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Abstract

The hierarchical Bayesian optimization algorithm (hBOA) can solve nearly decomposable
and hierarchical problems of bounded difficulty in a robust and scalable manner by building and
sampling probabilistic models of promising solutions. This paper analyzes probabilistic models
in hBOA on two common test problems: concatenated traps and 2D Ising spin glasses with
periodic boundary conditions. We argue that although Bayesian networks with local structures
can encode complex probability distributions, analyzing these models in hBOA is relatively
straightforward and the results of such analyses may provide practitioners with useful infor-
mation about their problems. The results show that the probabilistic models in hBOA closely
correspond to the structure of the underlying optimization problem, the models do not change
significantly in subsequent iterations of BOA, and creating adequate probabilistic models by
hand is not straightforward even with complete knowledge of the optimization problem.
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1 Introduction

The hierarchical Bayesian optimization algorithm (hBOA) (Pelikan & Goldberg, 2001; Pelikan,
2005; Pelikan & Goldberg, 2006) can solve the broad class of nearly decomposable and hierarchical
problems in a robust and scalable manner and a number of efficiency enhancement techniques have
been proposed to further improve hBOA performance (Sastry et al., 2001; Pelikan & Sastry, 2004;
Lima et al., 2006; Pelikan et al., 2006; Sastry et al., 2006). While both the performance of hBOA
as well as the effectiveness of various efficiency enhancement techniques for hBOA crucially depend
on the quality of probabilistic models used in hBOA to guide exploration of the space of potential
solutions, very little work has been done in analyzing the structure and complexity of these models
with respect to the structure of the underlying optimization problem (Lima, Pelikan, Sastry, Butz,
Goldberg, & Lobo, 2006; Wu & Shapiro, 2006; Lima et al., 2007).

The purpose of this paper is to analyze the structure and complexity of probabilistic models in
hBOA on two common test problems: (1) concatenated traps and (2) two-dimensional ±J Ising
spin glasses with periodic boundary conditions. Concatenated traps are used as an example of a
separable problem of bounded order with subproblems that cannot be further decomposed (Deb
& Goldberg, 1991; Ackley, 1987). Two-dimensional Ising spin glasses, on the other hand, cannot
be decomposed into subproblems of bounded order (Mühlenbein, Mahnig, & Rodriguez, 1999)
and they provide a challenge for most optimization methods because they contain an extremely
large number of local optima and the candidate solutions between different local optima are often
of very low quality (Barahona, 1982; Mezard, Parisi, & Virasoro, 1987; Fischer & Hertz, 1991;
Dayal, Trebst, Wessel, Würtz, Troyer, Sabhapandit, & Coppersmith, 2004; Pelikan & Hartmann,
2006). The results show that (1) probabilistic models obtained by hBOA closely correspond to
the structure of the underlying optimization problem, (2) the models do not change significantly
between subsequent iterations of hBOA, and (3) creating adequate probabilistic models by hand is
far from straightforward even with complete knowledge of the structure of the underlying problem.
The proposed techniques for model analysis in hBOA can be adapted to study model structure and
model complexity for other problems and other estimation of distribution algorithms, providing the
practitioners with a powerful tool for learning about their problems. The obtained knowledge can
be used to extend the class of problems that can currently be solved tractably by hBOA.

The paper is organized as follows. Section 2 outlines hBOA. Section 3 discusses concatenated
traps and trap-5 in particular, and then analyzes probabilistic models obtained with hBOA when
solving trap-5. Section 4 describes the problem of finding ground states of 2D ±J Ising spin
glasses with periodic boundary conditions, and presents the analysis of hBOA models in this class
of problems. Section 5 outlines future research. Finally, section 6 summarizes and concludes the
paper.

2 Hierarchical BOA (hBOA)

Estimation of distribution algorithms (EDAs) (Baluja, 1994; Mühlenbein & Paaß, 1996; Larrañaga
& Lozano, 2002; Pelikan, Goldberg, & Lobo, 2002)—also called probabilistic model-building genetic
algorithms (PMBGAs) (Pelikan, Goldberg, & Lobo, 2002; Pelikan, 2005) and iterated density esti-
mation algorithms (IDEAs) (Bosman & Thierens, 2000)—replace standard crossover and mutation
operators of genetic and evolutionary algorithms by building a probabilistic model of selected solu-
tions and sampling the built model to generate new candidate solutions. The hierarchical Bayesian
optimization algorithm (hBOA) (Pelikan & Goldberg, 2001; Pelikan & Goldberg, 2003b; Pelikan,
2005) is an EDA that uses Bayesian networks to represent the probabilistic model and incorporates
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restricted tournament replacement (Harik, 1995) for effective diversity maintenance. This section
outlines hBOA and briefly discusses Bayesian networks, which are used to guide the exploration of
the search space in hBOA.

2.1 Basic hBOA Procedure

hBOA evolves a population of candidate solutions. The population is initially generated at random
according to a uniform distribution over all n-bit strings. Each iteration starts by selecting a
population of promising solutions using any common selection method of genetic and evolutionary
algorithms, such as tournament and truncation selection. We use truncation selection with the
threshold τ = 50%. New solutions are generated by building a Bayesian network with decision
trees (Chickering, Heckerman, & Meek, 1997; Friedman & Goldszmidt, 1999) for the selected
solutions and sampling the built Bayesian network. The new candidate solutions are incorporated
into the original population using restricted tournament replacement (RTR) (Harik, 1995). We use
RTR with window size w = min{n, N/20} as suggested in (Pelikan, 2005). The run is terminated
when termination criteria are met.

2.2 Bayesian Networks

Bayesian networks (Pearl, 1988; Howard & Matheson, 1981) combine graph theory, probability
theory and statistics to provide a flexible and practical tool for probabilistic modeling and inference.
BOA and hBOA use Bayesian networks to model promising solutions found so far and sample new
candidate solutions. A Bayesian network consists of two components: (1) Structure, which is
defined by an acyclic directed graph with one node per variable and the edges corresponding to
conditional dependencies between the variables, and (2) parameters, which consist of the conditional
probabilities of each variable given the variables that this variable depends on.

Mathematically, a Bayesian network with n nodes encodes a joint probability distribution of n
random variables X1, X2, . . . , Xn:

p(X1, X2, . . . , Xn) =

n
∏

i=1

p(Xi|Πi), (1)

where Πi is the set of variables from which there exists an edge into Xi (members of Πi are called
parents of Xi). In addition to encoding direct conditional dependencies, a Bayesian network may
also encode a number of conditional independence assumptions (Pearl, 1988; Howard & Matheson,
1981).

hBOA uses Bayesian networks with local structures in the form of dependency trees (Chickering,
Heckerman, & Meek, 1997; Friedman & Goldszmidt, 1999). That means that the conditional
probabilities for each variable are stored in a decision tree, allowing a more efficient representation
of conditional dependencies and a more powerful model-building procedure. For more details on
learning and sampling Bayesian networks with local structures, see Chickering, Heckerman, and
Meek (1997) and Pelikan (2005).

3 hBOA Models for Separable Problems

We start the analysis of hBOA models on separable problems of bounded difficulty; specifically,
we consider concatenated traps of order 5. There are several reasons for analyzing hBOA models
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on concatenated traps. First of all, many real-world problems are believed to be nearly decom-
posable (Simon, 1968), and separable problems of bounded difficulty represent a broad class of
such problems (Goldberg, 2002). Second, there is a solid body of theory that defines what a good
probabilistic model should look like in order to provide scalable performance on separable problems
of bounded difficulty (Goldberg, 2002; Pelikan, Sastry, & Goldberg, 2002; Pelikan, 2005). Finally,
concatenated traps bound the class of decomposable problems of bounded difficulty because they
use fully deceptive subproblems (Deb & Goldberg, 1991), which cannot be further decomposed, and
any model that fails to accurately represent the problem decomposition is expected to fail to scale
up polynomially with problem size (Deb & Goldberg, 1991; Thierens & Goldberg, 1993; Goldberg,
2002; Pelikan, 2005).

Our analysis will focus on answering two primary questions:

1. Do hBOA models accurately represent problem decomposition for separable problems?

2. How do the models change over time (from generation to generation)?

Answering the above questions is important to better understand how hBOA works on separable
problems. But even more importantly, these results provide important information for developing
theory and efficiency enhancement techniques for hBOA and nearly decomposable problems of
bounded difficulty. Our primary focus will be on the second question as an in-depth analysis of
model accuracy in hBOA on traps can be found in Lima et al. (2007).

3.1 Concatenated 5-bit Trap

In concatenated 5-bit traps (Ackley, 1987; Deb & Goldberg, 1991), the input string is partitioned
into disjoint groups of 5 bits each. This partitioning is unknown to the algorithm, and it does
not change during the run. A 5-bit trap function is then applied to each of the groups and the
contributions of all the groups are added together to form the fitness, which we want to maximize.
The 5-bit trap function is defined as follows:

trap5(u) =

{

5 if u = 5
4 − u otherwise

, (2)

where u is the number of ones in the input string of 5 bits. An n-bit trap-5 has one global
optimum in the string of all ones and 2n/5−1 other local optima (the number of local optima grows
exponentially fast with problem size).

Trap-5 necessitates that all bits in each trap partition (linkage group) are treated together,
because statistics of lower order mislead the search away from the global optimum (Deb & Goldberg,
1991), leading to highly inefficient performance (Thierens & Goldberg, 1993; Goldberg, 2002).

3.2 A Perfect Model for Trap-5

Since the 5-bit trap described above is fully deceptive (Deb & Goldberg, 1991), to solve concate-
nated traps in polynomial time, it is necessary that the probabilistic model encodes conditional
dependencies between all or nearly all pairs of variables within each trap partition. On the other
hand, to maximize the mixing and minimize model complexity, it is desirable that we do not dis-
cover any dependencies between the different trap partitions. Therefore, a “perfect” model for
solving trap-5 would contain all dependencies between the bits within each trap partition but it
would not contain any dependencies between the different trap partitions (see Figure 1).

In the remainder of this section, we call the dependencies that we would like to discover the
necessary dependencies whereas the dependencies that we would like to avoid in order to maximize
the mixing will be called unnecessary.
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Figure 1: A perfect model for solving trap-5 connects the variables within each trap partition but
it does not contain dependencies between the different traps.

3.3 Experimental Setup

To make sure that our results correspond to the actual hBOA performance on trap-5 and are not
biased by either a too large or too small population size, we first use bisection (Sastry, 2001) to
ensure that the population size is large enough to obtain reliable convergence to the global optimum
in 30 out of 30 independent runs. The results are then averaged over the 30 successful runs with
the population size obtained by bisection. The number of generations is upper bounded according
to preliminary experiments and hBOA scalability theory (Pelikan, Sastry, & Goldberg, 2002) by
2
√

n where n is the number of bits in the problem. Each run of hBOA is terminated when the
global optimum has been found (success) or when the upper bound on the number of generations
has been reached without discovering the global optimum (failure). To look at the relationship
between problem size and the probabilistic models, we consider traps of sizes n = 15 to n = 210
bits.

3.4 Model Accuracy for Trap-5

We first look at the accuracy of the probabilistic models in hBOA on trap-5; specifically, we are
interested in finding out how many of the necessary and unnecessary dependencies are covered.
Since numerous empirical results confirmed that hBOA can solve trap-5 in a number of evaluations
that grows polynomially with problem size (Pelikan, Goldberg, & Cantú-Paz, 1999; Pelikan, 2005),
we expect that the necessary dependencies will be discovered; otherwise, the deceptiveness of the
trap partitions should lead to poor, exponential scalability (Thierens & Goldberg, 1993; Goldberg,
2002; Pelikan, 2005). On the other hand, good scalability does not directly necessitate that the
number of unnecessary dependencies is relatively small compared to the overall number of depen-
dencies. Quite the contrary, Lima et al. (2006) showed that with tournament selection, hBOA
often finds many unnecessary dependencies when solving trap-5. Nevertheless, the results with
truncation selection show that the models closely resemble what we consider the perfect model for
trap-5, where trap partitions are fully connected while there are almost no connections between
the different traps.

Figure 2 shows the number of necessary and unnecessary dependencies for trap-5 of sizes 15
to 210. For each problem size, the results show the average number of necessary and unnecessary
dependencies over the 30 runs using the population size determined by the bisection method. Since
the models change over time, we consider three snapshots. The first snapshot shows the model in
the first generation, the second snapshot shows the model in the middle of the run, and the last
snapshot shows the final model learned before terminating the run.

The results show that initially, the probabilistic model covers only a few of the necessary
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Figure 2: The average number of necessary and unnecessary dependencies with respect to problem
size on trap-5. Three model snapshots were taken in each run (the first, middle, and last generation).

dependencies. Nonetheless, the model improves over time and the second snapshot shows that
in the middle of the run, all or nearly all necessary dependencies are covered (the number of
necessary dependencies for trap-5 is 2n). Finally, late in the run, the model covers many but not
all necessary dependencies.

The results from figure 2 are quite intuitive. At the beginning, only some subproblems can be
expected to be discovered because the initial population is generated at random and the statis-
tical information from one round of selection does not provide enough information to identify all
subproblems. However, after several more iterations, the collateral noise (Goldberg, 2002) in the
population decreases, the overall quality of solutions in the population increases, and the statistical
information provides enough input to enable hBOA to learn better models. Finally, at the end of
the run, even though accurate problem decomposition should still be important, the dependencies
between the subproblems become easy enough to cover with short-order conditional probabilities
(because we expect each trap partition to be assigned to either of the two local optima, that is,
00000 or 11111).

We illustrate the argument that in the end of the run our models can significantly simplify
without affecting the encoded distribution with the following example. Consider a population of
5-bit binary strings with only two alternative candidate solutions: 00000 and 11111. Late in the
run of hBOA on trap-5, every trap partition is expected to have the same or at least a very similar
distribution to this. Clearly, the value of any bit depends on the value of the remaining bits.
Nonetheless, to fully encode this probability distribution, we can use a simple chain model defined
as

p(X1, X2, X3, X4, X5) =p(X1)p(X2|X1)p(X3|X2)p(X4|X3)p(X5|X4).

Therefore, as the population diversity decreases and some partial solutions are eliminated, many
of the necessary dependencies become unnecessary.

In addition to showing good coverage of necessary dependencies, the results from figure 2 show
that the number of unnecessary dependencies is significantly smaller than the number of necessary
dependencies. This fact is also exemplified in figure 3, which shows that the ratio of the number
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(b) End of the run.

Figure 3: Ratio of the number of unnecessary dependencies to the total number of dependencies
over the lifetime for trap5 of sizes 50 to 200.

of unnecessary dependencies to the number of necessary dependencies decreases with problem size.
This is great news—not only does hBOA discover the dependencies we need to solve trap-5 scalably,
but it is also capable of avoiding the discovery of a significant number of unnecessary dependencies,
which may slow down the mixing.

One of the most surprising results obtained in this study is that the model structure in hBOA
significantly depends on the selection method used to select the populations of promising solutions.
More specifically, the work on hybridization of hBOA (Lima, Pelikan, Sastry, Butz, Goldberg, &
Lobo, 2006) as well as the work on accuracy of hBOA models with tournament selection (Lima et al.,
2007) showed that with tournament selection the number of unnecessary dependencies is relatively
significant and that the ratio of the number of unnecessary dependencies to the total number
of dependencies increases with problem size. Furthermore, it was shown that with tournament
selection nearly all necessary dependencies are discovered at the beginning of the run. Therefore,
based on Lima et al. (2006) and shortciteNLima:07, one may conclude that with tournament
selection, hBOA models tend to be overly complex. On the contrary, the results presented in
figures 2 and 3 show that for truncation selection, the models contain only a handful of unnecessary
dependencies, but it takes several generations to discover all the necessary dependencies. Although
hBOA scalability is asymptotically the same in both cases (Pelikan, Goldberg, & Cantú-Paz, 1999;
Pelikan, 2005), studying the influence of the selection method on performance of hBOA and other
EDAs appears to be an important topic for future research that has been somewhat neglected in
the past.

3.5 Model Dynamics for Trap-5

Knowing that hBOA models for traps are accurate is great, but that’s only one piece of the puzzle
and there still remain many important questions. How do the models change over time? Are the
models in subsequent generations similar? When do most changes in models occur - is it early in
the run or late in the run? All these questions are important, especially for the design of efficiency
enhancement techniques, such as sporadic and incremental model building (Pelikan, Sastry, &
Goldberg, 2006) and hybridization (Lima, Pelikan, Sastry, Butz, Goldberg, & Lobo, 2006; Sastry
& Goldberg, 2004; Pelikan & Goldberg, 2003a).
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(a) n = 100 bits. (b) n = 200 bits.

Figure 4: Dependency changes in trap-5 for two different problem sizes.

To better understand model dynamics in hBOA, we analyze changes in hBOA models in sub-
sequent generations of hBOA. In each generation, we record the number of dependencies that were
not present in the previous generation but have been added in the current one, and analogically
we record the number of dependencies that were present in the previous generation but that have
been eliminated in the current one. Figure 4 shows the obtained results for trap-5 of size 100
and 200 (the results for other problem sizes look similar). The results clearly indicate that most
dependencies are added in the first few generations of hBOA. After the correct or approximately
correct model for the underlying problem is discovered, the models do not change significantly.

The stability of hBOA models on trap-5 is great news for sporadic and incremental model
building (Pelikan, Sastry, & Goldberg, 2006), which are efficiency enhancement techniques that
focus on improving efficiency of model building in hBOA. More specifically, both sporadic and
incremental model building lead to the highest gains in performance when models in subsequent
generations have similar structure. Our results indicate that this is indeed the case, at least for
separable problems of bounded difficulty.

While stability of hBOA models is important for incremental and sporadic model building, the
rapid learning of an accurate model is also an important precondition for efficient hBOA hybrids
using specialized local operators that are based on the learned models (Lima, Pelikan, Sastry, Butz,
Goldberg, & Lobo, 2006; Sastry & Goldberg, 2004).

4 hBOA Models for 2D Spin Glasses

We have shown on a difficult separable problem of bounded order that hBOA learns the adequate
problem decomposition quickly and accurately, but what happens when we move to a harder
problem that cannot be broken up into subproblems of bounded order? To answer this question,
we consider the problem of finding ground states of 2D Ising spin glasses (Binder & Young, 1986;
Mezard, Parisi, & Virasoro, 1987; Fischer & Hertz, 1991; Young, 1998) where the task is to find
spin configurations that minimize the energy of a given spin glass instance. While the structure of
the energy function for 2D Ising spin glasses is relatively easy to understand, the problem of finding
spin-glass ground states represents a great challenge for most optimization techniques because (1)
the energy landscape contains an extremely large number of local optima, (2) the local optima in the
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energy landscape are often separated by configurations with very high energy (low-quality regions),
(3) any decomposition of bounded order is insufficient for solving the problem, and (4) the problem is
still solvable in polynomial time using analytical methods. This is why most standard and advanced
optimization techniques fail to solve this problem in polynomial time, including classical genetic
algorithms (Pelikan & Goldberg, 2003a) and state-of-the-art Markov chain Monte Carlo (MCMC)
methods such as the flat-histogram MCMC (Dayal, Trebst, Wessel, Würtz, Troyer, Sabhapandit,
& Coppersmith, 2004). Despite the difficulty of the Ising spin glass problem, hBOA is able to solve
2D Ising spin glasses in polynomial time, achieving empirical asymptotic performance of the best
analytical methods without any problem-specific knowledge (Pelikan & Goldberg, 2003a).

4.1 2D Ising Spin Glass

A very simple model to describe a finite-dimensional Ising spin glass is typically arranged on a
regular 2D or 3D grid where each node i corresponds to a spin si and each edge 〈i, j〉 corresponds
to a coupling between two spins si and sj . For the classical Ising model, each spin si can be in one
of two states: si = +1 or si = −1. Each edge 〈i, j〉 has a real value (coupling) Ji,j associated with it
that defines the relationship between the two connected spins. To approximate the behavior of the
large-scale system, periodic boundary conditions are often used that introduce a coupling between
the first and the last element along each dimension. In this paper we consider the 2D Ising spin
glass with periodic boundary conditions.

Given a set of coupling constants Ji,j , and a configuration of spins C = {si}, the energy can be
computed as E(C) =

∑

〈i,j〉 siJi,jsj , where the sum runs over all couplings 〈i, j〉. Here the task is
to find a spin configuration given couplings {Ji,j} that minimizes the energy of the spin glass. The
states with minimum energy are called ground states. The spin configurations are encoded with
binary strings where each bit specifies the value of one spin (0 for +1, 1 for -1).

In order to obtain a quantitative understanding of the disorder in a spin glass system introduced
by the random spin-spin couplings, one generally analyzes a large set of random spin glass instances
for a given distribution of the spin-spin couplings. For each spin glass instance, the optimization
algorithm is applied and the results are analyzed. Here we consider the ±J spin glass, where
each spin-spin coupling constant is set randomly to either +1 or −1 with equal probability. All
instances of sizes up to 18 × 18 with ground states were obtained from S. Sabhapandit and S. N.
Coppersmith from the University of Wisconsin who identified the ground states using flat-histogram
Markov chain Monte Carlo simulations (Dayal, Trebst, Wessel, Würtz, Troyer, Sabhapandit, &
Coppersmith, 2004). The ground states of the remaining instances were obtained from the Spin
Glass Ground State Server at the University of Cologne (Spin Glass Ground State Server, 2004).

To improve the performance of hBOA, we incorporated a deterministic local search—deterministic
hill climber (DHC)—to improve quality of each evaluated solution (Pelikan & Goldberg, 2003a; Pe-
likan, 2005). DHC proceeds by making single-bit flips that improve the quality of the solution most
until no single-bit flip improves the candidate solution. DHC is applied to every solution in the
population before it is evaluated.

4.2 Perfect Model for 2D Ising Spin Glass

With spin glasses it is not clear what dependencies are really necessary to solve the problem scalably
and neither is it clear what dependencies are unnecessary and should be avoided to maximize the
mixing. In fact, to some degree, every spin (bit) depends on every other spin either directly through
one connection (coupling) or through a chain of connections. It has been argued (Mühlenbein,
Mahnig, & Rodriguez, 1999) that to fully cover all necessary dependencies, the order of dependencies
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Figure 5: Finding ground states of Ising spin glasses in two dimensions. For simplicity, we omit
periodic boundary conditions in this figure.

in the probabilistic model must grow at least as fast as Ω(
√

n). Of course, since hBOA has been
shown to solve 2D Ising spin glasses in polynomial time and due to the initial-supply population
sizing (Goldberg, 2002) the population size in hBOA is lower bounded by Ω(2k) (where k is the
order of dependencies covered by the probabilistic model), the models in hBOA cannot encode
dependencies of order Ω(

√
n) or more.

Nonetheless, while it is unclear what a “perfect” model for a 2D Ising spin glass looks like, it is
clear that the interactions between immediate neighbors should be strongest and the interactions
should decrease in magnitude with the distance of spins measured by the number of links between
these spins (considering the shortest path of links between the spins). This hypothesis will be
confirmed with the experimental results presented shortly.

4.3 Experimental Setup

Most hBOA parameters were set the same as in the experiments for concatenated traps. Since
the difficulty of spin glass instances varies significantly depending on the couplings (Dayal, Trebst,
Wessel, Würtz, Troyer, Sabhapandit, & Coppersmith, 2004; Pelikan & Goldberg, 2003a), we gen-
erated 100 random instances for each considered problem size. On each spin glass instance we used
the population size obtained by bisection but since we used 100 random instances for each problem
size, we required hBOA to converge only in 5 out of 5 independent runs.

4.4 Model Dynamics and Structure for 2D Ising Spin Glass

Given our initial understanding of the structure of 2D Ising spin glass, we start by analyzing the
grid distances of the spins directly connected by a dependency in the probabilistic model, where
the distance of two spins is defined as the minimum number of links in the 2D grid that we must
pass to get from one spin to the other one. The minimum distance, one, is between any immediate
neighbors in the grid. Due to the periodic boundary conditions, the maximum distance is not
between the opposite corners of the grid. Instead, the maximum distance is, for example, between
the top-left spin and the spins around the middle of the grid; for instance, for 2D spin glasses of
size 20 × 20 the maximum distance is 20 (10 links to the right, 10 links to the bottom). Also of
note is that the number of possible dependencies of any given distance increases to a maximum at
half of the maximum distance and then decreases to having only one possible dependency at the
maximum distance. For example, any particular spin in a 2D spin glass of size 20 × 20 could have
38 possible dependencies of distance 10 but only 1 dependency possible of length 20.
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(a) First generation (b) Second snapshot

(c) Third snapshot (d) Last Generation

Figure 6: Distribution of dependencies with respect to spin distances for hBOA with DHC.

To analyze distances of spins that are connected in the probabilistic model, we created a his-
togram of the average number of dependencies for each distance value at different stages of the
hBOA run on 100 randomly generated ±J Ising spin glasses. We expected that early in the run,
the majority of the dependencies would be between immediate neighbors in the grid, whereas later
in the run, the number of dependencies between further spins would increase. We obtained four
snapshots of the model at equally distributed time intervals to cover the entire run of hBOA.

Figure 6 shows that in all stages of the run, the number of dependencies between immediate
neighbors is as large as the number of the remaining dependencies. Since the influence of each spin
on the distribution of another spin decreases significantly with the number of links between the
spins, we believe that (at least initially) the dependencies of spins that are located far away are
not necessary and are only a result of the strong problem regularities and noisy information of the
initial population of spin configurations. However, as the run proceeds, long-range dependencies
may become more meaningful as the search progresses to locate the candidate solutions in the
most promising regions of the search space. Further analysis of the obtained results remains an
important topic for future work; more insight could be obtained by analyzing the energy landscape
from the perspective of the populations at different stages of the hBOA run.

One of the surprising results is that the number of dependencies at any distance decreases
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(a) First generation (b) Second snapshot

(c) Third snapshot (d) Last generation

Figure 7: Distribution of dependencies with respect to spin distances for hBOA without DHC.

over time and therefore in each generation of hBOA, the model becomes simpler. We believe that
while the effective order of dependencies encoded by the model increases over the run, since these
dependencies become simpler (they cover fewer alternative partial solutions), they can be covered
with structures composed of short-order dependencies. This behavior is similar to that observed
for concatenated traps in the last stage of the run, where some necessary dependencies were not
really needed. Also of note is the increased number of mid-range dependencies that exist early on.
We believe this is a result of the increased total number of dependencies possible at these distances
and is caused by noise early on in the run.

To check whether the spin glass results are significantly influenced by DHC, we repeated the
same experiments without DHC (see figure 7). The results without DHC indicate that the structure
of the models looks similar to that found with DHC; however, the long-range dependencies become
even more significant without DHC than with DHC. In fact, without DHC, the models are generally
more complex.

Just as with trap-5, we next look at how stable individual dependencies are in subsequent
generations. In each generation, we record the number of dependencies that were not present in
the previous generation but have been added in the current one, and analogically we record the
number of dependencies that were present in the previous generation but that have been eliminated
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in the current one. Figure 8a shows the obtained results for one run of a 20 × 20 spin glass (the
results for other runs are similar). The results seemed to indicate that we had a great deal of change,
however in Figure 8b we repeated the experiment and only looked at neighbor dependencies. The
results clearly show that the short-range dependencies are very stable and the changes seen in
Figure 8a are due to the farther dependencies changing. Since many long-range dependencies can
be expected to be unnecessary as is also supported by the results presented in the next section, the
most important factor regarding the stability of hBOA models is the stability with respect to the
short-range dependencies.

4.5 Restricting hBOA Models on Spin Glass

We have observed that most of the dependencies hBOA finds are the short dependencies between
neighbors in the grid. So the following question arises, if restricted to only dependencies of distance
one, would hBOA still solve the problem scalably and reliably? If not, could we at least restrict
the dependencies to consider distances of at most two or three? If we could restrict hBOA models
significantly without negatively affecting hBOA scalability, these restrictions could be used both to
significantly speed up hBOA as well as to design powerful problem-specific recombination operators
for spin glasses and other similar problems.

To answer the above question, we looked at the scalability of hBOA with the different restrictions
on the dependencies using spin glass instances of sizes from 10 × 10 = 100 spins to 25 × 25 = 625
spins, using 100 instances for each problem size. For each problem instance and each hBOA
variant, we used bisection to find an adequate population size and recorded the average number of
evaluations until convergence. The results are shown in figure 9.

The results show that while performance of hBOA restricted to neighbor dependencies is com-
parable to the performance of the original hBOA on the smallest spin glass instances of size 10×10,
as the problem size increases, performance of hBOA with only neighbor dependencies deteriorates
quickly and the number of evaluations grows exponentially. Performance of hBOA with depen-
dencies restricted to spins at distances of at most two leads to performance comparable to that
of the original hBOA up to the problems of size 18 × 18. However, as the problem size is further
increased, the performance of the restricted hBOA again starts to deteriorate. In particular, the
harder instances were affected much more severely by the restrictions.

The scalability analysis thus indicates that to solve 2D spin glasses scalably we cannot restrict
the dependencies to be only between the immediate neighbors or spins located at the distance of
at most two. This result agrees with the results presented in Yu (2006). The result also shows
that the hand-designed approximate Bayesian network structure proposed for 2D Ising spin glasses
in Mühlenbein, Mahnig, and Rodriguez (1999) is unlikely to scale up because it relates only the
spins at distance one or two. Nonetheless, the results show that we can restrict hBOA models
significantly although the degree to which we can restrict the models appears to depend on the
problem size, assuming that we do not want to affect hBOA scalability. Because of the important
implications of restricting complexity of hBOA probabilistic models, this topic should be further
investigated in future research.

The implications of these results go beyond the direct application of hBOA to spin glasses.
Specifically, we show that none of the probabilistic models designed by hand for 2D Ising spin
glasses in the past seems to ensure polynomially scalable performance. While the probabilistic
model based on the running intersection property leads to intractable performance due to the
large order of dependencies it uses (Mühlenbein, Mahnig, & Rodriguez, 1999), the approximate
probabilistic model based on statistical terms of short order (Mühlenbein, Mahnig, & Rodriguez,
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(a) All dependencies (b) Neighbor dependencies

Figure 8: Dependency changes for one run of a 20 × 20 spin glass.
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Figure 9: Scalability of hBOA with DHC with and without restrictions on model structure.

1999) fails to scale up for large problems. Thus, in spite of the availability of the complete knowledge
of the problem specifics, models obtained with automatic model building procedures of hBOA
outperform hand-crafted models.

5 Future Work

A direct extension of this work is analysis of probabilistic models in hBOA on other challenging prob-
lems, considering both artificial and real-world problems. For artificial optimization problems—such
as hierarchical traps (Pelikan & Goldberg, 2001; Pelikan, 2005) and random additively decompos-
able problems with and without overlap (Pelikan, Sastry, Butz, & Goldberg, 2006)—the primary
motivation for studying hBOA models is to gain better understanding of hBOA with the goal of
improving the algorithm, developing theoretical models, and designing efficiency enhancement tech-
niques. On the other hand, for real-world problems, the analysis of hBOA models can provide useful
information for designing problem-specific variation operators inspired by the learned probabilistic
models and focusing the research on challenges identified in important real-world domains.
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Another important topic for future research is the development of techniques to effectively use
information obtained from the analysis of hBOA models and the use of this information for the
design of efficiency enhancement techniques with the special focus on speeding up model building
and learning from experience (Pelikan, 2005).

6 Conclusions

Since both the scalability of hBOA as well as the effectiveness of several efficiency enhancement
techniques for hBOA crucially depend on the quality of the probabilistic models learned by hBOA,
analysis of probabilistic models in hBOA is an important research topic. This paper analyzed the
structure and complexity of hBOA probabilistic models on two common test problems: concate-
nated traps and 2D Ising spin glasses with periodic boundary conditions.

For concatenated traps, there is a solid body of theory that defines an adequate probabilistic
model to ensure that hBOA finds the global optimum scalably and reliably. The results show that
hBOA is able to learn such adequate probabilistic models quickly and that the learned problem
decomposition corresponds closely to the underlying problem. The results also show that the models
on concatenated traps do not change much from generation to generation, which is important
especially for the effectiveness of sporadic and incremental model building.

While for 2D Ising spin glasses it is unclear what is an ideal probabilistic model for solving
the problem scalably, the probabilistic models obtained by hBOA are shown to correspond closely
to the structure of the underlying problem. Furthermore, the results indicate that while it seems
to be possible to restrict hBOA models significantly without affecting hBOA performance much,
probabilistic models designed by hand may not lead to good scalability despite the robust and
scalable performance of hBOA based on automatic model building procedures.

Although the analysis of Bayesian networks with local structures is a challenging task, this
paper shows that the analysis of hBOA models is indeed possible and that such an analysis can
reveal useful information about the underlying problem.
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via Probabilistic Modeling: From Algorithms to Applications (pp. 161–185). Springer.

Simon, H. A. (1968). The sciences of the artificial. Cambridge, MA: The MIT Press.

Spin Glass Ground State Server (2004). http://www.informatik.uni-koeln.de/ls juenger/

research/sgs/sgs.html. University of Köln, Germany.
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