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Meta-analysis of diagnostic studies experience the common problem that different studies might
not be comparable since they have been using a different cut-off value for the continuous or ordered
categorical diagnostic test value defining different regions for which the diagnostic test is defined to be
positive. Hence specificities and sensitivities arising from different studies might vary just because the
underlying cut-off value had been different. To cope with the cut-off value problem interest is usually
directed towards the receiver operating characteristic (ROC) curve which consists of pairs of sensitivities
and false-positive rates (1-specificity). In the context of meta-analysis one pair represents one study and
the associated diagram is called an SROC curve where the S stands for “summary”. In meta-analysis of
diagnostic studies emphasis has traditionally been placed on modelling this SROC curve with the intention
of providing a summary measure of the diagnostic accuracy by means of an estimate of the summary ROC
curve. Here, we focus instead on finding sub-groups or components in the data representing different
diagnostic accuracies. The paper will consider modelling SROC curves with the Lehmann family which
is characterised by one parameter only. Each single study can be represented by a specific value of that
parameter. Hence we focus on the distribution of these parameter estimates and suggest modelling a
potential heterogeneous or cluster structure by a mixture of specifically parameterised normal densities.
We point out that this mixture is completely nonparametric and the associated mixture likelihood is well-
defined and globally bounded. We use the theory and algorithms of nonparametric mixture likelihood
estimation to identify a potential cluster structure in the diagnostic accuracies of the collection of studies
to be analysed. Several meta-analytic applications on diagnostic studies, including AUDIT and AUDIT-C
for detection of unhealthy alcohol use, the mini-mental state examination for cognitive disorders, as well
as diagnostic accuracy inspection data on metal fatigue of aircraft spare parts, are discussed to illustrate
the methodology.

Key words: C.A.MAN, diagnostic testing, meta-analysis, sensitivity, specificity, summary receiver oper-
ating characteristic (SROC), summary statistics approach.

1. Introduction

Meta-analysis of diagnostic studies deals with the following situation. A number of stud-
ies are available each providing an estimate of the sensitivity of the diagnostic test (the prob-
ability that the test is positive given the person has the disease or the condition of interest)
and an estimate of specificity (the probability that the test is negative given the person does
not have the disease or the condition of interest). Available approaches in this setting focus
on the summary receiver operating characteristic (SROC) curve. This is done because a sim-
ple summary approach of sensitivity and specificity can be largely misleading. One of the
reasons for this potential bias is the cut-off value problem (described further below in de-
tail) which, in essence, means that biased inference occurs if the unobserved cut-off value
variation is ignored and not adjusted for. A widely accepted way to proceed is to focus on
the SROC curve, and previous approaches have provided various ways of doing so (Sutton,
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Abrams, Jones, Sheldon, & Song, 2000, Chapter 14; Egger, Smith, & Altman, 2001, Chap-
ter 14). Littenberg and Moses suggested to find an SROC curve by regressing the log-diagnostic
odds ratio onto a measure for cut-off value variation (Moses, Littenberg, & Shapiro, 1993;
Midgette, Stukel, & Littenberg, 1993) which has been generalised in the hierarchical receiver op-
erating characteristic (HSROC) by Rutter and Gatsonis (2001) by incorporating random effects
distributions on the parameters of the logistic regression model. A seemingly different approach
has been suggested by Reitsma, Glas, Rutjes, Scholten, Bossuyt, and Zwinderman (2005) adapt-
ing a bivariate normal regression model on the true logit-sensitivity and the true logit-specificity.
Harbord, Deeks, Egger, Whiting, and Stern (2007) point out the close similarities between the
HSROC and the bivariate normal random effects approach. In principle, all these approaches fo-
cus on providing an estimate of the SROC curve. Here, we focus instead on finding sub-groups
or clusters in the data which are similar in their diagnostic accuracy within each cluster or com-
ponent, but are different in their diagnostic accuracy across clusters or components. This will not
improve the diagnostic performance of the diagnostic device itself, but will deliver additional in-
sights into sources of potential variation in diagnostic accuracy. For example, the various located
clusters of diagnostic accuracy might be matched to a variation of the “gold standard” defined as
the way the disease or condition has been confirmed. In another scenario the estimated clusters
can be matched to the personnel applying the diagnostic device, and a need for additional training
in applying the diagnostic device might be indicated.

More precisely, we are interested in the following situation of meta-analysis of diagnos-
tic studies: a variety of diagnostic studies are available providing estimates of the diagnostic
measures of specificity (1 − u) = P(T = 0|D = 0) in the ith study as ûi = xi/ni (estimate of
false-positive rate) and of sensitivity p = P(T = 1|D = 1) in the ith study as p̂i = yi/mi (es-
timate of sensitivity), where D = 1 and D = 0 denote presence or absence of the condition of
interest, respectively, and T = 1 or T = 0 denote positivity (indicating presence of the condition)
or negativity (indicating absence of the condition) of the diagnostic test, respectively. Also, xi

are the number of false-positives out of ni individuals without the condition, yi are the number
of true positives out of mi individuals with the condition, for i = 1, . . . , k, k being the num-
ber of studies. For a more general introduction to meta-analysis of diagnostic studies see Sutton
et al. (2000; Chapter 14), Egger et al. (2001, Chapter 14), or Böhning, Holling, and Böhning
(2008). We illustrate the situation with a meta-analysis on the Michigan Alcoholism Screening
Test (MAST) for alcohol problems.

Example 1 (Meta-Analysis of Diagnostic Accuracy of the Michigan Alcoholism Screening Test
(MAST) for Alcohol Problems). Storgaard, Nielsen, and Gluud (1994) provide a meta-analysis
on the diagnostic accuracy of the Michigan Alcoholism Screening Test (MAST) for alcohol
problems which we report here in Table 1. The MAST was developed by Selzer (1971) in the
U.S.A. and was originally composed of 25 questions. The result of the test is a score, and a
cut-off value is used to decide if the test is positive (presence of alcohol problems) or negative
(absence of alcohol problems). See also Martin, Liepman, and Young (1990) for further details.

1.1. The Cut-Off Value Problem

A separate meta-analysis of sensitivity and specificity using the meta-analytic tools for in-
dependent binomial samples is problematic when the underlying diagnostic test is continuous or
ordered categorical (as in the case of the MAST), and different cut-off values have been used in
different diagnostic studies. A simple variation of the cut-off value from study to study might
lead to quite different values of sensitivity and specificity without any actual change in the diag-
nostic accuracy of the underlying continuous test. This is also called the cut-off value problem.
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TABLE 1.
Meta-analysis of diagnostic accuracy of the Michigan Alcoholism Screening Test (MAST) for alcohol problems. (TP
= true positive; FP = false positive; TN = true negative; FN = false negative; See Storgaard et al. 1994, for reference
citations for listed studies.)

Study i Alcohol problems No alcohol problems ni + mi

yi (TP) mi − yi (FN) ni − xi (TN) xi (FP)

Moore 1972 125 3 192 31 351
McAuley 1978 14 1 35 25 75
Zung 1980 9 1 29 52 91
Zung 1982 21 3 48 48 120
Searles 1990 36 5 9 20 70
Benussi 1982 56 0 45 3 104
Yersin 1989 38 16 197 17 268
Selzer 1971 114 2 98 5 219
Breitenbucher 1976 60 10 138 44 252
Rounsaville 1983 79 60 216 30 385
Magruder–Habib 1983 63 29 222 55 369
Mischke 1987 23 20 43 4 90
Garzotto 1988 72 3 69 8 152
Sokol 1989 15 27 892 37 971
Ross 1990 240 5 146 110 501
Zung 1982 20 4 62 34 120
Zung 1982 20 4 66 30 120
Zung 1982 20 4 72 24 120
Rounsaville 1983 50 10 267 58 385

This situation is illustrated in Figure 1 for a continuous outcome T which is normally distributed
in the two populations. Moving the cut-off value c in Figure 1 will clearly change sensitivity
and specificity (in opposite ways), whilst the ability of the test to separate the two populations is
unchanged. Hence it is often argued that a meta-analysis of diagnostic studies requires the cut-off
value to be invariant across studies. This requirement, however, does not let the cut-off problem
disappear entirely. This becomes clear when thinking of a situation in which the cut-off value is
kept identical but the populations with and without the condition experience some shift. Clearly,
this affects sensitivity and specificity in a similar manner as a variation of the cut-off itself would.

1.2. Background of Meta-analysis for Diagnostic Studies

Because of this comparability problem for sensitivity and specificity interest is usually fo-
cussed on the summary receiver operating characteristic (SROC) curve consisting of the pairs
(u(t),p(t)) where u(t) = P(T ≥ t |D = 0) and p(t) = P(T ≥ t |D = 1) for a continuous test T

with potential value t . Consider k possible unknown cut-off values t1, . . . , tk then the pairs
(u(ti),p(ti)) can be estimated by

(ûi , p̂i) = (xi/ni, yi/mi)

for i = 1, . . . , k. The SROC curve copes with the cut-off value problem. Different pairs could
have quite different values of specificity and sensitivity, but still reflect identical diagnostic ac-
curacy. The SROC diagram for the meta-analysis of the MAST data is provided in Figure 2.

Clearly, there is a wide range of values for specificity and sensitivity. Nevertheless, as Fig-
ure 2 shows, it cannot be concluded that the pairs might stem from one common SROC curve,
from two or more different SROC curves. Hence we are interested in exploring the cluster struc-
ture of the SROC diagram. This is approached in the following way. Consider the pair (p̂i , ûi)
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FIGURE 1.
Diagnostic situation illustrated with two normal distributions: one has mean 0 and variance 1 (population without the
condition), the other has mean 2 and variance 4 (population with the condition).

FIGURE 2.
SROC diagram for meta-analysis of the MAST data of Table 1.

of estimated sensitivity and estimated false-positive rate in study i, for i = 1, . . . , k. We will
argue in the next section that θ̂i = log p̂i/ log ûi is a reasonable summary measure of the diag-
nostic accuracy of study i. Note that we are referring to a summary measure of sensitivity and
specificity for one study not to a summary measure over all studies. Ultimately, we will base our
analysis on log θ̂i = log(− log p̂i) − log(− log ûi ) which is interesting for at least two reasons.
First, it brings the proposed accuracy measure into the framework of a well-known link function:
log θ̂i is the difference of sensitivity and specificity of study i in the complementary log–log link-
function space. Note that the complementary log–log transformation is a popular link function in
generalised linear models (McCullagh & Nelder, 1989). Second, as we will argue later, log θ̂i is
typically closer to a normal distribution than θ̂i itself. Now, given diagnostic accuracy measures
log θ̂i , for i = 1, . . . , k, one could proceed in a conventional meta-analytic way by assuming a
normal distributional model for logΘi (representing the random variable with realisation log θ̂i )

as follows:

logΘi = μ + δi + εi . (1)



110 PSYCHOMETRIKA

Here μ is a fixed parameter, whereas δi is a normal random effect with mean zero and unknown
variance τ 2, and εi is a normal random error with mean zero and known study-specific variance
σ 2

i , with random effect and random error being independent. This is the meta-analytic random
effects model which goes back to DerSimonian and Laird (1986) and has received various modifi-
cations (primarily with respect to estimation). For an overview see Sidik and Jonkman (2005). If
we assume τ 2 = 0, we obtain the simple fixed effects model. Whether we are in the random effects
or in the fixed effects model, the estimate for μ will provide an overall measure of the diagnostic
accuracy of the diagnostic test or device under study. Inference between the fixed effects and the
random effects models differs typically with respect to the confidence interval which is larger for
the latter. Although this is an interesting approach that allows the reduction of a complex, bivari-
ate problem to a simpler, univariate one, we do not wish to explore this further. Instead, we intend
to propose a novel approach in this context which allows the estimation of the random effects
distribution itself (and not restricting ourselves to first and second moments as the DerSimonian–
Laird method does). We will follow the nonparametric likelihood approach (Böhning, 2000;
Lindsay, 1995; Laird, 1978) to find an estimate of the random effects distribution. This estimate
will always be discrete and hence has a cluster interpretation. These clusters of different diag-
nostic accuracy might have different interpretations; for example, they might represent different
gold standards which have been used in different studies. In another situation, the condition is
varied for which the same diagnostic test is used which then might explain the observed cluster
structure. For example, the Mini-Mental-State Examination is used to diagnose schizophrenia.
However, it is also used to diagnose mild cognitive impairment—with a lower diagnostic accu-
racy. Hence, if it is possible in practice to match relevant covariates to estimated clusters, the
proposed likelihood-based clustering procedure will help practitioners to evaluate a given diag-
nostic test.

2. The Lehmann Model

Le (2006) suggests modelling the relationship between sensitivity and false-positive rate
using the Lehmann family,

p = uθ . (2)

The Lehmann model has a number of nice properties including that p ∈ [0,1] if u ∈ [0,1] for
θ > 0. Recall that p = P(T = 1|D = 1) is the sensitivity and u = P(T = 1|D = 0) is the true
false-positive rate of the diagnostic test. Hence, the Lehmann model represents a feasible repa-
rameterisation of the SROC curve. In addition, the parameter θ is easily interpreted as represent-
ing diagnostic accuracy. The smaller the value of θ , the higher the diagnostic accuracy. Also,
two diagnostic tests represented by two different θ values can easily be compared. In addition,
other measures of interest, such as the area under the curve (AUC), can easily be derived as
AUC = ∫ 1

0 uθ du = 1/(1 + θ). Model (2) is also called a proportional hazards model (PHM)
since it assumes that the ratio of log-true-positive rate and log-false-positive rate is constant:
logp(t)/ logu(t) = θ .

There are various reasons why model (2) is appealing. Recall that we only have one pair
(p̂i , ûi ) of sensitivity and false-positive rate available from each study. In the SROC space (on
log-scale) this pair is represented by one point. Clearly, infinitely many lines pass through this
point; in other words, a straight line model is not identifiable within study i. However, a straight
line that passes through the origin is uniquely characterised by the pair of observations we have
from the study. Hence, the model logp = θ logu is identifiable within each study. This is an
important property which makes the model preferable to other models, in particular those which
are not identifiable. However, it is also clear that it is not the only identifiable model in this
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situation. To mention at least one further example, consider p = α∗u which is in the log space
logp = logα∗ + logu = α + logu. Here the model has a free intercept parameter and a fixed
slope parameter constrained to be one. However, the model is less appealing than the PHM: α∗
is restricted to values between 0 and 1, and p will be bounded by a number less than one if α∗ is
smaller than one which is undesirable.

In the following we are interested in inference for θ in the PHM (2). Note that we are able
to fit exactly one model (2) to each of the k pairs (p̂i , ûi) to yield k ROC curves. Under (2) it
is possible to write θ = logp/ logu, so that we are able to construct k estimates of θ and log θ ,
namely θ̂i = log p̂i/ log ûi = zi/wi and log θ̂i = log(−zi) − log(−wi), for i = 1, . . . , k. Here, let
zi = logyi − logmi and wi = logxi − logni , so that zi is the log-true-positive rate and wi is the
log-false-positive rate. Under the assumption that these θ̂i and log θ̂i are realisations of a random
variable Θi and logΘi , respectively, we are able to base our analysis on these summary statistics.
Note that these estimates, θ̂i and log θ̂i , are available for each individual study; and the parameter
in model (2) is identifiable in each study. This is in contrast to other approaches which use more
than one parameter to model sensitivity and false-positive rate (Rutter & Gatsonis, 2001).

It remains to derive estimates of Var(logΘi). For what follows we will use that the associated
estimated variances for the log-proportions are provided as

V̂ar(log p̂i) = V̂ar
(
log(yi/mi)

) = s2
i = 1

yi

− 1

mi

, (3)

V̂ar(log ûi ) = V̂ar
(
log(xi/ni)

) = t2
i = 1

xi

− 1

ni

, (4)

assuming that yi > 0 and xi > 0 for i = 1, . . . , k. We use the δ-method to achieve

V̂ar(logΘi) ≈ V̂ar log(−zi) + V̂ar log(−wi) (5)

≈
(

s2
i

z2
i

+ t2
i

w2
i

)

= s2
i

w2
i

+ z2
i t

2
i

w4
i

:= σ 2
i . (6)

There are two problems with these estimated variances. Typically, samples sizes per study are
large, so that these estimates are expected to be fairly accurate. However, some of the xi or yi

could be zero. This can be handled by replacing 0 by 0.5 and increasing the associated sample
size by one. Similarly, if some of the xi or yi are equal to ni or mi , respectively, the associated
sample size is increased by one as well.

3. Nonparametric Mixture Model

We assume that we have k realisations θ̂1, . . . , θ̂k of associated k random variables
Θ1, . . . ,Θk available with known variances σ 2

1 , . . . , σ 2
k , respectively. To model the cluster struc-

ture involved in SROC diagram with the k observations, we assume the following mixture model
for the logΘi :

logΘi ∼
J∑

j=1

qj

1

σi

φ

(
log θ − λj

σi

)

, (7)

where φ(x) = exp(−x2/2)/
√

2π is the standard normal density and qj are non-negative weights
summing to one. We use here the log transformation since we found a better fit under homogene-
ity (J = 1) for the log-normal in comparison to the normal distribution. Note that also λ = log θ

is on the log-scale of diagnostic accuracy.
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The mixture kernel in (7) has good properties. Note that the variances are known and study-
specific. Hence we have a bounded mixture likelihood and a global maximum can be found. This
is in contrast to problems where the mixture kernel has unknown variance parameters in each
component and the likelihood becomes unbounded (Böhning, 2000; Lindsay, 1995). Also, there
is a problem in the case of a common variance parameter since if the number of components J

increases the variance parameter estimate becomes arbitrarily small and the problem ill-posed
(Böhning, 2000). All these problems do not exist here since the underlying binomial structure
induces a variance–mean functional relationship that we exploit here. Hence we can consider the
likelihood

L = L(Q) =
k∏

i=1

J∑

j=1

qj

1

σi

φ

(
log θ̂i − λj

σi

)

=
k∏

i=1

J∑

j=1

qjfi(log θ̂i , λj ), (8)

where fi(x,λ) = 1
σi

φ( x−λ
σi

). Note that the mixture kernel has a study-specific form since a study-
specific variance term is included. The likelihood L(Q) is a function of 2J − 1 parameters, and
Q is typically written as a parameter matrix with J columns and 2 rows,

Q =
(

λ1, . . . , λJ

q1, . . . , qJ

)

,

where λ1, . . . , λJ are the component means and q1, . . . , qJ the component weights. Note that
there are only J − 1 free weights because of the restriction q1 + · · · + qJ = 1. We can also
interpret Q as a discrete probability distribution given weight qj to component mean θj .

As a sideline note that E(Q) = ∑J
j=1 qjλj = μ and Var(Q) = ∑J

j=1 qj (λj − μ)2 = τ 2

where μ and τ 2 are identical to those given in (1). Having estimated Q this will also supply esti-
mates of μ and σ 2. Hence, we are also able to provide a pooled estimate of diagnostic accuracy
with a confidence interval without assuming normality for the random effects distribution.

We further point out that J is not fixed but is itself estimated. The likelihood L(Q) needs to
be maximised in the set Ω of all discrete probability measures:

Ω =
{

Q =
(

λ1, . . . , λJ

q1, . . . , qJ

)∣
∣
∣
∣J = 1,2,3, . . .

}

.

The log-likelihood logL(Q) is concave on Ω and can be globally maximised. The associated
mixture distribution Q̂ which maximised the likelihood globally is called the nonparametric
maximum likelihood estimator (NPMLE). Fundamental work on the geometry of the mixture
likelihood has been provided by Lindsay (1983) although the consistency result goes back al-
ready to Kiefer and Wolfowitz (1956). It has been applied in a variety of areas including non-
parametric random effects modelling (Aitkin, 1999a; Skrondal & Rabe-Hesketh, 2004; Rabe-
Hesketh, Pickles, & Skrondal, 2003), meta-analysis (Aitkin, 1999b; Böhning, 2000) or disease
mapping (Clayton & Kaldor, 1987). An important tool for finding the NPMLE is the gradient
function, defined as

d(λ,Q) = 1

k

k∑

i=1

fi(log θ̂i , λ)
∑J

j=1 qjfi(log θ̂i , λj )
. (9)

A fundamental result states that Q̂ is NPMLE if and only if the gradient function is bounded by
1: d(λ, Q̂) ≤ 1 (Lindsay, 1983). This results allows us to check in a simple way if the NPMLE
has been reached.

Computationally, the NPMLE can be easily computed using the software C.A.MAN (Böh-
ning, Dietz, & Schlattmann, 1998). Note that the NPMLE is always discrete, and usually only a
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TABLE 2.
Likelihood-based cluster analysis of the MAST meta-analysis: Cluster analysis starts with the NPMLE (J = 4) and
provides for each number of components J the estimated mixing distribution with associated log-likelihood, AIC and
BIC.

Study n P J Weight Mean log-L AIC BIC

MAST 19 7 4 0.1281 −4.2214 −23.3376 60.68 67.29
0.1367 −4.1948
0.3186 −2.0515
0.4166 −1.3548

5 3 0.2648 −4.2075 −24.3373 58.67 63.40
0.3186 −2.0515
0.4166 −1.3548

3 2 0.2675 −4.2073 −26.2915 58.58 61.42
0.7325 −1.5370

1 1 1.0000 −1.7474 −58.9445 119.89 120.83

small number of components J are required. Hence, for inferential purposes we compute mixture
models for all number of components starting with J = 1, J = 2, and so forth until the NPMLE
is reached. For fixed number of components J we use the EM algorithm (Dempster, Laird, &
Rubin, 1977) with gradient function update as described in Böhning (2003) to avoid sub-optimal
local maxima.

The number of components J needs to be selected. We look at two criteria: the Akaike
Information Criterion (AIC), defined as

AIC = −2 logL + 2(2J − 1),

and the Bayesian Information Criterion (BIC), defined as

BIC = −2 logL + (2J − 1) logk.

These are the simplest ones out of a huge diversity of possible choices (Ray & Lindsay, 2008;
McLachlan & Peel, 2000). Note that both criteria involve the number of unknown parameters
P in the model: P = 2J − 1. Empirical evidence based upon simulation work has shown that
the BIC often performs best, whereas the AIC suffers under similar singularity problems as the
likelihood ratio. Nevertheless we report both criteria for all data analysed here.

Table 2 shows the results achieved by C.A.MAN for all components until the NPMLE is
reached with J = 4 components. Both criteria select the mixture model with J = 2 components.
Note that 27% of the studies go to the component with high diagnostic accuracy, whereas the rest
are allocated to the component with lower diagnostic accuracy.

The question remains how the individual studies are actually classified into the various com-
ponents. We follow the conventional maximum posterior probability rule. If one thinks of the

estimate Q̂ = ( λ̂1, . . . , λ̂J

q̂1, . . . , q̂J

)
as an estimated prior distribution in an empirical Bayesian sense, then

f̂ij = fi(log θ̂i , λ̂j )
∑J


=1 q
fi(log θ̂i , λ̂
)
(10)

is the estimated posterior for study i. Note that f̂j |i = f̂ij is a discrete probability distribution for
each study i, i = 1, . . . , k. The maximum posterior probability (MAP) rule assigns study i into
component j for which

f̂j |i = J
max

=1

f̂
|i .



114 PSYCHOMETRIKA

FIGURE 3.
SROC diagram for meta-analysis of the MAST data of Table 1 with classifications of studies into mixture components
according to the MAP rule; the dashed, black curve p = uθ represents the high accuracy component with θ = exp(−4.21)

whereas the dotted, red curve p = uθ represents the lower accuracy component with θ = exp(−1.54).

Figure 3 shows the classification of the studies of MAST meta-analysis into the two components.

4. Applications

4.1. AUDIT and AUDIT-C for Alcohol Disorders

One of the most frequently recommended instruments (including a recommendation from
the WHO) for screening for all forms of unhealthy alcohol use (risky drinking, alcohol abuse,
alcohol dependence) is the Alcohol Use Disorder Identification Test (AUDIT). The full AUDIT
consists of 10 items and has been extensively investigated in several settings and countries (Rein-
ert & Allen, 2002). Here we look at a meta-analysis provided by Kriston, Hölzel, Weiser, Berner,
and Härter (2008). The data are provided in Table 7 in the Appendix, and the associated SROC
curves are provided in Figure 4. Kriston et al. (2008) consider in their meta-analysis, besides the
AUDIT itself, also the consumption part of the AUDIT, called the AUDIT-C. The background
of this is as follows. Since the diagnostic instrument is designed to be applied to a large num-
ber of people it is beneficial to have a short instrument available. The AUDIT-C uses only the
three items of the original AUDIT related to alcohol intake and there is evidence that this 3-item
version is also appropriate to screen for unhealthy alcohol use (Reinert & Allen, 2002). In Ta-
ble 7 we reproduce the data in Kriston et al. (2008) on 14 studies using the AUDIT-C. Here the
question of interest is if the AUDIT-C represents a similar diagnostic accuracy as the original
AUDIT. The associated SROC diagrams are provided in Figure 5. Both meta-analyses show a
similar cluster structure with J = 3 components or clusters being identified. Both show a similar
component with low diagnostic accuracy. Both have also a similar mean diagnostic accuracy as
estimated by the mean of the respective mixing distribution, but evidently the mixing distribution
for AUDIT-C has the large variance, hence AUDIT-C shows more heterogeneity.

4.2. Mini-mental State Examination for Dementia

In the following we consider a meta-analysis by Mitchell (2009) on the mini-mental state
examination (MMSE) as a diagnostic test for the detection of dementia. The data are reproduced
in Table 8 in the Appendix in a form that allows a reanalysis with the methods developed here.
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TABLE 3.
Likelihood-based cluster analysis of the AUDIT and AUDIT-C meta-analysis: Cluster analysis starts with the NPMLE
(J = 4 in both cases) and provides for each number of components J the estimated mixing distribution with associated
log-likelihood, AIC and BIC.

Study n P J Weight Mean log-L AIC BIC

AUDIT 14 7 4 0.3577 −2.6472 −8.1679 30.3357 34.8091
0.4187 −2.2287
0.2164 −1.7817
0.0071 −1.7813

5 3 0.3577 −2.6472 −8.7168 27.4336 30.6289
0.4187 −2.2290
0.2236 −1.7817

3 2 0.4053 −2.6365 −12.1819 30.3638 32.2810
0.5947 −2.0797

1 1 1.0000 −2.1523 −14.9285 31.8569 32.4960
AUDIT-C 14 7 4 0.0880 −6.3314 −17.9138 49.8275 64.3009

0.1648 −3.5694
0.4516 −2.4488
0.2956 −1.7164

5 3 0.1121 −6.1367 −18.3351 46.6702 49.8655
0.5872 −2.5170
0.3007 −1.7180

3 2 0.6913 −2.5676 −20.3757 46.7513 48.6685
0.3087 −1.7208

1 1 1.0000 −1.9724 −30.2533 62.5065 63.1456

FIGURE 4.
SROC diagram for meta-analysis of the AUDIT data of Table 3 with classifications of studies into mixture components
according to the MAP rule; the three curves represent the Lehmann model p = uθ for the three component means found
in Table 3 with θj = exp(λj ) for j = 1,2,3.

Note that one dementia study had to be excluded from the analysis since it was impossible to
calculate the frequencies of true positives, false positives, true negatives and false negatives. This
let k = 33 remain in the meta-analysis for further evaluation. The NPMLE is found here with
J = 3 which is also the best choice according to both AIC and BIC. For details see Table 4. About
37% of the studies are allocated to a low diagnostic accuracy component of θ = exp(−1.63) =
0.20 which corresponds to an AUC of 0.84, whereas 30% go to a component of moderate good
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FIGURE 5.
SROC diagram for meta-analysis of the AUDIT-C data of Table 3 with classifications of studies into mixture components
according to the MAP rule; the three curves represent the Lehmann model p = uθ for the three component means found
in Table 3 with θj = exp(λj ) for j = 1,2,3.

TABLE 4.
Likelihood-based cluster analysis of the MMSE-Meta-Analysis: cluster analysis starts with the NPMLE (J = 3) and
provides for each number of components J the estimated mixing distribution with associated log-likelihood, AIC and
BIC.

Study n P J Weight Mean log-L AIC BIC

DEMENTIA 33 5 3 0.3332 −2.9703 −33.2562 76.5125 83.9950
0.2928 −2.3585
0.3740 −1.6348

3 2 0.5239 −2.7469 −39.8383 85.6766 90.1661
0.4761 −1.6964

1 1 1.0000 −2.1400 −91.5335 185.0670 186.5635

accuracy of θ = exp(−2.36) = 0.09 corresponding to an AUC of 0.91, and 33% are allocated to
a component with high accuracy of θ = exp(−2.97) = 0.05 corresponding to an AUC of 0.95.
The associated SROC curves are provided in Figure 6.

4.3. Meta-analysis on Inspection Data of the Diagnostic Accuracy of Technicians for
Inspecting Aircraft Specimens for Metal Fatigue

Our final example shows a different perspective on how this methodology can be used to
identify groups of people with different ability in fulfilling their assigned objectives. This can
be crucial in the example we are looking at, since the safety of numerous people will depend
on the accurate execution of assigned tasks. Also, it might be helpful in identifying groups of
people with a need for additional training and educations. Swets (2009, p. 137) discusses data
on inspection of aircraft for metal fatigue. In this study, 148 meta specimens with and without
flaws were carried to 17 bases of the U.S. AirForce, where they were inspected for defects. Two
techniques were used: ultra-sound and eddy-current, the latter showing the higher diagnostic
accuracy so that we concentrate here on this technique. We were able to reconstruct the data for
106 technicians from the figures given in Swets (2009, p. 138) and assume that the 27 missing
data are missing at random, so that no systematic bias can be expected. In contrast to the previous
analysis, here the technician takes the role of the study and each technician produces 148 test data
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FIGURE 6.
SROC diagram for meta-analysis of the MMSE data of Table 4 with classifications of studies into mixture components
according to the MAP rule; the three curves represent the Lehmann model p = uθ for the three component means found
in Table 4 with θj = exp(λj ) for j = 1,2,3.

FIGURE 7.
SROC diagram for meta-analysis of the inspection data of Table 5 with classifications of studies into mixture components
according to the MAP rule; the five curves represent the Lehmann model p = uθ for the five component means found in
Table 5 with θj = exp(λj ) for j = 1, . . . ,5.

(item faulty or item not-faulty). Hence we are interested in investigating the performance of the
106 technicians with respect to their heterogeneity in diagnostic accuracy.

The analysis is provided in Table 5. There is clear evidence of a cluster structure consisting
of J = 5 components. This is also the NPMLE which is clearly confirmed by both AIC and BIC.
There are two groups with high and moderately high diagnostic accuracy, exp(−3.93) = 0.02
and exp(−3.06) = 0.05, corresponding to AUCs of 0.98 and 0.96. In contrast there are groups of
technicians with very low and low diagnostic accuracy, exp(−0.19) = 0.83 and exp(−0.98) =
0.38, corresponding to AUCs of 0.55 and 0.73. These two groups appear to be well separated
from the rest. Note that the smallest attainable value for the AUC is 0.5 which is achieved for
θ = 1. This implies that the diagnostic accuracy in Group 5 is indeed very low (see Figure 7) and,
if this would occur in a timely application, this group would definitely need additional training.
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TABLE 5.
Likelihood-based cluster analysis of the Meta-Analysis on inspection data of the diagnostic accuracy of 106 techni-
cians using the eddy-current technique for inspecting aircraft specimen for metal fatigue: cluster analysis starts with
the NPMLE (J = 3) and provides for each number of components J the estimated mixing distribution with associated
log-likelihood, AIC and BIC.

Study n P J Weight Mean log-L AIC BIC

eddy-current 106 9 5 0.0839 −3.9267 −165.72 349.45 373.42
0.2715 −3.0576
0.3480 −2.0740
0.2000 −0.9821
0.0966 −0.1947

7 4 0.1005 −3.8594 −185.37 384.75 403.39
0.2756 −2.9870
0.3468 −2.0066
0.2770 −0.6806

5 3 0.3432 −3.2224 −186.94 383.89 397.20
0.3772 −2.0473
0.2796 −0.6853

3 3 0.6961 −2.4466 −236.95 479.91 487.90
0.3039 −0.7392

1 1 1.0000 −1.6415 −452.54 907.07 909.74

5. Model Fit and Appropriateness of Approach

The proposed approach is not without assumptions. Two aspects need to be clearly distin-
guished. The first aspect is that the approach uses the summary measure θ of sensitivity and
false-positive rate for each of the available studies, so that for k studies we achieve k summary
estimates θ̂1, . . . , θ̂k . This is equivalent of assuming the validity of Equation (2), p = uθ , within
each of the k studies. The second aspect is that, conditional upon the validity of the summary
measure, it is assumed that log θ̂i is normally distributed within each study i, but allowing arbi-
trary heterogeneity between studies. We comment on both aspects in the following.

Appropriateness of the Lehmann Model Within Each Study Given that sample sizes within
each diagnostic study are typically at least moderately large, it seems reasonable to assume a
bivariate normal distribution for log p̂ and log û with means logp and logu as well as variances
σ 2

p and σ 2
u , respectively, and covariance σ with ρ = σ/(σpσu). This is very similar to the as-

sumptions in the approach taken by Reitsma et al. (2005) (see also Harbord et al., 2007) with the
difference that we are using the log transformation whereas in Reitsma et al. (2005) logit trans-
formations are applied. Then it is a well-known result (Ross, 1985, p. 127) that the conditional
mean of the random variable log p̂ (having unconditional mean logp) conditional upon the value
of the random variable log û (having unconditional mean logu) is provided as

E(log p̂| log û) = logp + ρ
σp

σu

(
log(û) − log(u)

)
,

which can be written as α + θ log(û) where α = log(p) − θ log(u) and θ = ρ
σp

σu
. This is an

important result since it means that, in the log space, sensitivity and false-positive rate are linearly
related. Furthermore, if α is zero the Lehmann model arises.

The question then arises why not work with a straight line model logp| logu = α + θ logu.
The answer is that such a model is not identifiable since we have only one pair of sensitivity
and specificity observed in each study and it is not possible to uniquely determine a straight
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TABLE 6.
Performance of the three straight line models for the 10 studies involved in the CAGE meta-analysis data (Aertgeerts et
al., 2004): full model, logp = α+θ logu; slope-only model, logp = θ logu; and intercept-only model, logp = α+ logu;
SSE = error sum of squares.

Study Full model Slope model Intercept model
SSE R2% SSE% R2% SSE R2%

1 0.165 81.750 0.312 65.464 2.905 0.000
2 0.336 74.575 0.470 64.471 2.980 0.000
3 0.042 93.976 0.138 80.026 1.258 0.000
4 0.009 98.630 0.115 82.940 3.416 0.000
5 0.114 93.463 0.422 75.781 0.543 68.807
6 0.143 89.946 0.449 68.433 1.599 0.000
7 0.005 98.973 0.103 79.374 2.994 0.000
8 0.323 87.194 0.382 84.843 2.473 1.982
9 1.633 48.592 1.959 38.305 2.460 22.539

10 0.029 99.140 0.245 92.776 1.887 44.421

line by just one pair of observations as there are infinitely many possible lines passing through
a given point in the logp–logu space. However, the Lehmann model as a slope-only model
is identifiable. However, it is not the only identifiable model. For example, the multiplicative
model p = α∗u is identifiable as well as an intercept-only model logp = α + logu. However,
both of these models would give a perfect fit since there are no degrees of freedom left for
testing the model fit. The situation changes when there are repeated observations of sensitivity
and specificity per study available. These meta-analyses with repeated observations of sensitivity
and specificity according to cut-off value variation are very rare, but they exist. One of these rare
examples is the CAGE meta-analysis (Aertgeerts, Buntinx, & Kester, 2004) which we will use
as a benchmark data set to investigate for the appropriateness of the approach. CAGE is a further
instrument for screening the general population for alcohol abuse and dependence. It is a simple
instrument consisting of a questionnaire with 4 questions. What makes this meta-analysis so
unique is the fact that for each of the k = 10 studies included sensitivities and specificities are
provided. The data are documented in Table 9. Here, a straight line model is identifiable which
we consider as a benchmark model. We fitted three models for these data: the straight line model
(usually not identifiable), the slope-only model (2) and the intercept-only model. We use standard
measures of performance from regression analysis including R2 = 1 − SSE

SSTOT × 100 where SSE
and SSTOT are the usual sum-of-squares from the ANOVA table. The results are presented in
Table 6. Note that often the intercept-only model shows more variation in its fitted values than
the observed variation leading to zero-percentage of explained variance. We find the Lehmann
model (2) performs remarkably well in comparison to the full straight line model (again the
latter not being identifiable in most cases). Clearly, the performance of the intercept-only model,
although identifiable, is rather poor.

Appropriateness of the Normal Mixture Kernel The nonparametric mixture model (7) does
not make any assumption on the mixing distribution of log θ . One can think of this mixing dis-
tribution as a random effects distribution of the random effect diagnostic accuracy as measured
by log θ . In other words, we make no assumption on this random effect distribution; it is left
unspecified. The random effects distribution might be normal or it might be something else. In
any case, since it is an unobserved distribution it will be difficult to diagnose. However, leaving
the random effects distribution unspecified will always guarantee a likelihood at least as large
as any specified distribution (for further details see Skrondal & Rabe-Hesketh, 2004, or Böhn-
ing, 2000). In addition, it can be shown that the nonparametric maximum likelihood estimator



120 PSYCHOMETRIKA

FIGURE 8.
Probability plots for a sample of estimates of the diagnostic accuracy parameters and three transformations; number of
studies is 25 and the mean within-study sample size is 25; the plots also include the Anderson–Darling test (measuring
goodness-of-fit) with associated p-values.

of this unspecified distribution is always discrete (Lindsay, 1995) and, as such, very much ap-
propriate for a cluster-analytic interpretation. This means also that no other mixing or random
effects distribution exists which would be able to provide a better fit. However, the nonpara-
metric mixture model (7) has as another element: the mixture kernel. Whilst we would like to
remain in the normal distributional framework, it is a matter of choice whether to work with the
untransformed parameter θ itself or use the log-transformed value which we did in our analysis,
or something else. Clearly, assuming within-study validity of the Lehmann model, it is desirable
to have the arising estimate of the diagnostic accuracy close to normality in distribution. To pro-
vide some answer to the question which transformation to use we looked at the following four
cases: the untransformed θ , the log transformation log θ , the logit transformation log(θ/(1− θ)),
and the complementary log–log transformation log(− log(1 − θ)), the latter assuming θ ∈ (0,1).
A simulation study was designed to mimic the reality of meta-analysis of diagnostic studies. The
number k of studies was selected to be k = 25,50,100. A number of sample sizes where gen-
erated ni,mi arising from a Poisson with mean 25, 50, 100 to mimic sample size variation of
the studies involved in the meta-analysis. A baseline heterogeneity was assumed for the false-
positive rate in that ui was sampled from a uniform distribution with interval ends 0.05 and
0.5: ui ∼ U [0.05,0.5]. From here the sensitivity pi was calculated according to the Lehmann
model (2), and finally yi was sampled from a binomial with size parameter ni and event parame-
ter pi , whereas xi was sampled from a binomial with size parameter mi and event parameter ui .
From here the sample of diagnostic accuracy parameters θ̂1, . . . , θ̂k as well as the transformations
of interest could be determined. Differences in the resulting distributions, in particular in their
closeness to the normal distribution, did occur only for small within-study sample sizes, whereas
the results were fairly stable when the number of studies was varied. In addition, for the larger
sample sizes such as 50 and 100, all transformations given samples with a distribution close to
normality, even the untransformed data values θ̂i were distributionally well behaved. Differences
mainly occurred for the small sample sizes. Figure 8 shows the probability plots for k = 25 and
mean within-study sample size 25. There is evidence that the untransformed sample is not normal
since the Anderson–Darling test is highly significant, whereas all other transformations achieve
transformed data closer to normality with best results for the log transformation.
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6. Discussion

The approach is attractive since it is based on a simple measure of diagnostic accuracy per
study—the ratio of log-sensitivity to log-false-positive rate. It was pointed out by one reviewer
that the estimate of the ROC curve based on only one pair is very sensitive to the location of
the point (p,u) in the ROC space, in particular, if this point falls into the vicinity of (0,0) or
(1,1), the lower left corner and the upper right corner, respectively, of the ROC square. This is
certainly a weakness of the approach. To diminish this sensitivity to extreme points, a smoothing
constant of 0.5 has been used whenever the binomial event count was zero which helps, jointly
with transforming proportions into the log space, to stabilise the proportion estimator as well as
its variance (Sweeting, Sutton, & Lambert, 2004; Böhning & Viwatwongkasem, 2005).

Heterogeneity is of primary interest in general meta-analysis and typically approached by
adjusting summary estimates in terms of their weights and increased variance by an estimate
of the variance of a random effect distribution which is thought of modelling the heterogene-
ity present in the meta-analysis (Hedges & Olkin, 1985; Hunter, Schmidt, & Jackson, 1982;
Cooper & Hedges, 1994; Schulze, Holling, & Böhning, 2003; Sutton et al., 2000; Whitehead,
2002). An early contribution in this direction is the work by Dersimonian and Laird (1986). Other
papers followed in this direction including Hardy and Thompson (1996, 1998), Biggerstaff and
Tweedie (1997), Brockwell and Gordon (2001), and Böhning et al. (2002). However, approaches
exploring the random effects distribution in more detail are less frequent. A likelihood-based
cluster analysis has been suggested by Aitkin (1999a, 1999b), Böhning et al. (1998), and Kuh-
nert and Böhning (2007) for exploring the structure in a meta-analysis at hand. Although this
approach also provides estimates of the overall mean as well as the heterogeneity variance using
the mean and variance of the estimated mixing distribution, respectively, the approach is much
more powerful in terms of providing a full modelling of the random effects distribution, including
an allocation of studies into the various components (clusters).

Meta-analysis of diagnostic studies is a relatively young discipline with pioneering pa-
pers going back to Hasselblad and Hedges (1995) and Irwig, Tosteson, Gatsonis, Lau, Colditz,
Chalmers, and Mosteller (1994, 1995). A state-of-the-art review on meta-analysis of diagnostic
testing is provided by Gatsonis and Paliwal (2006) and Macaskill, Glasziou, and Irwig (2005),
both pointing out the importance of the SROC concept for the area of interest. Random effects
modelling in the SROC context has been approached by various authors including van Houwelin-
gen, Zwinderman, and Stijnen (1993), Reitsma et al. (2005), Rutter and Gatsonis (2001) and Har-
bord, Deeks, Egger, Whiting, and Sterne (2007). However, approaches exploring heterogeneity
in terms of its inherent cluster structure are not yet available. Hence, we feel that the present
paper presents a contribution to fill this gap.
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Appendix: Meta-analytic Data

TABLE 7.
Meta-analysis of diagnostic accuracy of the Alcohol Use Disorder Identification Test (AUDIT) and Alcohol Use Disorder
Identification Test Consumption (AUDIT-C) for alcohol disorders.

Study Alcohol disorder No disorder n + m

y (TP) m − y (FN) n − x (TN) x (FP)

AUDIT

1 48 7 738 101 894
2 138 39 1506 309 1992
3 24 5 173 31 233
4 37 2 227 127 393
5 137 12 936 234 1319
6 73 13 127 30 243
7 53 14 508 27 602
8 571 180 5707 496 6954
9 54 10 172 19 255

10 148 44 2687 672 3551
11 143 18 334 130 625
12 47 13 464 76 600
13 34 1 65 12 112
14 154 49 261 92 555

AUDIT-C

1 47 9 738 101 894
2 126 51 1543 272 1992
3 19 10 192 12 233
4 36 3 276 78 393
5 130 19 959 211 1319
6 84 2 89 68 243
7 67 0 423 112 602
8 751 0 2977 3226 6954
9 59 5 136 55 255

10 142 50 2788 571 3551
11 137 24 358 107 625
12 57 3 437 103 600
13 34 1 56 21 112
14 152 51 264 88 555
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TABLE 8.
Meta-analysis of diagnostic accuracy of the MMSE of dementia.

Study Condition No condition
y (TP) m − y (FN) x (FP) n − x (TN)

1 65 3 240 870
2 117 12 10 110
3 48 19 63 989
4 134 8 28 152
5 24 5 44 292
6 67 15 48 153
7 64 17 0 71
8 281 64 20 286
9 13 1 44 286

10 262 20 29 177
11 143 18 29 123
12 183 33 33 51
13 22 0 152 140
14 112 0 590 2091
15 152 81 126 1009
16 29 26 26 236
17 31 6 3 247
18 10 3 12 333
19 707 88 1438 10447
20 181 108 17 184
21 59 29 23 74
22 74 23 16 143
23 27 12 26 209
24 40 6 75 528
25 317 52 173 578
26 387 116 16 54
27 118 65 1 44
28 44 7 34 396
29 123 46 98 309
30 25 43 3 171
31 73 32 2 225
32 37 45 0 440
33 78 34 45 376
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TABLE 9.
Meta-analysis of the diagnostic accuracy of the CAGE questionnaire for alcohol abuse and dependency.

Study CAGE-score Sea Sp Study CAGE-score Se Sp

1–Saitz 1 0.92 0.73 2–McQuade 1 0.87 0.80
2 0.80 0.93 2 0.66 0.92
3 0.55 0.98 3 0.43 0.99
4 0.27 0.99 4 0.19 0.99

3–Brown 1 0.79 0.77 4–Chan 1 0.96 0.68
2 0.70 0.85 2 0.87 0.84
3 0.52 0.95 3 0.56 0.96
4 0.27 0.98 4 0.34 0.99

5–Aergeerts 1 0.61 0.87 6–Buchsbaum 1 0.89 0.81
2 0.46 0.95 2 0.73 0.91
3 0.24 0.98 3 0.44 0.98
4 0.11 0.99 4 0.19 0.99

7–Joseph 1 0.98 0.75 8–Bradley 1 0.71 0.59
2 0.82 0.90 2 0.53 0.87
3 0.53 0.97 3 0.27 0.98
4 0.40 0.99 4 0.09 0.99

9–Jones 1 0.88 0.88 10–Indran 1 0.99 0.37
2 0.48 0.99 2 0.92 0.62
3 0.24 0.99 3 0.46 0.88
4 0.08 0.99 4 0.10 0.99

aSe = Sensitivity, Sp = Specificity.
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