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Abstract

The energy of a graph G, often denoted E(G), is defined to be the
sum of the absolute value of the eigenvalues of its adjacency matrix.
This graph invariant is very closely connected to a chemical quan-
tity known as the total π-electron energy of conjugated hydrocarbon
molecules. Very recently graph energy has become a quantity of in-
terest to mathematicians, and several variations have been introduced.
Here we present some of the history, basic definitions, and proof tech-
niques used to study energy. We also list a few basic results of the
field.

1 History

The energy of a graph was first defined by Ivan Gutman in 1978 [5]. How-
ever, the motivation for his definition appeared much earlier, in the 1930’s,
when Erich Hückel proposed the famous Hückel Molecular Orbital Theory.
Hückel’s method allows chemists to approximate energies associated with π-
electron orbitals in a special class of molecules called conjugated hydrocar-
bons. The method assumes that the Hamiltonian operator is a simple linear
combination of certain orbitals, and uses the time-independent Schrödinger
equation to solve for the energies desired [8].

As late as 1956, Günthard and Primas realized that the matrix used in the
Hückel method is a first-degree polynomial of the adjacency matrix of a
certain graph related to the molecule being studied [4]. Moreover, under
certain reasonable assumptions about the molecule, its “total π-electron
energy” can be written as the sum of the absolute eigenvalues of this graph.
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According to Gutman, Klobučar, and Majstorović [7], chemists studying
total π-electron energy were aware of this graph theoretic connection but
did not consider graphs that did not arise from purely chemical origins.

Gutman introduced his definition of the energy of a general simple graph in
his paper “The energy of a graph.” He notes that at first, very few mathe-
maticians seemed to be attracted to the definition [7]. In the past decade,
interest in graph energy has increased and many different versions have been
conceived. In 2006, Gutman and Zhou defined the Laplacian energy of a
graph as the sum of the absolute deviations (i.e., distance from the mean) of
the eigenvalues of its Laplacian matrix [9]. Similar variants of graph energy
were developed for the signless Laplacian [1], the distance matrix [6], the
incidence matrix [10], and even for a general matrix not associated with a
graph [12]. In 2010, Cavers, Fallat, and Kirkland first studied the Normal-
ized Laplacian energy of a graph, also known as the Randić energy for its
connection to the Randić index [2].

In 2012, Gutman, Li, and Shi published a book summarizing the main appli-
cations, theorems, and methods regarding the adjacency energy of a graph
[8]. This books also contains a chapter on other types of energy, as well as
a nearly exhaustive list of references of results on graph energy. Interested
readers are encouraged to see this book, and especially its bibliography, for
more information.

2 Motivation

The time-independent Schrödinger equation, often written as

HΨ = EΨ,

is used to predict the energy of a system when the Hamiltonian operator H
of the system is not dependent on time. Here Ψ is a wave function known
as a stationary state, and E is the energy of that state. One can easily see
that in this situation (E,Ψ) is just an eigenpair of H.

Hückel Molecular Orbital Theory gives chemists a way to approximate π-
electron energies when the H above is the Hamiltonian operator of a single
conjugated hydrocarbon molecule. In this case it has been determined that
H = αI + βA, where A is the adjacency matrix of a graph representing the
carbon skeleton of the molecule, and α and β are constants. It follows that
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solving the eigenvalue problem for H is equivalent to solving the eigenvalue
problem for A. Eigenvectors of H correspond to orbitals of the molecule,
which may contain 0, 1, or 2 π-electrons. It is noted that most frequently
an orbital contains two π-electrons exactly when the corresponding E value
is positive, and no π-electrons when E is negative. Since the trace of an
adjacency matrix is 0, which implies the sum of the positive eigenvalues
equals the sum of the negative ones, it turns out that total π-electron energy
is largely concerned with the quantity

E(G) =

n∑
i=1

|λi| (1)

where n is the number of carbon atoms in the molecule, and λi is the ith
eigenvalue of the adjacency matrix of the graph G corresponding to the
carbon skeleton [8].

There is no reason that one cannot study this quantity for an arbitrary
graph, and so Gutman defines the energy of a graph to be the sum of the
absolute values of its eigenvalues. Formulae and bounds for this expression
are useful for theoretical chemists, for whom this value can take on physical
significance. For mathematicians, the concept leads to many interesting
problems which are not necessarily identical to determining the spectrum of
a graph.

Similar definitions have been formulated for other matrices associated with
a graph, such as the Laplacian, normalized Laplacian, and distance matri-
ces. For some of these matrices, eigenvalues are always non-negative and so
expression (1) is just the trace. The natural way to adapt the definition for
these matrices is

n∑
i=1

|λi − λ|, (2)

where λ is the average of all of the eigenvalues λ1, . . . , λn.

Nikiforov suggested the definition of a matrix, not necessarily associated
with any graph, to be

E(M) =

n∑
i=1

σi, (3)

where σ1, . . . , σn are the singular values of the matrix M . It is worth noting
that definition (2) does not agree with definition (3) for all graph matri-
ces.
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3 Methods

It is obvious that given the eigenvalues of a graph one can calculate its en-
ergy. However, if we are not interested in the individual eigenvalues but
merely the sum of their absolute deviations then there are less direct meth-
ods that we may utilize.

One such method takes advantage of one version of the Cauchy Residue
Theorem, which states that the contour integral of a meromorphic function
along a simple closed curve is equal to the sum of the residues of the poles
contained in the curve. Given a graph G on n vertices, if we choose our poles
to be at the positive eigenvalues of G and our contour to be a sufficiently
large semicircle growing in the direction of the positive real axis, then we
should retrieve 1

2E(G). A careful treatment produces what is known as the
Coulson Integral Formula:

E(G) =
1

π

∫ ∞
−∞

(
n− ixφ′(G, ix)

φ(G, ix)

)
dx,

where φ(G, x) is the characteristic polynomial of the adjacency matrix of G
[8, 3].

Another useful result is the Ky Fan Inequality of Linear Algebra. It states
that for n× n matrices A,B, and C such that A+B = C, we have

n∑
i=1

σi(C) ≤
n∑

i=1

(σi(A) + σi(B)) ,

where σ1, . . . , σn are the singular values of the appropriate matrix. Notice
that this is suited very well for the energy of a general square matrix. More-
over, many of the graph energies that have been defined can be rewritten as
the sum of the singular values of some matrix. In particular, the adjacency
energy of a graph is equal to the sum of the singular values of the adjacency
matrix itself. Because the sum of the adjacency matrices of a graph and
its complement give us the adjacency matrix of a complete graph, whose
spectrum is well-known, the Ky Fan Inequality is very useful for obtaining
Nordhaus-Gaddum type bounds [8].

The definition of graph energy is also reminiscent of the so-called spectral
moments of the form

∑n
i=1 λ

k
i for a given integer k. By clever applications

of the Cauchy-Schwarz inequality, it is possible to derive bounds on graph
energy in terms of spectral moments. One example is the following [13,
14]:
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Theorem. Let G be a nontrivial bipartite graph with adjacency eigenvalues
λ1, . . . , λn, and let r, s, and t be even positive integers such that 4r = s+t+2.
Then

E(G) ≥
(
∑n

i=1 λ
r
i )

2√
(
∑n

i=1 λ
s
i ) (
∑n

i=1 λ
t
i)
.

4 Some Results

Some of the standard goals for those who study graph energy are to find
formulae or bounds for energy, as well as extremal examples. Understanding
how graph operations (like standard products or edge deletion) affect the
energy of a graph can aid in this, and has also become a popular area of
research. [8].

A very simple upper bound for graph energy is demonstrated below.
Theorem. For a graph G with n vertices and m edges, we have

E(G) ≤
√

2mn.

Proof. By the Cauchy-Schwarz inequality,

E(G) =

n∑
i=1

|λi|

≤

√√√√n

n∑
i=1

λ2i

=
√
nTr(A2)

=
√

2mn.

It is known that equality is achieved exactly in the cases where G is either
an empty graph or a 1-regular graph. Despite the tightness of this upper
bound, more precise bounds can be obtained by determining special classes
of graphs. For example [11],
Theorem. If G is a bipartite graph on n vertices, where n > 2, then

E(G) ≤ n(
√
n+
√

2)√
8

.
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The question of how small the energy of a bipartite graph can be has been
partially answered via an extremal example [8]. If G is bipartite with n
vertices and m edges satisfying n ≤ m ≤ 2n− 4, then

E(G) ≥ 2

√
m+ 2

√
(m− n+ 2)(2n−m− 4).

This is achieved by the bipartite graph with parts |A| = 2 and |B| = n− 2.
We join one vertex in A to every vertex in B, and then finish the construction
by connecting the remaining vertex in A to m− n+ 2 vertices in B.

Another fundamental result is:
Theorem. If H is a subgraph of G, let G′ be the graph obtained by removing
all edges of H from G. Then

E(G)− E(H) ≤ E(G′) ≤ E(G) + E(H).

This can be easily proved using the Ky Fan inequality, once we notice that
the adjacency matrix of G is exactly the sum of the adjacency matrices of
G′ and H.

Gutman, Li, and Shi’s book on graph energy contains a large variety of other
results, a majority with proofs.
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