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Abstract

This paper concerns optimization-based network
flow control; these recently proposed algorithms
select transmission rates by maximizing a utility
function for the set of sources, subject to link ca-
pacity constraints. A decentralized way to carry
out this optimization has been proposed recently,
based on the propagation of link prices, themselves
updated dynamically. In particular we consider
here the second-order update law of [8], which
includes a backlog term in the price dynamics.
We adopt a deterministic, continuous-time model
which enforces non-negativity constraints in prices
and backlogs. For this model, a Lyapunov-function
based proof is given of global asymptotic stability,
i.e. convergence to the optimal rates and prices.
The paper concludes with simulation examples.

1 Introduction

Flow control in a communication network such
as the Internet concerns the adjustment of indi-
vidual source transmission rates so that network
resources are fully utilized, and link capacities are
not exceeded. The main issues are the stability,
efficiency, and steady-state fairness for these large-
scale coupled dynamical systems. This is a partic-
ularly challenging problem since rates must be se-
lected by sources in a decentralized way, with little
information about the rest of the network. Existing
protocols such as TCP and its variants [2, 3] employ
ad-hoc probing schemes in which sources increase
their rates until they detect congestion, then back
off to avoid it.

Recently there has been substantial interest in
a more mathematical theory of flow control (see
[1, 4, 5, 7, 8] and references therein), with the
objective of both providing an interpretation for
the main aspects of current protocols [4, 9], and
also suggesting directions for improvement. The
common theme of these methods is that they can
be viewed as decentralized algorithms to solve a
convex optimization problem: namely, the maxi-
mization of an aggregate utility function across all
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sources, subject to link capacity constraints. De-
centralization is achieved by means of pricing sig-
nals that are communicated from links to sources,
which then use them to update their rates. In
particular, Kelly and co-workers [4, 5] have em-
ployed continuous time models and proposed two
alternate, first-order update schemes, which can be
shown to be globally convergent via Lyapunov anal-
ysis; the equilibrium solves an approximation to the
abovementioned optimization problem.

A related approach has been developed by Low
and co-workers [7, 8], based on discrete-time mod-
els. In [7] it is shown that a gradient projection
algorithm applied to the dual of our optimization
problem leads directly to a decentralized algorithm,
convergent to the global optimum. This first-order
method has a drawback, however, observed in [8]:
the algorithm is such that prices are proportional
to link backlogs, and thus the equilibrium can have
large backlogs. This has motivated the proposal
in [8] to drive the price dynamics with an addi-
tional term involving the backlog; this “extra inte-
grator” guarantees that any equilibrium will have
empty buffers. The resulting second-order dynam-
ics, however, has no simple gradient interpretation:
consequently, despite positive empirical evidence,
no stability proof has been given to date.

The main result of this paper is to provide such
a proof. We adopt a continuous-time model, sim-
ilar in flavor to those in [5], but applying to the
second order dynamics of [8], and enforcing the
non-negativity constraints for prices and backlogs
implicit in this algorithm. We do not model, how-
ever, the stochastic “marking” used in [8] for price
propagation; our model is deterministic. By con-
structing a suitable Lyapunov function, we prove
global asymptotic convergence to the optimal equi-
librium. Simulation examples are given to illustrate
the dynamics and explore the relationship between
continuous and discrete models.

2 Problem Formulation and Notation

We begin by setting up the problem in a suitable
form for stability studies. We will follow in general
the notation from [7, 8], with a few changes that

are convenient for our development.



We are concerned with a system of communica-
tion links shared by a set of sources. We will de-
note by L the number of links, and S the number
of sources. The routing matrix R, of dimensions
L x S, is defined by

R 1 if source s uses link [
» =1 0 otherwise

For each link | we have:

e A link capacity ¢.
e A price p;.
e A backlog b;.

e The aggregate rate of all sources which use
link /, which we denote by ¥;. This notation
differs from [8] where x! is used.

The vectors ¢,p,b,y € RF are defined by the
above components across the set of links.

For each source s we have:

e The source rate ;.

e The aggregate price of all links used by source
s, which we denote by ¢s;. Again this differs
from [8] where p® is used.

The vectors z,q € RS are defined by the above
components across the set of sources.

The following relationships are immediate (R” is
the matrix transpose of R):

y = Raz, (1)
= RTp. (2)

Source rate computation. As explained in [7, §],
for a given total price ¢4, the sources must pick the
rate that maximizes

Us(ws) — Ts(s

over x5, where Us(zs) is the source utility func-
tion, assumed to be strictly concave. [7] allows
for the inclusion of maximum and minimum con-
straints for x4, for simplicity we will not impose
those here (as, for instance, in logarithmic utility
functions Us(zs) = ws log(zs)).

Assuming U, () is differentiable, the maximum is
achieved at

2y = UL (gs),

where U;fl is the inverse function of the derivative
of Us,. We denote henceforth

fslas) = UL (gs)-

Notice that U] is strictly decreasing in z, > 0,
hence f, is a strictly monotone decreasing function
of gs. In vector notation, we summarize the above
equations for source rates as

z = f(q)- (3)

We assume that sources have instantaneous ac-
cess to the price ¢, (i.e. we do not model the mark-
ing process), and that they compute their value in-
stantaneously. Therefore the only dynamics of the
system is given by the update of prices at the links.

Price dynamics: We adopt a continuous time ver-
sion of the dynamics from [8]; for each [,

if by (t) > 0;

if bi(t) =0. @
if pi(t) > 0;
() =0, O

dby :{ (v — 1)

dt [?Jl - Cl]+

dpi _ { Y(aub + yi — 1)
dt v leubr +yr — ]

Here we have used the notation [z]* := max{0, z}.

The above system of differential equations models
the price update as well as the backlog dynamics,
enforcing the non-negativity constraints. Here v >
0 and «; > 0 are constants. We assume the links
know exactly their total rate y;. Further discussion
on the comparison between this version and the
discrete time algorithm in [8] is given in Section 4.

Let (b*,p*) be an equilibrium of the above sys-
tem. We also use the notation ¢* = R”p* for the
equilibrium source prices, * = f(¢*) for the equi-
librium source rates, and y* = Rz* for the equilib-
rium link rates.

It is not difficult to see that we must have b* = 0.
Indeed, if by > 0 then we would have y; = ¢ so
pr > 0, which contradicts equilibrium. Now p* need
not be zero, indeed its nonzero components corre-
spond to links where y; = ¢, i.e. where the ca-
pacity constraint is active (bottleneck links). This
fact is the main motivation for the introduction of
this second order update law in [8], as compared to
the first order law in [7], which would correspond
to setting a; = 0 in (5); in this case prices become
proportional to backlogs and there is nothing to
curtail the size of this backlog at equilibrium.

The relation of this algorithm with optimization
is explained in detail in [7], but we briefly outline
it here. The key observation is that an equilibrium
point p*, z* satisfying the equations (1-5) will be a
saddle point of the optimization

p>0 =z

S
min max (Z Us(zs) + p (¢ — Rr)) .

s=1



This is the Lagrangian dual of the convex program

s

max Z Us(zs),
s=1

subject to Rz < c.

It follows from duality theory that z* must be
the unique global optimum of the latter problem;
therefore y*, ¢* are also unique. p* need not be
unique, because in general the capacity constraints
might not be independent. To simplify the further
development and obtain a unique equilibrium
price, we make the following

Assumption: The matrix R is of full row rank.

This means that there are no algebraic con-
straints between link flows. Equivalently, given a
vector g of aggregate source prices, there is a unique
p satisfying ¢ = RTp. Removing this assumption
does not affect the subsequent stability theory in
a significant way, but makes the statements more
complicated. Namely, in that case one has a set of
equilibria in the system, and stability results must
be formulated in terms of convergence to this set.

3 Stability

We are now in a position to state the main result
of this paper:

Theorem 1. Given the system (1-5), assume
fs(gs) is strictly decreasing in qs > 0, and that R is
of full row rank. Then the unique equilibrium point
b* =0, p* is globally asymptotically stable.

Proof: The proof is based on Lasalle’s invariance
principle applied to a suitable Lyapunov function.
We begin by defining, for each s, the function

puls) = /(m

Note that since f4(-) is deceasing, we have ¢;(gs) >
0 for every gs. Furthermore, since we have assumed
the decreasing is strict (U is strictly concave, and
there are no interval limits for ), we find that

¢s(gs) >0 for all g5 # q.

Moreover, ¢5(gs) goes to infinity with g;.

s — fs(o))do

Now introduce the candidate Lyapunov function

L S
Z Oéﬁ— yl*)pl] + Z (lss(qs)'
=1 s=1

Note that V is non-negative, since each of the terms
is non-negative. In particular, the equilibrium link

rates y; are no larger than the link capacity. Also
V(b,p) = 0 implies b = 0, ¢ = ¢*, and p; = 0 for
non-saturated links. Using the Assumption above,
these conditions only hold for b = 0, p = p*, ie
the function only vanishes at equilibrium. Further-
more, this function is radially unbounded, i.e. the
sets {(b,p) : V(b,p) < K} are bounded for each K,
also using our Assumption.

We now take the derivative of V' (b, p) along tra-

jectories of our system:

Z(ﬂ?: — fs(as))ds

s=1

L
V= larybib + (e — yi)p +
=1

We focus on the last term above, and write it as

S (@f - )i = (@ —2)"G = (@* —2)"R"p

L
=" => (= w)p

=1

Substituting back, we find that

L
V= laybib + (e — )b+ (7 — w)pi] ZVI
=1

where we have denoted
v = agybiby + (¢ — y) -

We will now show that v; < 0 for each [. For this
we must apply the dynamic equations (4-5), and
distinguish between the four cases:

(a) by >0, pp > 0. Here
v = oybi(yr — ) + (e — yo)y(oubr + yi — 1)
=y —a)’
(b) by =0, p > 0. Here
v = (e —y)y(y —a) = vy —a)’
(c) by >0, pr =0. Here

v = agybi(yr — @)
+ (1 — y1)y max{0, by +y1 — 1}

Now we distinguish between the two possibil-
ities for the maximum. If the maximum is 0,
then ayb; + 1y — ¢ <0 so

vi = aybi(yr — a) < —vq; b2 <0

If the maximum is a;b; + y; — ¢;, then as in
case (a) we obtain

v =—y(y — 01)2-



(d) b =0, p, = 0. Here

v = (c = y))ymax{0,y; — e}
Once again there are two cases:

vy = 0 fory <c;
v = —W(yl—cl)2 for y; > ¢.

We thus confirm that v, < 0 for every [/, and thus
vV <o. Invoking Lyapunov’s stability theorem, we
conclude that the trajectory (b(t),p(t)) must re-
main bounded over time, and that the equilibrium
point (b*,p*) is stable in the sense of Lyapunov:
trajectories starting close to it will remain inside a
neighborhood.

To establish the stronger claim of asymptotic sta-
bility, we must show that trajectories will converge
to equilibrium as time goes to infinity. We do
this by means of Lasalle’s invariance principle (see,
e.g. [6]). To apply it, we must study the set of
states (b, p) where the Lyapunov derivative is zero,
or equivalently v; = 0 for each /. From the cases
above, we see this can only happen when either

(i) w = ¢, or

(ii) y1 < ¢ and pp = b = 0.

The Lasalle principle is based on identifying an
invariant set inside this set {(b,p) : V = 0}. For
this purpose, suppose a trajectory (b(t), p(t)) moves
inside this set. Then for each I we must have one
of the alternatives (i) or (ii).

Claim: Under this assumption, we must have

bl(t) = bgl
pi(t) = po+ abot

where (bg, po) is the initial state. To see this, first
note that if by; = 0 for a certain I, then it must
remain this way because y; — ¢ < 0 under both
alternatives (i) and (ii). Using this fact again, now
(5) implies that p; = 0 under both alternatives, so
pi(t) is also constant.

If instead by; > 0, we are initially in alternative
(i) and thus b; stays constant due to (4), and p
grows linearly with rate a;bg;. Then we stay in this
alternative indefinitely.

Thus the claim is established. For compactness,
now denote by po the vector of price rates pg =
a;bg;. We have

a(t) = R"(po+ pot)
() = F(R" (o + b))

y(t) = RI(R" (o +pob)) (6)

Now we observe that for a trajectory satisfying the
alternatives (i) or (ii), we have

L
Pou(t) = pagu(t) = 0.
=1

The reason is that for those entries where py =
ayby; # 0, we are always in alternative (i) and thus
y; is constant. Taking a derivative in (6) we obtain

Py R (R" (b0 + 5ot) ) B o = 0.

Now f'() is the diagonal matrix of derivatives
fi(gs(t)), which are all negative. This means that
the vector R”py must be zero. Using now our rank
assumption on R, we conclude that py = 0 and
therefore our candidate trajectory is in effect an
equilibrium point (bg = 0,pg). Given our assump-
tions, our equilibrium is unique and therefore we
have established that the only invariant set inside
the set {(b,p) : V= 0} is the equilibrium (0, p*).

Invoking Lasalle’s principle, all trajectories of our
system will converge to the equilibrium, as was to
be proved. |

As an additional remark, we note that the pre-
ceding argument contains, as a special case, a proof
of stability for the simpler first order rule in [7], ob-
tained by setting a; = 0 in (5). Indeed if we do the
same with our Lyapunov function (effectively, we
eliminate the buffer terms), the argument follows
through. Thus we have a continuous alternative to
the discrete time argument in [7].

4 Examples

r
'
'
'

Figure 1: Example: network of 3 links, 3 sources

Our first example illustrates the dynamics of the
system for a simple network of 3 sources, 3 links, of
which only 2 are bottlenecks. Figure 1 depicts the
network, where we have indicated the links with
Roman numbers for easy distinction, all are as-
sumed to have unit capacity, ¢; = 1. The sources all
use the utility function Us(z) = log(z), and their



link usage is depicted by dashed lines in the figure;
the corresponding routing matrix is

R]o 01|

[0 1 1J'

The continuous model (1-5) was simulated using
the stiff ODE solver 'odel5s’ in Matlab, using v =
0.02, a; = 0.1, and initial conditions

=] 1] =0
0

Rl Lo]
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Figure 2: Link prices and backlogs: 1, solid, II, dash-
dot; ITI, dashed.

Results are depicted in Figures 2 and 3. We see
that after a transient where prices are updated,
and temporary backlogs occur in the first and third
links, the system converges to an equilibrium of

NESE N

S Y A 4 i e

and zero backlogs. In particular, link IT is not a
bottleneck, which reflects itself on a zero equilib-
rium price. As expected, the Lyapunov function is
monotonically decreasing during the simulation.

Our second example concerns the relationship be-
tween the continuous time model (4-5), and the
discrete-time dynamics of the algorithm from [8],
namely

bi(t+1) = [b(t) + ui(t) — T, (7)
pi(t+1) = [pi(t) + y(ubi(t) + yi(t) — a)]*. (8)

Source rates
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Figure 3: Source rates: 1, solid; 2, dash-dot; 3,
dashed. Lyapunov function evolution.

Loosely speaking, these could be thought of as Eu-
ler steps in the numerical integration of (4-5), with
unit time step. Natural questions are whether the
discrete iteration is stable, and whether this can be
established by the Lyapunov function used in the
continuous time studies. A preliminary exploration
of these questions is now done for the simplest ex-
ample of a single link, single source network, com-
paring the discrete dynamics (7-8), with the sim-
ulation of the continuous dynamics obtained with
the Matlab ODE solvers. The values used where
¢ = 1 for link capacity, log(z) for the utility func-
tion, v = 0.1, and initially @« = 1. Simulations
shown in Figure 4 indicate a close approximation
between both solutions, and indeed it appears that
the discrete iteration is stable as well. Neverthe-
less, when we plot the Lyapunov function simu-
lation in Figure 5, we notice a transient increase
around ¢ = 10. This means that our V (b, p) is not
a Lyapunov function of the discrete dynamics, and
cannot be used to establish stability. If we repeat
the simulation using the smaller value a = 0.1, this
difficulty disappears and now both solutions have
a decreasing trajectory for V' (b, p).

This raises the question as to whether a stabil-
ity proof could be derived for the discrete system
based on the current Lyapunov function, but intro-
ducing bounds in the parameters «, v (as was done
in [7] for the first order algorithms). Alternatively,
we could seek another Lyapunov function to get
stronger results for the discrete case. Notice that
non-strictly decreasing functions as this one often
do not behave well under discretization.
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Figure 4: Comparison of continuous (solid) and dis-
crete (dashed) dynamics.

These questions remain open for further research.
Another comment is that the model (7-8) assumes
prices are updated at the same rates as the buffer,
i.e. at every packet. It is probably more reasonable
to model the price dynamics as slower, in which
case the buffer dynamics would be close to the con-
tinuous limit.

Lyapunov function, com parison

ot +

Figure 5: Lyapunov function evolution, continuous
(solid) and discrete (dashed) dynamics

5 Conclusion

We have employed a continuous time, deter-
ministic model as a way of analyzing stability
for the distributed congestion control algorithm of
[8]. With this model we have been able to prove
global asymptotic stability for the general multi-
link, multi-source case, under mild assumptions,

and accounting for all nonlinearities.

An important factor that has not been accounted
for in the above analysis is the effect of delay. It is
intuitively clear from classical considerations that
such a system with two integrators in the loop will
have limited stability margins to delay, so that sta-
bility can only be accommodated by slowing down
the response (choosing small step parameters ~,
a;). Along these lines, in [10] we employ linearized
models to obtain parameter design ranges consis-
tent with stability with respect to a uniform de-
lay. Interesting questions for future research are
to obtain such delay stability proofs with nonlinear
models, and generalizations to systems with un-
equal delays, where parameter selection might be
performed by sources using measured real-time val-
ues of the round trip delay.
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