
This is a preprint of an article accepted for publication in the International Journal on Imaging Systems and Technol-
ogy, Copyright © 2003 Wiley Periodicals, Inc.
Face Tracking for Model-based Coding and Face Animation

Jörgen Ahlberg1, Robert Forchheimer
Image Coding Group, Dept. of Electrical Engineering, Linköping University,
SE-581 83 Linköping, Sweden, E-mail: {ahlberg, robert}@isy.liu.se

ABSTRACT: We present a face and facial feature tracking system able to extract animation
parameters describing the motion and articulation of a human face in real-time on consumer
hardware. The system is based on a statistical model of face appearance and a search algorithm
for adapting the model to an image. Speed and robustness is discussed, and the system evalu-
ated in terms of accuracy.

I. INTRODUCTION

Tracking faces and facial features has many applica-
tions in communication, security, man-machine inter-
faces, and media creation. The application we address
here is model-based coding and face animation; we
want to extract animation parameters from a video
sequence displaying a human face. The parameters
should describe the motion and articulation of the face
well enough to be used for synthesizing an animated
face. Thus, we can enable very low bit-rate face-to-
face communication and create animated faces for web
services.

The advent of the MPEG-4 standard for face anima-
tion, enabling interoperability between different face
tracking and animation systems, has stressed the need
for face tracking methods. MPEG-4 provides a stand-
ardized way of representing, compressing and inter-
preting animation parameters, but how to generate the
content is up to the user.

Even though face and facial feature tracking has
been a topic for research for several decades, it is not a
solved problem. Recently, many promising techniques
have been proposed, of which some also show real-
time performance. In this paper, we present a system
based on statistical models of face appearance, and
show results from a real-time tracker.

The paper is organized as follows. In Section II the
concept of model-based coding is described, followed,
in Section III, by a discussion on different kind of
tracking systems for face animation. In the following
sections we describe our tracker. In Section IV, the
face model, its parameterization, and the model adap-
tation process (i.e., the tracking) are described. In
Section V the training procedure and initial tracking
experiments are described and some results shown,

while Sections VI and VII treat how to improve the
tracker in terms of speed and robustness. Section VIII
contains an evaluation of the tracker’s accuracy, and,
finally, in Section X, our conclusions are drawn.

II. MODEL-BASED CODING

Since the major application of the techniques
described in this document is model-based coding, an
introduction to the topic will follow here. We briefly
describe the principle of model-based coding, its his-
tory and terminology. For more details, see (Aizawa et
al., 1993), (Li et al., 1994), (Pearson, 1995), or (Ström,
2002).

A. Basic Principle. The basic idea of model-based
coding of video sequences is as follows: At the encod-
ing side of a visual communication system, the image
from the camera is analysed, using computer vision
techniques, and the relevant object(s), for example a
human face, is identified. A general or specific model
is then adapted to the object—usually the model is a
wireframe describing the 3D shape of the object.

Instead of transmitting the full image pixel-by-pixel,
or by coefficients describing the waveform of the
image, the image is handled as a 2D projection of 3D
objects in a scene. To this end, parameters describing
the object(s) are extracted, coded and transmitted. Typ-
ical parameters are size, position and shape. To
achieve acceptable visual similarity to the original
image, the texture of the object is also transmitted. The
texture can be compressed by some traditional image
coding technique, but specialized techniques can lower
the bit-rate considerably in certain applications, as
shown by Ström (1997).

1. J.Ahlberg is now with the Swedish Defence Research Agency, Div. of Sensor Technology, P.O.Box 1165, SE-581 11
Linköping, Sweden.
1

At the receiver side of the system, the parameters are
decoded and the decoder’s model is modified accord-
ingly. The model is then synthesized as a visual object
using computer graphics techniques, e.g., a wireframe
is shaped according to the shape and size parameters
and the texture is mapped onto its surfaces.

In the following frames, parameters describing the
change of the model are transmitted. Typically, those
parameters tell how to rotate and translate the model,
and, in case of a non-rigid object like a human face,
parameters describing motion of individual vertices of
the wireframe are transmitted. This constitutes the
largest gain of the model-based coding; the motion
parameters can be transmitted at very low bit-rates.

A model-based coder can be implemented as an
analysis-by-synthesis coder, in which case the encoder
contains a feedback loop and a copy of the decoder,
thus enabling it to compare the synthesized image to
the original image. By minimizing the residual image,
the encoder can optimize the transmitted parameters.
This also permits the encoder to transmit a residual
image, to improve image quality. The principle of
analysis-by-synthesis coding is illustrated in Fig. 1.

B. Terminology. Depending on the situation, the
model-based coding system can either be equipped
with a general model, e.g., a 3D wireframe being able
to adapt to any object, or a more specific model, like a
model of the human face, which can exploit the special
characteristics of the specific class of objects. Using
the terminology from Li et al. (1994), the first case is
called object-based (or object-oriented) coding, while
the latter is called semantic coding, see Fig. 2.

There can also be reasons to differ between two
kinds of semantic coding. One is when we know in
advance which specific model to use. The other is
when each object, during the image analysis, is recog-
nized as a member of a class, and the specific model
corresponding to that class is selected automatically.
The first case is sometimes called knowledge-based
coding, thus reserving the term semantic coding for the
highest level of intelligence in the coder (Harashima,
1989). However, the implicit criterion for a coder
being a semantic coder is that the transmitted parame-
ters are in some way semantically meaningful, like
telling a face model to perform a specific facial action
(e.g., wrinkle the nose) in contrast to moving vertices
only.

In this paper, only the case where it is known in
advance that the relevant object is a human face will be
treated, and the transmitted parameters are to some
degree semantically meaningful. This also relieves us
from the general computer vision problem of under-
standing objects in images, and leaves us with the
more specific problem of understanding facial images.
This problem has shown to be quite challenging by
itself.

C. History of Model-Based Coding. Before the
introduction of model-based coding as we know it
today, models for computerized facial animation were

Figure 1: The principle of analysis-by-synthesis coding.

ChannelAnalysis

Synthesis

Image sequence

Synthesis

Residual image

Model parameters

Sy
nt

he
si

ze
d

im
ag

e

Synthesized image

Encoder Decoder

Model Model

Model-based coding

Object-based

Semantic codingKnowledge-based

(Semantic coding)

Figure 2: Terminology for model-based coding.

coding

coding
2

created by Parke (1982) for computer graphics pur-
poses. Parke suggested that his facial models might be
used for data compression, but he did not pursue this
further.

Another important precursor is the Facial Action
Coding System (FACS) developed by Ekman and
Friesen (1977) (probably inspired by the somewhat
earlier work done by Hjortsjö (1969)). The goal of
Ekman and Friesen was to investigate the relation
between emotion and facial expression, and as a part
thereof, the FACS was developed as a way to quantita-
tively measure the intensity of facial actions. Each
minimal facial action, for example, lip stretch or nose
wrinkle, was called an Action Unit, and by combining
the about 50 different Action Units, every facial
expression should be possible to analyse. The Action
Units have later on become popular as parameters for
animation of human faces, and was probably the sys-
tem most widely used until the definition of the
MPEG-4 Facial Animation Parameters.

The modern concept of model-based coding of
human faces, or “coding through animation” was
introduced by Forchheimer and Fahlander (1983). This
was soon followed up by a system estimating Action
Units from a video sequence (Forchheimer et al.,
1984), using a simple wireframe face-model suitable
for real-time animation known as Candide (Rydfalk,
1987). Candide is still a popular model, but nowadays
facial animators typically use more advanced models.
A modernized version of Candide, taking MPEG-4
compliancy into account, is available; see Section IV.

Model-based coding made a big leap when Aizawa
(1987) and Welsh (1991) introduced texture-mapping
in the synthesis part. Until then, only artificial textures,
if any, had been used. The texture-mapping technique
opened the door to photo realistic model-based coding.
The works of Welsh and Aizawa also made the con-
cept of model-based coding more popular as a research
topic, as people became convinced that good-quality
image communication could indeed be achieved this
way.

The next major step in the history of model-based
coding was the introduction of analysis-by-synthesis
coding, as described above. This paved the way for
robust video analysis.

In the nineties, model-based coding and face anima-
tion became increasingly popular. Intensive research
has been done in face detection, face tracking, face
expression analysis etc., exploiting advances in statis-
tical models for computer vision. At the same time, the
face models have been more and more advanced, often
consisting of thousands of polygons and having
advanced motion patterns to be able to synthesize nat-
ural looking animation. In 1999, the international

standard MPEG-4 was ratified, including definitions
for representation and coding of facial animation
parameters.

Face recognition/analysis/modelling/animation are
now very popular as research topics as well as areas
for industrial and commercial development, one of the
reasons being new media. When model-based coding
was first thought of in the eighties, video telephones
were the main intended application, while much
research nowadays is motivated by animated faces in
movies, computer games, and on the web. Current and
future uses include a range of applications, such as
human-computer interfaces, avatars, hearing disabled
support, and virtual guides, salesmen, actors, and
newsreaders. A survey of face animation on the web
can be found in (Pandzic, 2001).

III. FACE TRACKING FOR ANIMATION

A tracking system estimates the rigid or non-rigid
motion of an object through an image sequence. In the
following, we discuss the two-frame situation, where
we have a model of the object in the current frame, and
the system should estimate how to transform the model
to fit the object in the following frame.

A. Motion vs. Model-based Trackers. Tracking sys-
tems can be said to be either motion-based or model-
based. A motion-based tracker estimates the displace-
ments of pixels (or blocks of pixels) from one frame to
another. The displacements might be estimated using
optical flow methods (giving a dense optical flow
field), block-based motion estimation methods (typi-
cally giving a sparse field but using less computational
power), or motion estimation in a few image patches
only (giving a few motion vectors only, but at very low
computational cost).

The estimated motion field is used to compute the
motion of the object model, using, for example, least
square methods or extended Kalman filtering.

The motion estimation in such a method is conse-
quently dependent on the pixels in two frames; the
object model is used only for transforming the motion
vectors to object model motion parameters. The prob-
lem with such methods is the so called long sequence
motion problem or drifting problem, treated, for exam-
ple, by Li et al. (1993). The basic idea is that any
tracker of this kind will accumulate motion errors and
gradually lose track of the object without the ability to
recover.

A model-based tracker, on the other hand, uses a
stored or generated texture of the object, and tries to
change the object model’s position (and possibly
shape) parameters to fit the new frame. The motion
estimation is thus dependent on the object model and
the new frame—the old frame is not regarded at all. In
such a tracker, the drifting problem does not exist,
3

instead, problems arise when the model is not strong or
flexible enough to cope with the situation in the new
frame. If the model cannot fulfil the high demands, the
tracker will sooner or later lose track of the object.
However, it still has the possibility to recover by itself.

B. Deterministic vs Statistical Model-based
Trackers. One of the main issues when designing a
model-based tracker is thus the texture model. An
obvious approach is to capture a reference texture of
the object in the beginning of the sequence. The tex-
ture could then be geometrically transformed accord-
ing to the estimated motion parameters, so that
changes in scale and rotation (and possibly non-rigid
motion) can be handled. Since the actual texture is
captured, the texture model is deterministic, object
specific, and very accurate. Thus, trackers of this kind
can be very precise, and systems working in real-time
have been demonstrated by La Cascia et al. (2000),
Wiles et al. (2001), Ström (2002).

A drawback, though, is the lack of flexibility in the
texture model. This can cause problems with changing
appearance due to variations in illumination, facial
expression etc. Another drawback is that the initializa-
tion is very critical; if the captured texture was for
some reason not representative of the sequence (due to
partial occlusion, facial expression or illumination) or
simply not the correct texture (if the object model was
not correctly placed/shaped in the first frame) the
tracker will not work well. Such problems can usually
be solved by manual interaction, but can be hard to
automate.

Another property is that the tracker does not know
what it is tracking. This could be an advantage—the
tracker can track different kind of objects—or a disad-
vantage. An example very relevant to our work is
when the goal is to extract some higher level informa-
tion from a human face, like facial expression or lip
motion. We would then need a tracker that identifies
and tracks specific facial features, for example, lip
contours or MPEG-4 Facial Feature Points.

A slightly different approach is a statistical model-
based tracker. Here, the texture model relies on previ-
ously captured textures combined with knowledge of
which parts of the textures correspond to different
facial features. When the model is transformed to fit
the new frame, we will thus get information about the
estimated positions of those specific facial features.

The texture model may be specific or general. A spe-
cific model could, for example, be trained on a data
base containing images of one person only, resulting in
an accurate model for this person. This model could be
able to cope, to some degree, with the illumination and
expression changes present in the data base. A more
general texture model could be trained on a data base
containing many different faces in different illumina-
tions and with different facial expressions. Such a tex-
ture model would have a higher chance to enable
successful tracking of a previously unseen face in a
new environment, while a specific texture model pre-
sumably would result in better performance on the per-
son and environment it was trained for. As a variation,
adopted by La Cascia et al. (2000), the person-specific
texture model (captured at the first frame) could be
extended with a general model of illumination varia-
tion.

C. Tracking Deformations or Feature Points. The
types of tracking systems discussed above can track
deformations or feature points. A tracker based on fea-
ture points tries, in the rigid motion case, to estimate
the position of a set of points, and from these points
compute the position and pose of the object, as done
by Ström (2002) and Wiles (2001).

In the non-rigid motion case, a tracker based on fea-
ture points would directly extract the points of interest,
for example MPEG-4 Facial Feature Points for compu-
tation of MPEG-4 FAPs. The corresponding face syn-
thesizer (face animation player, decoder, receiver) uses
the point positions to compute the deformation of the
model. If the synthesizer has a facial motion model
that corresponds well to the motion of the tracked face,
the deformations can be similar, but using different
facial motion models, the output may look very differ-
ent. Depending on the application, this may be good or
bad; in a video-phone system, where the input and out-
put images should be as similar as possible, it is obvi-
ously not preferable. On the other hand, when creating
synthetic animated faces, like virtual characters, the
motion model should produce the wanted appearance
and behaviour of the animated face, and this might be
altogether different from the face that generates the
motion.

A deformation-tracking system will try to estimate a
set of deformations in the face. We show the difference
by an example; see Fig. 3. The gray line shows a con-
tour in the image, for example the edge of the upper

Figure 3: Tracking deformations or feature points.
4

lip. A deformation-tracking system representing the
particular contour with an arc will estimate the contour
with the black line. The face synthesizer would then
render a face with the contour following the same arc.
However, if the deformation tracker is used to estimate
point positions, a feature point in the middle of the
contour will be estimated at the cross, which is not cor-
rect.

A point-tracking system, with a feature point in the
middle of the contour, will represent the contour with
the point position marked with a circle. If the face syn-
thesizer uses an arc as a motion model, it will render
the contour marked by the dashed line. On the other
hand, if the synthesizer does have a motion model that
corresponds to the actual contour, a correct contour
will be rendered.

In practice, the main drawback with point-tracking is
that single points are usually hard to track robustly.
There are certain points in a human face that are easy
to track, as exploited by Petajan (2002) and Ström
(2001), but unfortunately the easily trackable points
are not the same as the interesting points.

The main drawback with deformation trackers is that
they may give erroneous results when used for estimat-
ing parameters describing point positions, which is
what computer graphics/animation people request.

IV. OUR FACE MODEL AND ITS PARAME-
TERIZATION

Our approach is to use the active appearance model
(AAM) search algorithm to create a statistical model-
based deformation-tracking system. The active appear-
ance models were first introduced by Edwards et al
(1998), and has been further treated by Cootes et al.
(2001). To use the algorithm, we first need to decide a
geometry for the face model, how its shape is control-
led and how we use the model for warping images.

For the image warping, a triangular wireframe model
where the control points are used as vertices is the
straight-forward choice. The image warping can then
be implemented as an ordinary texture mapping opera-
tion using affine transformations.

Since we intend to create a deformation-tracking
system (in contrast to a point-tracking system) the
model geometry needs to be sufficiently detailed to
approximate the tracked deformations. However, we
also want the model’s complexity to be quite low due
to the following reasons:

• The initial training will include the manual position-
ing of the control points in a large number of
images. If the training should be performed within a
reasonable amount of time, the number of control
points needs to be kept fairly small (maybe a hun-
dred).

• We want to keep the computational complexity
down. Using an advanced face model with thou-
sands of polygons and vertices could slow down the
tracking.

From earlier work, the face model Candide by Rydfalk
(1987) is available, including software and knowledge
on how to handle it. Candide seems very suitable due
to its low complexity (low number of polygons) and
the fact that it covers the face only (not the entire
head). However, it soon turned out that significant
modifications were needed:

1. The eyes and (especially) the mouth were too crude
to follow eyelid/lip contours. A few more vertices
and polygons should be added.

2. The output from the tracking should preferably be
easily expressed in terms of MPEG-4 Facial Anima-
tion Parameters (FAPs). Thus, (a subset of) the ver-
tices of the model should correspond to the MPEG-
4 Facial Feature Points (FFPs). To achieve this, ver-
tices need to be added to the mouth, cheeks, eyes
and nose.

3. When a correspondence between model vertices and
MPEG-4 FFPs is set, FAPs and FAP Units should be
defined as well.

4. The original Candide supported Action Units for
dynamic deformations (animation), but to deform
the model to fit a specific given face, static deforma-
tions changing the shape of the model are needed as
well.

To implement the above changes, the Candide-3 model
was created and is illustrated in Fig. 4. A complete
documentation of the model, including file format and
MPEG-4 correspondences is available in (Ahlberg,
2001) and as an appendix in (Ahlberg, 2002).

Figure 4: The Candide-3 face model.
5

Note that we typically can use a much simpler model
for tracking than we would use for animation. The
Candide model is advanced enough for extracting the
MPEG-4 FAPs, but for face animation, a more com-
plex model is needed for visually pleasing results.

A. Controlling the Shape and Texture. The face
model is a wireframe model with a texture mapped
onto its surfaces. We use a statistical model of the tex-
ture and control the texture with a small set of texture
parameters ξ. The texture is then generated as

(1)

where is the mean texture and the columns of the
matrix X are the texture modes, i.e., eigenfaces com-
puted from geometrically normalized face images
(Ström, 1997) or shape-free face images (Cootes et al.,
2001, Craw et al., 1987). Thus, ξ is the vector of tex-
ture parameters, and the synthesized texture x is
mapped on the wireframe model.

The shape of the Candide model is parameterized
according to

(2)

where the resulting vector s0 contains the (x, y, z) coor-
dinates of the vertices of the model. is the standard
shape of the model, and the columns of the matrices S
and A are the shape and animation modes respectively.
Thus, σ and α contain shape and animation parame-
ters. The difference between shape and animation
modes is that the shape modes define deformations
that differ individuals from each other, while the ani-
mation modes define deformations that occur due to
facial expression.

Since we also want to perform global motion, i.e.,
pose change, we need six parameters for rotation and
translation. Adopting the weak perspective projection
(Aloimonos, 1990), we can replace the three transla-
tion parameters with 2D translation and a scaling fac-
tor, thus going directly from model coordinates to
projected (screen) coordinates by replacing Eq. (2)
with

(3)

where R = R(rx, ry, rz) is a rotation matrix, z is the
scale, and t = t(tx, ty) is the translation vector.

The geometry of our model is thus parameterized by
the parameter vector

. (4)

The reason why z + 1 is used as a scaling factor
(instead of just z) is to make the static (standard) shape
correspond to an all-zeros parameter vector.

Note that the above parameterization differs from the
original formulation of the AAMs. The original model
is entirely a two-dimensional model, and thus there are

no parameters for out-of-plane rotation (rotation
around the x- and y-axes). Instead, such rotations are
handled like any other 2D deformation, and are thus
built-in in the shape modes. Other differences are that
in the original formulation, there is no distinction
between shape modes and animation modes, and that
3D coordinates are used in our case.

B. Fixing the Static Shape. When adapting a model
to a video sequence, the shape parameters σ should
only be changed in the first frame(s)—the head shape
does not vary during a conversation—while the anima-
tion parameters α and the global parameters naturally
change at each frame. Thus, during the tracking proc-
ess we can assume that σ is known, and let the stand-
ard shape be person specific

(5)

and optimize s over the reduced parameter vector

. (6)

In the following section we ignore the difference
between p' and p, since the process is identical.

C. Adapting the Model to the New Frame. Our goal
is to find the optimal adaptation of the model to a
frame in an image sequence, that is, to find the param-
eter vector p (or p') that minimizes a distance measure
between the model and the frame. As initial value of p
we use the parameter vector that adapts the model to
the previous frame in the sequence, assuming that the
motion from one frame to another is small enough. We
reshape the model according to s(p), and map the input
image i (the new frame) onto the model. We then
reshape the model to the standard shape, , and get the
resulting normalized image as a vector

. (7)

Since our model is parameterized separately in shape
and texture, we compute the texture parameters from
the normalized input image according to

. (8)

Inserting this in Eq. (1), we get

(9)

and we compute the residual image

, (10)

the error measure

, (11)

and the update vector

. (12)

x x Xξ+=

x

s0 s Sσ Aα+ +=

s

s z 1+()R s Sσ Aα+ +() t+=

p rx r, y rz z tx t, y σT αT, , , , ,[]T=

s' s Sσ+=

p' rx r, y rz z tx t, y αT, , , ,[]T=

s

j i p,() j i s p(),()=

ξ i p,() XT j i p,() x–()=

x i p,() x XX
T

j i p,() x–()+=

r i p,() j i p,() x i p,()–=

e r i p,() 2
=

∆p Ur i p,()=
6

The update vector is computed by multiplying the
residual image vector with an update matrix U, which
is computed from training data according to the AAM
search. The computation of U is briefly described in
Appendix A, and the acquisition and processing of the
training data is treated below.

The process described by Eqs. (7)-(10), from input
image to residual, is illustrated in Fig. 5.

We compute the new error measure

(13)

for k = 1, and if ek < e we update

(14)

(15)

and iterate until convergence. We declare convergence
when ek > e for k = 1, 2, 3.

D. Design Choices. As has been implicitly men-
tioned above, there are a number of design choices to
make when building the model:

• How to acquire the training data: Choices include
the number of persons to use, how many images on
each person we should use, and if we should use
images captured with similar or different illumina-
tion.

Here we have chosen quite a large number of
images per person (around 50) in order to capture
different facial expressions and different head poses
for each person. In contrast, we have quite few per-
sons in the training set. The reason for not having
more people in the data base is that it is a lot of man-
ual work to record many persons, and also to adapt
the wireframe model to each image.

• How many texture modes should be computed, and
in what format? This is a compromise between
speed and reconstruction quality—more texture
modes will better reconstruct the image, and may
generalize better, but the computational complexity
of the analysis-synthesis grows approximately line-
arly with the number of eigenfaces. Experiments
have been performed with 5, 10, and 20 texture
modes, showing increasing accuracy given more
texture modes. In the following, we use 10 texture
modes, which seems to be the lowest we can go with
reasonable tracking quality.

Another question is what size should be used for
texture modes. In the initial experiment, the normal-
ized image was 40×42 pixels, which is large enough
to represent a face in enough detail to follow its
movements. However, some of the facial features
will not be clearly trackable with precision; higher
resolutions (80×84, 160×168) has shown to
improve the precision.

Figure 5: The model matching and texture analysis-synthesis process. a) A good and a bad (top and bottom row respectively)
model adaptation is shown. b) The image mapped onto the model. c) The model is reshaped to the standard shape, producing
the image vector j(i, p) according to Eq. (7). d) The normalized texture is approximated by the texture modes, producing the
image vector x(i, p) according to Eq. (9). e) The residual image r(i, p) according to Eq. (10) is computed. The image vectors j(i, p)
and x(i, p) are more similar the better the model adaptation is.

b c d e

i j(i, p) x(i, p) r(i, p) = j - x

a

ek r i p, 1
2k 1–
-----------∆p+

 2
=

ek e→

p k∆p+ p→
7

A third choice is the colour format. In the initial
experiment, the texture modes were computed in
RGB, so that each pixel contributed with three coef-
ficients to the training vector. Typically, colour vari-
ations provide much information about the face and
its features, that in this way might be exploited. For
example, Tzovaras et al. (1999) demonstrates
improved performance in an eigenface-based face
detector when using colour eigenfaces. The draw-
back is the increase in computational complexity.

• What animation modes should we choose? There
are, at least, two different schemes to choose from;
adapt the model to a set of training images, and per-
form a PCA on the point positions (when scale,
translation and possibly rotation have been compen-
sated for) to compute the principal deformations.
The other scheme is to choose the deformations that
we are interested in tracking depending on the appli-
cation. For example, if the goal of our system is to
do automated lip reading, we would need a set of
deformations describing lip motion, but tracking
eyelids and/or eyebrows would be unnecessary.

In our case, we have chosen the six animation
modes that seem to be most crucial for creating an
animated face.

• In how large and how many steps should the model
parameters be perturbed? To estimate the gradients
needed to compute the update matrix U, the model
parameters should be perturbed in small steps (see
Appendix A). The step size and the number of steps
(the design variables h and K) have been chosen to
0.01 and 40 respectively, purely by intuition. Details
can be found in Ahlberg (2002).

V. TRAINING AND TESTING

A. Collecting and processing the training data.

When the design choices accounted for above are
made, and training images are acquired, the training of
the model can performed. The face model geometry
has been adapted, by changing the parameter vector p,
to Ni = 330 facial images with different head pose and
with different facial expressions. Six persons were
included in the training set. The model adaptation was
originally done manually, but later semi-automatically.
Two pictures of each person, with models adapted, are
shown in Fig. 6. The same camera have been used for
all images, and the variation in illumination is small.

The adapted models have, for each image, been nor-
malized to a standard shape with the size 40×42 pix-
els, as Fig. 5 c), top row, and stored as a 5040-
dimensional texture vector (1680 pixels and three col-
our components in each pixel). To reduce dependency
on illumination, the texture vectors have been proc-
essed in the following ways:

• Each texture image has (before reshaping it into a
vector) been mirrored in the y-axis, thus doubling
the number of training textures.

• The DC level (the average value) has been removed
from each texture vector.

• The norm of each vector has been set to one.

Note that this also requires the image to be analysed
(j(i, p) in Eqs. (7)-(10)) to be processed in the same
way (setting the DC to zero and the norm to one).

On the processed set of training vectors, a principal
component analysis (PCA) has been performed to
compute a set of texture modes. Initially, we chose to
compute 10 texture modes.

As animation modes, six Action Units from Can-
dide-3 have been chosen: Jaw drop, Lip stretcher, Lip
corner depressor, Upper lip raiser, Eyebrow lowerer,
and Outer eyebrow raiser.

Thus, we have six animation parameters in our vec-
tor α, and a total of Np = 12 parameters in the model
parameter vector, p, to be optimized.

For each image in the training set, each model
parameter has been perturbed, in using a parameter
step size h = 0.01 in K = 40 steps. For each perturba-
tion, the image has been geometrically normalized and
approximated using the texture modes. The

K /2 · Np · Ni = 20 · 12 · 330 = 79 200 (16)

residual images have been computed, and the update
matrix U has been computed as described in
Appendix A with parameters (Ni, Np, h, K) = (330, 12,
0.01, 40).

The two translation parameters need to be treated
slightly different. For the translation to be relative to
the size of the model, the step size h has been changed
to h = 0.01 · (z + 1) when computing the correspond-
ing columns of G.

B. Initial tracking experiments. To test the system,
two video sequences of a previously unseen person has
been recorded, using the same camera as when captur-
ing the training set. In the first sequence, the illumina-
tion was the same as in the training set, in the second
one it differed somewhat. The Candide-3 model was
manually adapted to the first frame of the sequence by
changing the pose parameters and the static shape
parameters (recall that the shape parameter vector σ is
assumed to be known). The parameter vector p con-
taining pose and animation parameters was then itera-
tively optimized for each frame. The results were quite
satisfactory, and the resulting face model adaptations
are shown in Fig. 7. As can be seen, the pose (rota-
tion, scale, translation) is well estimated most of the
time, and the mouth and eyebrow parameters behave
well.
8

The exception is from the 20th to the 40th frame
(approximately) in the first sequence, where track is
lost but eventually recovered. The reason is the fast
head motion from frame 17 to 18, that results in the
parameter vector being to far from the correct solution;
how the model loses track is illustrated in Fig. 8. The
recovery in frame 43 is shown in Fig. 9.

This initial test shows that the system is able to track
a previously unseen person in a subjectively accurate
way, but there are still quite a few issues to be
addressed in the following sections:

• Speed. Can the system run in real-time? This is
addressed in Section VI.

• Robustness. Can the system cope with varying illu-
mination, facial expressions, and large head motion?
Can situations like in Fig. 8 be avoided? The
robustness issue is dealt with in Section VII.

• Accuracy. How accurate is the tracking? An evalua-
tion method is described in Section VIII.

VI. IMPROVING THE SPEED: TOWARDS
REAL-TIME TRACKING

The speed of the algorithm is of course critical for real-
time applications, but an important observation is also
that the algorithm works better if the frame rate is
higher. When processing frames captured at a low
frame rate, the algorithm suffers from being greedy
and sometimes getting stuck in a local optimum. Typi-
cally, this results in the model not being able to follow
fast moves, like when the mouth is closed too fast or
when the head is moved away quickly. If the frame rate
is higher, then the motion between each frame is
smaller, and thus the initial p will be closer to the cor-
rect value. A few (around five to ten) frames per sec-
ond seem to be sufficient for handling normal head
motion.

A second observation is that when the motion
between the frames is smaller, fewer iterations are usu-
ally needed, and the algorithm thus requires less time
per frame.

When running the algorithm on live video, i.e., with
input directly from a camera, the computation time is
thus very critical. Assuming that the video input
device can provide new frames as fast as the tracking

Figure 6: Two images from each of the six persons in the ICG training set.
9

system can process them, then a reduced computation
time would increase the frame rate. As observed
above, this would improve the performance of the
tracking, and also decrease the average number of iter-
ations needed per frame, which would increase the
possible frame rate even more.

In conclusion, it is very important to optimize the
algorithm as much as possible, and we have two prin-
ciple ways of reducing the computation time; we can
either reduce the computation time per iteration or
reduce the number of iterations.

A. Reducing the Time per Iteration. Studying the
algorithm, we find that there are three potentially time-
consuming parts within each iteration:

Figure 7: Tracking results (every 10:th frame shown).

Test Sequence 1

Test Sequence 2
10

• The geometrical normalization: The process of
reshaping the incoming image to the standard face
shape (corresponds to Eq. (7)). Using a brute force
method, the image warping needs approximately 2
seconds, which is a huge amount of time for a real-
time system.

• The analysis-synthesis step, corresponding to Eqs.
(8)-–(11), is the projection of the normalized image
onto the texture modes, reconstruction, and compu-
tation of the residual image and the summed resid-
ual error. This grows approximately linearly with
the number of texture modes used.

• The vector update computation, corresponding to
Eq. (12), is the computation of the update parameter
vector from the residual images.

Speeding up any of these steps will of course speed up
the entire algorithm. Below, three methods are studied:
Using dedicated graphics hardware, pre-computation
of barycentric coordinates, and using vector instruc-
tions.

Using dedicated graphics hardware: Almost all per-
sonal computers of today have a graphics card with
specialized hardware for 3D graphics, including tex-
ture mapping. Observing the computation of the nor-
malized texture j(i, s), see Eq. (7), is essentially a
texture mapping, it could be suitable to use the graph-
ics card hardware for this computation. In fact, the
graphics card will probably perform this operation so
fast that the transfer of the geometrically normalized
image from the graphics card memory to the main
memory will take longer time than the geometrical
normalization itself. Practical experiments show that
the entire process takes a few milliseconds only.

Pre-computation of barycentric coordinates: The
hardware in a graphics card is specialized for animat-
ing 3D mesh objects with texture mapped onto them
and/or with different shadings and light sources. In
such situations the texture coordinates are usually
fixed, and the object coordinates are variable (ani-
mated).

In our situation, we have the opposite situation; the
object coordinates (the normalized/destination shape)
are fixed, and the texture coordinates are variable. This
has an important implication: The pixel positions in
the destination image are always the same in relation
to the vertices of the standard-shaped wireframe
model. Thus, these positions could be pre-computed,
which should speed up the geometrical normalization
significantly. Unfortunately, this can typically not be
communicated to the graphics card, and the entire cal-
culation has to be done in the CPU. This is not a major
drawback, though, since the remaining computations
can be performed very quickly in the CPU.

Using vector instructions: Exploiting the fact that
modern CPUs have vector instructions for integer and
floating point data, the remaining computations of the
geometrical normalization together with the analysis-
synthesis and the update vector computation can be
performed in a total time of less than 3 milliseconds on
a 500 MHz Pentium III. This time is of course depend-
ent on the resolution, number, and format (colour or
grayscale) of the texture modes. However, performing
the full iterative model adaptation in 30 ms is quite
reasonable. Details about the implementation can be
found in Ahlberg (2002).

B. Reducing the Number of Iterations. The sim-
plest way of reducing the number of iterations is to
simply stop the computation when a certain maximum
number of iterations are done. In a real-time scenario,
capturing images from a camera, this does not neces-
sarily degrade the performance of the tracker. If the
alternative is to miss a captured frame, the result will
probably improve.

Another way of reducing the number of iterations
would be to stop the process when the update vector is
small enough. However, practical experiments show
that none of these two methods give any dramatic
improvements in terms of speed.

The number of iterations is usually smaller the
shorter the distance the face has moved since the last
frame. Thus, if the motion of the face could be pre-
dicted or estimated in a fast way, to give a better start-
ing parameter vector, the number of iterations would
decrease. For this to be of any use, the prediction/esti-
mation must be faster than the time per iteration times
the number of iterations earned.

For fast motion prediction, a simple linear filter can
be applied to the model parameters from the previous
frames, creating a prediction of the new model param-
eters. However, empirical tests using a constant speed
model and a half-speed model did only show decreas-
ing performance.

For fast motion estimation, a simple block matching
procedure, using a few patches from the previous
frame, can be used. Notice that this could also improve
the robustness of the tracking; we will investigate this
in Section VII.

C. A Real-time System. By using features of the
hardware (the graphics card, the vector instructions of
the CPU) in an efficient way and/or algorithm specific
solutions, we can perform an active model iteration in
a few milliseconds on consumer hardware. Typically,
less than 10 iterations per frame are needed, which
means that the facial feature tracking could theoreti-
cally run at about 35 Hz on the experimental platform.
In practice, the video capture and transfer require some
time as well, allowing the system to run at half that
speed at best.
11

Is then our main goal, to show that it is possible to
implement a real-time model based coder on consumer
hardware, reached? If the tracking was the only com-
ponent needed, we would be there. However, depend-
ing on the system requirement, we need to add
compression and transmission not only of the extracted
animation parameters, but also of speech, and maybe
facial texture, background, etc.

A minimal system, transmitting animation parame-
ters only, is feasible. Converting the extracted parame-
ters to MPEG-4 FAPs and compressing them using the
MPEG-4 reference software was done in approxi-
mately five milliseconds per frame on the experiment
platform. Assuming a minimal frame rate of 12.5 Hz
(on a PAL system; when processing video captured by
an NTSC camera, 15 Hz is more reasonable), we have
80 ms to spend on each frame. Spending 30 ms on the
tracking, 5 ms on compression, and 5 ms on rendering
the GUI, half of the time is available for other tasks.
These other tasks would typically include video cap-
turing, operating system tasks, and, in a communica-
tion scenario, decoding and visualization of the
received face.

Also taking into account the tremendous develop-
ment of consumer hardware—from the day of the ini-
tial experiment to the publishing of this paper, the CPU
clock frequency of the “typical consumer hardware”
was approximately quadrupled. Thus, our conclusion
is that the techniques presented here should enable
real-time model-based coding using current consumer
hardware.

VII. IMPROVING THE ROBUSTNESS
THROUGH MOTION ESTIMATION

To combine the strengths of model-based and motion-
based trackers, a motion estimation algorithm could be
added to our model-based tracker. The idea is to use a
simple and fast block motion estimator to get a quick
estimate of the global motion (at least the translation)
of the face. The face model would then be translated
according to this estimate, and the iterative model
adaptation process start at this new position. Provided
that the motion estimate is accurate, this would be
advantageous in two ways:

• By doing a “jump” to a position closer to the correct
position, the risk of getting stuck in a local (sub-
optimal) optimum is reduced.

• Fewer iterations might be needed from the new
position. If the block motion estimator is faster than
the skipped iterations, the overall speed will
improve.

There are a number of fast motion estimators available
in the literature of video coding (Lundmark, 2001),
using different difference measures, search algorithms,
block shapes etc. We have chosen to implement the
following simple estimator:

1. A single block is cut out of the old frame, converted
to grayscale, and stored as reference block. The cen-
tre coordinate of the block is denoted b.

2. A search region around b in the new frame is con-
verted to grayscale, subsampled, by a scaling factor

Figure 8: Track lost due to fast head motion. a) The model adapted to frame 17. b) Frame 18 with the model still adapted to frame
17. c) The model (erroneously) adapted to frame 18. d) In frame 21 the model has lost track completely.

a b c d

Figure 9: Tracking recovery. The images show the model adaptation in frame 43 after 0, 5, 10, 15, and 20 iterations.
12

of two, twice, to create a three level scale hierarchy.
The reference block is subsampled in the same way.

3. At the coarsest level, a full search within the search
region is performed. The sum of absolute differ-
ences (SAD) is used as error measure, since it is
quick to compute. The coordinate with the lowest
SAD is stored in a variable m (where m = 0 indi-
cates that the optimum was found at b).

4. The estimate is refined on the medium level, search-
ing in a small window (3 × 3 pixels) around m, and
then on the finest level. The face model is then
translated according to the final m.

The choices to make are then the size of the block, the
size of the search region, and which block to use as
reference block. It has already been pointed out by
Ström (2001) that the region between the eyes is suita-
ble for tracking, being quite robust to changes in scale
and rotation.

Running the tracker on Test Sequence 1 (that partly
failed in the initial experiment) shows a good improve-
ment when the motion estimation is used; the part with
fast head motion is now correctly tracked, as shown in
Fig. 10.

To introduce more tracking failures, the tracker was
given every third frame only in order to simulate very
fast head motion. This leads to tracking failure a few
times during the sequence, but using motion estima-
tion the whole sequence is correctly tracked.

As mentioned in the previous section, motion esti-
mation could be used for increasing the speed. This
requires of course that the motion estimation algorithm
sufficiently reduces the number of iterations to com-
pensate for the time which is spent on the motion esti-
mate itself. Using a 64 × 64 pixel reference block and
a 128 × 128 pixel search area, the motion estimation
needs approximately 7 ms, that is, about as much as
one iteration (when using 10 RGB texture modes of
the size 40 × 42). In our test sequences, which requires
only a few iterations per frame, it is not very realistic
that the motion estimation could reduce the average
number of iterations per frame as to compensate for

the extra time. Measuring the number of iterations
needed gave the results shown in Table I; apparently
the motion estimation will slow down the tracking a
little, but if more than 10 texture modes are used, or if
they use higher resolution, the motion estimation
should improve the speed.

a b c
Figure 10: Using motion estimation to compensate for fast head motion. Frame 18 of Test Sequence 1 (cf. Fig. 8). a) The model
still adapted to the previous frame. b) The model after motion compensation. c) The model adapted to the frame after motion
compensation.
13

VIII. EVALUATION OF ACCURACY

Above, the evaluation of the tracking system has not
been more formal than observing that it works “quite
satisfactory”. The problem with an objective evalua-
tion is that the ground truth is not known—the only
way to estimate the parameters is by using the tracker.
There are other techniques for measuring face and
facial feature motion, such as motion capture systems
based on reflective markers or on the Polhemus sensor.
However, such systems are typically somewhat inac-
curate when measuring small motion, or they are
expensive. In the case of marker based systems, the
problem is the markers themselves; they will certainly
influence the performance of the tracker described in
this chapter.

A inexpensive solution which gives exact ground
truth is adopted by Ström (2002), and will be used here
as well. The idea is to create a synthetic test sequence.
Using the Candide model, mapping a texture onto it,
and then animating it according to some captured or
semi-random motion, we get a video sequence. This
may not look very life-like (we will only have a face,
not an entire head, and there will be no background),

but at least we know exactly the correct animation
parameters. Furthermore, we can easily change the
texture of the model, investigating the tracker’s behav-
iour when tracking different persons.

In Fig. 11, a frame from the original test sequences
and the corresponding frames from the synthetic test
sequences are shown. The tracker has been applied to
the two synthetic sequences, and the six estimated glo-
bal motion parameters are compared to the ground
truth. The results are plotted in Fig. 12, and the errors
accounted for in Table II.

The average errors in rotation are typically less than
0.1 radians; as expected, the in-plane rotation (z-rota-
tion) is estimated better than the out-of-plane rotation
(x- and y-rotation). The average scale error for the two
sequences is around 0.07, which at the resolution used
for the synthetic sequences (512 × 512) corresponds to
the model being two pixels larger/smaller. Note that
the scale most of the time is estimated to be a bit
smaller than the true value. This is explained by the
fact that the black background influences the normal-
ized face image near the borders, and the model thus
tries to avoid the borders. In terms of translation, a
parameter change of approximately 0.007 in the cur-
rent scale and resolution corresponds to a one pixel
motion. Consequently, the models were, on average,
3–4 pixels off track.

IX. CURRENT AND FUTURE WORK

The main problem with the tracking is the estimation
of out-of-plane rotation and scale. Experience shows
that these are correlated, and it is also clear that the

Table I: The average number of iterations per frame
with and without motion estimation.

Iterations per frame Sequence 1 Sequence 2

Without ME 3.04 2.38

With ME 2.21 1.86

Improvement 0.83 0.52

Figure 11: Synthesizing test sequences. a) Frame 62 from Test Sequence 1 and 2 respectively. b) After tracking, the frame is
synthesized by texture mapping frame 1 onto the model. c) The tracker is run on the synthetic sequences.

a b c
14

quality of the local parameters (mouth and eyebrows
motion) reduces when the pose parameters are not cor-
rectly estimated. Typically, the pose parameter estima-
tion fails due to the greedy search algorithm getting
stuck in a local minimum. We are therefore currently
developing a technique based on RANSAC (Fischler,
1981) to avoid local minima, combined with a texture
consistency step to avoid the drifting that would other-
wise be the result of estimating the pose by RANSAC
only.

Another work item is to improve the detection of
mouth closure. When animating a face from the esti-
mated MPEG-4 FAPs together with recorded speech, it
is very critical that the mouth is entirely closed at the
correct points in time. For a human observer it is very
disturbing if the mouth is still open by a pixel or two
when a phoneme like [m] is pronounced, and it is also
disturbing if the mouth stays closed for more than a
very short time when a phoneme like [b] is pro-
nounced. Since the current algorithm entirely disregard
the pixel data between the lips, mouth closure is not
robustly or accurately detected. Mouth-closure esti-
mating add-ons are under investigation.

It has also turned out that the animation modes used
for controlling the eyebrows are not very well suited
for tracking. By pulling the parameters to somewhat
extreme values, a few triangles will totally disappear
(the three corner points being situated on a line), some-
times providing a local minimum for the parameter
estimation. Preliminary results show that modifying
these animation modes gives a noticeable improve-
ment on eyebrow tracking.

Finally, the number of animation modes should be
increased. In the initial test, six animation modes were
chosen since that seemed an absolute minimum. Add-
ing more animation modes would increase the com-
plexity of the tracker linearly, but, as mentioned, the
hardware development already have (and will even
more) relax the demands on complexity.

X. CONCLUSION

We have described the design of a model-based face
and facial feature tracker based on the active appear-
ance models. Experiments have been performed to
track a previously unseen person in two test sequences.
The results are very encouraging; the tracker seems to
work subjectively well, but can apparently fail due to
fast head motion. Even if the tracker may recover
spontaneously, methods for improving robustness are
needed. We have thus investigated a way of improving
the tracker using fast and simple motion estimation,
and found that it makes the tracker significantly more
robust.

The accuracy of the tracker has been measured by
tracking synthetic sequences, thus having ground truth
to compare to. The measurements indicate that the
tracker is satisfactory accurate, however not perfect.

Methods for improving robustness and accuracy are
under development.

ACKNOWLEDGEMENT

This work has been financed by the national Swedish
project VISIT and the European 5:th framework pro-
gramme project InterFace.

APPENDIX A. COMPUTING THE UPDATE
MATRIX

When performing the model adaptation using the
AAM search, we compute a residual image r(p) and
an error measure

. (17)

Our optimal parameter vector is thus

(18)

Taylor-expanding r around p + ∆p, we can write

(19)

where

. (20)

Thus, given a p (and thus r(i, p)), we want to find the
∆p that minimizes

. (21)

Minimizing Eq. (21) is a least squares problem with
the solution

, (22)

which gives us the update matrix U as the negative
pseudo-inverse of the gradient matrix G:

. (23)

By observing that G is similar even for different
images i, we come to the conclusion that it can be esti-
mated from training data in advance, as follows.

The jth column in G,

(24)

can be estimated using differences

, (25)

e i p,() r i p,() 2
=

p∗ i() e i p,()
p

minarg=

r i p ∆p+,() r i p,() G∆p O ∆p2()+ +=

G
p∂

∂ r i p,()=

e i p ∆p+,() r i p,() G∆p+
2≈

∆p G
T

G() 1–
G

T
– r i p,()=

U G†– GTG() 1– GT–= =

Gj p j∂
∂ r i p,()=

Gj

r i p, hqj+() r i p, hqj–()–

2h
--≈
15

where h is some suitable step size and qj is a vector
with all elements zero except the jth element that
equals one. Since we have already adapted the model
to a large number N of training images in,
n = {1, …, Ni}, in order to compute texture modes, we
have a set of corresponding parameter vectors pn. By

estimating Gj for several step sizes and for all our
training images with adapted models, and then averag-
ing over all these, we get our final estimate of Gj as

,(26)

Figure 12: Tracking results on the synthetic test sequences. Frame numbers on x-axes. Solid lines: Estimated parameter values.
Dotted lines: True parameter values.

50 100 150
−1

−0.5

0

0.5

1

50 100 150
−1

−0.5

0

0.5

1

50 100 150
−1

−0.5

0

0.5

1

50 100 150
0

0.5

1

1.5

2

50 100 150
−100

−50

0

50

100

50 100 150
−100

−50

0

50

100

50 100 150 200 250 300
−1

−0.5

0

0.5

1

50 100 150 200 250 300
−1

−0.5

0

0.5

1

50 100 150 200 250 300
−1

−0.5

0

0.5

1

50 100 150 200 250 300
0

0.5

1

1.5

2

50 100 150 200 250 300
−100

−50

0

50

100

50 100 150 200 250 300
−100

−50

0

50

100

Synthetic Test Sequence 2

Synthetic Test Sequence 1

x-rotation y-rotation

z-rotation Scale

x-translation y-translation

x-rotation y-rotation

z-rotation Scale

x-translation y-translation

G j
1

NK

r in p, n khqj+() r in p, n khqj–()–

2h

k 1=

K 2⁄

∑
n 1=

Ni

∑≈
16

where K is the number of steps that we want to perturb
the parameters in. The computation in Eq. (26) is per-
formed for j = {1, ..., Np}, where Np is the number of
parameters (degrees of freedom) we intend to use for
the model adaptation. Deciding the values of h and K
are design choices made from empirical tests.

Having thus estimated G and computed U, we can
search for the optimal parameter vector p*(i) for a
new image i. For a starting value of p, being close
enough to p*(i), we compute r(i, p) and e(i, p). The
update vector ∆p is computed by multiplying the resid-
ual image with the update matrix:

. (27)

We compute a new parameter vector and a new error
measure:

. (28)

REFERENCES

J. Ahlberg, Candide-3—un updated parameterised face, Re-
port No. LiTH-ISY-R-2326, Dept. of Electrical Engineering,
Linköping University, Sweden, 2001.

J. Ahlberg, Model-based coding—Extraction, Coding and
Evaluation of Face Model Parameters, PhD Thesis No. 761,
Dept. of Electrical Engineering, Linköping University, Swe-
den, 2002.

K. Aizawa, H. Harashima, and T. Saito, A model-based im-
age coding system—construction of a 3-D model of a per-
son’s face, Proc Int Picture Coding Symposium (PCS),
Stockholm, Sweden, 1987, paper 3.11.

K. Aizawa et al., “Human Facial Motion Analysis and Syn-
thesis with Applications to Model-Based Coding,” Motion
Analysis and Image Sequence Processing, M.I. Sezan and
R.L. Lagendijk (Editors), Kluwer Academic Publishers,
1993.

Y. Aloimonos, Perspective approximations, Image and Vi-
sion Computing 8 (1990), 177-192.

T.F. Cootes, G.J. Edwards, and C.J. Taylor, Active Appear-
ance Models, IEEE Trans Pattern Anal 23 (2001), 681–684.

I. Craw, H. Ellis, and J. Sishman, Automatic extraction of
face features, Pattern Recognition Letters 5 (1987), 183–187.

G.J. Edwards, T.F. Cootes, and C.J. Taylor, Interpreting
Face Images using Active Appearance Models, Proc Int Conf
on Automatic Face and Gesture Recognition, Nara, Japan,
1998, pp. 300–305.

P. Ekman and W.V. Friesen, Facial Action Coding System,
Consulting Psychologist Press, Palo Alto, CA, USA, 1977.

M. Fischler and R. Bolles, Random sample consensus: A par-
adigm for model fitting with applications to image analysis
and automated cartography, Communication ACM 24
(1981), 381-395.

R. Forchheimer and O. Fahlander, Low bit-rate coding
through animation, Proc Picture Coding Symposium (PCS),
Davis, CA, USA, 1983.

R. Forchheimer, O. Fahlander and T. Kronander, A semantic
approach to the transmission of face images, Proc Picture
Coding Symposium (PCS), Cesson-Sevigne, France, 1984.

H. Harashima, K. Aizawa, and T. Saito, Model-based analy-
sis-synthesis coding of video telephone images—conception
and basic study of intelligent image coding, Trans IEICE E72
(1989), 452–458.

C.-H. Hjortsjö, Människans ansikte och det mimiska språket
(“Man's Face and the Mimic Language,” in Swedish), Stu-
dentliteratur, Lund, Sweden, 1969.

M. La Cascia, S. Sclaroff, and V. Athitsos, Fast, Reliable
Head Tracking under Varying Illumination: An Approach
Based on Registration of Texture-Mapped 3D Models, IEEE
Trans Pattern Anal 22 (2000), 322-336.

H. Li, P. Roivanen, and R. Forchheimer, 3D Motion Estima-
tion in Model-Based Facial Image Coding, IEEE Trans Pat-
tern Anal 15 (1993), 545–556.

H. Li, A. Lundmark, and R. Forchheimer, Image Sequence
Coding at Very Low Bitrates: A Review, IEEE Trans Image
Process 3 (1994), 589–609.

A. Lundmark, Hierarchical Structures and Extended Motion
Information for Video Coding, PhD Thesis No. 683, Dept. of
Electrical Engineering, Linköping University, Sweden,
2001.

I.S. Pandzic, Life on the Web, Software Focus Journal 2
(2001), 52–59.

F. Parke, Parameterized models for face animation, IEEE
Computer Graphics Applications Mag 12 (1982), 61–68.

D.E. Pearson, Development in Model-Based Video Coding,
Proc IEEE 83 (1995), 892–906.

E. Petajan, “alterEGO: Video Analysis for Facial Anima-
tion”, MPEG-4 Facial Animation—The Standard, Imple-
mentations, and Applications, I.S. Pandzic and
R. Forchheimer (Editors), John Wiley & Sons Ltd, Chiches-
ter, England, 2002, pp. 269–276.

M. Rydfalk, CANDIDE, a parameterized face, Report No.
LiTH-ISY-I-866, Dept. of Electrical Engineering, Linköping
University, Sweden, 1987.

Table II: Average errors in global parameter
estimation.

Parameter Sequence 1 Sequence 2

x-rotation 0.0789 0.0651

y-rotation 0.0706 0.1446

z-rotation 0.0433 0.0213

Scale 0.0942 0.0578

x-translation 0.0142 0.0232

y-translation 0.0186 0.0127

∆p Ur i p,()=

e’ e i p, ∆p+()=
17

J. Ström, Reinitialization of a Model-Based Face Tracker,
Proc Int Conf Augmented, Virtual Environments and 3-D
Imaging (ICAV3D), Mykonos, Greece, 2001, pp. 128–131.

J. Ström, Model-Based Head Tracking and Coding, PhD
Thesis No. 733, Dept. of Electrical Engineering, Linköping
University, Sweden, 2002.

J. Ström et al., Very Low Bit Rate Facial Texture Coding,
Proc Int Workshop Synthetic/Natural Hybrid Coding and 3-
D Imaging (IWSNHC3DI), Rhodes, Greece, 1997, pp. 237–
240.

D. Tzovaras, D. Koutsos, and M.G. Strintzis, Efficient Head
Detection Based on Color Eigenfaces, Proc Int Workshop
Synthetic/Natural Hybrid Coding and 3D Imaging
(IWSNHC3DI), Santorini, Greece, September 1999, pp.
148–151.

B. Welsh, Model-Based Coding of Images, PhD dissertation,
British Telecom Research Lab, 1991.

C.S. Wiles, A. Maki, and N. Matsuda, Hyperpatches for 3D
Model Acquisition and Tracking, IEEE Trans Pattern Anal
23 (2001), 1391–1403.
18

	Face Tracking for Model-based Coding and Face Animation
	I. Introduction
	II. Model-Based Coding
	A. Basic Principle
	B. Terminology
	C. History of Model-Based Coding

	III. Face Tracking for Animation
	A. Motion vs. Model-based Trackers
	B. Deterministic vs Statistical Model-based Trackers
	C. Tracking Deformations or Feature Points

	IV. Our Face Model and its Parameterization
	A. Controlling the Shape and Texture
	B. Fixing the Static Shape
	C. Adapting the Model to the New Frame
	D. Design Choices

	V. Training and Testing
	A. Collecting and processing the training data
	B. Initial tracking experiments

	VI. Improving the Speed: Towards Real-time Tracking
	A. Reducing the Time per Iteration
	B. Reducing the Number of Iterations
	C. A Real-time System

	VII. Improving the Robustness through Motion Estimation
	VIII. Evaluation of Accuracy
	IX. Current and Future Work
	X. Conclusion
	Acknowledgement
	Appendix A. Computing the update matrix
	References

