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Abstract. The feasibility of using the zeros of the Husimi function to characterize, i.e. ascribe quantum
numbers to, dynamical systems with mixed dynamics is explored using a realistic model for the vibrations
of the HCP molecule as an example. Further implications are also discussed.

1 Introduction

The correspondence between classical and quantum me-
chanics has been a topic of much interest, specially in
the context of quantum chaos [1]. It was Niels Bohr that
made the first attempt to solve this problem by enunciat-
ing a correspondence principle [2,3], that only tackled the
problem partially. Later, it was realized that for systems
with fully integrable dynamics this correspondence is well
understood in terms of the celebrated Einstein-Brillouin-
Keller (EBK) quantization rule [4–6] for the classical tra-
jectory actions, Ij ,∮

Cj

P · dq = 2π�

(
nj +

αj

4

)
, nj = 0, 1, 2, . . . (1)

These integrals should be computed, according to
Einstein’s prescription, which corrected Bohr’s simpler
view, on the N (this being the dimension of the problem)
topologically independent paths, Cj , defining the invariant
tori [7] on which the motion can take place. Parameters
αj are known as the Maslov indices [8], which take care of
the topological phase accumulated along the circuits [10]1.
Equation (1) constitutes a true semiclassical expression

a e-mail: fj.arranz@upm.es
b Permanent address: Department of Chemistry, Faculty

of Science, Al-Azhar University of Gaza, P.O. Box 1277,
Palestine.

c e-mail: rosamaria.benito@upm.es
d e-mail: f.borondo@uam.es
1 Maslov index is easily understood in one dimensional sys-

tems, where the topological phase is picked up only at the turn-
ing points due to the discontinuity induced by the momentum
passing through zero. See for example: [9].

in which a quantum condition involving integer quantum
numbers (r.h.s.) is imposed to purely classical information
(l.h.s). Moreover, for each allowed energy in (1) there is an
associated wave function, as shown by Wentzel, Kramers
and Brillouin (WKB) [5],

ψWKB(q) =
∑

j

Aj exp
[
iSj(I, q)

�

]
, (2)

where Sj(I, q) are the branches of the Hamilton’s char-
acteristic function solving the Hamilton-Jacobi equa-
tion [11].

Numerous strategies have been reported in the liter-
ature to solve equation (1). Among them, probably the
most intuitive and straightforward one is that due to
Noid and Marcus [12], which obtained the quantized ener-
gies by direct numerical construction of the invariant tori.
It is also worth mentioning here the adiabatic switching
method2, which is based in the preservation of the action
under adiabatic perturbations on the Hamiltonian. This
idea, originally due to Ehrenfest [14] and Einstein [15],
was applied in the 1980’s to the semiclassically quantiza-
tion of nonintegrable systems [16–20], covering different
aspects of the problem.

Interestingly enough, Einstein’s paper on the quan-
tization of tori [4] contains a remarkable little com-
ment at the end. In it, he pointed out towards the
problem arising when the system is nonintegrable and
the associated motion becomes irregular. Enstein knew
of Poincaré’s work on the three body problem and
the possibility of chaos [21] in dynamical systems, that
was later later developed with the publication of the

2 See for example review in [13].
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Kolmogorov-Arnold-Moser (KAM) theorem [22]. But the
question remained untouched, largely because of the great
success of the new quantum mechanics, until the 1970’s in
which Martin Gutzwiller tackled the problem of quantiz-
ing classically chaotic systems with his celebrated trace
formulae [23,24]. Starting from the expression of the full
quantum propagator, Gutzwiller was able to make a semi-
classical approximation for the trace, containing only in-
formation concerning (all) the periodic orbits (POs) of
the system. Due to the exponential proliferation of such
special orbits with the excitation energy the expression
is difficult, if not impossible, to apply, except for very
simple or special problems [25,26]. Gutzwiller’s trace for-
mula showed for the first time the relevance of POs in the
quantum dynamics of chaotic systems, and other works
continued progressing along this line. Among them, those
concerning the so called scar theory should be mentioned
here [27,28].

In 1984, Eric Heller showed for the first time that
some individuals eigenfunctions of classically chaotic sys-
tems present a strong localization of the probability den-
sity along POs [29]. Later, Bogolmony [30] studied this
scarring phenomena as an emergent property in groups of
eigenstates [31–33].

Another way to asses the quantum relevance of par-
ticular classical structures, such as invariant tori, POs,
etc. [31–35], is the construction of quantum analogues
to the surface of section (SOS). In classical mechanics
Poincaré was the first to discuss the efficiency of this
method to reveal the dynamical information contained in
the phase space of mechanical systems [21]. Classically,
composite SOS are easily obtained by projecting a swarm
of trajectories, all propagated at the same energy, into
specific surfaces in phase space. A widespread method
to obtain the quantum mechanical analogous phase space
density distributions is due to Wigner, who proposed the
following expression [36,37]

W(P , q) =
1

2π�N

∫
dx eiP ·q/� ψ∗

(
q − x

2

)
ψ

(
q +

x

2

)
,

(3)
|ψ〉 being the wavefunction of the system. One popular
alternative is the Husimi function [38] or coherent state
representation, given by

H(P , q) = |〈φP ,q|ψ〉|2, (4)

where φP ,q represents a harmonic oscillator coherent
state [39]. Expression (4) can be shown to be equal to
a Gaussian smoothed Wigner function, right in the spirit
of the Heisenberg uncertainty principle. From either of
these two functions, Wigner or Husimi, quantum ana-
logues (QSOS) to the SOS devised by Poincaré can be
defined. The comparison of these two complementary con-
structions have allowed for a long time the study of the
correspondence between quantum and classical mechan-
ics. Typically, the Wigner and Husimi functions usually
appear peaked on classical structures with quantum rele-
vance [31–35].

Much less studied are the zeros of the Husimi func-
tion, despite the fact that, since this function is a positive

defined one, they can provide, in principle, a complete
characterization of it. This procedure was originally sug-
gested by Leboeuf and Voros [40–42], who found in two
dimensional maps that every pure quantum state admits
a finite multiplicative parametrization by the zeros of its
Husimi function. For pure eigenstates the distribution of
these zeros in phase space explicitly reflects the nature
of the underlying classical dynamics. In the semiclassi-
cal regime the distribution becomes one dimensional for
integrable systems, while it spreads out for chaotic sys-
tems [43–51]. A good review of this topic can be found
in reference [52]. These authors coined the term ’stellar
representation’ to refer to this set of points, which can be
used as a minimal set encoding the corresponding states.

In this paper we seek to study the practical feasibil-
ity of using the zeros of the Husimi function, or rather
of in the associated QSOS, to study the characteristics of
some molecular states, with the future aim of using them
to unveil subtle information contained in it; see for exam-
ple [31–33].

As an example to illustrate our points, we choose to
study the vibrational dynamics of the HCP molecule de-
scribed by a reduced dimensionality (2dof) realistic model,
that has been introduced previously by us [53]. With it,
we were able to show the relevant dynamical information
in the chaotic sea using a local frequency analysis [54,55].
The results of this analysis was compared with results ob-
tained from Poincaré SOS.

The organization of the paper is as follows. In Sec-
tion 2.1 we describe the system under study, and re-
view the computational procedure used. Numerical results
are presented and discussed in Section 3. Finally, in Sec-
tion 4 we summarize the main conclusions derived from
our work.

2 System and calculations

2.1 The HCP molecular system

The system that we choose to study is a reduced dimen-
sionality model for the vibrations of the HCP molecule,
that has been studied previously [53] to get an overall
idea of the phase space structure (mainly detection of reg-
ular and chaotic motions) for the vibrational dynamics of
this system. It consists of a 2 degrees of freedom model,
in which the C–P bond is hold frozen at a distance of
re = 3.01003 a.u. Although this approximation ignores
the Fermi resonance existing between the bending and
the C–P motion [56,57], it is certainly good enough for
the purposes of the present paper (see also discussion in
Ref. [53]).

The HCP potential energy surface (PES), responsible
for the forces acting on the atoms, has been taken from
the literature. It consists of a fitting [58] to data obtained
by a sophisticated CASSCF [59,60] quantum calculation
to the following analytical expression

V = V1(1 − λ1) + V2λ1 − δV λ2 + V0, (5)
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Fig. 1. Potential energy surface for HCP as function of R
and θ for a fixed value of rCP = 3.01003 a.u. Contours are
separated by 1008 cm−1 with a maximum value of 40 327 cm−1

above the minimum. The minimum energy path, connecting
the HCP well and the saddle point, is shown superimposed as
a dotted line.

where a good accuracy was achieved by optimizing the
terms V1 and V2 respectively for two different ranges of
energy, one going up to 18 150 cm−1 above the minimum
of the PES, and the other for energies above this value.
The proper connection between these two regimes is ob-
tained by the use of the two energy-dependent switching
functions, λ1 and λ2, given by

λ1 =
1 + tanh[4(V2 + 3.0)]

2
,

λ2 =
1 + tanh[12(V2 + 1.3)]

2
. (6)

The constant term, V0, in equation (5) is chosen so that
the energy at the minimum coincides with the value,
−42 230 cm−1, of older versions of the potential considered
in references [61,62], and δV is a correction term [63].

This PES is presented as a contours plot in Figure 1.
As can be seen, it presents a potential well at θ = 0◦, cor-
responding to the linear configuration H–CP. The other
linear configuration, θ = 180◦, corresponds to a saddle
point with an associated barrier of 27 358 cm−1. Thus, at
energies above this value, the H atom may sample large
portions of the PES, thus giving rise to vibrational chaos.
Superimposed to the PES in Figure 1, the minimum en-
ergy path, Re(θ), going from the minimum to the saddle
has also been plotted in dotted line. It is given by the
following Fourier series,

Re(θ) =3.186460 + 0.123553 cos θ + 0.679693 cos 2θ
+ 0.239818 cos 3θ + 0.034727 cos 4θ
− 0.045755 cos 5θ − 0.039552 cos 6θ
− 0.001833 cos 7θ + 0.013533 cos 8θ
+ 0.017138 cos 9θ (7)

in atomic units.

The classical vibrational (J = 0) Hamiltonian function
is given by

H =
P 2

R

2μH−CP
+

1
2

(
1

μH−CPR2
+

1
μC−Pr2e

)
P 2

θ + V (R, θ),

(8)
where R is the distance from the center of mass of the
CP fragment to the H atom, θ is the angle between the
C–P and the R vectors, and PR and Pθ are the associated
conjugate momenta. The corresponding reduced mass are
defined as follows:

μH−CP =
mH

(
mC +mP

)
mH +mC +mP

μC−P =
mCmP

mC +mP
(9)

where mH , mC and mP are the masses of hydrogen, car-
bon and phosphorus atoms, respectively.

2.2 Computational procedure

The vibrational dynamics of this system has been stud-
ied by classical trajectory calculations. For this purpose
Hamilton’s equations of motion derived from equation (8)
have been numerically integrated using a Gear algorithm.
To monitor the vibrational dynamics undertaken by the
system and visualize its phase space structure Poincaré
SOS have been computed for each trajectory. An adequate
choice for this, namely one giving the most meaningful
dynamical information, is the intersection with the min-
imum energy path, Re(θ). To make this chosen SOS an
area preserving map, we need also to perform the follow-
ing canonical transformation [64]

ρ = R−Re(θ),
ϑ = θ,

Pρ = PR,

Pϑ = Pθ +
(
dRe

dθ

)
PR. (10)

The SOS condition is now given by expression ρ = 0,
complemented with the condition that Pρ is in a predeter-
mined branch (the negative one in our case) of the second
degree equation obtained from energy conservation. It is
also important to fold this SOS into the 0 ≤ θ ≤ π inter-
val using invariance under the transformations ϑ→ 2π−ϑ
and Pϑ → −Pϑ for reasons that will be explained below
when describing the quantum calculations.

2.3 Quantum dynamics

For the quantum calculations we have used the DVR–
DGB program of Bacic and Light [65] to obtain the first
100 vibrational eigenfunctions 〈R, θ|n〉 with the corre-
sponding eigenenergies converged to within 0.01 cm−1.
Although more converged states can be easily obtained
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Fig. 2. Poincaré surfaces of section as defined in Section 2.2
for the vibrational dynamics of our 2D model for HCP at
22.395 (left) and 27.381 cm−1 (right), respectively.

this is enough for the purposes of the present paper. The
corresponding Husimi functions or coherent-state repre-
sentation,

Hn(R, θ, PR, Pθ) =
1

(2π�)2
|〈R, θ, PR, Pθ|n〉|2 , (11)

where |R, θ, PR, Pθ〉 is a harmonic-oscillator coherent
state, have also been calculated by direct numerical in-
tegration [64]. In our case, and in order to be able to com-
pare with the classical results, we have considered Husimi-
based QSOS [64], HQSOS

n (ϑ, Pϑ), carrying out the change
of variables in equation (10) over the Husimi function
Hn(R, θ, PR, Pθ), and using the same definition described
above for the classical SOS, i.e. ρ = 0 and Pρ in a predeter-
mined branch of the momentum function. Moreover, the
corresponding results will be presented in the folded fash-
ion described for the classical counterpart in the previous
section in order to reconcile the quantum with the classical
results. Indeed and, as it is well known, for total J = 0, the
quantum dynamics of a linear triatomic molecule presents
a zero probability in the linear configuration [66]. On the
other hand, the corresponding classical dynamics is pla-
nar, thus not precluding this conformation. This issue was
first discussed by Watson [67], who proposed a dynami-
cal way to avoid the problem which consistent with our
simpler folding procedure. The zeroes of this function are
calculated using the procedure described in reference [68].

3 Results

3.1 Classical dynamics

We start this section by presenting our results concerning
the classical vibrational dynamics of our model for HCP.
Some Poincaré SOS for two different values of the excita-
tion energy are shown in Figure 2. The results presented
in the left panel correspond to Evib = 22.395 cm−1, an
energy slightly below the barrier for the HPC unstable
(saddle of the PES) linear configuration. At this value of
the energy, the system presents a clear mixed dynami-
cal regime, where regions of regularity (around the H–CP
well) coexist with a small region of chaos that is observed

Table 1. Eigenenergies corresponding to the states presented
in Figures 3–5.

n Evib (cm−1) (nR, nθ)
1 0 (0, 0)
2 1248.8 (0, 2)
3 2495.2 (0, 4)
4 3227.4 (1, 0)
5 3736.4 (0, 6)
6 4450.3 (1, 2)
7 4969.4 (0, 8)
8 5668.8 (1, 4)
9 6191.5 (0, 10)

10 6326.8 (2, 0)
11 6880.4 (1, 6)
12 7936.6 (0, 12)

in the outer region of the SOS, especially close to the
boundaries. In the regular region it is obvious the pres-
ence of two resonances. The most conspicuous one is seen
as a chain of islands corresponding to the 2:10 resonance
that appear close to the chaotic region. The other one,
that it is also observed at lower energies, corresponds to
a 2:16 resonance but the associated chain of island which
are located at smaller values of the angular coordinate, θ,
is unfortunately too narrow to be seen in the scale of the
figure. The right panel shows the results corresponding
to Evib = 27.381 cm−1, a bigger energy above the saddle
point of the PES. The dynamics here are more chaotic,
especially in the tube connecting the two linear configura-
tions, and this is noticed in the SOS that presents a larger
region of irregularity. The regular portion of the phase
space appears accordingly much reduced, and here a 2:14
resonance is visible.

3.2 Quantum results

We start this subsection by presenting respectively in Ta-
ble 1 and Figure 3 the eigenenergies and eigenfunctions of
the first twelve states of the HCP model. As can be seen,
all wavefunctions look very regular in the sense that they
present a very clear and well defined nodal pattern. Actu-
ally, quantum numbers can be easily and unambiguously
ascribed to all of them in a coordinate system consisting of
the MEP and the direction perpendicular to it. The corre-
sponding assignments of vibrational states has been added
as the last column to Table 1. Notice that in the notation
here we have approximated the corresponding coordinate
system to simply (R, θ).

The corresponding Husimi-based QSOS are shown in
Figure 4. Consequent with the simple structure shown by
the HCP eigenfunctions, the QSOS present also an struc-
ture easy to interpret. In particular, it can be seen that
all QSOS corresponding to states of the type (nR, 0), that
is states number n = 1, 4 and 10, appear centered at
the origin, where they show a big maximum. For states
excited along the angular coordinate, i.e. nθ �= 0 the
structure gets more complicated. Essentially, the quantum
quasi-probability density accumulates, for these states,
along the boundaries of the available phase space. But
there also appear a number of zeros in the inner part.
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Fig. 3. Eigenfunctions for the first twelve states of our model for HCP.

To discuss in more detail the physics associated with
these zeros, we have accurately computed [68] their loca-
tions, and the results are shown in Figure 5. As can be
seen one finds in all plots a number of zeros coincident
with the quantum number along the MEP, that we have
notated in an approximated way as nϑ. Namely, none for
states n = 1, 4 and 10 for which nϑ = 0, one for states
n = 2 and 6 for which nϑ = 1, two for states n = 3 and 8
for which nϑ = 2, three for states n = 5 and 11 for which
nϑ = 3, four for state n = 7 for which nϑ = 4, five for
state n = 9 for which nϑ = 5, and six for state n = 12
for which nϑ = 6. The conclusion is that for molecular
Hamiltonian systems like the one we are considering the
zeros of the Husimi function, projected here onto one of
the possible QSOS, seems to be a good criterium to or-
ganize the quantum states, in agreement with the conclu-

sions of Voros and coworkers in their papers on the stellar
representation [52].

One final comment is in order here before closing this
section. In our discussion we have only used the first
twelve vibrational states of HCP, a number that may
seem meager at first sight. However, we have done this
just for simplicity, since there are any other states with
completely similar characteristics to those presented here
in the hundredth that we have considered. Actually, one
can make this argument more quantitative and state that
among the set of eigenstates computed by us 67 of them
fall into this category of what can be called regular states,
the corresponding quantum numbers ranging from nR =
0–6 and nϑ = 0–20. The rest of interleaved states present a
more irregular and unassignable structure of the quantum
probability density.
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Fig. 4. Husimi-based quantum surfaces of section corresponding to the first twelve states of our model for HCP.

4 Summary

We have studied for the first time the distribution of
zeros corresponding to the vibrational dynamics of the
HCP molecule. For this purpose we have used a realistic
model with the dimensionality reduced to two degrees of
freedom introduced in a previous publication. The results
obtained in our numerical study indicate that these zeros
can be used to fully characterized (at least) the regular
quantum states, as suggested by Voros and coworkers in
their work on the stellar representation [52]. Moreover,
they coincide in this case very accurately with the posi-
tion of the intersection of the nodal planes with the MEP,
i.e. with the surface used in our calculations to construct
the classical and quantum SOSs.

These are important results since they will be used
in the future to explore other characteristics of quantum

states which are more subtle [69]. Namely, we plan to use
this method in the future to study in more detail the
relevance of homoclinic and heteroclinic quantized circuits
in the eigenfunctions. We have already shown the rela-
tion of such circuits with spectral and Husimi properties
of scarred states on classically chaotic systems [31–35].
Using the Voros’s stellar representation we think that it
should be possible to introduce new quantum numbers re-
lated with these circuits, following an idea put forward by
Ozorio de Almeida some time ago [70].
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Fig. 5. Location of the zeros of the Husimi-based quantum surfaces of section corresponding to the first twelve states of our
model for HCP.
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