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Abstract

Several schemes are proposed to estimate the relative frequencies of the individual

numbers bet on the (California) lottery. The hypothesis that the small numbers are

bet more frequently than the large ones is tested, and evidence supporting the hypoth-

esis is presented. A computation is proposed which would take 6.6 months; instead

an approximation to the function involved is used, reducing the computation to 0.2

seconds. A favorable (but impractical) strategy for betting on the lottery is proposed.
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On February 15, 1992, as a result of previous games with no winner, the Virginia State

Lottery jackpot grew to an amount of $27,007,364, resulting in an unprecedented volume of

ticket sales. A consortium of Australian investors came to Virginia in an attempt to pur-

chase all 7,059,052 possible ticket combinations, and were successful in winning the lottery,

although they had been able to purchase only roughly 85% of the possible tickets because

of logistical difficulties [3]. It was rumored their strategy was based in part on the idea that

although they might have to share their winnings with other winning ticket-holders, indi-

vidual purchasers who select their own numbers tend to purchase the numbers from 1-12,

and from 1-31 more heavily than the remaining numbers, as these numbers represent dates:

birthdays and other special days; consequently, the distribution of numbers bet would not be

not uniform, whereas the distribution of winning numbers is uniform (at least in principle;

see below), and hence, one could obtain an advantage.

Stern and Cover [4] studied the Canadian Lotto “6/49” (choose 6 numbers from the inte-

gers from 1 to 49), which publishes the distribution of numbers selected by ticket-purchasers

weekly, and they demonstrate that a bet on the 6 least popular numbers has a positive

expectation because the distribution of numbers bet is not uniform.

We study herein the California State Lottery [1], for which the distribution of the numbers

bet is not published. We will estimate this distribution instead, to address the question of

whether the smaller numbers are bet more heavily, or whether the numbers are bet uniformly.

A “ticket” on the (California) lottery (Super Lotto) is the selection and purchase of a

combination of 6 integers (sextet) chosen without replacement from the integers {1, 2, ..., 51}.

The

(
51
6

)
possible sextets will be indexed by the variable i = {n1 < n2 < . . . < n6}, the

sextet of numbers, and occasionally to emphasize this we will write �ı for i. The “play” on
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the i-th sextet in the n-th game of the lottery is the sum of all the $1.00 tickets purchased

on the sextet i. Noting that some individuals decide on some random basis to play or not

to play the lottery on the n-th game, and some individuals choose their tickets by picking

the individual numbers in them, while others allow the vending machine to select a ticket

“at random” (meaning uniformly over all sextets i), we denote the play on the sextet i in

the n-th game by the non-negative integer-valued random variable Xni . We assume that for

each i, {X1i , X
2
i , . . .} are independent, identically distributed (FXi). (We make some remarks

about removing this assumption at the end of the paper.)

The winning sextet for the n-th game is a selection drawn at random by the Lottery

Commission, uniformly over all sextets i; we denote the winning sextet by the random

sextet Sn. It is also clear that {S1, S2, . . .} are i.i.d. (FS). We assume that since the process

by which the winning sextet is drawn is literally “balls drawn without replacement from an

urn,” for each i and each n, Sn is i.i.d. uniform and independent of {X1i , X
2
i , . . .}. (The

assumption of “equally likely outcomes” may not be met in practice. Johnson and Klotz [2]

conclude otherwise in their study of the Multi-State Lottery.) The number of winners (i.e.

purchasers of a winning ticket) on the n-th game is XnSn .

We wish to know the frequency distribution of the numbers bet, i.e. the numbers

{p1, . . . , p51},
∑51
j=1 pj = 6, as each bet consists of selecting 6 numbers. Note that

pj =

∑
{�ı:j∈�ı}EX�ı∑
�ıEX�ı

=

∑
�ıEX�ıI[j∈�ı]∑
�ıEX�ı

This information is not available directly, as the Lottery Commission will not divulge this

(as opposed to the Canadian Lottery [4].) We propose to infer this distribution based on

publicly available information, namely: for each game of the Lottery, the number of tickets
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sold, the winning sextet, the number of tickets purchased with the same 6 numbers as the

winning sextet, and the numbers of tickets purchased with 5, 4 or 3 numbers in common with

the winning sextet, respectively. We prove below that the estimators of these 51 numbers

based upon the number of jackpot winners (6 out of 6), or the estimators based upon 5, 4

or 3 out of 6, respectively, converge almost surely to the respective parameters, and then

make some comments about our ability to make such inference in practice. These four sets

of estimators will prove not sufficiently sensitive to produce the results we seek, and we

will then introduce another method of estimating the parameters which will yield improved

results.

For each of the N games, observe < Sn, XnSn >, n = 1, . . . , N . Let

p̂Nj =

∑N
n=1X

n
SnI[j∈Sn]∑N

n=1X
n
Sn

/

∑N
n=1 I[j∈Sn]
6
51
N

, j = 1, . . . , 51.

Note that the denominator(s) are eventually positive. The rationale for these estimators

is as follows:
∑N
n=1X

n
SnI[j∈Sn]/

∑N
n=1X

n
Sn represents the observed proportion of winners who

selected the number j in their sextet; in the limit the winning sextets will be uniformly

distributed over all sextets. The quantity
∑N
n=1 I[j∈Sn]/

6
51
N is an adjustment to reflect the

fact that, for small values of N , the observed proportion of winners who selected the number

j in their sextet is weighted toward those j’s which were actually selected in winning sextets.

From the Strong Law of Large Numbers,

(1/N)
N∑
n=1

XnSnI[j∈Sn]
a.s→ E(XSI[j∈S])

= E(E(XSI[j∈S]|S))

=
∑
�ı

E(XSI[j∈S]|S =�ı)P [S =�ı]

=
∑
�ı

E(X�ıI[j∈�ı]|S =�ı)P [S =�ı]
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which, by the independence of S and Xi

=
∑
�ı

E(X�ıI[j∈�ı])/

(
51
6

)

Similarly, we have that

(1/N)
N∑
n=1

XnSn
a.s.
→ E(XS)

=
∑
�ı

E(X�ı)/

(
51
6

)

and

(1/N)
N∑
n=1

I[j∈Sn]
a.s
→ EI[j∈S] =

6
51
.

Thus, we have that
p̂Nj

a.s.
→ pj , j = 1, . . . , 51.

Although this procedure will produce estimators which converge a.s. to the desired param-

eters, they do not appear to be very efficient. Note that while the quantity
∑N
n=1X

n
Sn , the

total number of lottery winners in the N games, increases a.s. to infinity, it is clear that the

rate is slow (currently averaging about 1/2 winner per game.)

We can make use of additional information to obtain some alternative estimators. The

lottery also pays lesser amounts to the ticket-holders whose tickets have 5, 4, or 3 numbers

in common with the winning sextet, and publishes the number of such ticket-holders.

Let T
(5)
i denote the set of all sextets from {1, 2, . . . , 51} which have exactly 5 numbers

in common with the sextet i (and similarly, define T (4)i , T
(3)
i ). There are

(
6
1

)
· 45 = 270

such sextets. The number of ticket-holders whose tickets have exactly 5 numbers in common

with the winning sextet Sn is therefore

∑
k∈T (5)

Sn

Xnk .
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Then, as we did above, for each of the N games, observe < Sn,
∑
k∈T

(5)
Sn
Xnk >. Again, as

above, we denote

p̂
(5)N
j =

∑N
n=1

∑
k∈T

(5)
Sn
Xnk I[j∈Sn]∑N

n=1

∑
k∈T (5)

Sn
Xnk

/

∑N
n=1 I[j∈Sn]
6
51
N

(p(4)Nj and p(3)Nj are similarly defined, using T (4)i and T (3)i .)

As before, from the Strong Law of Large Numbers,

(1/N)
N∑
n=1

∑
k∈T

(5)
Sn

Xnk I[j∈Sn]
a.s.
→ E


 ∑
k∈T

(5)
S

XkI[j∈S]




=
∑
�ı

∑
k∈T

(5)
i

E(XkI[j∈�ı])/

(
51
6

)

=
∑
{�ı:j∈�ı}

∑
k∈T (5)i

EXk/

(
51
6

)
,

while

(1/N)
N∑
n=1

∑
k∈T (5)

Sn

Xnk
a.s.→ E


 ∑
k∈T (5)

S

Xk




=
∑
�ı

∑
k∈T

(5)
i

EXk/

(
51
6

)

which from the symmetry of the summation

= 270
∑
�ı

EXi/

(
51
6

)
, (1)

as will be formally verified below, together with (2) and (3). Hence we obtain

p̂
(5)N
j

a.s.
→

∑
{�ı:j∈�ı}

∑
k∈T

(5)
i

EXk

270
∑
�ıEXi

.

To analyze the numerator of this expression, when j ∈�ı, for fixed i, j, write

T
(5)
i = Aji ∪B

j
i ,

where Aji consists of the 225 sextets which have exactly 5 numbers in common with i, one of

which is j, and where Bji consists of the 45 sextets which have exactly 5 numbers in common
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with i, and do not contain j. From the symmetry of the summation,

∑
{�ı:j∈�ı}

∑
k∈Aji

EXk = 225
∑
{�ı:j∈�ı}

EXi. (2)

Noting that #{i : j ∈ i}×#{Bji } = 6#{i : j 
∈ i} and again the symmetry of the summation,

∑
{�ı:j∈�ı}

∑
k∈Bji

EXk = 6
∑
{�ı:j �∈�ı}

EXi. (3)

Thus

∑
{�ı:j∈�ı}

∑
k∈T (5)i

EXk = 219
∑
{�ı:j∈�ı}

EXi + 6
∑
�ı

EXi

from which we conclude that

p
(5)N
j

a.s.
→ 73

90
pj +

1
45
.

Analogous definitions of p̂(4)Nj and p̂(3)Nj and similar reasoning lead to

p
(4)N
j

a.s.
→ 28

45
pj +

2
45

and

p
(3)N
j

a.s.→ 13
30
pj +

1
15
.

Verification of (1), (2) and (3):

Observe that

k ∈ T (5)i ⇐⇒ i ∈ T (5)k .

Then

∑
�ı

∑
�k∈T

(5)
i

EX�k =
∑
�ı

∑
�k

EX�kI[�k∈T (5)i ]

=
∑
�k

∑
�ı

EX�kI[�k∈T (5)i ]

=
∑
�k

∑
�ı

EX�kI[�ı∈T (5)k ]
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=
∑
�k

EX�k

(∑
�ı

I
[�ı∈T (5)

k
]

)

= 270
∑
�k

EX�k

= 270
∑
�ı

EX�ı.

This establishes (1). To verify (2), observe that

[j ∈�ı, �k ∈ Aji ] ⇐⇒ [j ∈ �k, i ∈ Ajk].

Then

∑
{i:j∈i}

∑
k∈Aji

EXk =
∑
�ı

∑
�k

EX�kI[j∈i]I[k∈Aji ]

=
∑
�k

∑
�ı

EX�kI[j∈�k]I[i∈Aj
k
]

= 225
∑
�k

EX�kI[j∈�k]

= 225
∑
{i:j∈i}

EXi.

This establishes (2). To verify (3), observe that

[j ∈�ı, �k ∈ Bji ] ⇐⇒ [j ∈�ı, j 
∈ �k,�k ∈ T (5)i ] ⇐⇒ [j ∈�ı, j 
∈ �k, i ∈ T (5)k ],

from which it follows that

∑
�ı

∑
�k

EX�kI[j∈�ı]I[k∈Bji ]
=

∑
�k

∑
�ı

EX�kI[j∈�ı]I[j �∈k]I[i∈T (5)k]

=
∑
�k

(
EX�k

)
I[j �∈�k]

∑
�ı

I[j∈�ı]I[i∈T (5)
k
]

and when [j 
∈ �k],

∑
�ı

I[j∈�ı]I[�ı∈T (5)k ]
= 6.
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The Analysis

At its inception, the California Lottery was in the format “pick 6 numbers from the

integers from 1 to 49” (“6/49”), which was subsequently changed, to “6/53”, and finally on

December 18, 1991, to “6/51”. The data for this study were taken from the N = 176 games

in the current format, from December 18, 1991 through August 21, 1993 [1, pp.122-144].

The estimators p̂Nj , p̂
(5)N
j , p̂

(4)N
j , and p̂(3)Nj were computed, with results shown in Table 1.

To test the hypothesis that the numbers 1-12, and the numbers 1- 31 are bet more heavily

than the numbers above 31, we pooled the estimators p̂Nj for 1 ≤ j ≤ 12, 13 ≤ j ≤ 31, and

32 ≤ j ≤ 51, obtaining means 0.1146, 0.1169, and 0.1156, respectively, which clearly do not

support the hypothesis. For each of the estimators p̂
(5)N
j , p̂

(4)N
j , and p̂

(3)N
j we also pooled

the estimators for groups 1-12, 13-31, and 32-51. The means for the four pooled estimators,

p̂(3)N , p̂(4)N , p̂(5)N , p̂N , are displayed in the first four columns of Table 2. Applying the Kruskal-

Wallis rank sum test (in these cases the statistic is distributed approximately χ2, 2d.f.) to

each of these pooled estimators, we see that we cannot reject the null hypothesis, that the

three sets of numbers come from the same distribution.

As a further test of the hypothesis that the numbers bet are uniformly distributed, we

calculated the statistic

51∑
j=1

(p̂Nj −
6
51
)2 = 0.09799. (4)

Since the distribution of this statistic is not elementary, we performed a simulation of N =

176 games of the lottery. We took the ticket sales in each game as the published ticket

sales for that game, and generated a random number of winners for each game according to

a Poisson distribution with parameter 1/

(
51
6

)
= 1/18009460. We then re-computed the
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statistic (4). We repeated the simulation 1000 times, and found that the value 0.09799 was

exceeded 208 times, and so conclude that using this test we cannot reject the hypothesis

that the numbers are bet uniformly.

Since we failed in the above tests to reject the hypothesis of uniform pj’s, we shall now

consider an alternate method of estimating them. Given values of {p1, . . . , p51}, assume that

bettors purchase tickets by selecting 6 numbers without replacement from the integers from

1 to 51 randomly, independently and weighted according to {p1, . . . , p51}. Then, for the n-th

game, given the 6 winning numbers observed, an individual bettor’s probability of selecting

a ticket with exactly 3 out of 6 numbers in common with the winning sextet is p, which

depends only upon the winning sextet and {p1, . . . , p51}. If the total wager on the n-th game

isWn, then it follows that the number of $5.00 winners (holders of tickets with exactly 3 out

of 6 numbers in common with the winning sextet) will be binomially distributed, and since

Wn is large (approx. 5 · 106) and p ≈ 0.01, the observed number of $5.00 winners, suitably

normed and centered, will be distributed N (0, 1), standard normal, a z-score. These 176

z-scores (denoted z1, . . . , z176) will have a sum of squares S which will be distributed chi-

square. This defines a function S = S(p1, . . . , p51). We define our estimators p̂j as that set

of pj ’s which minimize S. These can be found numerically by a search in the 50-dimensional

simplex:
∑
pj = 1 intersected with the positive orthant of 51-dimensional p-space, and then

multiplying each pj by 6 so that
∑
pj = 6.

This computation and search procedure is easier said than done, however. Putting

aside the issue of the search, let us consider merely the issue of computing the value of

S(p1, . . . , p51), given {p1, . . . , p51}. To compute each z-score, we need to compute, given the

winning six numbers, the probability of selecting a ticket with exactly 3 out of 6 in common
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with the winning ticket. There are

(
6
3

)(
45
3

)
such tickets. Each can occur in 6! = 720

possible orders. We must repeat this calculation for 176 z-scores. The probability of selecting

i1, . . . , i6 in exactly that order is

pi1
pi2

1− pi1
· · ·

pi6
1− pi1 − . . .− pi5

which requires 25 arithmetic operations. Thus, one evaluation of S(p1, . . . , p51) requires(
6
3

)(
45
3

)
(6!) · 176 · 25 = 9 · 1011 arithmetic operations.

All hope is not lost, however, for if we were selecting 6 numbers from M numbers,

then clearly as M tends to infinity, the probabilities of ticket selection for a sampling-

with-replacement scheme will converge to the probabilities of ticket selection for sampling-

without-replacement. Since M = 51 in our case, we will approximate the function S by a

“with replacement” scheme. To calculate the probability of selecting a ticket of 6 numbers

with exactly 3 numbers in common with the winning ticket, given {p1, . . . , p51}, we calculate

∑
pipjpk, summed over the

(
6
3

)
triplets < i, j, k > chosen from the winning sextet, mul-

tiplied by a constant chosen to make probabilities sum to 1. From this, zn, and hence S, is

easily computed. (The evaluation of S now takes (40 multiplications + 19 additions)·176 =

10, 384 arithmetic operations, a factor of 8.5·107 improvement.) Computing S in this way it is

feasible to search the 50-dimensional simplex {(p1, . . . , p51) :
∑
pj = 1, p1 ≥ 0, . . . , p51 ≥ 0},

minimizing S one variable at a time, and cycling through all 51 variables repeatedly until

a (local) minimum of S is found. (Using a step size of pj/100, this search requires 1910

evaluations of S. If we had calculated the exact probabilities by sampling without replace-

ment, our search would have used 1910 · 9 · 1011 = 1.7 · 1015 arithmetic operations, which

on a 100 MIPS machine would require about 6.6 months of machine time, as opposed to
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1910 · 10384 ≈ 2 · 107 operations, or 0.2 seconds of machine time.) Observation of various

1-dimensional sections of S suggest that this minimum is actually a global minimum. The

values of pj at this local minimum, each multiplied by 6 so that
∑
pj = 6, are denoted p̂j

in Table 1. The indices of the order statistics of the p̂j are shown in column 2 of Table 1.

The most popular numbers are 9, 7, 3, 8, 11, and 6, which bear considerable similarity to

the most popular numbers purchased in the Canadian lottery (reported as 3, 7, 9, 11, 25,

and 27 in [4]). The means of the sets {p̂1, . . . , p̂12}, {p̂13, . . . , p̂31}, and {p̂32, . . . , p̂51} are

0.1314, 0.1194, and 0.1074 respectively, and are displayed in Table 2. The Kruskal-Wallis

rank sum test applied to these 3 sets produce a statistic whose value is is 37.18, and whose

distribution is approximately χ2, 2 d.f., and we therefore reject the hypothesis that the three

sets of p’s are all observations from the same distribution at all significance levels. Thus

we have a viable method for estimating the numbers bet on the Lottery which is sensitive

enough to reveal the non-uniformity in the numbers {p1, . . . , p51}.

As a check of the method, we performed the following simulation. We generated random

winning sextets equiprobably over all sextets, for each of the 176 games. We assumed the

true values of the p’s were as follows: p1 = p2 = . . . = p12 = 0.1314, p13 = . . . =

p31 = 0.1194, p32 = . . . = p51 = 0.1074. For each of the 176 games, using these p-values, the

“winning” sextet, and the observed total number of tickets purchased, we generated a random

number of $5.00 winning tickets, according to the binomial distribution discussed above, but

with greater variance. Then we performed the same minimization search procedure discussed

above, starting at equiprobable p’s. The set of minimizing p’s is denoted p̃j in Table 1 and in

Table 2. For the minimizing set, the means of the p̃’s for 1-12, 13-31, and 32-51 were 0.1304,

0.1195, and 0.1081 respectively, in good agreement with the assumed pj ’s.
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Now that we have the pj ’s in hand, let us explore whether we can exploit the non-

uniformity in betting patterns to overcome the “house advantage”: If we bet the 6 least

likely p̂’s, we observe from Table 1 that these numbers are 2.52 times as unlikely to be

selected by other bettors as the “average” numbers are, and these in turn are 2.33 times as

unlikely to be chosen as the 6 most likely p’s. With this information, we can compute our

expected returns:

Given that we have won the jackpot (an event which occurs in any case with probability

1/18009460) our expected payoff depends upon the number of other winners with whom we

have to share. If the jackpot is J , the expected payoff is J
1
[Probability of 0 other winners]+

J
2
[Probability of 1 other winner] + . . . = J

1
[e−λ λ

0

0!
] + J

2
[e−λ λ

1

1!
] + . . . = J

λ
(1 − eλ) and so

our expected return is J
λ
(1 − eλ)/18009460, where λ is the rate parameter obtained by

multiplying the probability of selecting for purchase the winning sextet by the number of

tickets purchased. It is clear, then, that the advantage, if any, comes from holding a winning

ticket when λ is as small as possible. For the data we have, in the case of purchasing the 6

least popular numbers, 50, 46, 49, 43, 48, and 51, we find the expected return for a $1.00

bet to be $0.42, while in the case of purchasing the 6 most popular numbers, 9, 7, 3, 8, 11,

and 6, the expected return is $0.27. Choosing “average” numbers has an expected return

of $0.36. Thus, unfortunately, we cannot gain an advantage from this strategy, if we bet on

every game of the Lottery. This makes sense, intuitively: even if we were to find 6 numbers

that no one else bet, the probability of our winning would be only 1/18009460. It is clear

that this is a losing proposition, unless the payout from the lottery is at least $18,009,460.

Suppose we modify our strategy, then, by playing the 6 least popular numbers but only

entering the lottery when the payoff is at least $18 million (which occurs once every 7 weeks,
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on average). In this case, based on the data we have, our expected returns for a $1.00 bet

are as follows: for the 6 least popular numbers, $1.14; for 6 “average” numbers, $0.89; and

for the 6 most popular numbers, $0.59. Thus, a favorable strategy appears to be at hand;

the only drawback to it (other than its widespread adoption) is the expected waiting time

for a win: 2.3 million years.

Notes: Recall that we assumed that {X1i , X
2
i , . . .} are independent, identically distributed

(FXi). This assumption is not met in practice, as we observe that more tickets are purchased

in games in which the payoff is large. These games occur after a sequence of games in which

there is no winner. We could, however, normalize these random variables by dividing each by

the total wager in that game, obtaining the random variables {X1i /
∑
kX

1
k , X

2
i /
∑
kX

2
k , . . .}

which (under the assumption that bettors do not change their betting strategy according to

the size of the jackpot, but rather only whether to bet or not) would be i.i.d., and we could

then repeat the analysis we did with these random variables instead. The results would be

the same.

Thanks to Professors George McCarty, Howard Tucker, Jerry Veeh, and Robert Whitley

for extensive discussions and many helpful suggestions all along the way.
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TABLE 1

j (j)
N∑
n=1

I[j∈Sn]

N∑
n=1

XnSnI[j∈Sn] p̂
(3)N
j p̂

(4)N
j p̂

(5)N
j p̂Nj p̃j p̂j

1 9 17 5 0.119 0.123 0.123 0.068 0.133 0.129
2 7 21 9 0.110 0.110 0.109 0.099 0.130 0.130
3 3 24 11 0.129 0.132 0.135 0.105 0.130 0.135
4 8 21 11 0.117 0.116 0.115 0.121 0.130 0.127
5 11 27 22 0.154 0.154 0.151 0.187 0.130 0.130
6 6 21 11 0.154 0.156 0.158 0.121 0.128 0.131
7 2 20 7 0.134 0.138 0.136 0.081 0.133 0.135
8 5 29 20 0.104 0.102 0.104 0.159 0.128 0.134
9 1 16 4 0.106 0.108 0.108 0.058 0.133 0.143
10 12 20 7 0.117 0.116 0.112 0.081 0.126 0.122
11 19 27 17 0.107 0.110 0.115 0.145 0.131 0.133
12 16 18 12 0.111 0.113 0.115 0.153 0.133 0.129
13 4 17 12 0.121 0.127 0.129 0.162 0.123 0.126
14 26 22 10 0.102 0.107 0.111 0.105 0.118 0.117
15 13 26 12 0.113 0.115 0.116 0.106 0.121 0.121
16 21 21 11 0.123 0.121 0.124 0.121 0.118 0.129
17 27 20 20 0.153 0.153 0.164 0.230 0.122 0.121
18 22 21 14 0.125 0.128 0.135 0.153 0.116 0.121
19 10 22 15 0.112 0.115 0.119 0.157 0.119 0.129
20 28 29 13 0.104 0.103 0.099 0.103 0.121 0.113
21 15 23 14 0.108 0.110 0.112 0.140 0.121 0.125
22 17 20 5 0.107 0.108 0.109 0.058 0.119 0.122
23 18 17 9 0.139 0.136 0.139 0.122 0.118 0.112
24 25 19 7 0.103 0.100 0.099 0.085 0.119 0.110
25 33 22 10 0.111 0.111 0.105 0.105 0.118 0.119
26 14 18 8 0.137 0.139 0.141 0.102 0.118 0.127
27 42 23 12 0.115 0.117 0.115 0.120 0.119 0.124
28 37 20 13 0.133 0.134 0.134 0.150 0.118 0.121
29 45 19 5 0.107 0.105 0.105 0.061 0.119 0.110
30 30 19 3 0.096 0.096 0.089 0.036 0.122 0.113
31 20 26 12 0.126 0.123 0.122 0.106 0.119 0.112
32 32 20 5 0.106 0.103 0.098 0.058 0.106 0.112
33 23 18 7 0.111 0.108 0.113 0.089 0.107 0.118
34 31 21 8 0.108 0.107 0.106 0.088 0.107 0.107
35 44 18 15 0.125 0.128 0.128 0.192 0.107 0.105
36 29 19 14 0.139 0.136 0.134 0.170 0.106 0.108
37 24 18 11 0.154 0.152 0.153 0.141 0.106 0.115
38 39 14 10 0.106 0.106 0.105 0.164 0.104 0.107
39 36 13 9 0.100 0.103 0.103 0.159 0.108 0.110
40 47 14 1 0.101 0.098 0.101 0.016 0.112 0.105
41 34 16 6 0.112 0.111 0.109 0.086 0.112 0.107
42 38 20 14 0.139 0.139 0.141 0.161 0.108 0.116
43 41 24 7 0.095 0.092 0.092 0.067 0.108 0.103
44 35 22 9 0.110 0.103 0.104 0.094 0.112 0.111
45 40 18 6 0.128 0.126 0.128 0.077 0.114 0.115
46 51 21 12 0.105 0.104 0.102 0.131 0.109 0.098
47 48 24 19 0.111 0.110 0.105 0.182 0.106 0.108
48 43 28 12 0.111 0.111 0.107 0.099 0.108 0.103
49 49 23 15 0.127 0.125 0.121 0.150 0.107 0.103
50 46 28 16 0.111 0.108 0.107 0.131 0.109 0.096
51 50 12 3 0.100 0.100 0.100 0.058 0.109 0.104



TABLE 2

Group p̂(3)N p̂(4)N p̂(5)N p̂N p̃ p̂

1 ≤ j ≤ 12 0.1218 0.1237 0.1235 0.1146 0.1304 0.1314
13 ≤ j ≤ 31 0.1179 0.1185 0.1193 0.1169 0.1195 0.1194
32 ≤ j ≤ 51 0.1149 0.1136 0.1128 0.1156 0.1081 0.1074

Kruskal-Wallis test statistic 1.62 3.52 4.50 0.07 43.76 37.18
Signficance probability

(P-value)
0.45 0.33 0.11 0.97 10−9 10−8


