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Abstract—Transmit antenna diversity has been exploited
recently to develop high-performance space–time coders and
simple maximum-likelihood decoders for transmissions over flat
fading channels. Relying on block precoding, this paper develops
generalized space–time coded multicarrier transceivers appro-
priate for wireless propagation over frequency-selective multipath
channels. Multicarrier precoding maps the frequency-selective
channel into a set of flat fading subchannels, whereas space–time
encoding/decoding facilitates equalization and achieves perfor-
mance gains by exploiting the diversity available with multiple
transmit antennas. When channel state information is unknown at
the receiver, it is acquired blindly based on a deterministic variant
of the constant-modulus algorithm that exploits the structure
of space–time block codes. To benchmark performance, the
Cramér–Rao bound of channel estimates is also derived. System
performance is evaluated both analytically and with simulations.

Index Terms—Blind channel estimation, multipath fading chan-
nels, space–time coding, transmit diversity.

I. INTRODUCTION

I N RECENT YEARS, space–time (ST) coding has gained
much attention as an effective transmit diversity technique

to combat fading in wireless communications (see e.g., [8],
[12], and references therein). ST coding relies on multi-an-
tennae transmissions that are combined with appropriate signal
processing at the receiver to provide diversity gain. ST trellis
codes were first proposed in [17] to achieve maximum diversity
and coding gains. However, for a fixed number of transmit
antennas, their decoding complexity at the receiver increases
exponentially with the transmission rate. To reduce decoding
complexity, orthogonal ST block codes with two transmit
antennas were first introduced in [2] and later generalized to
an arbitrary number of transmit antennas in [16]. An attractive
property of ST block codes is that maximum-likelihood (ML)
decoding can be performed using onlylinear processing. For
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complex constellations, ST block coding with two transmit
antennas is the only block coding that provides full diversity
without loss of transmission rate [16].

ST codes were originally designed for slow flat fading
channels. Applications of ST codes to dispersive channels
were dealt with in [1], [5], and [6] for orthogonal frequency
division multiplexing (OFDM) systems1 . Channel knowledge
is assumed available at the receiver in [1] and is acquired
through training [5], [6]. However, it is important to remark
that ST decoding requires multichannel state information at the
receiver. Thus, the achievable diversity gain comes at the price
of proportional increase in the amount of training, which incurs
efficiency loss especially in a rapidly varying environment. This
motivates looking for receivers with blind channel estimation
capabilities in the context of ST transmissions.

Toward this objective, we propose a novel ST-generalized
OFDM (ST-GOFDM) transceiver. We consider a system with
two transmit antennas and one receive antenna. Relying on
symbol blocking, the ST block codes of [2] are incorporated
into a generalized OFDM (GOFDM) transmitter [13], [14] to
achieve transmit diversity in frequency-selective propagation.
Different from ST-OFDM schemes in [1], [5], and [6] where
performance suffers from consistent fading effects caused by
common (or near common) channels zeros, ST-GOFDM offers
additional robustness through what we term root hopping. In
addition to performance improvement, the decoding simplicity
of the ST block codes of [2] is retained in our system, even
when communicating over multipath channels. By exploiting
the special structure of ST block codes, we also develop a
blind channel estimator based on a deterministic variant of
the constant-modulus algorithm (CMA) [19]. Unlike [19], our
ST-coded CMA is computationally simple. To benchmark the
accuracy of our estimation algorithm, we also derive a closed
form expression for the Cramér–Rao bound (CRB), assuming
additive white Gaussian noise (AWGN) and modeling the
unknown transmitted symbols as deterministic (nuisance) pa-
rameters. As a byproduct of our CRB derivation, we prove that
imposing constraints on transmitted symbols is indispensable
for blind channel estimation.

The paper is organized as follows. In Section II, we describe
the system model; while in Section III, we present our trans-
ceiver design. The blind channel estimation algorithm is de-

1ST trellis codes were used in [1], while delay and permutation transmit di-
versity schemes were adopted in [5] and [6].
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veloped in Section IV and its CRB based performance in Sec-
tion V. Bit-error-rate (BER) performance is analyzed and exten-
sive simulations are presented in Section VI. Section VII con-
cludes this paper.

Notation:Column vectors (matrices) are denoted by boldface
lower (upper) case letters. The superscripts, , , and stand
for transpose, complex conjugate, complex conjugate transpose
and matrix pseudoinverse, respectively. denotes the

matrix with all entries zero and the identity
matrix.

II. SYSTEM MODELING

Consider a wireless communication system equipped with
two transmit antennas and a single receive antenna. Fig. 1
represents the discrete-time equivalentbasebandmodel of
our ST-GOFDM transceiver. Similar to conventional OFDM,
the information symbol sequence is parsed in blocks

of size . Our
ST encoder maps every two consecutive symbol blocks
and to the following matrix:

time
space

(1)

whose columns are transmitted in successive time intervals
with the upper and lower blocks in a given column sent
simultaneously through the first and second transmit antenna,
respectively. Note that with , no blocking takes place,
and (1) then reduces to the orthogonal ST block codes with
two transmit antennas of [2]. However, as we will discuss in
Section III, blocking is instrumental in developingsimpleST
coding/decoding algorithms for frequency selective channels.
Prior to transmission, the -long symbol block in each transmit
antenna branch is mapped onto a-long block with
through a redundant precoder described by the tall ma-
trix . The precoder will convert frequency-selective fading
channels to flat ones and will enable us to exploit the transmit
diversity built by the ST mapping in (1). After parallel-to-serial
(P/S) conversion and modulation (not shown in Fig. 1), the
transmitted symbols from theth transmit antenna propagate
in successive time intervals through a frequency-selective
channel which is denoted by -sampled impulse response
vectors . Each channel’s
impulse response includes transmit-receive (pulse shaping)
filters, multipath, and relative delay between the two antennas.
We will assume the following.

a1) The two frequency-selective channels are finite im-
pulse response (FIR) and an upper boundon their
orders is assumed available; i.e.,

. Thus, each channel in Fig. 1 can be
described by a Toeplitz convolution matrix ,
with th entry .

a2) The last rows of are set to zero; i.e.,
with denoting the th entry of , we assume

for . This corresponds to
padding our transmitted blocks withtrailing zeros.

Thanks to Assumption a2), the channel-induced interblock
interference (IBI) is avoided [13], [14] and one can focus at each

received block separately. Alternately, we could have achieved
IBI-free reception by inserting an-long cyclic prefix to each
transmitted block (similar to OFDM [1], [5]), and discarding it
at the receiver. Either way, after S/P conversion (not shown in
Fig. 1), each pair of two consecutive-long received blocks

and , with
, is given by

(2)

where denotes
AWGN. Based on the received data model (2), we will design
next our transceivers to achieve transmit diversity gain in
frequency selective channels.

III. T RANSCEIVERDESIGN

Starting from the received data model (2), we wish to de-
sign the precoding matrix and the receiver matrices and

(see Fig. 1) to recover the information block
from with transmit diversity gain. We consider that the
FIR channels are unknown to the transmitter which is always
the case when feedback channels are not used. The two chan-
nels have to be estimated at the receiver, but only in this section,
we will suppose that perfect channel state information (CSI) is
available at the receiver. A blind channel estimator will be de-
veloped in the next section.

Orthogonal ST block codes with two transmit antennas were
possible to design for flat fading channels [2]. However, mul-
tipath manifests itself in convolving ST-coded transmissions
with FIR channels, and thereby destroys code orthogonality.
Without an orthogonal code structure, ST decoding becomes ex-
tremely complex. Observe though that channel convolution be-
comes multiplication in the domain where the code orthogo-
nality can be retained. Our basic idea behind ST-GOFDM is to
implement ST coding/decoding in the domain by judicious
design of the matrices , and . Unlike ST-OFDM
schemes in [1] and [5] which rely on FFT/IFFT operations and
achieve diversity gain at fixed points in the frequency domain,
ST-GOFDM resorts to -transforms and offers some advan-
tages over ST-OFDM as we will discuss later. It will also be
shown that ST-OFDM is subsumed by ST-GOFDM ifand
are chosen appropriately.

Define the -transforms: ;

; ;

. Let us focus on the block
in (2) first, and -transform its entries to obtain

(3)

We choose distinct points on the complex plane.
Our goal is to seek code polynomials , ,
such that for each, contains the contribution from
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Fig. 1. Discrete-time equivalent baseband system model.

the th summand in (3), namely from and
only, regardless of and .

To achieve this goal, we design to satisfy

(4)

where is a constant chosen to impose the transmission power
constraint. For fixed , (4) prescribes at points .
Thus, polynomials satisfying (4) should have degree
deg . When deg , the
polynomial can be uniquely determined by Lagrange
interpolation through the points as

(5)

The code construction as a Lagrange interpolating polynomial
through the constraints in (4) offers a novel ST counterpart of
[4]. Different from our symbol separating constraints (4), [4]
utilizes constraints for multiuser and intersymbol interference
elimination in a multiaccess/single-antenna setting (see also
[13] and [14] where the Lagrange codes (5) offered GOFDM
codes in a multiuser/single-antenna context).

Based on (5) and taking into account thetrailing zeros of
Assumption a2), the code length is . Since we deal
with transmissions of -long blocks, the bandwidth efficiency
of our system is

(6)

Note that for sufficiently large , we have ; hence, band-
width is not overexpanded.

The design of the precoding matrix is specified in the
domain and depends on the selection of points as in

(5). Let us consider a particular choice of the points .
Specifically, let s be chosen regularly spaced around the unit
circle on the complex plane on an FFT grid

(7)

Plugging (7) into (5) reveals that
. Hence, the matrix

corresponding to this selection becomes where
is the inverse discrete Fourier transform (IDFT)

matrix and represents the matrix operator
for padding the trailing zeros.

Using the codes in (5) that satisfy (4), and evaluating (3) at
, we obtain

(8)

Equation (8) confirms that only and
contribute to . Similarly, following the

steps to arrive at (8), we-transform the block in (2)
and then use the condition (4) to obtain ,

(9)

To express the -transforms evaluated at in (8) and (9),
let the Vandermonde vector built from the com-
plex constant as . With

replacing , the -transform of any vector can
be represented by . We can thus ex-
press as outputs of a filterbank composed of
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parallel FIR filters each of length , whose coefficients are the
rows of the Vandermonde matrix (see also Fig. 1)

(10)

Again, considering the special choice of in (7), we find
, where the matrix (with

denoting the first columns of the identity matrix
) implements in matrix form the overlap-add operation. One

remark is due at this point.
Remark 1: When s are chosen as in (7), we have

and so that matrix multiplication by
and can be replaced by FFTs. Thus, we infer that (7) gives
rise to an OFDM-like transmission with the cyclic prefix (CP)
replaced by zero-padding (ZP) at the transmitter; and the CP
remove by the overlap-add operation at the receiver. The pros
and cons of CP and ZP in OFDM have been discussed in [11]
and [20].

Equations (8) and (9) show that the information symbol
is transmitted twice in two consecutive time intervals through
two different channels. In order to decode with the em-
bedded diversity gain through the repeated transmission, we de-
fine and write(8) and
(9) into a matrix/vector form

(11)

where ,
and

(12)

Observe that in (12) is a scaled unitary matrix. As in [2],
we can recover by simply multiplying by the
matrix:

(13)

and obtain from (11) the decision vector
as:

(14)

where . Equation (14) implies that transmit
diversity gain of order two has been achieved for every
in our design. After detecting from , the symbols

can be retrieved by the P/S conversion of as shown
in Fig. 1. Assuming that is white, it follows by definition
that is also white. Since is also unitary, we deduce
that is white as well. Four remarks are now in order.

Remark 2: Since is white, detecting from (14)
amounts to solving two single symbol detection problems sep-
arately without loss of performance, as discussed in [2].

Remark 3: Detecting -long data blocks has been cast into
single symbol detection problems, as implied by (11). Thus,

the receiver complexity is very low and proportional to the block
length .

Remark 4: Since has degree , at most of
can be zero, and thus cannot be recovered

from (14) when . Hence, symbol

recovery can not be guaranteed when the two channels share
common zeros at , although it is unlikely to have

when the two channels are uncorre-
lated.

Remark 5: In contrast to ST-OFDM in [1], [5], and [6],
where are fixed and equispaced around the unit circle,
the flexibility to choose different s in our system may offer
some advantages. For example, as suggested in [13] and [14],
we can periodically rotate (hop) thes to ameliorate consistent
fading effects caused by common (or close) channel zeros, as
we will simulate in Section VI. Optimal design of is
an interesting future direction but goes beyond the scope of this
paper.

Instead of assuming channel knowledge at the receiver, we
will next equip our receiver with blind channel estimation capa-
bilities.

IV. BLIND CHANNEL ESTIMATION

We pursueblind estimation of the two channels ,
based on Assumptions a1), a2) and the following assumptions.

a3) The modulated information symbols have con-
stant modulus (CM);

a4) The two channels do not share common
zeros, i.e., their transfer functions and
are coprime polynomials;

a5) The block size is chosen to satisfy: .
Given in (11), our blind channel estimation will be sought
in two steps: First, we will exploit the structure of and
the CM property of to develop adeterministicCMA that
yields two estimates for two channel ratios and

for every , with an ambiguity
of knowing which estimates correspond to what ratio. Second,
we will exploit the FIR nature of the channel and develop an
exhaustive search to resolve theseambiguities and estimate
jointly the two channels and with two remaining ambigu-
ities: one is a scalar ambiguity; the other one is the ambiguity of
distinguishing between and . These two ambiguities will
be resolved by sending two training symbols.

A. Estimating Channel Ratios Using CMA

Consider the data model in (11) and simplify the notation by
absorbing into and in the subscript , to rewrite it as

(15)

where ,
and

(16)

Without loss of generality2 , we will fix the modulus
and because all blind methods

yield channel estimates up to a constant factor. Given only
FFT processed data as in (15), we seek an equalizer

2In this paper, we deal with complex modulations only. Nonetheless, the ex-
tension to real modulations, e.g., binary phase-shift keying (BPSK), is straight-
forward and the constraints to be imposed ares (n) = 1 ands (n) = 1.
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such that has entries with unit constant
modulus. Note that need not be white. Ourdeterministic
CM equalization is equivalent to a generalized eigenvalue
problem which can be solved by the analytical CMA (ACMA)
of [19]. However, we develop here a more simple algorithm
which takes advantage of the specific structure of induced
by the ST code design we described in Section II.

Following common (A)CMA practice, we will first consider
blind channel estimation at sufficiently high signal-to-noise
ratio (SNR), where the noise can be neglected (noise
effects will be tested in the simulations). Becauseis unitary
and , we look for which has a form

(17)

Writing
component-wise, and imposing the CM constraints
, , we arrive at , where (18),

shown at the bottom of the page. Next, we stackblocks of
data and concatenate to arrive at

(19)

where . If the ma-

trix had full column rank, would have yielded a unique
solution of from (19). Unfortunately, the maximum column
rank of is only three [19]. Nevertheless, the solution of
(19) can still be sought in the form , where

is a particular solution of (19) and spans the one-di-
mensional kernel of . With denoting the th entry of

, can be determined by noting that in (18) we must have
. Because solving the latter leads to a

second-order equation in, we end up with two possible solu-
tions. In matrix/vector form, these solutions are given by

(20)

where and with denote the phase ambi-
guities. One can readily verify that and give rise
to a diagonal and an anti-diagonal matrix, respectively (the CM
property is satisfied in both cases, but in the second case the role
of the two transmitted sequences is permuted, thus creating am-
biguity). Since we cannot distinguish between the two solutions

and , it follows that estimating the equalizer by solving
(19) leads to an ambiguity in choosing between the two possible
equalizers and (and thus the two channels) in addition

Fig. 2. Estimates of channel magnitude using “deterministic CMA”.

to the phase ambiguities and for every . As an example,
we obtain by randomly choosing one of two solutions of (19)
at dB, and compute the two channel magnitude es-
timates as: , that we
plot in Fig. 2. We observe that indeed this simple method yields
good estimates of the channel magnitude but we have ambiguity
between the two channels for every.

According to Assumption a5), we can have at least
solution pairs , with and consisting of prod-
ucts between and as seen from (20). How-
ever, Assumption a1) implies that on at most values
of , and likewise for . Hence, we can always find at least

solution pairs for which
both and are nonzero. For theses, we can define
the ratio: , and use (20) to infer that

if

if
(21)

where we observe that the phase ambiguitiesand have
been eliminated by taking channel ratios. Now the ambiguity
between and in solution pairs translates to
the ambiguity between and for every . To re-
solve this ambiguity, one approach is to estimate one channel
by training, and retrieve the other channel by inspection from
(21). Because only training for one channel is needed, such a
“partially trained” CMA saves 50% overhead. Sincechannel
ratios are sufficient to estimate one channel, Assumption a5) can
be relaxed to . Note also that so far, we do not require
Assumption a4) to obtain channel ratios and further estimate the

(18)
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two channels if partial training is applied. However, Assumption
a4) and a5) will be used next for deriving a fully blind channel
estimator, that relies on an exhaustive search to resolve the am-
biguity between and .

B. Resolving Channel Ambiguity

Exploiting the specific structure of ST codes, the CMA of
the previous subsection yields two possible ratios for every.
Starting from the ratio pairs, , we exploit here
the finite channel support and resort to an exhaustive search to
estimate the two channels blindly.

Recalling that for each , can be either
or , we infer that there are possible collections

of s. With denoting collection-index, we represent each
of them with the vector

, and the entire collection with the set
. Because each entry of comes either from

or from , the entries of every can be di-
vided into two groups, namely thegroup that contains s
and the group that consists of s. Thinking in terms of a
coin-flipping experiment, we term the entries in each group as
“same-side” entries. To resolve channel ambiguity, we will use
the following lemma (see Appendix I for the proof):

Lemma 1: Under Assumptions a1)–a5), same-side
entries of any , denoted by ,
enable identifiability of the two channels (within a scalar ambi-
guity) either as , or, as .
Using a common notation , either or can be
found by solving for the eigenvector corresponding to the min-
imum eigenvalue of the matrix

...
...

(22)

Because each has entries, we infer that
same-side entries can always be found. However, because an
ambiguity appears for every, we do not know where the
same-side entries are. To locate these same-side entries,
we resort to an exhaustive search following the following steps.

s1) For each , use and obtain
(with replaced by for

in ), as in Lemma 1. We prove in Appendix I that
if are same-side entries, the matrix
in (22) has nullity one and the solution is
either or as described in Lemma 1.

s2) Use from s1) to form the
difference:

(23)

s3) Select the index: .

The two possible solutions for the pair of our channels are either

or (24)

where denotes a scalar ambiguity which will be resolved by
one training symbol.

We next prove that the channel estimates in (24) are unique.
Observe that, out of all the vectors in , two vectors
yield from s1)–s2); namely, the one with
entries , and the one with
entries . Due to the fact

, we deduce that
and thereafter for every . As we mentioned before,
there exist at least same-side entries in the resulting.
These entries must satisfy . Based on Lemma 1, we
infer that our exhaustive search from s1)–s3) yields two channel
estimates as in (24).

Having reduced the ambiguity to choosing between these
two solutions and resolving the scalar ambiguity, enables
(almost blind) channel estimation using the received data and
two training symbols only. Specifically, with two training
symbols, we can estimate and (i.e., and for

) from which the two channels can be identified uniquely.
The computational complexity of our fully blind channel esti-

mation algorithm is relatively high. The CMA requires a single
value decomposition (SVD) of size for every , which
is still much simpler than the ACMA in [19], while the exhaus-
tive search involves eigen value decompositions (EVDs)
of size . Fortunately, is small in typical
applications [e.g., in global system for mobile communi-
cation (GSM)] and the smallest null vector can be computed on-
line [3]. Note also that, unlike existing statistical CMA variants
that require long data sets, our ST-coded deterministic CMA is
data-efficient and does not impose any input whiteness assump-
tion.

To reduce complexity, we have also derived a preweighting
scheme with different weights for and which
avoids the exhaustive search [9], [10]. However, the price paid
for the simplicity of [9] and [10] is reduced BER performance
as we will illustrate in Section VI.

As a performance benchmark, the CRB of channel estimates
will be derived next. Interestingly, the CRB derivation will pro-
vide additional insights to channel estimation issues arising with
transmit antenna diversity.

V. CRAMÉR–RAO BOUND

In this section, we derive the CRB of the channel estimates
for ST-GOFDM. Our derivations will follow the general steps
of [18] and start with the derivation of the Fisher’s information
matrix (FIM) by treating the transmitted symbols as nuisance
parameters. Interestingly, checking the existence of CRB under
various constraints reveals that imposing constraints on trans-
mitted symbols is indispensable for blind channel estimation for
ST-GOFDM. For simplicity, the specific choice of s in (7) is
adopted in our derivations.
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Denoting by a diagonal
matrix built from the vector , we
consider (8) and (9) and absorbinto to cast them into
matrix forms

(25)

where ,
and

. Clearly, is zero mean, Gaussian
and uncorrelated from . When s are chosen as in (7), we
have and the covariance matrix
of is, thus, given by

(26)
where is the variance of . It is easy to verify that the
maximum entry of the matrix is . Since the block
length , the matrix can be well approximated as

; i.e., is approximately white with vari-
ance .

Let denote the
complex vector containing coef-

ficients of the two channels’ impulse responses and the
input vector , ,

. Because ’s in (25) are
Gaussian, we can write the log-likelihood function conditioned
on , and , as

(27)

The FIM for unbiased estimates is given by

(28)
where the submatrices , , and correspond to parti-
tioning channel and input parameters and have dimensionalities

, , , re-
spectively. Specifically, with , , , and specified
in Appendix II, we have

where denotes the Kronecker product. Using the block ma-
trix inversion formula, we find the CRB for the channel
estimates based on the top-left submatrix of as

(29)

provided that the inverse in (29) exists. Unfortunately, direct
substitution reveals that , when ’s
are chosen as in (7). However, zero FIM (or infinite CRB) im-
plies lack of identifiability. Hence, our blind channel estimation
setup that treats transmitted (input) symbols as nuisance param-
eters can not guarantee channel identifiability, unless extra con-
straints are imposed.

Suppose we impose continuously differentiable con-
straints on the two channels

(30)

where the number of constraints (equations)must be less
than channel unknowns, because otherwise the channels
can be obtained directly from the constraints. Along the lines of
[15], we obtain the gradient matrix of the
constraints in (30) as:

...
...

(31)

Following [15], the constrained CRB requires the orthonormal
basis of the nullspace . In our specific case, we let be
a matrix with columns
the basis vectors of , and compute first the constrained
CRB for all the unknown parameter estimates

(32)

Our constrained CRB of the channel estimates would then be
given by the top-left subma-
trix of . Unfortunately, as we prove in the Appendix the
matrix inverse in (32) does not existirrespectiveof the channel
constraints imposed. This reveals another important feature of
our blind setup: channel constraints alone are not sufficient to
guarantee channel identifiability. Hence, constraints (like CM)
on our transmitted symbols are amustwhen it comes to guaran-
teeing blind channel identifiability.

With our constraints, , the
gradient matrix of the CM and

channel constraints in (30) turns out to be

(33)
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The corresponding
matrix built with columns the orthonormal basis vector
of is given by

(34)

where is the matrix with columns
the basis vectors of . The CRB of parameter estimates
under CM constraints and channel constraints is

(35)

Extracting the top-left sub-
matrix of yields the constrained CRB for our channel
parameter estimates as

, where we used Matlab’s notation to
denote the submatrix of formed by its through
rows(columns).

As discussed in Section IV, to resolve the ambiguity between
our two possible CMA-based channel estimates in (24), we uti-
lize the pilot-based acquisition of and . Viewing the
latter as channel constraints complementing our CM input con-
straints, enables evaluation of such a “fully constrained” CRB
on our channel estimates. Specifically, we can rely on (35), but
with in (33) being formed by replacing with

(36)

In the ensuing section, we will test how close our ST-coded
CMA-based channel estimates come to the constrained CRB de-
rived in this section which benchmarksalgorithm independent
performance of blind channel estimates that rely on the same
constraints.

VI. A NALYTICAL AND SIMULATED PERFORMANCE

When the noise is AWGN, theoretical BER evaluation
is possible for a given constellation. Starting from (14), we can
compute the covariance matrix of as

(37)

and derive the BER assuming, e.g., a quaternary phase-shift
keying (QPSK) modulation scheme. Our figure of merit is
the average BER, defined as ,
where and denote the BERs for the sequences

and , respectively. It
follows from (14) and (37) that

(38)

where denotes the -function denotes bit SNR.
Note that because each symbol is transmitted twice, we divide
the transmit power by two for each transmit antenna to ob-
tain (38). When points are equispaced around the unit
circle as in (7), (38) can be further simplified to

(39)

Apart from the closed-form BER expressions in (38) and (39),
we will resort to simulations in order to test performance and
reveal additional salient features of our design.

In all simulations, QPSK modulation is employed ands are
chosen equispaced around the unit circle as in (7). All curves are
averaged over 200 random channels which are generated based
on the following two models.

A. Multiray Time-Invariant Channel

An th-order multiray (MR) channel consists of
equal-power channel taps with each tap modeled as a com-
plex Gaussian random variable with zero mean and variance

. MR channels are used in Examples 1–4.

B. Typical-Urban GSM Time-Varying Channel

The delay profile for typical-urban (TU) channels is tabulated
in [5, Table I]. With the system parameters described in [5, Sec-
tion III.A], a TU channel corresponds to an FIR channel of order

whose channel taps are characterized by the
Jakes’ Doppler spectrum with a Doppler frequency of 40 Hz.
TU channels are used in Example 5.

Example 1 (Performance Gains with ST Coding):ST-
GOFDM is compared to conventional (single transmit antenna)
OFDM, assuming that channels are flat and known to
the receiver. In OFDM, 16 subcarriers are used, and correspond-
ingly in ST-GOFDM, we choose the block length . The
results are depicted in Fig. 3 where ST-GOFDM is significantly
better than OFDM. For MR channels of order , we choose
32 subcarriers for OFDM and for ST-GOFDM. Fig. 4
shows that ST-GOFDM outperforms OFDM considerably.
The conventional OFDM transmits each symbol through a
single fading channel. In contrast, ST-GOFDM transmits each
symbol twice through two different fading channels. Equation
(14) shows that the equivalent channel gain for each symbol is
the sum of the squares of two different channels which is more
reliable than a single channel. This explains why ST-GOFDM
outperforms the OFDM at the expense of an extra antenna.

Example 2 (Comparison with Pre-Weighting):As men-
tioned in Section IV, blind channel estimators proposed in
[9], [10] avoid costly exhaustive searching by employing
preweighting. This example compares our CMA channel
estimator to that based on preweighting. MR channels of order

are used and the block length . The preweighting
matrix in [9], [10] is chosen as diag (1.28, 0.6), so that the
transmit power for both schemes is identical. The BER curves
depicted in Fig. 5 illustrate that exhaustive search outperforms



1360 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

Fig. 3. Flat fading channels.

Fig. 4. Frequency selective channels.

preweighting at the expense of higher computational com-
plexity at the receiver.

Example 3 (Performance Improvements by Hopping
’s): When the two channels are deeply faded at some,

i.e., and , the decision vector in
(14) may have low SNR and is not reliable. In the extreme
case when , symbol recovery becomes
impossible. Unlike ST-OFDM in [1], [5], and [6] where

s are fixed as in (7), ST-GOFDM is flexible to choose
different . Without CSI available at the transmitter,
we test here a “root-rotating” approach, wheres are still
equispaced around the unit circle but they rotate clockwise
by a small angle every two blocks. By hopping the s,

s change every two blocks so that consistent deep
fading for a certain is avoided. We choose ,

, and channels
and , which share

Fig. 5. Preweighting versus exhaustive search.

Fig. 6. Fixed versus hopping implementations.

a common zero at . Fig. 6 verifies that hop-
ping the ’s exhibits better performance than fixed-root
ST-OFDM. Note that when s are rotated by , we
have and , where

diag . Thus,
low-complexity FFT operations can still be applied in this
frequency-hopping ST-GOFDM system.

Example 4 (Blind Channel Estimation and Its CRB):To sim-
ulate the performance of our blind channel estimation algorithm
in Section IV, we choose MR channels of order and

. For estimating channel ratios, received blocks
are used for each. The performance of our system with esti-
mated channels is shown against that with perfect CSI. The re-
sults are shown in Fig. 7 where we observe that the blind method
entails a small penalty in the overall system perfor-
mance. Furthermore, we obtain the MSE of channel estimates
and compute their CRB when and are known.
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Fig. 7. Known versus estimated channels.

Fig. 8. Channel MSE and its CRB.

The curves depicted in Fig. 8 illustrate that the MSE of our
channel estimates is very close to the CRB at high SNR.

Example 5 (Comparison with Training-Based Channel Es-
timator): We implement the training-based channel estimator
[6] in our ST-GOFDM and compare its performance to our
CMA blind estimator. TU channels are used and the
block length is chosen. To estimate the two chan-
nels, two training symbol blocks of size (two OFDM
symbols in [6]) are transmitted every 20 blocks. Thus, there is
10% overhead introduced in the training-based approach. For
our CMA channel estimator, blocks of data are used
to estimate the two channels with two training symbols sent
every 20 blocks. The comparison in terms of BER and MSE
of the channel estimates are depicted in Fig. 9(a) and 9(b), re-
spectively. It is observed that the training-based channel esti-
mator slightly outperforms the CMA channel estimator below

Fig. 9. Blind versus training-based GSM channel estimation.

dB. However, our blind channel estimator is better
in the moderate to high SNR range. It is worthwhile to remark
that, since , the training-based channel estimator induces
a considerable loss in transmission rate.

VII. CONCLUSION

In this paper, we proposed a novel ST-GOFDM transceiver
suitable for frequency-selective multipath channels. Relying
on symbol blocking, ST block codes designed for flat fading
channels were extended to frequency-selective channels. By
exploiting the specific structure of ST block codes, a blind
channel estimation algorithm was also developed and compared
with the CRB. In addition to the simplicity of the proposed
transceiver, numerical simulations demonstrated superior
performance over competing alternatives in simulated Rayleigh
and typical urban GSM channels.
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Because symbol recovery and blind channel estimation in this
paper depend on channel zero locations, we currently investigate
ST-coded transceiver designs irrespective of the channel zeros.
Preliminary results relying on symbol blocking and long codes
are reported in [7]. Other ongoing research topics include ST
trellis coding for GOFDM systems and time-selective propaga-
tion of ST coded transmissions.

APPENDIX I
PROOF OFLEMMA 1

Without loss of generality, we suppose that the
same-side entries are in the group; namely, we have

, .
Enforcing the finite–channel support in Assumption a1),
we find from the definition of , that

(40)

The homogeneous equations in (40) can be cast in the following
matrix form

...
...

(41)

Under Assumption a4), we now prove thathas nullity one by
contradiction. Suppose has nullity at least two, namely, we
can find two different vectors and

which satisfy: and . Writing
the latter component-wise and cancelling , we arrive at

(42)

where and
. Denote by and the -transforms of and , re-

spectively. Recall that and have length so that and
have degree . Because are chosen

to be distinct, (42) prescribes and at
different points in the domain. Thus, we can obtain

from (42) that . Under Assumption
a4), the latter implies that and
where stands for a scalar ambiguity. Hence, , and
has nullity one so that (within a scale) can
be identified as the unique nullvector of. Likewise, when the

same-side entries come from thegroup, the unique
nullvector of will yield .

APPENDIX II
DERIVATION OF

In this appendix, we compute the entries of . Defining
, it follows by definition that

, and

Taking partial derivatives of (27) with respect to, we obtain

where , and is the th
canonical basis vector having all entries equal to zero

except the th one. Because the noise is white and circularly
symmetric, we arrive at
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Let us define

(43)

It follows from (28) that the FIM is given by (28).
We next prove that the matrix inverse in (32) does not exist.

Due to the structure of in (31), the matrix can be obtained
as

(44)

where is the nonnull matrix whose columns lie in the right
null space of , which has dimensionality .
Using (28), (44), it can be readily shown that

det det det

(45)

Thus, the matrix inverse in (32) does not exist.
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