrated 
by surface denudation rates through time presented for six specifi c sub-regions of southeastern 
Australia (Fig. 10). These may be equated with the volumes of sediment derived from the 
respective landscapes over the time intervals indicated and allow for the predictions to be 
tested by matching against the stratigraphic record of various sedimentary basins, provided 
these are preserved (e.g., Weber et al. 2004). It is emphasized that the regional denudation 
chronology estimates, derived by the integration of spatial denudation information for a 
particular time interval, produces the “locally-averaged” denudation rate for a specifi ed region 
as a function of time. Hence, distinctive cooling patterns seen in some individual samples or 
in samples from a restricted area may not necessarily be highlighted prominently within the 
overall “average” regional denudation pattern. 
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Figure 10. Long-term smoothed (spatially averaged) denudation chronology plots for six sub-regions (a 
to f) in southeastern Australia based on an initial track length of 14.5 µm. Note the marked differences in 
denudation history apparent across the different areas. Areas (a) and (f) show pronounced Cretaceous to 
Early Tertiary denudation, areas (b)-(d) show accelerated denudation in Late Paleozoic-Early Triassic time, 
whereas area (e) shows particularly low rates of denudation from Mesozoic to Present (see text for further 
discussion).
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Tasmania shows a markedly different and signifi cantly younger cooling history to 
the mainland. The denudation chronology for Tasmania reveals a steady increase in Early 
Cretaceous time to a maximum peak in mid Paleocene to mid Eocene time and then a decrease 
to the Present (Figs. 2b and 10). This is indicative of its continued tectonic emergence and 
denudation throughout much of the Cenozoic and probably refl ects the proximate position 
of Tasmania, with its very narrow continental shelves and the evolving rift systems between 
Australia and Antarctica and the Lord Howe Rise/New Zealand. 

CONCLUDING REMARKS

AFT thermochronology is a well-established tool for reconstructing the low temperature 
thermal and tectonic evolution of the continental crust. From the earliest studies of continental 
terranes it has been apparent that AFT data show broad regionally consistent patterns of 
variation. The variations are primarily controlled by cooling, which may be initiated by earth 
movements and denudation at the Earth’s surface and/or by changes in the thermal regime. As 
such the data frequently bear little or no relationship to the original formation ages of the rocks 
involved. However, the signifi cance of the regional patterns is not always obvious and there 
have often been diffi culties in interpreting and integrating the results of such studies with other 
sets of geological observations. Using numerical forward modeling procedures the measured 
AFT parameters can be matched with time-temperature paths using an optimal data fi tting 
procedure, which enables thermal and tectonic processes to be mapped out in considerable 
detail. Large regional arrays of data can be modeled sequentially and inverted into time-
temperature solutions for visualizing the evolution of paleotemperatures, denudation rates and 
paleotopography of present day surface rocks. These can then be viewed as a series of time-
slice images and the regional spatially integrated denudation rate chronology. The images 
provide a striking new quantitative perspective on crustal processes and landscape evolution 
and allow important tectonic and denudation events over time scales up to hundreds of million 
years to be readily visualized in a variety of ways and integrated with other regional data 
sets such as digital terrain models, heat fl ow, etc. This approach provides a readily accessible 
framework for quantifying the often undetectable, timing and magnitude of long-term crustal 
denudation in many terranes, for a part of the geological record often largely unconstrained. 

The images are not only valuable for visualizing the thermochronological information 
but also allow a new range of quantitative measurements to be made on the virtual landscapes 
constructed. For example, a direct consequence of the denudation models is to predict 
sediment volumes and to trace the evolution of drainage basins, at least on a broad scale. 
This opens up the possibility of making a new range of mass-balance calculations on the 
amounts and nature of eroded material and sediment accumulation in appropriate depocenters 
(e.g., Weber et al. 2004). Similarly, predictions of long-term surface denudation rates can be 
tested against more recent estimates based on cosmogenic isotope analyses (e.g., Belton et al. 
2004), at least for the most recent part of the record. The acquisition of apatite (U-Th)/He data 
(e.g., Farley 2002) on a similar regional scale should provide more robust information on the 
lower temperature portion of the thermal history (<~60−70 °C), which is poorly constrained 
by AFT data. In addition, information derived from higher temperature thermochronometric 
systems e.g., 40Ar/39Ar K-feldspar (McDougall and Harrison 1999; Harrison et al. 2005), (U-
Th)/He zircon and titanite (Reiners and Farley 1999; Reiners 2005) and zircon fi ssion track 
(Tagami 2005) could potentially also be integrated into imaging schemes, providing for a more 
comprehensive visualization of intermediate to low temperature thermal histories. 

With increasingly large AFT datasets from regional studies becoming available it will 
be necessary to make data collection more effi cient. One promising direction in this regard 
is through emergence of Laser-Ablation-Microprobe Inductively Coupled Plasma Mass 
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Spectrometry (LAM-ICP-MS). This approach allows for the analysis of trace elements in 
small areas (10−30 µm) within mineral grains and has opened the way to a radically different 
approach to fi ssion track analysis that does not require neutron irradiation for the analysis of 
uranium content (Hasebe et al. 2004). As such LAM-ICP-MS promises a drastic reduction in 
sample turn-around time and improved laboratory safety due to the elimination of the need 
for neutron irradiations, a requirement, which now imposes relatively long delays on sample 
processing.
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