
Implementation of a MAC Protocol for QoS

Support in Wireless Sensor Networks

Petcharat Suriyachai, Utz Roedig, Andrew Scott

InfoLab21, Lancaster University, UK

{p.suriyachai, u.roedig, a.scott}@lancaster.ac.uk

Abstract—Future application areas of wireless sensor networks
(WSNs) may include industrial process automation, aircraft
control systems or patient monitoring in hospitals. Such ap-
plications require predictable quality of service in terms of
message transfer delay and reliability. Performance of WSN
data transport is to a large extent defined by the employed
medium access control (MAC) protocol. Currently, no existing

MAC protocol is capable of supporting WSN applications that
require deterministic data transport performance. In this paper,
we present the implementation of a new WSN MAC protocol
that is able to give deterministic bounds for message transfer
delay and reliability. The protocol is implemented on TinyOS
2.x for a Tmote Sky node using the CC2420 transceiver. Our
implementation shows that a deterministic MAC protocol with
reasonable energy consumption patterns is practical.

I. INTRODUCTION

Potential applications supported by wireless sensor net-

works (WSNs) may include industrial process automation,

aircraft control systems and patient monitoring in hospitals.

These applications necessitate predictable quality of service in

terms of message transfer delay and reliability. Timely analysis

of sensor data must always be possible to decide whether an

action must be performed. To achieve such a goal, WSNs

must be dimensioned properly. More specifically, it should

be possible to dimension a WSN such that an upper bound

D for the end-to-end message transfer delay can be given to

guarantee a certain response time for the system. Moreover,

the network should be dimensioned such that a lower bound

for the end-to-end data delivery reliability R can be given too.

Different methods exist to dimension a WSN such that

a bound for D and R can be given (for example, [7]).

These dimensioning methods rely on the assumption that an

upper bound for the node-to-node forwarding delay d and a

lower bound for the node-to-node forwarding reliability r can

be achieved. However, in a practical WSN deployment this

requirement is not trivial to implement.

Node-to-node forwarding characteristics are defined by the

medium access control (MAC) protocol. Unfortunately, no

existing MAC protocol is able to provide guaranteed bounds

on message forwarding delay and reliability. Most available

MAC protocols for WSNs are designed to be energy efficient

rather than to provide a deterministic forwarding behavior [5].

Few MAC protocols are designed to optimize the node-to-

node forwarding delay and/or reliability [4], [6]. Although

these solutions may improve message transport delay and/or

reliability, they fail to give guaranteed bounds.

In this paper, we present an implementation of a MAC

protocol that can provide guarantees regarding node-to-node

message transfer delay d and node-to-node message transfer

reliability r under normal operational conditions. In addition,

the protocol can give an upper bound on the node’s communi-

cation related energy consumption e. Therefore, the protocol
can be used in conjunction with existing network dimensioning

tools to construct WSNs that are able to provide strict QoS

guarantees. The specific contributions of this paper are:

• A description of the MAC protocol and its detailed

implementation are given.

• Lessons learned from the implementation process are

discussed. We show that state-of-the-art event driven

WSN operating systems such as TinyOS are not suitable

to host a MAC protocol with deterministic behavior.

• The achievable bounds regarding d , r and e on the

selected sensor node platform are studied.

The paper is organized as follows. The next section describes

existing MAC protocols that address timely and reliable data

delivery. Section III presents our proposed deterministic MAC

protocol. Section IV provides a detailed implementation of the

MAC protocol on the Tmote Sky platform. Section V reports

on the achievable performance and lessons learned from the

implementation. Section VI concludes the paper.

II. RELATED WORK

The design of a WSN is often started with the definition

of the medium access control protocol as it fundamentally

defines the energy consumption properties and capabilities of

the network. Additional network mechanisms such as routing

or topology control are commonly integrated into the MAC

protocol or closely aligned with its design choices. Most MAC

protocols described in the literature aim to minimize energy

consumption at the expense of high data delivery latency

and/or sometimes low reliability (for example, [5]). Hence,

these protocols help to conserve battery power but are inca-

pable of delivering an upper bound for message transfer delay

or reliability. Consequently, these protocols cannot provide

QoS support. Some MAC protocols are designed to minimize

delay while optimizing energy consumption (for example, [4]).

The resulting MAC protocols provide low latency on data

transfer, but they are incapable of providing strict performance

guarantees. The f-MAC [3] protocol can provide deterministic

message transfer delay but fails to implement any energy

saving techniques.



The study in [1] assumes a network layout in a hexagonal

shape, and a TDMA protocol is constructed on top of this

topology. Moreover, this study assumes that only neighboring

nodes in the topology interfere, and thus some slots can

be used by different nodes at the same time. Based on

these assumptions, a carefully designed schedule is devised

to obtain the minimum possible bound on message transfer

delay. However, the cell-based topology may be impractical to

construct even in a planned deployment. Furthermore, message

transfer reliability is not addressed by this MAC protocol.

PEDAMACS [2] defines a MAC protocol including topol-

ogy control and routing mechanisms. An upper bound for the

message transfer delay can be analytically determined before

network deployment. The sink centrally calculates a trans-

mission schedule for each node, taking interference patterns

into account. Subsequently, the sink distributes the scheduling

information to all nodes in a single hop using a high-power

radio. Thus, a collision-free transmission is achieved within

the network. However, the assumption that a high-power sink

is available limits the usability of this solution. In addition,

PEDAMACS does not address message transport reliability.

A few MAC protocols [8], [9] achieve QoS provisioning

by adopting traffic differentiation and prioritization, and thus

differ from our work that assumes homogeneous traffic. More-

over, these studies are evaluated via simulation and could

provide only average delay performance.

III. TDMA-BASED MAC PROTOCOL

In order to support QoS in terms of message transfer delay

and reliability, we propose a Time Division Multiple Access

(TDMA) based Medium Access Control (MAC) protocol that

also handles routing. Topology awareness within the MAC

layer is vital as the node-to-node transport performance can

only be constructed deterministically if the degree of interfer-

ence from neighboring nodes is known and can be controlled.

A. Goals and Assumptions

We assume that the wireless sensor network has a tree

configuration rooted at the sink. Messages requiring deter-

ministic transport are traveling from the sensor nodes to the

sink. Control data traveling from the sink to the nodes is

considered to be non critical. We assume that a relatively small

number of nodes are deployed at chosen locations. An example

application scenario that our MAC protocol can be applied to

is process monitoring and control in a production plant. In

such a setting, the number of nodes is small, and the network

topology including node locations can be planned.

The protocol has to ensure that an upper bound for the node-

to-node forwarding delay d and a lower bound for the node-

to-node forwarding reliability r can be given. This guarantee

should be given for data traveling from sensor nodes toward

the sink.

B. Data Transfer Delay

All nodes in the network are assumed to be time synchro-

nized; Section IV explains our lightweight time synchroniza-

tion scheme. The time axis is divided into fixed-length base

units called epochs. Each epoch E is subdivided into k ·n time

slots for a network of at most n sensor nodes. Each node is

assigned k exclusive slots per epoch E to successfully transmit

one message. Slots are large enough to transmit a packet of

maximum payload and to receive an acknowledgment from

the next-hop receiver. The protocol is collision-free. A node

has k attempts per epoch to deliver a message and to achieve

the required node-to-node message transfer reliability. Thus,

the worst-case node-to-node transfer latency d for all nodes is

defined by the epoch size E:

d ≤ E = k · n (1)

Simple routing is performed by the MAC layer. Sensor

readings are routed as sensor data messages up-tree toward

the sink. If necessary, sensor data messages are queued in the

sensor data FIFO buffer. Sink data messages used to set up

and control the sensing tasks can be broadcast from the sink

to all nodes in the network. Sink data messages are queued in

the sink data FIFO buffer when necessary. Sink data messages

are transported when no data messages need forwarding. Each

node is aware of its position in the tree and knows the slot

numbers assigned to its child nodes (to handle sensor data

messages) and the parent node (to handle sink data messages).

C. Data Transfer Reliability

The slot assignment of each node can be pre-configured as

a planned deployment is assumed. Each node ni is identified

by a unique identification number i with 0 ≤ i < n. Each
node ni owns exclusively k transmission time slots si,j with

0 ≤ j < k in each epoch E. The transmission slots are

assigned uniformly across the epoch: si,j = i+n·j. Therefore,
retransmission slots obtain the maximum temporal distance,

helping to counter burst errors in the channel. Nevertheless,

other distribution types are acceptable if they render the slot

assignment fixed.

Each node must transmit a packet within its first transmis-

sion slot in the epoch; if no sink or sensor data is queued

for transmission, a simple control message is sent to the

parent node for the purpose of connectivity testing. A packet

with a non-broadcast destination address requires an acknowl-

edgment. As mentioned previously, slots are large enough

to contain a packet and its subsequent acknowledgment. If

a transmission is not acknowledged, a node will retransmit

the message within the next slot of the k transmission slots

assigned to the node. If a node does not receive a message in

the expected slot, it will start listening on the next transmission

slot assigned to this node within the epoch. Figure 1 displays

an example for node n1 in a tree topology when k = 2, n = 20
and m = 40. The node n1 has two child nodes: n2 and n5, and

its parent node is n0. Slots in which the radio of node n1 needs

to be active are shown solid. Slots that might become active

in case of packet losses are shown shaded. Slots in which the

radio is always in sleep mode are depicted empty.

There are various techniques to determine the value k
depending on application requirements and different channel



Fig. 1. Slot usage of n1 whose parent node is n0and child nodes are n2

and n5.

models assumed. For example, if the maximum packet size l
is known and a simple channel model with independent bit

error rate B is assumed, the achievable node-to-node delivery

ratio or message transfer reliability r can be calculated as:

r ≥ (1−B)
8×l
×

(

1− (1−B)
8×l

)(k−1)

(2)

It is important to emphasize the normality assumption

as unexpected conditions, such as signal jamming, would

increase the bit error rate B and thus invalidate the proposed

calculation. In such an adverse case, the measured message

transfer reliability becomes less than the guaranteed theoretical

reliability bound r.

D. Energy Consumption

Communication related energy consumption in the context

of WSNs is generally specified by the so called duty cycle.

The duty cycle is the ratio of radio on time ∆on to the sum

of radio on time ∆on and radio off time ∆off . Formally, the

duty cycle P is defined as P = ∆on/(∆on+∆off ). The radio
on time represents the time the radio is sending, receiving or

listening. These three modes of operation require roughly the

same energy. The radio off time represents the time the radio

is in an energy-efficient sleep mode.

The minimum duty cycle Pi of node ni depends on the

number of child nodes ci attached to it and the overall epoch

length E. Additional energy will be consumed if retransmis-

sions are necessary. A lower bound for the duty cycle of the

presented scheme can be given for optimal conditions where

retransmissions are not required. A node ni is only active in

the first of the slots assigned to itself, the parent node and

child nodes. Thus, its lower bound for the duty cycle and its

energy consumption emin is given as

emin = Pi = (2 + ci)/E (3)

In contrast, an upper bound occurs when all retransmission

slots are used, and the node is active in all slots assigned to

itself, the parent node and child nodes. Consequently, an upper

bound for the duty cycle and its energy consumption emax is

easily obtained as:

emax = Pi = k · (2 + ci)/E (4)

Thus, the energy consumption of a node is bounded by:

emin ≤ e ≤ emax (5)

For example, node n1 in the aforementioned topology with

k = 2, n = 20 has a lower bound for the duty cycle of

P1 = 4/40 = 10%. The upper bound in this example is

P1 = 8/40 = 20%. Obviously, constant operation at the upper

bound would dramatically increase energy consumption and

consequently reduce network lifetime.

Two mechanisms can be employed to influence the energy

consumption pattern of a node. First, the topology can be

chosen such that the desired energy usage pattern emerges.

Second, the epoch length E can be extended by adding

additional unused slots.

IV. IMPLEMENTATION

The MAC protocol was implemented on TinyOS 2.0.2

for the TelosB platform, which incorporates a CC2420 radio

transceiver. The aim was to reuse existing TinyOS components

and interfaces as much as possible to facilitate seamless inte-

gration of the MAC protocol with existing TinyOS applications

and programming infrastructure. However, this was not always

possible, and some low-level components had to be modified

to obtain the required absolute deterministic MAC behavior.

For example, the usage of TinyOS tasks within the MAC

component must be avoided as TinyOS cannot guarantee when

tasks are executed.

Figure 2 shows the component graph of the MAC layer

implementation. The standard TinyOS interfaces to send and

receive messages are retained. Applications access the ra-

dio resource through the ActiveMessage (AM) layer which

comprises the CC2420ActiveMessage component. The MAC

protocol component provides basic communication interfaces

such as Send and Receive to this AM layer and connects to the

physical layer. Our implementation was tailored to the CC2420

radio used in the TelosB platform and, hence, the existing

TinyOS CC2420 components were used. It has to be noted that

the MAC protocol provides interfaces for functions that are

not useful for TDMA protocol (for example, RadioBackoff).

These functions are retained purely for compatibility reasons.

A. Frame Format

The MAC protocol uses the frame format defined by the

IEEE 802.15.4 standard in order to be compatible with the

IEEE 802.15.4 CC2420 radio. In addition, this use allows us

to exploit hardware features such as the automatic acknowl-

edgment of the CC2420 radio transceiver.

A MAC frame has a minimum size of 12bytes and a

maximum size of 122bytes. The maximum frame size is

dictated by the CC2420 design. The MAC header consists of

a 2byte Frame Control Field (FCF), a 1byte Data Sequence

Number (DSN), a 2byte destination Personal Area Network

(PAN) address, a 2byte destination address, a 2byte source

address and a 1byte field identifying the TinyOS message type.
The payload can have a maximum size of 110bytes, and the

MAC footer contains a 2byte Frame Check Sequence (FCS).

Another 6byte physical layer header is added in front of the

MAC frame when the message is transmitted. Thus, messages

on the air have a minimum length of 18bytes and a maximum
length of 128bytes.
The first 3bits of the FCF define the frame type. The

MAC protocol uses the three types: data, acknowledgment



Fig. 2. Component Graph in TinyOS

and MAC command, which are defined in the IEEE 802.15.4

standard. Sensor data or sink data messages use the type data.

Control messages that are transmitted if there is no data to be

transferred use the type MAC command. Acknowledgments

are sent using the type acknowledgment. The destination

PAN address field is not used by the MAC protocol but is

retained for compatibility with the TinyOS message format.

The TinyOS message type field is used to identify a TinyOS

component. As there may be multiple components sharing one

radio, the TinyOS ActiveMessage layer uses the type field for

data multiplexing.

The MAC protocol makes use of automatic acknowledg-

ments provided by the CC2420 transceiver. If the destination

of a data frame is not the broadcast address, the protocol

then sets the acknowledgment request field in the Frame

Control Field. Upon receipt of such a message, the CC2420

transceiver immediately sends an acknowledgment message.

The acknowledgment follows the IEEE802.15.4 acknowledg-

ment frame format, and its size is only 11bytes. The MAC

protocol also exploits other hardware support of the CC2420

chip. For instance, the 2byte Frame Check sequence (FCS) is

automatically appended at the end of the frame and verified by

the hardware in the transmit and receive modes, respectively.

B. Slot Size

The selected slot size Ts should be as small as possible to

reduce the epoch size E and ultimately to reduce the end-to-

end delay. To determine the necessary slot size, two different

cases must be distinguished: the slot used for transmission and

the slot used for reception.

If the slot is used for transmission, time to complete the

following steps must be allocated. First, the message has to

be transferred from the MAC layers data FIFO buffer into the

buffer of the CC2420 transceiver (transfer time tts). Then, the
message has to be transmitted (transmit time txm). For unicast

transmissions, the receiver needs some time tpm to process

the message and initiate the transmission of an acknowledg-

ment message (processing time tpm). The acknowledgment

is transmitted (transmit time txa). Finally, the node needs

time to transfer and process the acknowledgment from the

CC2420 transceiver and to perform the associated actions

for received/missed acknowledgment (processing time tpa). A

small guard time is required at the beginning and end of the

slot to compensate for clock drifts between nodes (guard time

tg). Note that the propagation delay is neglected as it is small

compared to the other time values. Thus, the minimum size of

a transmission slot is given as Tst = tg + tts + txm + tpm +
txa + tpa + tg.
If the slot is used for reception, time to complete the fol-

lowing steps must be allocated. First, the message is received

(transmit time txm). The incoming message must be processed

(processing time tpm), and if necessary an acknowledgment

has to be transmitted (transmit time txa). Thereafter, the micro

controller has to be informed, and the message is transferred

from the CC2420 buffer to the micro controller where it

is either enqueued in the MAC layer data FIFO buffer for

forwarding or in the MAC layer application FIFO buffer

(transfer time ttr). Again, a small guard time is required at

the beginning and the end of the slot (guard time tg). Thus,
the minimum size of a reception slot is given as Tsr =
tg + txm + tpm + txa + ttr + tg .
The required slot size can now be determined by aligning

Tst and Tsr. Thus, we obtain

Ts = tg + tts + txm + tpm + txa + ttr + tg (6)

as tpa on sender side and ttr on receiver side are executed

in parallel and ttr > tpa.

A lower bound for Ts can be given by determining the best

theoretical possible execution time for all steps that have to

be carried out in a slot. To calculate this lower bound, we first

assume that the message processing time is negligibly small

(tpm = 0). Second, we assume that the message transfer times
tts and ttr between CPU and CC2420 are solely determined by

the speed of the SPI interface interconnecting them (again, we

neglect processing time). For the TinyOS maximum message

size of a 28byte payload, a 39byte MAC frame is transferred

into the transceiver buffer at the transmitter side while a

41byte MAC frame is transferred out of the transceiver buffer

at the receiver side. Two additional bytes account for the

FCS, which is automatically generated by the CC2420 at

the transmitter side. The node’s SPI interface can support

at a maximum rate of 500kbits/s on both sides. Therefore,

we obtain tts = 0.62ms and ttr = 0.66ms. The CC2420

transmission speed is 250kbits/s, and with a payload size

of 28bytes we obtain txm = 1.47ms. The acknowledgment

has a fixed total size of 11bytes and txa = 0.35ms. We

assume perfect time synchronization for this calculation, and

we use tg = 0ms. Thus, a theoretical lower bound for the

slot size on the TelosB mote can be given as Ts = 3.10ms.
Note that switching between sleep and active states can be



performed within the inactive slot before or after a block of

active slots and consequently does not need to be included in

the calculation.

Unfortunately, the theoretical minimum slot size cannot be

achieved in practice as processing times have to be taken

into account. For example, the TinyOS interface to the SPI

bus introduces a large processing overhead that reduces the

achievable SPI bus transfer rates dramatically. Measurements

show an achievable SPI transfer speed of 173.91kbits/s
(46µs/byte). For a payload of x byte, we determined the

following values as practical: tg = 0.15ms, tts = 0.31ms +
(x+11)·46µs, txm = 0.40ms+(x+13)·32µs, tpm = 0.21ms,
txa = 0.35ms and ttr = 1.28ms + (x + 5) · 46µs. With

the limited TinyOS SPI rate, other determined values and a

payload size of 28bytes, the minimum feasible slot size is

Ts = 6.97ms.
In our experiments, a slot size of Ts = 9.765ms is used to

accommodate a payload of up to 50bytes. TinyOS hardware

clocks operate in binary multiples of a tick, and therefore

1024 TinyOS milliseconds correspond to one real second.

Consequently, the selected slot size is 10 TinyOS milliseconds
long, which corresponds to 9.765ms.
The slot size could be reduced by organizing the slot

allocation differently. tts and ttr could be performed outside

the slot in adjacent inactive slots. However, this would require

that the topology is arranged to guarantee all active slots are

surrounded by inactive slots. This potential optimization is

currently not used in our protocol implementation.

C. Time Synchronization

Our TDMA-based protocol requires time synchronization

among nodes. The protocol could be used together with an

already available time synchronization method provided that

the mechanism would not obstruct data transmission when

required. However, to obtain a lightweight implementation,

we decided to use the existing constant exchange of data and

control messages for time synchronization.

Each node in the network synchronizes its clock with the

parent node in the tree topology. When a node receives a

message (or overhears the message if it is traveling up-tree)

generated by its parent, it can calculate the current time in

the epoch as it knows which slot in the epoch is used by the

parent node. All nodes can use one message in each epoch for

time synchronization as each node has to transmit a message

in every epoch. Thus, time synchronization is carried out

frequently, which ensures an accurate time base in the network.

We are aware that our time synchronization method will

be problematical for topologies with a long hop distance as

synchronization errors will propagate. However, the described

MAC protocol is intended to be used in relatively small and

controlled deployments. As observed in our experiments, time

synchronization can be achieved accurately enough with the

described method.

After being turned on, the sink node initializes the system’s

clock and broadcasts one message in its assigned slot every

epoch. After a non-sink node is turned on, it listens for a

message from its parent and discards all other packets. Upon

receiving the parent’s message, the node determines the epoch

start and begins the radio duty cycle (normal MAC operation).

To find a reference point to start its MAC timer, the MAC

protocol uses the system’s current time tc and a timestamp

tsfd at which the Start Frame Delimiter (SFD) of the packet is

received. The start time t of the slot can be calculated using the
known transceiver set-up time and transmission duration of the

SFD txsfd = 0.40ms, the selected packet length and Equation
(6) t = tc− (tsfd− txsfd)− tts− tg. If there is no packet loss,
the synchronization of the network can be completed within H
epochs, with H being the depth of the tree. After a successful

time synchronization, a node signals to the application layer

that the radio is ready and may be used for data transmission.

Deviations in a hardware clock can accumulate and ad-

versely impact any TDMA protocol. To deal with this problem,

the protocol makes a clock adjustment in each epoch. Upon

receiving a packet from its parent, the node uses the aforemen-

tioned method to re-calculate the start time of the slot. There-

after, the MAC timer is adjusted accordingly. Unfortunately,

the clock adjustment needs processing time and can therefore

only be performed when the MAC layer is not busy. To

simplify implementation, it was decided to prolong the epoch

E by an additional unused slot (E = k ·n+1). This slot at the
end of an epoch is used for time re-synchronization. Note that

the additional slot is not needed if the total number of actual

nodes in the topology is less than n, the maximum number

of nodes the MAC protocol can support. If no transmissions

are received from the parent node for 5 consecutive epochs,

the node assumes that time synchronization was lost. In this

case, the node switches the transceiver into a permanent listen

state until a packet is received from the parent node and re-

synchronization is obtained.

V. EVALUATION

To test the achievable performance bounds, a network of 15
nodes structured as a binary tree was deployed. We found that

the calculated bounds regarding d, r and e using Equations

(1), (2) and (5) could actually be met in the deployment, as

presented in Table I

Performance Parameters Bounds

d 156.24ms

r 99%

e 25%

TABLE I

NODE-TO-NODE PERFORMANCE BOUNDS OBSERVED

A node-to-node delay bound of d = 156.24ms was

achieved as a slot size of Ts = 9.765ms was selected to

accommodate up to 50bytes of payload and the maximum

number of nodes was set to n = 16 in the implementation.

The deployment scenario required k = 1 to achieve a node-

to-node transmission reliability of more than 99%. Since a

binary tree was used, a duty cycle of P = 4/16 = 25%
was accomplished. This duty cycle is considerably higher than



that commonly provided by energy-efficient MAC protocols

having a similar transmission delay but taking the contention-

based access route. Clearly, the deterministic behavior of our

protocol is obtained at the expense of energy consumption.

A. Lessons Learned

TinyOS uses split-phase operations. Here, the program calls

an operation, the call returns immediately and the called

abstraction issues a callback when it completes. The called

abstraction may use a TinyOS task for the callback, which

is then placed in a task queue for execution. For example,

to switch the radio on, the MAC protocol calls a specific

function. At the end of this function a task is posted. When

the task is executed, a callback function in the MAC layer

is executed, which informs the MAC layer that the radio

is now successfully switched on. As other tasks might be

executed before this particular task, there is no guarantee how

long it will actually take to switch the radio on. The TDMA

protocol requires a deterministic behavior, and consequently

split-phase operations including tasks cannot be supported in

the MAC layer. Basically, no tasks can be used during the

time-critical operations of the MAC layer. To comply with

this requirement, two existing TinyOS code elements had to be

modified to remove tasks. First, the task that signals successful

activation of the radio was removed. It was determined that

radio activation is always completed within t = 2.56ms. Thus,
instead of using the task to signal when the radio is ready, it

is assumed that after t = 2.56ms radio activation is complete.
Second, the task that signals successful locking of the SPI

interface was removed as the only component using SPI in

the prototype system is the radio.

In summary, significant modifications to TinyOS are nec-

essary to implement a deterministic MAC protocol efficiently.

These modifications require changing the TinyOS program-

ming model (for example, split-phase operation), and there-

fore TinyOS might not be the best choice of programming

environment for implementing QoS-support MAC protocols.

B. Possible Improvements

The epoch size E depends on the number of nodes n
in the network and, hence, the protocol does not scale to

large deployments. However, the protocol is suitable for many

realistic deployments where data delivery must be timely

and reliable. For example, a process automation application

deployed on a factory floor might use only a few dozen nodes,

and many nodes will sometimes be in communication range of

each other. Thus, exclusive slots for each node are required to

guarantee collision-free operation. To make the protocol usable

for larger deployments, the protocol could reuse slots but must

guarantee that two nodes sharing the same slot are never

in communication range of each other. In addition, different

transmission frequencies could be applied to create separate

collision domains (for example, the CC2420 radio supports

operation on 16 different carrier frequencies).

To implement the deterministic behavior of the MAC pro-

tocol, modification of the existing low level components was

required to avoid the use of tasks in critical sections. As shown,

the TelosB platform could theoretically support a slot size of

3.10ms. However, due to the overheads introduced by TinyOS
the best achievable slot size is currently 6.97ms. This could
be reduced by modifying the SPI programming abstraction in

TinyOS, responsible for most of the introduced overheads.

VI. CONCLUSION

In this paper, a TDMA-based MAC protocol1 is proposed

to serve potential WSN applications that demand predictable

quality of service regarding message transfer delay and relia-

bility. The collision-free protocol exploits topology knowledge

and is integrated with a routing mechanism and retransmission

scheme to ensure that an upper bound for the node-to-node

forwarding delay d and a lower bound for the node-to-node

forwarding reliability r can be given. In addition, the energy

consumption can be bounded as well. Detailed implementation

of the protocol on TinyOS 2.x for a Tmote Sky node using

the CC2420 transceiver is provided. Moreover, some features

of TinyOS are discussed to illustrate its limitations in hosting

a MAC protocol with deterministic behavior.

As for future work, the protocol could be integrated with a

dimensioning tool which utilizes its node-to-node delay bound

d to determine an end-to-end delay bound D.

REFERENCES

[1] K. Shashi Prabh, “Real-Time Wireless Sensor Networks,” Ph.D.
Thesis, Department of Computer Science, University of Virginia,
Charlottesville, VA, USA, 2007.

[2] S. Coleri-Ergen and P. Varaiya, “PEDAMACS: Power Efficient
and Delay Aware Medium Access Protocol for Sensor Networks,”
IEEE Trans. Mobile Comput., vol. 5, pp. 920-930, Jul. 2006.

[3] U. Roedig, A. Barroso and C. J. Sreenan, “f-MAC: A Determin-
istic Media Access Control Protocol Without Time Synchroniza-
tion,” in Proc. 3rd European Workshop Wireless Sensor Networks,
Zurich, Switzerland, 2006, pp. 276-291.

[4] G. Lu, B. Krishnamachari and C. Raghavendra, “An Adaptive
Energy-Efficient and Low-Latency MAC for Data Gathering in
Sensor Networks,” in Proc. 4th Int. Workshop Algorithms for
Wireless, Mobile, Ad Hoc and Sensor Networks, Santa Fe, NM,
USA, 2004, pp. 224-231.

[5] W. Ye, J. Heidemann and D. Estrin, “Medium access con-
trol with coordinated adaptive sleeping for wireless sensor net-
works,”IEEE/ACM Trans. Netw., vol. 12, pp. 493-506, Jun. 2004.

[6] R. Biswas, V. Jain, C. Ghosh and D.P. Agrawal, “On-Demand
Reliable Medium Access in Sensor Networks,” in Proc. 7th IEEE
Int. Symp. a World of Wireless, Mobile and Multimedia Networks,
Buffalo, NY, USA, 2006, pp. 251-257.

[7] J. Schmitt and U. Roedig, “Sensor Network Calculus - A Frame-
work for Worst-Case Analysis,” in Proc. 1st Int. Conf. Distributed
Computing in Sensor Systems, Marina del Rey, CA, USA, 2005,
pp. 141-154.

[8] N. Saxena, A. Roy and J. Shin, “A QoS-based Energy-aware
MAC Protocol for Wireless Multimedia Sensor Networks,”
inProc. IEEE 67th Vehicular Technology Conf.: VTC2008-Spring,
Marina Bay, Singapore, 2008, pp. 183-187.

[9] Y. Lui, I. Elhanany and H. Qi , “An Energy-Efficient QoS-Aware
Media Access Control Protocol for Wireless Sensor Networks,”
inProc. 2nd IEEE Int. Conf. Mobile Ad-hoc and Sensor Systems,
Washington, DC, USA, 2005, pp. 189-191.

1This work has been partially supported by the European Commission under
the contract FP7-ICT-224282 (GINSENG).


