
A Software Memory Partition Approach for Eliminating
Bank-level Interference in Multicore Systems

Lei Liu1,2, Zehan Cui§1,2, Mingjie Xing1, Yungang Bao1, Mingyu Chen1, Chengyong Wu1
1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Science

2Graduate School of Chinese Academy of Sciences
Beijing, China

{liulei2010, cuizehan, baoyg, cmy, cwu}@ict.ac.cn

ABSTRACT
Main memory system is a shared resource in modern multicore
machines, resulting in serious interference, which causes
performance degradation in terms of throughput slowdown and
unfairness. Numerous new memory scheduling algorithms have
been proposed to address the interference problem. However,
these algorithms usually employ complex scheduling logic and
need hardware modification to memory controllers, as a result,
industrial venders seem to have some hesitation in adopting them.
 This paper presents a practical software approach to effectively
eliminate the interference without hardware modification. The key
idea is to modify the OS memory management subsystem to adopt
a page-coloring based bank-level partition mechanism (BPM),
which allocates specific DRAM banks to specific cores (threads).
By using BPM, memory controllers can passively schedule
memory requests in a core-cluster (or thread-cluster) way.
 We implement BPM in Linux 2.6.32.15 kernel and evaluate
BPM on 4-core and 8-core real machines by running randomly
generated 20 multi-programmed workloads (each contains 4/8
benchmarks) and multi-threaded benchmark. Experimental results
show that BPM can improve the overall system throughput by 4.7%
on average (up to 8.6%), and reduce the maximum slowdown by
4.5% on average (up to 15.8%). Moreover, BPM also saves 5.2%
of the energy consumption of memory system.

Categories and Subject Descriptors
B.3.1 [Semiconductor Memories]: Dynamic memory (DRAM),
Static memory (SRAM); C.4 [Computer Systems Organization]:
Performance of Systems-Design studies; D.4.1[Operating System]:
Process Management-Scheduling; D.4.2[Operating System]:
Storage Management-Main Memory;

General Terms
Management, Performance, Design

Keywords
Main Memory, Multicore, Interference, Data Allocation, Memory
Scheduling, Bank, Partition

1. INTRODUCTION
On multicore platforms, DRAM memory system shared by all
cores usually suffers from the memory contention and interference
problem, which can cause serious performance degradation and
unfairness of the overall system. Specifically, modern multicore
machines consist of many components, such as processing cores,
prefetchers and DMA engines, which can generate memory
requests with different characteristics and priorities. For example,
different cores can generate memory-intensive and non-intensive
requests simultaneously; prefetchers’ requests are of low priority
and DMA engines’ requests are sequential. If memory controllers
are unable to distinguish these different requests, interference
inevitably occurs.

A number of recently proposed scheduling algorithms [18, 19,
25, 26, 27, 30], leveraging the abovementioned different
characteristics information, have been demonstrated to be able to
effectively reduce the memory contention and interference. For
instance, TCM [18], which classifies threads into memory-
intensive group and non-intensive group and uses different
policies for the two groups, is shown to exhibit both performance
and QoS improvements for overall system.

Although some memory scheduling algorithms are claimed to be
easily integrated into memory controllers [18, 19, 22, 25, 29, 30],
they usually introduce complex hardware logic and require extra
storage in memory controllers to store per core (or per thread)
information, which can be an obstacle to the scalability of on-chip
core number. Therefore, industrial venders seem to have some
hesitation in adopting aggressive scheduling algorithms.

In this paper, we propose a software approach to effectively
eliminate the memory contention and interference problem
without any hardware modification to memory controllers. Our
approach is inspired by two observations that 1) DRAM bank-
level conflict is a major reason of the memory contention and
interference problem and 2) the demanded bank amount for a
thread is limited (typically less than 16 banks).

Intuitively, inter-thread bank-level conflicts can be eliminated by
exclusively mapping a thread’s data to specific banks. We adopt
this basic idea and modify the physical pages allocation of OS
memory management subsystem. Therefore the physical pages in
specific banks can be exclusively mapped to a specific thread (or
core). For example, if OS maps thread 1’s data to 4 banks (e.g.,
bank 0~3) and maps thread 2’s data to 12 banks (e.g., bank 4~15),
memory controllers will deliver all memory requests of thread 2 to
only bank 4~15 and will not affect thread 1 whose memory
requests are delivered to only bank 0~3. By doing this mapping,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee.
PACT’12, September 19–23, 2012 Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09 …$15.00.

§Co-first author

the bank-level inter-thread memory contention and interference
are eliminated. We call this approach Bank-level Partition
Mechanism (BPM), which is an extension of page-coloring.

Although the OS page-coloring technique is not new, the distinct
advantage of BPM is that it exposes both cache and memory
bank-level information to OS. We implement BPM in Linux
2.6.32.15 kernel and run multi-programmed/threaded workloads
on 4-core and 8-core real machines to evaluate BPM.
Experimental results show that BPM can improve the overall
system throughput by 4.7% (up to 8.6%), reduce the maximum
slowdown by 4.5% (up to 15.8%) on average. Besides, we find
that BPM can also save 5.2% of the energy consumption of
memory system.

In summary, we make the following contributions:

 (1) We observe that the demanded bank amount for a thread is
limited, which means that a thread’s performance would not be
improved even if more banks are assigned to it. Empirical studies
show that 8 ~ 16 banks are enough for one thread.

(2) We propose a new practical page-coloring based Bank-level
Partition Mechanism (BPM) to effectively eliminate the memory
contention and interference problem without any hardware
modification to memory controllers.

(3) We implement BPM in Linux 2.6.32.15 kernel for evaluation.
Experimental results show that BPM can improve the overall
system throughput by 4.7% (up to 8.6%), reduce the maximum
slowdown by 4.5% (up to 15.8%) and save 5.2% of the energy
consumption of memory system.

(4) We find that the product of the sum of all threads’ memory
bandwidth and the standard deviation of each thread’s row-buffer
locality (i.e., Sum(BW)*Stdev(RBL)) is a good indicator for
predicting BPM’s performance improvement. This indicator
probably can be used to evaluate system performance in a shared
environment.

The rest of this paper is organized as follow. In Section 2, we
introduce the background of DRAM system, and our motivation
on this work. In Section 3, we present our BPM in detail. The
methodology and metrics are discussed in Section 4. We evaluate
BPM in Section 5. In Section 6, we discuss related work and
conclude in Section 7.

2. Background and Motivation
2.1 DRAM System
We briefly describe DRAM memory systems and OS memory
management mechanism. Our description is based on DDR3
SDRAM systems, and it is generally applicable to some other
DRAM types that employ bank/page-mode.

DRAM Organization: Modern memory system consists of
multiple independent banks, each of which contains at least one 2-
dimensional storage array. Banks can work in a parallel way,
hence, memory requests to different banks can be served
concurrently [25, 27, 33].

However, since each bank has only one row buffer, only one row
is accessible in a bank at any time. Typically, DDR3 chip’s row
buffer is 1KB~2KB size. Once a request to a bank arrives，if the
required row is in the row-buffer, MC1 can immediately issue a

1 MC is short for Memory Controller.

read/write command. Otherwise, a row buffer conflict occurs so
that the MC needs to firstly issue a precharge command to write
back the content in the row-buffer and then issue an active
command to fetch the required row into row buffer before issuing
a read/write command. Obviously, row buffer conflict results in
longer memory request latency (may more than two times) than
the row buffer hit case. Requests from different threads seldom go
to same rows, so the row buffer conflict occurs more frequently
on multicore platform than single thread computing environment.

Bank-Level Parallelism (BLP) and Bank Sharing: BLP means
that multiple banks can serve memory requests concurrently and
independently because they are physically independent. BLP can
often help make full use of banks and improve memory bandwidth.
Hence, memory system usually employs a bank-interleaved
address mapping schema to take the advantages of BLP [17, 25,
27, 33, 38], which is meant to share all banks to all cores in a
multicore system. Nevertheless, such bank-sharing schema brings
interference among threads because one bank may receive
memory requests from different cores, which probably have
different memory access characteristics. Therefore, the bank
conflicts between cores become more and more frequent as the
core number increasing.

OS Memory Management: Nowadays, Linux kernel’s memory
management system uses a buddy system to manage physical
memory pages. In the buddy system, the continuous 2order pages
(called a block) are organized in the free list with the
corresponding order, which ranges from 0 to a specific upper limit.
When a program accesses an unmapped virtual address, a page
fault occurs and OS kernel takes over the following execution
wherein the buddy system identifies the right order free list and
allocates one block (2order physical pages) for that program.
Usually the first block of a free list is selected but the
corresponding physical pages are undetermined [8].

2.2 Multicore-Posed Challenges and Current
Solutions
Multicore architecture poses two major challenges on memory
system: 1) Interference. Usually a single thread’s memory
requests have good locality and can exhibit good row buffer hit
rate. But the locality is significantly reduced in a multicore
machine wherein multiple threads can issue memory requests to
the memory system. Row buffer hit rate also decreases sharply,
leading to poor overall system performance. For example, Udipi et
al. [37] illustrate that the row buffer hit rate decreases
significantly from 1 core (over 60%) to 16 cores (35%). 2)
Unfairness. Conventional memory controller’s scheduling
algorithms (e.g., FR-FCFS [15, 33]) favor processing those
memory requests with good row buffer locality in order to
improve row buffer hit rate. Therefore, memory intensive
applications, which have better locality can obtain higher priority
than memory non-intensive applications. For instance, Mutlu et al.
[27] illustrate that the slowdowns for some memory non-intensive
applications can increase by 7.74X for 4-core system and even
11.35X for 8-core system whereas the memory intensive
application experiences the slowdowns of only 1.04X and 1.09X
respectively.

One major reason of the two problems is that memory controllers
are unable to identify one thread’s distinct access pattern from
other threads’ pattern in a multiple-threaded mixed memory
requests stream. To address these challenges, numerous new
memory scheduling algorithms have been proposed to effectively
reduce the memory contention and interference. For instance, the

state-of-the-art scheduling algorithm, Thread Clustering Memory
Scheduling (TCM), which classifies threads into memory-
intensive group and non-intensive group and uses different
policies for the two groups, exhibits both performance and QoS
improvements for overall system [18]. Another important reason
is DRAM bank-level conflict. As mentioned above, because all
banks are shared by all cores, one bank can receive memory
requests from different cores with different memory access
characteristics. Unfortunately, even the state-of-the-art scheduling
algorithms are unable to fully eliminate the interference problem
unless banks are not shared among cores. Some partition
approaches are proposed in order to eliminate interference at
cache-level [23] and channel level [30], but the contention in
terms of bank-level still remains. Recent research proposes a bank
level partition among multi-programmed workloads [28, 32]. Yet,
their work is not deployed in real hardware. Besides, they do not
take into account the relationship between cache and bank
partition.

Although those solutions are claimed to be easily integrated into
memory controllers, they usually introduce complex hardware
logic and require extra storage in memory controllers to store per
core (or per thread) information [18, 19, 25-27, 30]. For example,
TCM [18] requires additional 4 Kbits storage in a memory
controller to support 24 cores, additional logic to rank threads and
a central meta-controller to gather global information of multiple
memory controllers. Besides, because the thread number in a
system is usually much more than the core number, there probably
exist frequent context-switches, which require a sophisticated
hardware thread-behavior monitoring mechanism. Therefore,
industrial venders seem to have some hesitation in adopting
aggressive scheduling algorithms. Then, a question is raised: Can
we use a software approach to achieve the similar effect as these
hardware solutions do?

2.3 Our Insights
Intuitively, the inter-thread bank-level conflicts can be fully
eliminated by exclusively mapping a thread’s data to specific
banks. But doing so will reduce the available bank amount for one
thread, thus it is important to know how available bank amount
influences the thread’s performance.

We perform experiments on an Intel i7-860 machine with 64
banks (125MB per bank) to analyze the correlation between bank
amount and application’s performance (details of experimental

setup are in Section 4). For one application, we fix the available
banks from 8 banks to 64 banks and see its performance changes.
Figure 1 illustrates the results of 23 benchmarks from SPEC2006
[2]. Surprisingly, we find that the necessary amount of banks
one program requires is limited, for example 16 banks in our
experiments. Providing more banks (e.g., all 64 banks) than the
necessary amount (e.g., 16 banks) to a program will not yield
significant performance improvement.

In fact, usually a single core is unable to generate enough
concurrent memory requests due to the combination of many
factors such as memory dependency, high cache hit rate and
limited number of MSHRs. Nevertheless, most modern systems
always interleave memory requests across banks in order to take
the advantages of bank-level parallelism, thus one program can
access all banks, largely exceeding its necessary bank amount. As
a result, those programs, which are sharing all banks only suffer
from memory interference rather than obtain any performance
gain.

This insight inspires us that it is feasible to partition banks into
several groups and designate specific bank groups to specific
threads so as to eliminate inter-thread bank conflicts. Based on the
key insight, we propose a software approach, OS page-coloring
based bank-level partition mechanism (BPM), to effectively
eliminate the memory contention and interference problem
without any hardware modification to memory controllers.

3. Bank-Level Partition Mechanism (BPM)
3.1 Overview of BPM
The key idea of BPM is that OS memory management system
uses a page-coloring mechanism to partition banks into several
groups and maps each thread (process) to a specific bank group.
Consequently, memory controllers can passively schedule
memory requests in a thread-cluster (or core-cluster) way, i.e.,
scheduling one thread’s memory requests to pre-specific banks.

3.1.1 Advantages
OS page-coloring technique is a well-known technique for cache
partition [23]. But the distinct advantage of BPM allows OS to
partition memory space based on the underlying memory bank-
level information. Because memory controllers also schedule
memory requests at bank-level, the OS partition effect can be
indirectly propagated to memory controllers.

Figure 2 illustrates an example. The smaller blocks mean row
buffer hits, which result in shorter latencies. Assume there are
three threads (different colors) issuing memory requests to DRAM
banks. For conventional page allocation without BPM (the left),
these requests are delivered to all banks, resulting in many row
buffer conflicts. With BPM (the right), one thread’s memory

Figure 1. The correlation between application
performance and bank amount. The blue line is the
“watershed”, which indicates all benchmarks can achieve
90% of its maximum performance with only 16 banks.

Figure 2. The Comparison between interleaved address
mapping and BPM. Different colors mean that the
requests are from different threads.

requests are mapped to its specific bank so that row buffer
conflicts are eliminated between threads (processes).

Specifically, BPM brings the following advantages:

 (1) BPM is an entirely software approach, so that it is easier to be
implemented in modern systems. Since software is more flexible
than hardware, more partition policies can be explored to achieve
better performance.

(2) It is easier for OS to monitor threads’ behavior than hardware,
which requires additional storage and logic. Contemporary
processors provide powerful performance counters to monitor
system behavior, and the state-of-the-art tools such as LiMit [12]
are already able to precisely monitor per-thread behavior (e.g.,
cache miss rate, memory bandwidth etc.) with negligible overhead.
BPM can easily leverage this kind of information for exploring
various partition policies.

(3) Moreover, BPM can facilitate improving other OS
functionalities. For example, OS’s process management module
can utilize BPM partition information to guide process scheduling.
BPM can also be implemented in Virtual Machine Monitor
(VMM) to partition memory space for virtual machines in order to
improve VM isolation effect.

3.1.2 Principle
A physical address contains several common bits, which denote
both OS page index and bank index, so these bits are referred to as
bank color bits. For instance, if a physical address has 4 bank
color bits, then there are 24=16 bank colors. Partition means that
BPM exclusively assigns banks with the same color to a thread
such that those banks can be accessed only by the specific thread.
Note that a thread can possess multiple bank colors. Here is a
concrete example. Our experimental machine has 4GB/8GB
DDR3 main memory with 32/64 banks. Usually, the OS page size
is 4KB, so the low 12 bits are page offset and the OS physical
page index bits are bit 12~32. Figure 3 illustrates the 5 bank color
bits of our platform, i.e., bit 13~15 and bit 21~22. Therefore, there
are 32 colors, and each color represents 1 bank for 4GB memory
or 2 banks for 8GB memory.

Each OS page index (bit 12~32) also contains 5 bank color bits
which designate one color, thus each physical page belongs to one
bank color. When a thread applies for one page, BPM first checks
which bank colors are possessed by the thread, then picks a bank
color, and finally allocates a physical page with the color for the
thread.

3.2 Cache Partition
Figure 3 illustrates that bit 13~15 are used for both bank coloring
and cache coloring. Therefore, the last level cache with physical
index is also partitioned into 23 = 8 groups. As a result, we could

Algorithm1: Discover Bank Bits
Input: The address bits; Output: BANK{}, which contains all bank bits.
BEGIN
/* STEP 1: Detect row address bits */
/*Based on the idea that row miss causes larger latency*/
1. FOR each bit x IN address bits
2. DO
3. Generate 2 memory requests, one’s x bit is 0, and
 another’s x bit is 1;
4. Access the two addresses (uncached) in turn and record the
 latency (repeat at least 10000000 times);
5. END FOR
6. The latency will be easily clustered into two groups;
7. Put the group with higher latency into Row{} // row miss
8. The left parts are put into Remain{} // row hit
9. Call Step 2

/*STEP 2: Detect column address bits*/
/*Based on the idea that bank parallelism outperforms row miss */
1. FOR each bit y IN Remain{}
2. DO
3. Choose an x from Row{};
4. Generate 2 requests, one’s x and y bit are both 0, and
 another x and y bit are both 1;
5. Access the two address (uncached) in turn and record

the latency (repeat at least 10000000 times);
6. END FOR
7. The latency will be easily clustered into two groups;
8. Put the group with higher latency into Column{} //row miss
9. The left parts are put into Remain{} //mapped to different banks
10. IF there is no XOR policy THEN
11. Put Remain{} into BANK{}
12. Output BANK{}
13. ELSE
14. Call STEP 3
15. ENDIF

/*STEP 3: Detect XOR Policy (Optional)*/
/*Many MCs employ XOR to improve performance*/
1. FOR each pair <u,v>, u,v IN Remain{}
2. DO
3. Generate 2 memory requests, one’s u and v bit are both 0, and
 another’s u and v bit are both 1; the other bits are identical;
4. Access the two address (uncached) in turn and record the latency
 (repeat at least 10000000 times);
5. END FOR
6. The latency will be easily clustered into one or two groups;
7. IF there is only one groups THEN
8. XOR is not employed
9. ELSE
10. Put the group of <u,v> pairs with higher latency into BANK{},
 Delete all u, v in that group from Remain{} //row miss
11. END IF
12. Put Remain{} into BANK{}
13. Output BANK{}
END

gain the benefits from both cache partition and bank partition. On
the other hand, since there are two extra bits (21~22) for bank
coloring, BLP can also be orthogonal to cache partition.

3.3 Discover bank bits by software method
In order to employ BPM, we need to obtain the memory address
mapping information so as to extract the bank bits. We can look
up address mapping in vendors’ manuals. However, address

Figure 3. Address Mapping policy of our platform. The
Bank bits are divided into two separate parts. One is
overlapped with Cache set bits; another is independent.

mapping in a memory controller is not fixed and can be
configured by BIOS at boot time. A memory controller always
supports various address mapping policies. Some hardware tools
can be used (such as HMTT [5]) to figure out address mapping
policy, but it is impossible to deploy this approach for massive
normal machines. In order to solve this problem, we propose a
practical software method (Algorithm1) to discover the address
mapping policy as well as bank bits on any machines.

The approach is based on two observations that: 1) the latency of
row buffer misses is much longer than the latency of row buffer
hits (refer to STEP 1); 2) concurrent accesses to two different
banks (BLP) still result in lower latency than row buffer conflict
within a bank (refer to STEP 2). We verify our algorithm by a
hybrid memory trace tool (HMTT) [5], which is able to monitor
memory signals over memory buses. The verification results show
that our algorithm works well on various platforms. Thus, this
algorithm can be embedded into OS boot phase to collect the
address mapping information, which can be used for BPM setup.

3.4 Implementation
We implement BPM in Linux kernel 2.6.32.15. The kernel uses a
buddy system to manage the free physical pages, which are
organized as different orders (0~11) of free lists (refer to Section
2.1). We modify the original free list organization into a hierarchy
way: for each order of free page list, we re-organize the free pages
to form 32 colored free lists according to the 5 bank bits. Each
process has its own colors (i.e., a group of banks). When a page
fault occurs, the OS kernel will search a colored free list and
allocate a page for the process. This is transparent to applications
so that programmers do not need to modify programs.

For multi-programmed workloads, bank colors are assigned to
each program. For multi-threaded workloads, we enhance OS
kernel with new APIs for programmers to perceive the underlying
bank colors so that programmers can map threads’ data into
different colors on their demand.

The overhead of the searching color operation is negligible.
Experimental results show that the average kernel time accounts
for only 0.3% for all workloads.

4. Methodology and Metrics
4.1 Hardware and software platform
We conduct our experiments on a machine, which has 4 cores,
2.8GHz Intel Core i7-860 processor with a shared 8MB 16-way
associative last level cache and 8GB DDR3 main memory. The
processor incorporates Hyper-Threading technology, so we can
run 8 threads concurrently.

We use CentOS Linux 5.4 with kernel 2.6.32.15. The memory
system is 8GB with 64 banks (each bank is 125MB). There are 5
bank bits, so the memory is divided into 32 colors, and each color
represents 2 banks bundled together across dual-channel. In our
experiments, colors are statically assigned to processes/threads at
their starting time. Modern multi-thread servers often have enough
memory for their running threads [11]. Therefore, we also disable
OS swap. Moreover, for most experimental workloads, the
memory capacity of 0.5~1GB (4~8 banks) is enough.

We use Perfmon2 [1] and its corresponding libpfm library to
access the performance counters to gather architectural
information, such as memory bandwidth and last level cache miss
rate. For memory system, because DIMMs are directly plugged
into motherboard and it is difficult to measure memory power
consumption, we adopt an in-house hardware tool [10], which

consists of a wrapper card for each DIMM. The wrapper card is
plugged into motherboard’s DIMM slot and memory power
consumption can be measured precisely via the sensors embedded
into the wrapper card. It should be noted that the wrapper card
does not affect the memory access at all.

4.2 Benchmarks
We use the SPEC CPU2006 benchmarks for evaluation. We
compile each benchmark using gcc 4.1.2 with -O3 optimizations.
From these benchmarks, we randomly generate multi-
programmed workloads each of which contains 4/8 applications
(due to space limitation, we omit a table depicting all workloads’
characteristics). We employ a multi-threaded benchmark
streamcluster from PARSEC 2.1 [7]. We use the notion of “Miss
Per Kilo-Instruction (MPKI) > 1” to define memory-intensive
applications. We use ref input size for the SPEC benchmarks and
the native for PARSEC.

In our experiments, for each benchmark in 4-programmed
workloads, each program has 8 colors (i.e., 16 banks/2GB); for 8-
programmed workloads, each program has 4 colors (i.e., 8
banks/1GB).

4.3 Metrics
We use Weighted Speedup [18] (WS) to measure system
throughput and use Maximum Slowdown (MS) [18] for fairness.
We also report Improvement compared with the normal
environment without BPM.

Weighted Speedup WS =
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%&

Maximum Slowdown MS = 𝑀𝑎𝑥
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%&
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#!"

Improvement_ws =
𝑊𝑆!"# − 𝑊𝑆!"!!"#

𝑊𝑆!"!!"#

Improvement_fairness =
𝑀𝑆!"!!"# −𝑀𝑆!"#

𝑀𝑆!"!!"#

5. Results
5.1 Overall system performance
In this experiment, we use static uniform partition policy. Figure 4
combines the improvement of both the fairness and system
throughput across all 20 workloads. According to Figure 4, BPM
can improve weighted speedup by 4.7% on average, and reduce
the maximum slowdown (unfairness) by 4.5% on average.

The improvement of Weighted Speedup is steady for all
workloads and no workload’s performance degrades. We firstly
study these 4-programmed workloads (workload 11~20 in Figure
4). BPM can achieve a maximum weighted speedup by up to 5.9%
for workload_11, which consists of 462.libquantum (MPKI = 50,
RBL2 = 99.22%), 403.gcc (MPKI = 0.4), 447.dealII (MPKI = 0.5),
444.namd (MPKI = 0.3). For the four benchmarks in workload_11,
462.libquantum is obviously a memory intensive application,
specifically a stream-like program (RBL = 99.22%), while the
other three are memory non-intensive. In normal configuration
without BPM, where memory accesses are interleaved across
banks, 462.libquantum causes substantial row buffer conflicts due
to its stream characteristics, affecting the other three applications’

2 RBL (Row Buffer Locality) is equivalent to row buffer hit rate.

row buffer hit rate. Figure 5 shows the row buffer miss rate is
almost 50% for workload_11. However, when using BPM, each
application has 8 dedicated bank-colors (16 banks) and their
memory requests can only be delivered to those banks. According
to Figure 1, the performance for the four benchmarks decrease
very slightly from 64 banks to 16 banks (92% for 462.libquantum
and 99% for others). Since the memory interference is fully
eliminated (the overall row buffer miss rate reduces by about 10%
in Figure 5), the overall system performance is improved. In 8-
programmed workloads, we find the workload_1 can achieve the
maximum improvement by 8.6%. Wokload_1 also includes
462.libquantum, and it is a heavy memory-intensive workload (all
programs’ MPKI > 2). The more intensive the threads are, the
more interference on banks there would be. Thus, BPM would
exhibit better improvements by totally eliminating the bank-level
interference in such an environment.

For the Fairness metric, workload_11 exhibits 10% improvement
and workload_14 improves by even 15.8%. We find that
workload_14 comprises of 462.libquantum, 456.hmmer (MPKI =
5.7), 403.gcc, 444.namd. The only difference between
workload_11 and workload_14 is replacing 447.dealII (MPKI =
0.5) with 456.hmmer. Obviously, when workload_14 runs on
normal environment, there will be more memory interference
because 456.hmmer issues more memory requests than 447.dealII.
As mentioned before, current memory controllers favor
processing those memory requests that have good row buffer
locality, thus memory intensive applications, which are more
likely to have good locality, can obtain higher priority than

memory non-intensive applications. The more memory intensive
applications are there, the less opportunities do non-intensive
applications get their memory requests been served. Therefore, the
unfairness problems always occur in modern multicore systems.
Obviously, BPM can effectively eliminate this unfairness.

It should be noted that there are several workloads exhibiting
worse fairness, i.e., workload_13, workload_15, workload_16 and
workload_17. We find that those workloads have a common
benchmark 429.mcf (MPKI = 99.8), which is an extreme memory
intensive application. But the interesting thing is that when
reducing bank amount from 64 to 16, unlike 462.libquantum
whose performance decreases by 8%, the performance of 429.mcf
almost does not decrease (only 2%). Therefore, BPM can improve
429.mcf’s performance even more than other non-intensive
applications, leading to a slight unfairness. For 8-programmed
workloads, the average improvement of system throughput is 5.3%
(up to 8.6%), which are slightly better than 4-programmed
workloads (4.1%). This implies that BPM is able to exhibit better
performance improvements in a worse interference scenario.

5.2 Multi-threaded workload
In practical, many servers are used to run multi-threaded
workloads. We use streamcluster of PARSEC [7] to evaluate
BPM. Its coloring scheme is nearly the same as that of multi-
programmed workloads. We use Native dataset (200000 *5 points)
as input in our experiment. For a stream of these input points, they
are divided into N chunks according to core number, the first N-1
chunks contains the same amount of points, while the Nth chunk
collects the rest points. Because streamcluster itself is a typical
data parallelism computing multi-threaded program, we could
partition the dataset in a straightforward way (Figure 6). We get
performance gains by 1.7% and 2.3% on 4/8-thread separately.
The improvement is less than that of multi-programmed
workloads because there is too much shared data among threads

Figure 4: The Overall system performance of BPM across 20 workloads. The x-axis denotes the workload number, and the y-axis
shows both the improvement of fairness and system throughput. Baseline is the conventional Linux kernel without BPM.

Figure 6: Thread Level Coloring. The above array is
mapped to different bank colors. The colored rectangle in
dataset represents shared data.

(the colored rectangle in dataset in Figure 6). In our
straightforward partition, the shared data belongs to blue banks.
When other threads access the shared data, inter-thread bank
conflicts occur. There are two ways to improve multi-threaded
applications: 1) designing a better partition policy and 2)
leveraging a dynamic color adjustment mechanism. We will do
further study on these issues in the future work.

5.3 What affects the BPM?
In this subsection, we study the correlation between workloads’
characteristics and performance improvements. We investigate
four indicators derived from memory bandwidth (BW) and row
buffer locality (RBL) of individual benchmarks, which are
collected by perfmon [1] when the benchmarks are running alone.
Given a workload, we calculate the following four indicators: 1)
The indicator Average(RBL) is the weighted average of the 4/8
programs’ RBL, where BW is the weight. This indicates the
overall row buffer locality of the workload. 2) The indicator
Sum(BW) is the sum of the 4/8 programs’ BW. This indicates the
intensity of the workload. 3) The indicator Stdev(RBL) is the
weighted standard deviation of the 4/8 programs’ RBL. This
indicates the difference of locality among programs. 4)
Sum(BW)*Stdev(RBL) is the combination of the two indicator
stated before.

Figure 7 illustrates four curves, which represent the correlation
between the improvements of BPM and the four indicators
respectively. To fit them into one figure, we normalized the value
of all the four indicators into range (0, 1). Besides, there are 6
points on each curve; each point represents one workload or the
average of multi workloads, which have close indicator values.
According to the figure, none of the indicators can match the
improvements of BPM perfectly except Sum(BW)*Stdev(RBL) –
as the indicator increases, the improvements of BPM also increase
steadily. Actually, we can use Sum(BW)*Stdev(RBL) to indicate
the interference degree of a multi-programmed workload. The
more interference is there, the more improvement can be achieved
by BPM.

5.4 Page-Policy and Power
There are two page policies in memory system, open-page policy
and close-page policy. Usually, open-page policy has better
performance than close-page policy. But recent studies show

that the row-buffer locality in multicore systems is sharply
decreased to a lower level [35, 37]. Therefore, some server
machines have to compromise to adopt close-page policy. Our
experiments show that BPM can revive open-page policy in
multicore systems. In our experiments, we change the page
policies of the experimental machine and measure the system
throughput improvement. Figure 8 shows that open-page with
BPM outperforms close-page by 6.3% in terms of weighted
speedup. This implies that if we partition banks appropriately,
open-page policy can still be employed in heavily threads
computing environment.

The active operation is the most power-consuming operation in
the DRAM system [3, 37], because it has to move an entire row
from array to a row buffer. BPM can lower the power
consumption of DRAM because of the reduced row buffer conflict
miss rate (as illustrated in Figure 5). As mentioned in 4.1, we
measure the power consumption by real hardware, so we can get
the real value of power savings on memory system. Our
experimental results show that BPM with open-page policy can
save up to 5.2% of memory power consumption, better than the
configurations without BPM.

5.5 Comparison between Bank and Cache
As mentioned in Section 3.2, there are 3 common bits for both
bank partition and cache partition and 2 extra bits for bank-
partition only. This mechanism allows us to evaluate the effect of

Figure 7. The correlation of BPM improvements and four
indicators.

Figure 8. Improvement of weighted speedup of Open-Page
policy with BPM over Close-Page policy.

Figure 9. BPM vs. Cache-Partition-Only across 20
workloads on average (Toward right top is better)

different partition schemes on real machines. Figure 9 illustrates
the comparison between cache-partition-only and BPM, which
embraces cache partition. When only adopting cache partition
with 8 colors (3 bits), both system throughput and fairness are
improved slightly (3.1% and 3.4%). Furthermore, when the two
extra bits are used to form 32 bank colors (still 8 cache colors),
the performance is further improved (4.7% and 4.5%), which
proves that BPM is orthogonal to cache partition.

5.6 The Correlation between BPM
improvements and Per-core bandwidth
Off-chip memory bandwidth is limited by the pin count of micro-
processor chip and thereby is considered as the major bottleneck
of the scalability of on-chip core number [6, 34]. Since the core
number is still increasing, memory bandwidth per core is
decreasing, which causes more and more serious interference. In
order to evaluate the influence of different per-core bandwidth on
our BPM approach, we emulate different bandwidth scenarios by
varying memory frequency from 1333 to 800 MHz so that the per-
core bandwidth decreases form 1.3GB/s to 0.8GB/s.

Figure 10 illustrates that the correlation of performance
improvements and per-core bandwidth is negative: BPM performs
better when per-core bandwidth is less. In fact, our previous
experiments also provide evidences from another perspective. For
example, when we enable Hyper-Threading on the experimental
machine, the per-thread memory bandwidth halves, but the overall
system throughput still improve from 4.1% (4-programmed) to 5.3%
(8-programmed). Therefore, BPM is a promising approach for
future many-core architecture that arguably has even less per-core
bandwidth.

6. Related work
There are a number of related studies.
Thread Scheduling. Scheduling algorithms DI and DIO proposed
in [39] aimed to distribute threads to get an even distribution of
miss rate among multiple caches, which avoid severe contention
on cache, memory controller, memory bus and prefetching
hardware. Similar mechanisms are also proposed in [11, 21]. This
method can alleviate contention, but cannot eliminate the bank
interference among threads.

Cache Partition. Either hardware based cache partition [13, 14,
31, 36] or software page coloring based cache partition [4, 8, 23,
24] are employed to partition shared cache to concurrent running
threads, which can eliminate the interference between multi-
threads and hence reduce conflict at cache level. However, other

resources such as MC, memory bus, and DRAM are also shared
and confronted with contention and interference.

Channel Partition. Data of different threads are mapped into
different channels according to their memory access behavior in
[30], which can eliminate the interference between threads at
channel level. However, channel partition cannot be applied to
system with cache line interleaving policy between channels [30],
which limit its applicable scope. Furthermore, there are usually
more threads than channels in a system, so some threads have to
be assigned to the same channel, which still interference with each
other. Besides, channel partition actually partitions the bandwidth
of memory system into several portions. Since the total number of
portions is limited by channel amount, which is usually small, it is
challenging to seek a balance among channels so as to ensure no
bandwidth wasted.

Thread-based Memory Scheduling. Memory controllers are
designed to distinguish the memory access behavior at thread-
level in [16, 18, 19, 25, 27], so that scheduling modules can adjust
their scheduling policy at the running time. TCM [18], which
dynamically groups threads into two clusters (memory intensive
and non-intensive), and assign different scheduling policy to
different group, is the best scheduling policy, which aim to
address fairness and throughput at the same time. Yet, this method
needs modification to memory controller, and the overhead at
running time cannot be neglected.

Row buffer optimization. In [35], frequently accessed data of
different rows are dynamically migrated into row buffer, which
can improve the row buffer usage and performance; power
consumption is also lowered by reducing the operations of
precharge and active. In [20], the content in row-buffer will be
precharged after 4 times access, which target at the reduction of
row-buffer conflicts.

Comparison with BPM. To the best of our knowledge, this is the
first work that implements and evaluates bank level partition in
reality. Our work is quite different from the previous work [28,
32]. First, we do not need to modify hardware, and our
mechanism can be deployed on any Linux platforms. Second, our
page-coloring mechanism takes both cache and bank bits
information into account, which can eliminate both cache-level
and bank-level conflicts, and ensure the fairness between threads.

7. Conclusion
We present Bank-level Partition Mechanism (BPM), a new
approach to eliminate the interference between threads and
improve the overall system performance. BPM achieves this goal
by assign different group of banks to different threads to eliminate
inter-thread bank-level interference. This leads to the reduction of
row buffer misses as well as the energy consumption of memory
system. To the best of our knowledge, BPM is the first bank level
partition that is implemented on real machines and can be used in
real multicore computing environment.

Our experimental evaluations show that BPM can improve system
throughput and reduce unfairness due to the elimination of
interference between threads. Our analysis also shows that BPM
can be an effective mechanism on future manycore platforms on
which per-core bandwidth is decreasing.

8. Acknowledgments
We would like to thank the anonymous reviews for their valuable
feedback. Lei Liu, Mingjie Xing and Chengyong Wu are
supported by the National Natural Science Foundation of China

Figure 10. The correlation of BPM improvements
and per-core Bandwidth

under grants No. 60873057, 60921002 and 61033009; the
National High Technology Research and Development Program
of China (863 Program) under grants No. 2012AA010902; the
National Basic Research Program of China (973 Program) under
grant No. 2011CB302504; and the National Science and
Technology Major Project of China under grants No.
2009ZX01036-001-002 and 2011ZX01028-001-002. Zehan Cui,
Yungang Bao and Mingyu Chen are supported by the National
Natural Science Foundation of China under grants No. 60903046,
60921002, 60925009, 61003062. the National Basic Research
Program of China (973 Program) under grants No.2011CB302502.

9. References
[1] Hewlett-Packed Development Company. Perfmon project.

http: //www.hpl.hp.com/research/linux/ perfmon.
[2] Standard Performance Evaluation Corporation.

http://www.spec.org/cpu2006/CINT2006/.
[3] N. Aggarwal et al. Power Efficient DRAM Speculation. In

HPCA-14, 2008.
[4] R. Azimi, D. K. Tam, L. Soares, and M. Stumm. Enhancing

Operating System Support for Multicore Processors by Using
Hardware Performance Monitoring. In ACM SIGOPS
Operating Systems Review 43(2): 56-65, 2009.

[5] Y. Bao et al. HMTT: A Platform Independent Full-System
Memory Trace Monitoring System. In SIGMETRICS-08,
2008

[6] S. Beamer et al. Re-Architecting DRAM Memory Systems
with Monolithically Integrated Silicon Photonics. In ISCA-37,
2010.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. Technical Report TR-811-08, Princeton Univ.,
Jan. 2008.

[8] S. Cho, and L. Jin. Managing Distributed, Shared L2 Caches
through OS-Level page Allocation. In MICRO-39, 2006.

[9] J. Carter, IBM Power Aware Systems. Personal
Correspondence, 2011.

[10] Z.Cui, Y.Zhu, Y.Bao and M.Chen. A Fine-grained
Component-level power measurement method. In PMP,2011.

[11] G. Dhiman, G. Marchetti, and T. Rosing. vGreen: a System
for Energy Efficient Computing in Virtualized Environments.
In Proceedings of International Symposium on Low Power
Electronics and Design. In ISLPED-2009.

[12] J. Demme et al, Rapid Identification of Architectural
Bottlenecks via Precise Event Counting. In ISCA, 2011

[13] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory
Monitoring Scheme for Memory-Aware Scheduling and
Partitioning. In HPCA-8, 2002.

[14] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning
of shared cache memory. In Journal of Supercomputing,
28(1), 2004.

[15] I. Hur and C. Lin. Memory scheduling for modern
microprocessors. ACM Transactions on Computer Systems,
25(4), December 2007.

[16] R. Iyer et al, QoS policy and architecture for cache/memory
in CMP platforms. In SIGMETRICS-07, 2007.

[17] C. J. Lee et al. Improving memory bank-level parallelism in
the presence of prefetching. In MICRO-42, 2009.

[18] Y. Kim, M. Papamicheal and O. Mutlu. Thread Cluster
Memory Scheduling: Exploiting Differences in Memory
Access Behavior. In MICRO-43, 2010.

[19] Y. Kim et al. ATLAS: A scalable and high-performance
scheduling algorithm for multiple memory controllers. In
HPCA-16, 2010.

[20] D. Kaseridis, J. Stuecheli, and L. K. John. Minimalist Open-
page: A DRAM Page-mode Scheduling Policy for the many-
core Era. In MICRO-44, 2011.

[21] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using
OS Observations to Improve Performance in Multicore
Systems. In Micro-41, 2008.

[22] G. L. Yuan et al. Complexity effective memory access
scheduling for many-core accelerator architectures. In
MICRO-42, 2009.

[23] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P.
Sadayappan. Gaining Insights into Multicore Cache
Partitioning: Bridging the Gap between Simulation and Real
Systems. In HPCA-14, 2008.

[24] J. Liedtke, H. Haertig, and M. Hohmuth. OS-Controlled
Cache Predictability for Real-Time Systems. In RTAS-3,
1997.

[25] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared DRAM systems. In ISCA-35, 2008.

[26] T. Moscibroda and O. Mutlu. Memory performance attacks:
Denial of memory service in multi-core systems. In USENIX
Security, 2007.

[27] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO-40, 2007.

[28] W. Mi, X. Feng, J. Xue, and Y. Jia. Software-hardware
cooperative DRAM bank partitioning for chip
multiprocessors. In Proc. the 2010 IFIP Int’l Conf. Network
and Parallel Computing (NPC), Sep. 2010.

[29] C. Natarajan, B. Christenson, and F. Briggs. A Study of
Performance Impact of Memory Controller Features in Multi-
Processor Environment. In Proceedings of WMPI, 2004.

[30] S. Prashanth et al. Reducing Memory Interference in
Multicore Systems via Application-Aware Memory Channel
Partitioning. In Micro-44, 2011.

[31] M. K. Qureshi, and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In MICRO-39, 2006.

[32] M. K. Jeong, D. H. Yoon et al. Balancing DRAM Locality
and Parallelism in Shared Memory CMP Systems. In HPCA-
18, 2012.

[33] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D.
Owens. Memory access scheduling. In ISCA-27, 2000.

[34] B. Rogers et al. Scaling the Bandwidth Wall: Challenges in
and Avenues for CMP Scaling. In ISCA-42, 2009.

[35] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R.
Balasubramonian, and A. Davis. Micro-Pages: Increasing
DRAM Efficiency with Locality-Aware. In ASPLOS-2010.

[36] H. S. Stone, J. Turek, and J. L. Wolf. Optimal Partitioning of
Cache Memory. In IEEE Transactions on Computers, 41(9),
1992.

[37] A. Udipi et al. Rethinking DRAM design and organization for
energy-constrained multi-cores. ISCA, June 2010.

[38] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page
interleaving scheme to reduce row-buffer conflicts and
exploit data locality. In MICRO-33, 2000.

[39] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
shared resource contention in multicore processors via
scheduling. In ASPLOS-XV, 2010.

