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Fuzzy Model-Based Robust Networked Control
for a Class of Nonlinear Systems

Huaguang Zhang, Senior Member, IEEE, Ming Li, Jun Yang, and Dedong Yang

Abstract—In this paper, the robust stability of a networked
control system via a fuzzy estimator (FE) is studied, where the
controlled plant is a class of nonlinear systems with external
disturbances, which can be represented by a Takagi–Sugeno fuzzy
model. Both network-induced delay and packet dropout are con-
cerned. In the developed control scheme, the FE is used to estimate
the states of the controlled plant for the purpose of effectively
reducing the network burden. Based on the limited knowledge of
a controlled plant in the presence of a network, a disturbance
attenuation term is also employed to attenuate the influence of
modeling errors and external disturbances on the system. The
sufficient condition for the robust stability with H∞ performance
of the closed-loop system is obtained. The simulation results show
the validity of the proposed control scheme.

Index Terms—Fuzzy H∞ control, fuzzy estimator (FE), net-
worked control system (NCS), network-induced delay, packet
dropout.

I. INTRODUCTION

W ITH the rapid development of digital control and com-
munication network technology, feedback control sys-

tems in which control loops are closed via a real-time network
are becoming increasingly important. Such systems are called
networked control systems (NCSs). In NCSs, sensors, actu-
ators, and controllers are interconnected via communication
networks, which makes systems easier to install and maintain.
Recently, much attention has been paid to the stability analy-
sis and controller design of NCSs [8]–[13], [17], [18], [20],
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[22]–[24], where network-induced delay and packet dropout are
two crucial issues.

While some interesting techniques and results have been
presented in the aforementioned publications, the control of
NCSs still remains an open problem. For example, most of
the control schemes previously mentioned were developed only
focusing on linear NCSs; nonlinear NCSs have received little
attention, although some issues related to nonlinear NCSs have
been investigated such as asymptotic behavior [18], input-to-
state stability [12], input-to-output Lp stability with distur-
bances [13], and model-based method [11]. It should be noted
that these results on nonlinear NCSs are only for the stability
analysis without addressing controller design.

It is well-known that Takagi–Sugeno (T–S) fuzzy models
are qualified to represent a certain class of nonlinear dy-
namic systems [15], [16] and many corresponding control
techniques have been developed in the literature. A typical
approach for controller designs is via the so-called parallel-
distributed-compensation method [16]. Using the T–S fuzzy
model, some results on NCSs’ controller designs have recently
been published [22]–[24]. In [24], a fault detection method for
NCSs with Markov delays was addressed, where a linear plant
was modeled in the discrete-time domain, and a set of T–S
fuzzy rules were used to deal with network-induced delays.
In contrast to controller design methods in the discrete-time
domain, results in [22], [23] were formulated in the continuous-
time domain, where the T–S fuzzy systems with norm-bounded
uncertainties were utilized to characterize the nonlinear NCSs.
The robust H∞ control scheme [22] and the guaranteed cost
control scheme [23] were developed. However, the control
signal in [22] and [23] is not a continuous function but a
piecewise constant function, which may reduce the robustness
of the NCSs to some degree due to the sampling behavior.
Therefore, a novel fuzzy model-based control method is needed
to guarantee the control signals being a continuous function in
the nonlinear NCSs.

In this paper, a system framework is first introduced (see
Fig. 1) and a corresponding robust control scheme is developed
based on a fuzzy estimator (FE), where the network is modeled
as a sampler placed between the controlled plant and the
controller/actuator. In the developed approach, the unknown
nonlinear plant is first expressed by a T–S fuzzy model. Then,
an FE is proposed to estimate the plant states in a network-
based environment where the transmission of sensor data is
not instantaneous, but as a data packet to the FE. In addition,
the instant of packets arriving at the FE is uncertain because
of network-induced delay and packet dropout. Due to these
limited sampling data, an FE is needed to estimate the plant

1083-4427/$25.00 © 2009 IEEE
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Fig. 1. Framework of FE-NCS.

states, including sampling instant and during two sequential
effective packets since the packets may drop out or disorder.
In particular, the estimation can be updated when each effective
packet arrives at the FE. The feedback control is then performed
by using the states of the FE. Similar to other model-based
approaches [11], the FE-based approach will also reduce the
number of data packets transmitted. The FE is designed with
two additional terms. The first is a disturbance attenuation
term, which is to attenuate the influence of modeling errors
and external disturbances on the system. The other is called
the estimator gain term, which is introduced to improve the
estimation precision of the FE. Due to these two additional
terms, the states of the FE are continuous, being convenient
to provide the control signal as a continuous function in the
continuous-time domain, although actual plant states trans-
mitted via the network are piecewise constant functions as
a result of the existence of zeroth-order hold (ZOH). There
are several important advantages of the proposed results that
are worthy of mentioning. First, the disturbance attenuation
problem for nonlinear NCSs is dealt with via the FE-based
method. Second, the robust control scheme is studied in the
continuous-time domain, i.e., the intersampling behavior is
taken into account. Third, a sufficient condition of the fuzzy
H∞ control scheme is proposed by solving a set of linear matrix
inequalities (LMIs), which is convenient for the controller
design.

Before presenting the results, some notations are required.
Throughout this paper, the superscript T stands for matrix
transposition, and ∗ always denotes the symmetric block in
one symmetric matrix. The notation X > 0 (respectively, X ≥
0), for X ∈ R

n×n, means that X is symmetric and positive
definite (respectively, positive semidefinite). Identity and zero
matrices, of appropriate dimensions, will be denoted by I and
0, respectively.

II. FE-NCS DESCRIPTION

The framework of the FE-based NCS (FE-NCS) is shown in
Fig. 1. The sensor is connected with the controller/actuator via
a network which is shared by other NCSs and subjected to data
packet dropout and network-induced delay. The FE is used for

Fig. 2. Time-sequence diagram of the signals in the NCSs.

the controller/actuator to estimate the plant states and offer the
continuous control input signals even if the sensors data are not
available during the intersampling period.

Let tk, tk+1, . . . , tk+q(k = 0, 1, 2, . . .) be the sampling
instants, h = tk+1 − tk be the sampling period, and
τk, τk+1, . . . , τk+q be the corresponding network-induced
delays, respectively, where q is a positive integer. It is assumed
that the computation delay is negligible and τ0 = 0. Thus,
the control input signals may be obtained at the instant
tk + τk, tk+1 + τk+1, . . . , tk+q + τk+q.

Two definitions are often used when developing the con-
troller for an NCS. One is the maximum allowable delay bound
η, which is defined as the maximum allowable interval from
the instant when sensor nodes sample sensor data from a plant,
to the instant when actuators output the transferred data to
the plant [9]. The other is the maximum allowable transfer
interval ζ, which is defined as a deadline if a transmission of
control data takes place at time tk + τk, then another one must
occur within the time interval [tk + τk, tk + τk + ζ) [18]. In
this paper, the maximum allowable control interval is defined
as δ = η + ζ by combining the above two definitions, which is
used to analyze the network-induced delay and packet dropout
problems (see Fig. 2).

Remark 1: If a transmission of packet takes place at time
tk, the packet will reach the FE after τk, namely, the instant
tk + τk. Simultaneously, the control data will be sent to the
nonlinear plant. Then, the next control data should take place
within the time interval (tk, tk + δ]. Therefore, it is shown that
δ can be defined as a bound in order to guarantee the system
stability. Notice that the maximum allowable control interval δ
is relative to both network-induced delay and packet dropout
cases, while [9] and [18] only concern network-induced de-
lay case.

Consider the situation that two sampling data packets arrive
at the controller at instant tk + τk and tk+q + τk+q in sequence.

If q = 1, no packet dropout occurs during the time interval
[tk, tk+1 + τk+1).

If q > 1, q − 1 packets are lost during the time interval
[tk, tk+q + τk+q).

For a given δ, if the following inequality:

tk+q + τk+q − tk < δ (1)
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holds, then the stability of the closed-loop system can be guar-
anteed, considering both network-induced delays and packet
dropouts.

Before further discussion, we make the following
assumptions.

Assumption 1: The sensor is time driven; the controller and
the actuator are event driven; the clocks among them are syn-
chronized, and the signal transmission is with a single packet.

Assumption 2: There exists a maximum bound of the
network-induced delay in the FE-NCS, i.e., τmax ≥ τk,
(k = 0, 1, 2, . . .).

The maximal value of q that satisfies (1) can be derived as
follows:

qmax = int

[
δ − τmax

h

]
(2)

where int[·] denotes the nearest integer part of [·].
Furthermore, we define the maximal allowable packet drop-

out rate rmax as

rmax =
qmax − 1

qmax
. (3)

Remark 2: In this paper, the purpose of (2) and (3) is to
choose the proper sampling period h for a given δ based on
the real network condition. If the actual network packet dropout
rate r can be measured by experiments, we should choose rmax

satisfying rmax ≥ r by (3). Then, using this qmax, the sampling
period h can thus be obtained from (2), which in turn implies
the condition (1).

For a given δ, a smaller h will lead to a larger qmax, so the
allowable packet dropout rate may be higher, but the amount
of communication will be increased greatly. However, a larger
h will lead to a lower allowable packet dropout rate, which
may degrade the performance of the system. The relationship
between δ and performance of the NCSs will be analyzed in the
next section.

Now, consider a nonlinear plant of the following form:

ẋ(t) = f(x) + g(x)u(t) + d(t) (4)

where x(t) ∈ R
n is a state vector, u(t) ∈ R

m is a control input
vector, d(t) ∈ R

n is a bounded external disturbance vector, and
f(x), g(x) are unknown nonlinear function vectors depending
on x(t). The system of (4) can be represented by a T–S
fuzzy plant model, which expresses the nonlinear system as a
weighted sum of linear systems. The ith rule is of the following
format:

Plant rule i :

IF x1(tk) is Fi1, . . . , and xs(tk) is Fis

THEN ẋ(t) = Aix(t) + Biu(t) + d(t), for i = 1, 2, . . . , r

(5)

where Fig is a fuzzy set (g = 1, 2, . . . , s); r is the number of
rules; Ai ∈ R

n×n and Bi ∈ R
n×m are the known system matrix

and input matrix, respectively, of the ith rule subsystem. tk is

the sampling instant, and x(tk) is the state vector of plant at the
instant tk. The inferred system is described by

ẋ(t) =

r∑
i=1

μi (x(tk)) [Aix(t) + Biu(t) + d(t)]

r∑
i=1

μi (x(tk))

=
r∑

i=1

hi (x(tk)) [Aix(t) + Biu(t)] + d(t) (6)

where hi(x(tk)) = μi(x(tk))/
∑r

i=1 μi(x(tk)), μi(x(tk)) =∏s
g=1 Fig(xg(tk)), and Fig(xg(tk)) is the grade of member-

ship function Fig [15], [16]. Usually, we assume that 1 ≥
μi(x(tk)) ≥ 0, and

∑r
i=1 μi(x(tk)) > 0 for all tk. Then, we

can see that hi(x(tk)) ≥ 0, and
∑r

i=1 hi(x(tk)) = 1.
From (4) and (6), the plant model can be rewritten as

ẋ(t) =
r∑

i=1

hi (x(tk)) (Aix(t) + Biu(t)) + Δf + Δg + d(t)

(7)

where Δf = f(x) −
∑r

i=1 hi(x(tk))Aix(t), Δg = (g(x) −∑r
i=1 hi(x(tk))Bi)u(t), denote the bounded modeling errors

between the nonlinear plant (4) and the fuzzy model (6).
Now, we use ω(t) = Δf + Δg + d(t) to denote the bounded
modeling errors and the external disturbances. Thus, (4) can be
rewritten as follows:

ẋ(t) =
r∑

i=1

hi (x(tk)) (Aix(t) + Biu(t)) + ω(t). (8)

Remark 3: In general, there are three approaches for con-
structing fuzzy models: 1) acquirement from experts; 2) iden-
tification (fuzzy modeling) using input–output data [14]; and
3) derivation from given nonlinear system equations [16]. This
paper focuses on the third approach. This approach utilizes
the idea of “sector nonlinearity,” “local approximation,” or a
combination to construct fuzzy models.

The main motivation for proposing the FE is to estimate the
plant states all the time, including the sampling instant and
during two sequential effective packets because the packets may
drop out or disorder. The FE-based approach can effectively
reduce the number of data packets transmitted, attenuate the
influence of modeling errors and external disturbances on the
fuzzy system (8), and provide continuous control signals for
the robust stability of the overall closed-loop system in the
network-based environment. The FE consists of r fuzzy rules
and shares the same fuzzy premises as those of the plant
rules. In our control scheme, x(tk) and the states of the FE
are used to calculate the control input. Specifically, in every
rule’s consequence of the FE, two additional terms are involved,
namely, a disturbance attenuation term and an estimator gain
term. The ith rule of the FE is shown as follows:

FE rule i :

IF x1(tk) is Fi1, . . . , and xs(tk) is Fis

THEN ˙̂x(t)=Aix̂(t)+Bi (u(t)+v(t))+Li (x(tk) − x̂(tk)) .
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Then, the inferred FE is given by

˙̂x(t) =
r∑

i=1

hi (x(tk)) [Aix̂(t) + Bi (u(t) + v(t))

+ Li (x(tk) − x̂(tk))] , t ∈ [tk + τk, tk+q + τk+q) (9)

where x̂(t) is the state vector of the FE, L =
∑r

i=1 hi(x(tk))Li

is estimator gain matrix

v(t) = Kv (x(tk) − x̂(tk)) (10)

is used to attenuate the influence of modeling errors and exter-
nal disturbances on the system, where Kv is the disturbance
attenuation gain matrix described in Theorem 1 in the next
section.

Next, we define the control law as

u(t) = uf(t) − v(t) (11)

where v(t) is the disturbance attenuation term described by (10)
and uf(t) is employed as a fuzzy control input, which is defined
by the following fuzzy rules:

Control rule i :

IF x1(tk) is Fi1, . . . , and xs(tk) is Fis

THEN uf(t) = Kix̂(t), for i = 1, 2, . . . , r.

Hence, the inferred fuzzy controller from the FE is given by

uf(t) =
r∑

i=1

hi (x(tk)) Kix̂(t) (12)

where Ki(i = 1, 2, . . . , r) is the fuzzy control gain matrix.
Substituting (11) and (12) into (9) yields the overall FE with

closed-loop control as follows:

˙̂x(t) =
r∑

i=1

r∑
j=1

hi (x(tk)) hj (x(tk)) [(Ai + BiKj)x̂(t)

+ Li (x(tk) − x̂(tk))] , t ∈ [tk+ τk, tk+q + τk+q). (13)

Remark 4: The packet is transmitted at the instant tk(k =
0, 1, 2, . . .), which contains the sensor data of the plant state
vector x(tk). In the following, we use x(tk) to denote a piece-
wise constant function after the ZOH, which can be sent to the
FE at instant tk + τk and keep the value until the next packet
arrives. If the next packet arrives at tk+q + τk+q, x(tk) will
keep the value in the interval t ∈ [tk + τk, tk+q + τk+q).

For the purpose of analyzing the performance of the
FE-NCS, we need to introduce the estimation error vector as

e(t) = x(t) − x̂(t). (14)

Obviously, the estimation error vector at instant tk is e(tk) =
x(tk) − x̂(tk).

Remark 5: From (13), it is clear that Ai + BiKj charac-
terizes the dynamics of the FE. Since e(tk) is only available
information about the estimation error during the intersampling
period, the estimator gain matrix L weights for e(tk) in order

Fig. 3. Relationship among system states, network-induced delay, and packet
dropout.

to improve the estimation precision to the FE. v(t) is used to at-
tenuate the influence of ω(t), namely, to attenuate the influence
of bounded modeling errors and external disturbances. Here,
u(t) is an overall control input vector for the plant, which has
(piecewise) continuous signals.

The relationship among system states, network-induced de-
lay, and packet dropout is shown in Fig. 3, where x(t) is the
state of the plant, x̂(t) is the state of the FE that is used to
estimate the state x(t). When the sampling data x(tk−2) is lost,
x(tk−3) will keep the value until the next sampling data x(tk−1)
arrives.

By differentiating (14), one has

ė(t) = ẋ(t) − ˙̂x(t)

=
r∑

i=1

hi (x(tk)) [Aie(t) − Biv(t) − Lie(tk)] + ω(t)

=
r∑

i=1

hi (x(tk)) [Aie(t) − (Li + BiKv)e(tk)] + ω(t),

t ∈ [tk + τk, tk+q + τk+q). (15)

In order to attenuate the influence of the modeling errors and
external disturbances on the fuzzy system (8), we introduce H∞
performance index [2], related to an augmented vector z(t)

∞∫
t0

zT(t)z(t)dt ≤ γ2

∞∫
t0

ωT(t)ω(t)dt (16)

where zT(t) = [x̂T(t), eT(t)], γ > 0 denotes prescribed atten-
uation level, and t0 ≥ 0 is initial instant.

Remark 6: The physical meaning of (16) is that the effect
of any ω(t) on z(t) has to be attenuated below a desired level
γ from the viewpoint of energy. No matter what ω(t) is, the
L2 gain from ω(t) to z(t) has to be equal to or less than a
prescribed value γ2. Moreover, z(t) indicates x(t). The effect
of ω(t) on x(t) will be discussed in Theorem 2 in the next
section.

In the following section, we discuss the design method of
a fuzzy robust controller for the FE-NCS, which obtains the
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gain matrices of uf(t) and v(t) together by solving a set of
LMIs. For simplicity, the following notations are used: hi =
hi(x(tk)), x = x(t), x̂ = x̂(t), e = e(t), u = u(t), z = z(t),
and ω = ω(t).

III. FUZZY ROBUST CONTROLLER DESIGN

Before presenting our results, the following lemmas are
introduced.

Lemma 1 ([19]): Let Q be any of a n × n matrix. We have
for any constant α > 0 and any matrix T > 0 that

2xTQy ≤ αxTQT−1QTx +
1
α

yTTy (17)

holds for all x, y ∈ R
n.

Lemma 2 ([5]): For any constant symmetric matrix M ∈
R

n×n, M > 0, scalar α > 0, vector function ξ : [0, α] → R
n,

such that the integrations in the following are well defined,
then:

α

α∫
0

ξT(β)Mξ(β)dβ ≥

⎛
⎝ α∫

0

ξ(β)dβ

⎞
⎠

T

M

⎛
⎝ α∫

0

ξ(β)dβ

⎞
⎠ .

(18)

Consequently, the following results are obtained.
Theorem 1: For the system (13) and (15), if there exist

matrices P1 > 0, P2 > 0, T1 > 0, T2 > 0, and matrices R, Si,
Tj , U , W , Yl, for given scalars δ > 0 and εl(l = 1, . . . , 6), the
following LMIs hold:⎡

⎣ Ξij+Ξji
2 δȲ1 δȲ2

∗ −δT1 0
∗ ∗ −δT2

⎤
⎦ < 0, 1 ≤ i ≤ j ≤ r (19)

then the H∞ performance in (16) is guaranteed for a prescribed
γ with the control law (11) in the FE-NCS, where

Ȳ T
1 = [Y T

1 Y T
2 Y T

3 0 0 0 0 ]

Ȳ T
2 = [ 0 0 0 Y T

4 Y T
5 Y T

6 0 ]

Ξij =
[

Π Π̃1

∗ Π̃2

]

Π̃T
1 =

⎡
⎣ 0 0 0 −ε4I −ε5I −ε6I

UT 0 0 0 0 0
0 0 0 WT 0 0

⎤
⎦

Π̃2 = diag(−γ2I,−I,−I)

Π =

⎡
⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 0 Π15 0
∗ Π22 Π23 0 Π25 0
∗ ∗ Π33 0 Π35 0
∗ ∗ ∗ Π44 Π45 Π46

∗ ∗ ∗ ∗ Π55 Π56

∗ ∗ ∗ ∗ ∗ Π66

⎤
⎥⎥⎥⎥⎥⎦

Π11 = Y1 + Y T
1 − ε1(AiU

T + BiTj) − ε1(AiU
T + BiTj)T

Π12 = −Y1 + Y T
2 − ε2(AiU

T + BiTj)T

Π13 = P1 + Y T
3 + ε1U

T − ε3(AiU
T + BiTj)T

Π15 = −ε1Si, Π22 = −Y2 − Y T
2

Π23 = −Y T
3 + ε2U

T, Π25 = −ε2Si

Π33 = δT1 + ε3U + ε3U
T, Π35 = −ε3Si

Π44 = Y4 + Y T
4 − ε4AiW

T − ε4WAT
i

Π45 = −Y4 + Y T
5 + ε4(Si + BiR) − ε5WAT

i

Π46 = P2 + Y T
6 + ε4W

T − ε6WAT
i

Π55 = −Y5 − Y T
5 + ε5(Si + BiR) + ε5(Si + BiR)T

Π56 = −Y T
6 + ε5W

T + ε6(Si + BiR)T

Π66 = δT2 + ε6W + ε6W
T. (20)

Moreover, the disturbance attenuation gain matrix can be ob-
tained as Kv = RW−T, the estimator gain matrix as Li =
SiW

−T, and the fuzzy control gain matrix as Kj = TjU
−T.

Proof: Consider a Lyapunov–Krasovskii functional as

V (t) = x̂TP1x̂ + eTP2e +

t∫
t−δ

t∫
s

˙̂x
T
(v)T1

˙̂x(v)dvds

+

t∫
t−δ

t∫
s

ėT(v)T2ė(v)dvds (21)

where P1 > 0, P2 > 0, T1 > 0, and T2 > 0, δ in the integrals
implicates both network-induced delay and packet dropout
problems as defined in (1).

It can be seen that the following equations hold for any
nonsingular matrices Yl and Zl (l = 1, . . . , 6) of appropriate
dimensions:

Γ1 =
(
x̂TY1 + x̂T(tk)Y2 + ˙̂x

T
Y3

)

×

⎛
⎝x̂ − x̂(tk) −

t∫
tk

˙̂x(s)ds

⎞
⎠ = 0 (22)

Γ2 =
(
x̂TZ1 + x̂T(tk)Z2 + ˙̂x

T
Z3

)

×

⎡
⎣ r∑

i=1

r∑
j=1

hihj (−(Ai + BiKj)x̂ − Lie(tk)) + ˙̂x

⎤
⎦ = 0

(23)

Γ3 =
(
eTY4 + eT(tk)Y5 + ėTY6

)
×

⎛
⎝e − e(tk) −

t∫
tk

ė(s)ds

⎞
⎠ = 0 (24)

Γ4 =
(
eTZ4 + eT(tk)Z5 + ėTZ6

)
×

[
r∑

i=1

hi (−Aie + (Li + BiKv)e(tk)) − ω + ė

]
= 0.

(25)
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Considering (22)–(25), the corresponding time derivative of
V (t), for t ∈ [tk + τk, tk+q + τk+q), is given by

V̇ (t) = 2x̂TP1
˙̂x + 2eTP2ė + δ ˙̂x

T
T1

˙̂x

−
t∫

t−δ

˙̂x
T
(s)T1

˙̂x(s)ds + δėTT2ė

−
t∫

t−δ

ėT(s)T2ė(s)ds + Γ1 + Γ2 + Γ3 + Γ4. (26)

Since t is defined in [tk + τk, tk+q + τk+q) and (1) holds, we
have t − tk ≤ t − δ. Then, it is concluded that the following
inequality:

t∫
tk

˙̂x
T
(s)T1

˙̂x(s)ds ≤
t∫

t−δ

˙̂x
T
(s)T1

˙̂x(s)ds (27)

which is convenient to eliminate the terms about tk from (26).
From Lemmas 1 and 2, one can obtain

−2
(
x̂TY1 + x̂T(tk)Y2 + ˙̂x

T
Y3

) t∫
tk

˙̂x(s)ds

≤ δΛTȲ1T
−1
1 Ȳ T

1 Λ +
1
δ

⎛
⎝ t∫

tk

˙̂x(s)ds

⎞
⎠

T

T1

⎛
⎝ t∫

tk

˙̂x(s)ds

⎞
⎠

≤ δΛTȲ1T
−1
1 Ȳ T

1 Λ +

t∫
t−δ

˙̂x
T
(s)T1

˙̂x(s)ds (28)

where ΛT = [x̂T x̂T(tk) ˙̂x
T

eT eT(tk) ėT ωT].
Similarly, we get

t∫
tk

ėT(s)T2ė(s)ds ≤
t∫

t−δ

ėT(s)T2ė(s)ds (29)

and

−2
(
eTY4 + eT(tk)Y5 + ėTY6

) t∫
tk

ė(s)ds

≤ δΛTȲ2T
−1
2 Ȳ T

2 Λ +

t∫
t−δ

ėT(s)T2ė(s)ds. (30)

Using the inequalities (27)–(30), the derivative of V (t), for
t ∈ [tk + τk, tk+q + τk+q), can be presented as follows:

V̇ (t) ≤
r∑

i=1

r∑
j=1

hihjΛT
(
Ψij + δȲ1T

−1
1 Ȳ T

1 + δȲ2T
−1
2 Ȳ T

2

)
Λ

− zTz + γ2ωTω

=
r∑

i=1

h2
i Λ

T
(
Ψii + δȲ1T

−1
1 Ȳ T

1 + δȲ2T
−1
2 Ȳ T

2

)
Λ

+ 2
r−1∑
i=1

r∑
i<j

hihjΛT

×
(

Ψij + Ψji

2
+ δȲ1T

−1
1 Ȳ T

1 + δȲ2T
−1
2 Ȳ T

2

)

× Λ − zTz + γ2ωTω (31)

where

Ψij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Υ11 Υ12 Υ13 0 Υ15 0 0
∗ Υ22 Υ23 0 Υ25 0 0
∗ ∗ Υ33 0 Υ35 0 0
∗ ∗ ∗ Υ44 Υ45 Υ46 −Z4

∗ ∗ ∗ ∗ Υ55 Υ56 −Z5

∗ ∗ ∗ ∗ ∗ Υ66 −Z6

∗ ∗ ∗ ∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Υ11 =Y1 + Y T
1 − Z1(Ai + BiKj) − (Ai + BiKj)TZT

1 + I

Υ12 = −Y1 + Y T
2 − (Ai + BiKj)TZT

2

Υ13 =P1 + Y T
3 + Z1 − (Ai + BiKj)TZT

3

Υ15 = −Z1Li Υ22 = −Y2 − Y T
2

Υ23 = −Y T
3 + Z2 Υ25 = −Z2Li

Υ33 = δT1 + Z3 + ZT
3 Υ35 = −Z3Li

Υ44 =Y4 + Y T
4 − Z4Ai − AT

i ZT
4 + I

Υ45 = −Y4 + Y T
5 + Z4(Li + BiKv) − AT

i ZT
5

Υ46 =P2 + Y T
6 + Z4 − AT

i ZT
6

Υ55 = −Y5 − Y T
5 + Z5(Li + BiKv) + (Li + BiKv)TZT

5

Υ56 = −Y T
6 + Z5 + (Li + BiKv)TZT

6

Υ66 = δT2 + Z6 + ZT
6 . (32)

If ((Ψij + Ψji)/2) + δȲ1T
−1
1 Ȳ T

1 + δȲ2T
−1
2 Ȳ T

2 < 0 holds
for any 1 ≤ i ≤ j ≤ r, we can obtain

⎡
⎣ Ψij+Ψji

2 δȲ1 δȲ2

∗ −δT1 0
∗ ∗ −δT2

⎤
⎦ < 0, 1 ≤ i ≤ j ≤ r. (33)

Using the Schur complement [1] implies

V̇ (t) ≤ −zTz + γ2ωTω (34)

for t ∈ [tk + τk, tk+q + τk+q).
Sets Z1 = ε1U

−1, Z2 = ε2U
−1, Z3 = ε3U

−1, Z4 = ε4W
−1,

Z5 = ε5W
−1, and Z6 = ε6W

−1. Thus, Ξij < 0 implies that
U and W are nonsingular since Π33 and Π66 in (20) must
be negative definite. Then, pre, postmultipling both sides
of (33) with diag(U,U,U,W,W,W, I, U,W ) and its trans-
pose, respectively, setting R = KvWT, Si = LiW

T, Tj =
KjU

T, and replacing UP1U
T, UT1U

T, UȲ1U
T, WP2W

T,
WT2W

T, WȲ2W
T with P1, T1, Ȳ1, P2, T2, Ȳ2, respectively,

we can obtain (19) directly by using the Schur complement
again.
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Integrating both sides of (34) from tk + τk to t ∈ [tk +
τk, tk+q + τk+q), one has

V (t) − V (tk + τk) ≤−
t∫

tk+τk

zTzdt +

t∫
tk+τk

γ2ωTωdt. (35)

Since V (t) is continuous in t ∈ [t0,∞), it can be seen that

V (t) − V (t0) ≤ −
t∫

t0

zTzdt +

t∫
t0

γ2ωTωdt. (36)

Letting t → ∞ and under zero initial condition, we have
∞∫

t0

zTzdt ≤
∞∫

t0

γ2ωTωdt. (37)

Since V (t) > 0, ∀t > t0, the above inequality implies that the
H∞ performance in (16) can be satisfied.

Therefore, if (19) is satisfied, the control law (11) can stabi-
lize the FE-NCS, and the estimation errors e and the states of
the FE x̂ are bounded with the H∞ performance in (16) for a
prescribed γ. This completes the proof. �

Remark 7: In this paper, V̇ (t) = lim supρ→0+(1/ρ)[V (t +
ρ) − V (t)] [6], and the zero initial condition is specified that
zt0(t) = φ(t) = 0, ∀t ∈ [−δ, 0], where zt(·), for a given t ≥ t0,
denotes the restriction of z(·) to the interval [t − δ, t] being
translated to [−δ, 0]. The Lyapunov–Krasovskii in (21) is usu-
ally used to analyze retarded functional differential equations,
which satisfies the Krasovskii stability theory. The interested
reader may refer to [3] for the details.

Remark 8: The optimal values of the tuning parameters
εl(l = 1, . . . , 6) that were introduced in Theorem 1 can be
found as follows. We choose the cost function tmin, which is
obtained by solving the feasibility problem using Matlab’s LMI
Toolbox [The MathWorks (1995, Version 1.0.8)]. If the cost
function tmin is negative, there exists a feasible solution to the
set of LMIs under consideration. Then, a genetic algorithm can
be used to search the combinations of εl (l = 1, . . . , 6) with
the cost function tmin for the given δ > 0. We use gatool and
Direct Search Toolbox [The MathWorks (2004, Version 1.0.1)]
to search the optimal combination of εl (l = 1, . . . , 6). If all the
resulting minimum values of the cost function tmin are negative,
the tuning parameters can be obtained.

According to Theorem 1, we can derive the following theo-
rem for the closed-loop system.

Theorem 2: For the nonlinear system (4), if the control law
is given by (11), then all states of the closed-loop system are
bounded and the following H∞ performance is guaranteed:

∞∫
t0

xTxdt ≤ 3γ2

∞∫
t0

ωTωdt. (38)

Proof: Because of x = x̂ + e, we can obtain the following
inequality:⎛

⎝ ∞∫
t0

xTxdt

⎞
⎠

1
2

≤

⎛
⎝ ∞∫

t0

x̂Tx̂dt

⎞
⎠

1
2

+

⎛
⎝ ∞∫

t0

eTedt

⎞
⎠

1
2

.

From Theorem 1, it can be concluded that the inequality (38)
holds. This completes the proof. �

Remark 9: It is worthy of pointing out for a given δ > 0, the
following convex optimization problem can be obtained for the
stability of (4) by solving (19) with minimize γ:

minimize γ

s.t P1 > 0, P2 > 0, T1 > 0, T2 > 0, (19). (39)

Summarizing the above discussions, the following design
procedures for the FE-NCS are listed.

Design procedures
Step 1) Select a sufficiently small real number ε > 0 and

fuzzy membership functions.
Step 2) Construct fuzzy plant rules (5).
Step 3) Construct the FE (9).
Step 4) Choose an initial δ = δ0 according to the current

network burden.
Step 5) Search the tuning parameters εl(l = 1, . . . , 6) by

gatool based on Theorem 1 and Remark 8.
Step 6) Solve the convex optimization problem in (39) to

obtain γmin, Kj , Li, and Kv .
Step 7) Set δ = δ + ε and repeat Step 5), until Kj , Li, Kv

cannot be found.
Step 8) Construct the fuzzy controller according to (10)

and (12).

IV. SIMULATION EXAMPLES

To illustrate the FE-based approach, we present two exam-
ples: 1) a mass-spring system that can be expressed precisely by
a T–S fuzzy system if not considering external disturbances and
2) an inverted pendulum on a cart that is a classical nonlinear
plant.

A. Example 1: Mass Spring

Consider the following nonlinear mass-spring system [21]:

ẋ1 =x2

ẋ2 = −0.01x1 − 0.67x3
1 + d(t) + u (40)

where x1 ∈ [−1, 1] and d(t) = 0.2 sin(2πt) exp(−0.1t) is the
external disturbance.

Choose fuzzy membership function as μ1(x1) = 1 − x2
1 and

μ2(x1) = 1 − μ1(x1). The following fuzzy model is used to
model the nonlinear system:

Rule 1 :

IF x1(tk) is μ1, THEN ẋ = A1x + B1u

Rule 2 :

IF x1(tk) is μ2, THEN ẋ = A2x + B2u (41)

where A1 =
[

0 1
−0.01 0

]
, A2 =

[
0 1

−0.68 0

]
,

B1 = B2 =
[

0
1

]
.
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Fig. 4. Trajectories of x1, x̂1 with h = 0.02 s, τk ∈ [0, 0.018] s, r = 20%,
and x(0) = [0.3, 0]T.

Fig. 5. Trajectories of x2, x̂2 with h = 0.02 s, τk ∈ [0, 0.018] s, r = 20%,
and x(0) = [0.3, 0]T.

We select δ=0.2 s. Then, applying Theorem 1 and Remark 8,
a feasible combination of εl, (l = 1, . . . , 6), can be obtained
as: ε1 = 0.2033, ε2 = 0.0062, ε3 = 0.0074, ε4 = 0.0099, ε5 =
0.0013, ε6 = 0.0027, with tmin = −5.7968 × 10−8.

By solving the optimization problem (39), we obtain that
γmin = 0.9495, K1 = [−1.2967 − 0.1843] × 104, K2 =
[−1.2961 − 0.1843] × 104, Kv = [9.8430 4.4213], L1 =[

1.1451 0.1155
−6.9880 −0.7720

]
, and L2 =

[
1.1482 0.1219
−7.6538 −0.7663

]
.

Next, under the same initial value x(0) = [0.3, 0]T, x̂(0) =
[0, 0]T, we show the simulation results with different sampling
periods and packet dropout rates. The network-induced delay
τk is randomly varying with an unknown distribution under the
condition (1).

Case I: h = 0.02 s, τk ∈ [0, 0.018] s, packet dropout rate
r = 20%.

The state trajectories of (40) are shown in Figs. 4 and 5.
The system can be stabilized well. The fuzzy model (41)
cannot express the mass spring system (40) precisely because
of external disturbance ω. In order to verify the validity of the
disturbance attenuation term v(t), we force Kv = [0, 0]. The
trajectories of x1 and x̂1 are shown in Fig. 6. The system cannot

Fig. 6. Trajectories of states without v.

Fig. 7. Trajectories of x1, x̂1 with h = 0.1 s, τk ∈ [0, 0.09] s, r = 20%, and
x(0) = [0.3, 0]T.

arrive at the equilibrium point within 15 s. Therefore, the term
v is necessary for the FE-NCS.

Case II: h = 0.1 s, τk ∈ [0, 0.09] s, packet drop rate
r = 20%.

The state trajectories of (40) are shown in Fig. 7. Comparing
CASE I and CASE II, they are not obviously different, but the
communication burden of CASE II is much less than that of
CASE I.

Case III: h = 0.1 s, τk = 0 s.
In this case, we try to explore how the packet dropout

affects the stability of the FE-NCS. For δ = 0.2 s and h =
0.1 s, the maximum allowable packet dropout rate is rmax =
50%. Therefore, we simulate packet dropout phenomena with
r = 40% and r = 70% to verify our results, respectively. The
simulation results are shown in Figs. 8 and 9. Comparing Fig. 7
with Fig. 8, the performance of the system does not degrade
much. However, the system is unstable in Fig. 9. Therefore, the
maximum allowable control interval δ can be used to reflect
both the network-induced delay and packet dropout problems.
Moreover, it is important to choose a proper sampling period
h to satisfy rmax > r based on δ when packets dropout occurs
inevitably in real network condition.
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Fig. 8. Trajectories of x1, x̂1 with h = 0.1 s, τk = 0 s, r = 40%, and
x(0) = [0.3, 0]T.

Fig. 9. Trajectories of x1, x̂1 with h = 0.1 s, τk = 0 s, r = 70%, and
x(0) = [0.3, 0]T.

B. Example 2: Inverted Pendulum on a Cart

ẋ1 =x2

ẋ2 =
g sin(x1) − amlx2

2 sin(2x1)/2 − a cos(x1)u
4l/3 − aml cos2(x1)

+ d(t)

(42)

where x1 denotes the angle (in radians) of the pendulum from
the vertical and x2 is the angular velocity, d(t) = 0.5 sin(2πt)
is the external disturbance, g = 9.8 m/s2 is the gravity constant,
m is the mass of the pendulum, M is the mass of the cart, 2l
is the length of the pendulum, and u is the force applied to
the cart (in newtons), and a = 1/(m + M). We choose m =
2.0 kg, M = 8.0 kg, 2l = 1.0 m here. In [16], the system is
approximated by following two rules:

Rule 1 :

IF x1(tk) is about 0, THEN ẋ = A1x + B1u

Rule 2 :

IF x1(tk) is about ± π/2, THEN ẋ = A2x + B2u

Fig. 10. Trajectories of x1, x̂1 with h = 0.05 s, τk ∈ [0, 0.045] s, r = 0%,
and x(0) = [π/4, 0]T.

Fig. 11. Trajectories of x2, x̂2 with h = 0.05 s, τk ∈ [0, 0.045] s, r = 0%,
and x(0) = [π/4, 0]T.

where A1=
[

0 1
g/(4l/3−aml) 0

]
, B1=

[
0

−a/(4l/3−aml)

]
,

A2=
[

0 1
2g/π(4l/3−amlβ2) 0

]
, B2 =

[
0

−aβ/(4l/3−amlβ2)

]
,

and β = cos(88◦).
Choose the fuzzy membership function as μ1(x1) = (0.5π −

|x1|)/0.5π, and μ2(x1) = 1 − μ1(x1).
We select δ=0.1 s. Then, applying Theorem 1 and Remark 8,

a feasible combination of εl, (l = 1, . . . , 6), can be obtained as
follows ε1 = 0.9288, ε2 = 0.0084, ε3 = 0.0027, ε4 = 0.0097,
ε5 = 0.0078, ε6 = 0.0040, with tmin = −1.1154 × 10−7.

By solving the optimization problem (39), we obtain
that γmin = 0.9632, K1 = [12.359 2.4812] × 103, K2 =
[23.976 4.71] × 104, Kv = [−157.97 − 57.666], L1 =[

0.998 0.0214
−4.432 −2.738

]
, and L2 =

[
0.998 0.0213
14.822 7.422

]
.

Figs. 10 and 11 show the inverted pendulum responses with
h = 0.05 s, τk ∈ [0, 0.045] s, r = 0%, and the initial condition
x(0) = [π/4, 0]T, x̂(0) = [0, 0]T.

The inverted pendulum system has been studied in several
references, such as [4], where the typical sampling period is less
than 0.02 s. Since the FE can estimate the plant state effectively

Authorized licensed use limited to: Northeastern University. Downloaded on February 21, 2009 at 20:50 from IEEE Xplore.  Restrictions apply.



446 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 2, MARCH 2009

TABLE I
CONTROL PERFORMANCE EVALUATION WITH DIFFERENT r

in a network-based environment, the sampling period can be
prolonged under condition (1), which is verified by the above
simulation results. Note that the robustness and stability of the
NCS can be guaranteed by Theorems 1 and 2 although we adopt
the longer sampling period.

In order to show the relationship among control performance,
packet dropout rate, and network-induced delay, we define the
integral square error (ISE) performance index as

ISE =

tf∫
t0

xT(t)x(t)dt. (43)

The performance evaluation results are shown in Table I
with h = 0.02 s, τk ∈ [0, 0.018] s, and different r. By (2) and
(3), qmax = int[(δ − τmax)/h] = int[(0.1 − 0.018)/0.02] =
4, and rmax = (qmax − 1)/qmax = 75%.

From Table I, we see that if the packet dropout rate r < rmax,
the control performance is good. Moreover, when r = 80% >
rmax, the system dynamics are unstable. The results validate the
proposed control scheme. However, it should be noted that our
result is only a sufficient condition. If condition (1) is satisfied,
the FE-NCS can be stabilized by the controller. Otherwise, we
cannot draw the conclusion on the stability of the system based
on the proposed method.

In all examples, it should be pointed out that different choices
of membership functions may lead to different degrees of
approximate accuracy. In this paper, we have collected the
influence of different choices of membership functions on the
system into modeling errors Δf and Δg. It should be noted that
our results on controller gain matrices such as Kj do not depend
on the information of membership functions, but on the number
of fuzzy rules as in (19), which implies that the robustness
is enough to compensate for different choices of membership
functions. We should point out that the dynamical behavior
of the closed-loop system is different when choosing different
membership functions. Therefore, we believe that our result can
be applied widely if enough fuzzy rules are used under different
membership functions.

V. CONCLUSION

In this paper, a fuzzy H∞ control scheme for a class of
nonlinear NCSs via the FE has been proposed. The FE is
designed to estimate the states of a nonlinear plant via limited
sampling information. Both the network-induced delay and

packet dropout rate are considered in a uniform framework.
The disturbance attenuation term is designed to attenuate the
influence of modeling errors and external disturbances on the
system.

REFERENCES

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA: SIAM,
1994.

[2] B.-S. Chen, C.-H. Lee, and Y.-C. Chang, “H∞ tracking design of un-
certain nonlinear SISO systems: Adaptive fuzzy approach,” IEEE Trans.
Fuzzy Syst., vol. 4, no. 1, pp. 32–43, Feb. 1996.

[3] B. Chen and X. Liu, “Delay-dependent robust H∞ control for T–S fuzzy
systems with time delay,” IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp. 544–
556, Aug. 2005.

[4] J. Colandairaj, W. Scanlon, and G. Irwin, “Understanding wireless net-
worked control systems through simulation,” Comput. Control Eng.,
vol. 16, no. 2, pp. 26–31, Apr. 2005.

[5] K. Gu, “An integral inequality in the stability problem of time-delay
systems,” in Proc. 39th IEEE Conf. Decision Control, Sydney, Australia,
Dec. 2000, pp. 2805–2810.

[6] J. Hale, Theory of Functional Differential Equations. New York:
Springer-Verlag, 1977.

[7] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[8] C. Hsu, D. M. Levermore, C. Carothers, and G. Babin, “Enterprise col-
laboration: On-demand information exchange using enterprise databases,
wireless sensor networks, and RFID systems,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 37, no. 4, pp. 519–532, Jul. 2007.

[9] D. Kim, Y. Lee, W. Kwon, and H. Park, “Maximum allowable delay
bounds of networked control systems,” Control Eng. Pract., vol. 11,
no. 11, pp. 1301–1313, Nov. 2003.

[10] Y.-K. Lin, “Reliability evaluation for an information network with node
failure under cost constraint,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 37, no. 2, pp. 180–188, Mar. 2007.

[11] L. A. Montestruque and P. J. Autsaklis, “Stability of model-based net-
worked control systems with time-varying transmission times,” IEEE
Trans. Autom. Control, vol. 49, no. 9, pp. 1562–1572, Sep. 2004.
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