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ABSTRACT 
Main memory system is a shared resource in modern multicore 
machines, resulting in serious interference, which causes 
performance degradation in terms of throughput slowdown and 
unfairness. Numerous new memory scheduling algorithms have 
been proposed to address the interference problem. However, 
these algorithms usually employ complex scheduling logic and 
need hardware modification to memory controllers, as a result, 
industrial venders seem to have some hesitation in adopting them.   
   This paper presents a practical software approach to effectively 
eliminate the interference without hardware modification. The key 
idea is to modify the OS memory management subsystem to adopt 
a page-coloring based bank-level partition mechanism (BPM), 
which allocates specific DRAM banks to specific cores (threads). 
By using BPM, memory controllers can passively schedule 
memory requests in a core-cluster (or thread-cluster) way. 
   We implement BPM in Linux 2.6.32.15 kernel and evaluate 
BPM on 4-core and 8-core real machines by running randomly 
generated 20 multi-programmed workloads (each contains 4/8 
benchmarks) and multi-threaded benchmark. Experimental results 
show that BPM can improve the overall system throughput by 4.7% 
on average (up to 8.6%), and reduce the maximum slowdown by 
4.5% on average (up to 15.8%). Moreover, BPM also saves 5.2% 
of the energy consumption of memory system. 

Categories and Subject Descriptors 
B.3.1 [Semiconductor Memories]: Dynamic memory (DRAM), 
Static memory (SRAM); C.4 [Computer Systems Organization]: 
Performance of Systems-Design studies; D.4.1[Operating System]: 
Process Management-Scheduling; D.4.2[Operating System]: 
Storage Management-Main Memory;  

General Terms 
Management, Performance, Design  

Keywords 
Main Memory, Multicore, Interference, Data Allocation, Memory 
Scheduling, Bank, Partition 

 

 

1. INTRODUCTION 
On multicore platforms, DRAM memory system shared by all 
cores usually suffers from the memory contention and interference 
problem, which can cause serious performance degradation and 
unfairness of the overall system. Specifically, modern multicore 
machines consist of many components, such as processing cores, 
prefetchers and DMA engines, which can generate memory 
requests with different characteristics and priorities. For example, 
different cores can generate memory-intensive and non-intensive 
requests simultaneously; prefetchers’ requests are of low priority 
and DMA engines’ requests are sequential. If memory controllers 
are unable to distinguish these different requests, interference 
inevitably occurs. 

A  number  of  recently  proposed  scheduling  algorithms  [18, 19, 
25, 26, 27, 30], leveraging the abovementioned different 
characteristics information, have been demonstrated to be able to 
effectively reduce the memory contention and interference. For 
instance, TCM [18], which classifies threads into memory-
intensive group and non-intensive group and uses different 
policies for the two groups, is shown to exhibit both performance 
and QoS improvements for overall system. 

Although some memory scheduling algorithms are claimed to be 
easily integrated into memory controllers [18, 19, 22, 25, 29, 30], 
they usually introduce complex hardware logic and require extra 
storage in memory controllers to store per core (or per thread) 
information, which can be an obstacle to the scalability of on-chip 
core number. Therefore, industrial venders seem to have some 
hesitation in adopting aggressive scheduling algorithms.  

In this paper, we propose a software approach to effectively 
eliminate the memory contention and interference problem 
without any hardware modification to memory controllers. Our 
approach is inspired by two observations that 1) DRAM bank-
level conflict is a major reason of the memory contention and 
interference problem and 2) the demanded bank amount for a 
thread is limited (typically less than 16 banks).  

Intuitively, inter-thread bank-level conflicts can be eliminated by 
exclusively mapping a thread’s data to specific banks. We adopt 
this basic idea and modify the physical pages allocation of OS 
memory management subsystem. Therefore the physical pages in 
specific banks can be exclusively mapped to a specific thread (or 
core). For example, if OS maps thread 1’s data to 4 banks (e.g., 
bank 0~3) and maps thread 2’s data to 12 banks (e.g., bank 4~15), 
memory controllers will deliver all memory requests of thread 2 to 
only bank 4~15 and will not affect thread 1 whose memory 
requests are delivered to only bank 0~3. By doing this mapping, 
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the bank-level inter-thread memory contention and interference 
are eliminated. We call this approach Bank-level Partition 
Mechanism (BPM), which is an extension of page-coloring.  

Although the OS page-coloring technique is not new, the distinct 
advantage of BPM is that it exposes both cache and memory 
bank-level information to OS. We implement BPM in Linux 
2.6.32.15 kernel and run multi-programmed/threaded workloads 
on 4-core and 8-core real machines to evaluate BPM. 
Experimental results show that BPM can improve the overall 
system throughput by 4.7% (up to 8.6%), reduce the maximum 
slowdown by 4.5% (up to 15.8%) on average. Besides, we find 
that BPM can also save 5.2% of the energy consumption of 
memory system. 

In summary, we make the following contributions: 

 (1) We observe that the demanded bank amount for a thread is 
limited, which means that a thread’s performance would not be 
improved even if more banks are assigned to it. Empirical studies 
show that 8 ~ 16 banks are enough for one thread.  

(2) We propose a new practical page-coloring based Bank-level 
Partition Mechanism (BPM) to effectively eliminate the memory 
contention and interference problem without any hardware 
modification to memory controllers.  

(3) We implement BPM in Linux 2.6.32.15 kernel for evaluation. 
Experimental results show that BPM can improve the overall 
system throughput by 4.7% (up to 8.6%), reduce the maximum 
slowdown by 4.5% (up to 15.8%) and save 5.2% of the energy 
consumption of memory system.  

(4) We find that the product of the sum of all threads’ memory 
bandwidth and the standard deviation of each thread’s row-buffer 
locality (i.e., Sum(BW)*Stdev(RBL)) is a good indicator for 
predicting BPM’s performance improvement. This indicator 
probably can be used to evaluate system performance in a shared 
environment.  

The rest of this paper is organized as follow. In Section 2, we 
introduce the background of DRAM system, and our motivation 
on this work. In Section 3, we present our BPM in detail. The 
methodology and metrics are discussed in Section 4. We evaluate 
BPM in Section 5. In Section 6, we discuss related work and 
conclude in Section 7. 

2. Background and Motivation 
2.1 DRAM System 
We briefly describe DRAM memory systems and OS memory 
management mechanism. Our description is based on DDR3 
SDRAM systems, and it is generally applicable to some other 
DRAM types that employ bank/page-mode. 

DRAM Organization: Modern memory system consists of 
multiple independent banks, each of which contains at least one 2-
dimensional storage array. Banks can work in a parallel way, 
hence, memory requests to different banks can be served 
concurrently [25, 27, 33]. 

However, since each bank has only one row buffer, only one row 
is accessible in a bank at any time. Typically, DDR3 chip’s row 
buffer is 1KB~2KB size. Once a request to a bank arrives，if the 
required row is in the row-buffer, MC1 can immediately issue a 
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read/write command. Otherwise, a row buffer conflict occurs so 
that the MC needs to firstly issue a precharge command to write 
back the content in the row-buffer and then issue an active 
command to fetch the required row into row buffer before issuing 
a read/write command. Obviously, row buffer conflict results in 
longer memory request latency (may more than two times) than 
the row buffer hit case. Requests from different threads seldom go 
to same rows, so the row buffer conflict occurs more frequently 
on multicore platform than single thread computing environment. 

Bank-Level Parallelism (BLP) and Bank Sharing:  BLP means 
that multiple banks can serve memory requests concurrently and 
independently because they are physically independent. BLP can 
often help make full use of banks and improve memory bandwidth. 
Hence, memory system usually employs a bank-interleaved 
address mapping schema to take the advantages of BLP [17, 25, 
27, 33, 38], which is meant to share all banks to all cores in a 
multicore system. Nevertheless, such bank-sharing schema brings 
interference among threads because one bank may receive 
memory requests from different cores, which probably have 
different memory access characteristics. Therefore, the bank 
conflicts between cores become more and more frequent as the 
core number increasing. 

OS Memory Management: Nowadays, Linux kernel’s memory 
management system uses a buddy system to manage physical 
memory pages. In the buddy system, the continuous 2order pages 
(called a block) are organized in the free list with the 
corresponding order, which ranges from 0 to a specific upper limit. 
When a program accesses an unmapped virtual address, a page 
fault occurs and OS kernel takes over the following execution 
wherein the buddy system identifies the right order free list and 
allocates one block (2order physical pages) for that program. 
Usually the first block of a free list is selected but the 
corresponding physical pages are undetermined [8].   

2.2 Multicore-Posed Challenges and Current 
Solutions 
Multicore architecture poses two major challenges on memory 
system: 1) Interference. Usually a single thread’s memory 
requests have good locality and can exhibit good row buffer hit 
rate. But the locality is significantly reduced in a multicore 
machine wherein multiple threads can issue memory requests to 
the memory system. Row buffer hit rate also decreases sharply, 
leading to poor overall system performance. For example, Udipi et 
al. [37] illustrate that the row buffer hit rate decreases 
significantly from 1 core (over 60%) to 16 cores (35%). 2) 
Unfairness. Conventional memory controller’s scheduling 
algorithms (e.g., FR-FCFS [15, 33]) favor processing those 
memory requests with good row buffer locality in order to 
improve row buffer hit rate. Therefore, memory intensive 
applications, which have better locality can obtain higher priority 
than memory non-intensive applications. For instance, Mutlu et al. 
[27] illustrate that the slowdowns for some memory non-intensive 
applications can increase by 7.74X for 4-core system and even 
11.35X for 8-core system whereas the memory intensive 
application experiences the slowdowns of only 1.04X and 1.09X 
respectively.  

One major reason of the two problems is that memory controllers 
are unable to identify one thread’s distinct access pattern from 
other threads’ pattern in a multiple-threaded mixed memory 
requests stream. To address these challenges, numerous new 
memory scheduling algorithms have been proposed to effectively 
reduce the memory contention and interference.  For  instance, the  



 
state-of-the-art scheduling algorithm, Thread Clustering Memory 
Scheduling (TCM), which classifies threads into memory-
intensive group and non-intensive group and uses different 
policies for the two groups, exhibits both performance and QoS 
improvements for overall system [18]. Another important reason 
is DRAM bank-level conflict. As mentioned above, because all 
banks are shared by all cores, one bank can receive memory 
requests from different cores with different memory access 
characteristics. Unfortunately, even the state-of-the-art scheduling 
algorithms are unable to fully eliminate the interference problem 
unless banks are not shared among cores. Some partition 
approaches are proposed in order to eliminate interference at 
cache-level [23] and channel level [30], but the contention in 
terms of bank-level still remains. Recent research proposes a bank 
level partition among multi-programmed workloads [28, 32]. Yet, 
their work is not deployed in real hardware. Besides, they do not 
take into account the relationship between cache and bank 
partition. 

Although those solutions are claimed to be easily integrated into 
memory controllers, they usually introduce complex hardware 
logic and require extra storage in memory controllers to store per 
core (or per thread) information [18, 19, 25-27, 30]. For example, 
TCM [18] requires additional 4 Kbits storage in a memory 
controller to support 24 cores, additional logic to rank threads and 
a central meta-controller to gather global information of multiple 
memory controllers. Besides, because the thread number in a 
system is usually much more than the core number, there probably 
exist frequent context-switches, which require a sophisticated 
hardware thread-behavior monitoring mechanism. Therefore, 
industrial venders seem to have some hesitation in adopting 
aggressive scheduling algorithms. Then, a question is raised: Can 
we use a software approach to achieve the similar effect as these 
hardware solutions do? 

2.3 Our Insights 
Intuitively, the inter-thread bank-level conflicts can be fully 
eliminated by exclusively mapping a thread’s data to specific 
banks. But doing so will reduce the available bank amount for one 
thread, thus it is important to know how available bank amount 
influences the thread’s performance. 

We perform experiments on an Intel i7-860 machine with 64 
banks (125MB per bank) to analyze the correlation between bank 
amount and application’s performance (details of experimental 

 
setup are in Section 4). For one application, we fix the available 
banks from 8 banks to 64 banks and see its performance changes. 
Figure 1 illustrates the results of 23 benchmarks from SPEC2006 
[2]. Surprisingly, we find that the necessary amount of banks 
one program requires is limited, for example 16 banks in our 
experiments. Providing more banks (e.g., all 64 banks) than the 
necessary amount (e.g., 16 banks) to a program will not yield 
significant performance improvement. 

In fact, usually a single core is unable to generate enough 
concurrent memory requests due to the combination of many 
factors such as memory dependency, high cache hit rate and 
limited number of MSHRs. Nevertheless, most modern systems 
always interleave memory requests across banks in order to take 
the advantages of bank-level parallelism, thus one program can 
access all banks, largely exceeding its necessary bank amount. As 
a result, those programs, which are sharing all banks only suffer 
from memory interference rather than obtain any performance 
gain.  

This insight inspires us that it is feasible to partition banks into 
several groups and designate specific bank groups to specific 
threads so as to eliminate inter-thread bank conflicts. Based on the 
key insight, we propose a software approach, OS page-coloring 
based bank-level partition mechanism (BPM), to effectively 
eliminate the memory contention and interference problem 
without any hardware modification to memory controllers. 

3. Bank-Level Partition Mechanism (BPM) 
3.1 Overview of BPM 
The key idea of BPM is that OS memory management system 
uses a page-coloring mechanism to partition banks into several 
groups and maps each thread (process) to a specific bank group. 
Consequently, memory controllers can passively schedule 
memory requests in a thread-cluster (or core-cluster) way, i.e., 
scheduling one thread’s memory requests to pre-specific banks. 

3.1.1 Advantages 
OS page-coloring technique is a well-known technique for cache 
partition [23]. But the distinct advantage of BPM allows OS to 
partition memory space based on the underlying memory bank-
level information. Because memory controllers also schedule 
memory requests at bank-level, the OS partition effect can be 
indirectly propagated to memory controllers.  

Figure 2 illustrates an example. The smaller blocks mean row 
buffer hits, which result in shorter latencies. Assume there are 
three threads (different colors) issuing memory requests to DRAM 
banks. For conventional page allocation without BPM (the left), 
these requests are delivered to all banks, resulting in many row 
buffer conflicts. With BPM (the right), one thread’s memory 

 
Figure 1. The correlation between application 
performance and bank amount. The blue line is the 
“watershed”, which indicates all benchmarks can achieve 
90% of its maximum performance with only 16 banks. 

 
Figure 2. The Comparison between interleaved address 
mapping and BPM. Different colors mean that the 
requests are from different threads. 



requests are mapped to its specific bank so that row buffer 
conflicts are eliminated between threads (processes).  

Specifically, BPM brings the following advantages: 

 (1) BPM is an entirely software approach, so that it is easier to be 
implemented in modern systems. Since software is more flexible 
than hardware, more partition policies can be explored to achieve 
better performance.  

(2) It is easier for OS to monitor threads’ behavior than hardware, 
which requires additional storage and logic. Contemporary 
processors provide powerful performance counters to monitor 
system behavior, and the state-of-the-art tools such as LiMit [12] 
are already able to precisely monitor per-thread behavior (e.g., 
cache miss rate, memory bandwidth etc.) with negligible overhead. 
BPM can easily leverage this kind of information for exploring 
various partition policies. 

(3) Moreover, BPM can facilitate improving other OS 
functionalities. For example, OS’s process management module 
can utilize BPM partition information to guide process scheduling. 
BPM can also be implemented in Virtual Machine Monitor 
(VMM) to partition memory space for virtual machines in order to 
improve VM isolation effect. 

3.1.2 Principle 
A physical address contains several common bits, which denote 
both OS page index and bank index, so these bits are referred to as 
bank color bits. For instance, if a physical address has 4 bank 
color bits, then there are 24=16 bank colors. Partition means that 
BPM exclusively assigns banks with the same color to a thread 
such that those banks can be accessed only by the specific thread. 
Note that a thread can possess multiple bank colors. Here is a 
concrete example. Our experimental machine has 4GB/8GB 
DDR3 main memory with 32/64 banks. Usually, the OS page size 
is 4KB, so the low 12 bits are page offset and the OS physical 
page index bits are bit 12~32. Figure 3 illustrates the 5 bank color 
bits of our platform, i.e., bit 13~15 and bit 21~22. Therefore, there 
are 32 colors, and each color represents 1 bank for 4GB memory 
or 2 banks for 8GB memory.  

Each OS page index (bit 12~32) also contains 5 bank color bits 
which designate one color, thus each physical page belongs to one 
bank color. When a thread applies for one page, BPM first checks 
which bank colors are possessed by the thread, then picks a bank 
color, and finally allocates a physical page with the color for the 
thread. 

3.2 Cache Partition 
Figure 3 illustrates that bit 13~15 are used for both bank coloring 
and cache coloring.  Therefore, the last level cache with physical 
index is also partitioned into 23  = 8 groups.  As a result,  we could  

 
Algorithm1: Discover Bank Bits 
Input: The address bits; Output: BANK{}, which contains all bank bits. 
BEGIN 
/* STEP 1: Detect row address bits */ 
/*Based on the idea that row miss causes larger latency*/ 
1. FOR each bit x IN address bits 
2. DO 
3.      Generate 2 memory requests, one’s x bit is 0, and             
         another’s x bit is 1; 
4.      Access the two addresses (uncached) in turn and record the   
         latency (repeat at least 10000000 times); 
5. END FOR 
6. The latency will be easily clustered into two groups; 
7. Put the group with higher latency into Row{}  // row miss 
8. The left parts are put into Remain{}  // row hit 
9. Call Step 2 
 
/*STEP 2: Detect column address bits*/ 
/*Based on the idea that bank parallelism outperforms row miss */ 
1. FOR each bit y IN Remain{} 
2. DO 
3.       Choose an x from Row{}; 
4.       Generate 2 requests, one’s x and y bit are both 0, and 
          another x and y bit are both 1; 
5.       Access the two address (uncached) in turn and record  

the latency (repeat at least 10000000 times); 
6. END FOR 
7. The latency will be easily clustered into two groups; 
8. Put the group with higher latency into Column{} //row miss 
9. The left parts are put into Remain{}  //mapped to different banks 
10. IF there is no XOR policy THEN 
11.     Put Remain{} into BANK{} 
12.     Output BANK{} 
13. ELSE 
14.     Call STEP 3 
15. ENDIF 
 
/*STEP 3: Detect XOR Policy (Optional)*/ 
/*Many MCs employ XOR to improve performance*/ 
1. FOR each pair <u,v>, u,v IN Remain{} 
2. DO 
3.         Generate 2 memory requests, one’s u and v bit are both 0, and 
            another’s u and v bit are both 1; the other bits are identical; 
4.         Access the two address (uncached) in turn and record the latency  
            (repeat at least 10000000 times); 
5.  END FOR 
6.  The latency will be easily clustered into one or two groups; 
7.  IF there is only one groups THEN 
8.      XOR is not employed 
9.  ELSE 
10.     Put the group of <u,v> pairs with higher latency into BANK{}, 
          Delete all u, v in that group from Remain{}  //row miss 
11. END IF 
12. Put Remain{} into BANK{} 
13. Output BANK{} 
END 

gain the benefits from both cache partition and bank partition. On 
the other hand, since there are two extra bits (21~22) for bank 
coloring, BLP can also be orthogonal to cache partition. 

3.3 Discover bank bits by software method 
In order to employ BPM, we need to obtain the memory address 
mapping information so as to extract the bank bits. We can look 
up address mapping in vendors’ manuals. However, address 

 
Figure 3. Address Mapping policy of our platform. The 
Bank bits are divided into two separate parts. One is 
overlapped with Cache set bits; another is independent. 



mapping in a memory controller is not fixed and can be 
configured by BIOS at boot time. A memory controller always 
supports various address mapping policies. Some hardware tools 
can be used (such as HMTT [5]) to figure out address mapping 
policy, but it is impossible to deploy this approach for massive 
normal machines. In order to solve this problem, we propose a 
practical software method (Algorithm1) to discover the address 
mapping policy as well as bank bits on any machines.  

The approach is based on two observations that: 1) the latency of 
row buffer misses is much longer than the latency of row buffer 
hits (refer to STEP 1); 2) concurrent accesses to two different 
banks (BLP) still result in lower latency than row buffer conflict 
within a bank (refer to STEP 2). We verify our algorithm by a 
hybrid memory trace tool (HMTT) [5], which is able to monitor 
memory signals over memory buses. The verification results show 
that our algorithm works well on various platforms. Thus, this 
algorithm can be embedded into OS boot phase to collect the 
address mapping information, which can be used for BPM setup. 

3.4 Implementation 
We implement BPM in Linux kernel 2.6.32.15. The kernel uses a 
buddy system to manage the free physical pages, which are 
organized as different orders (0~11) of free lists (refer to Section 
2.1). We modify the original free list organization into a hierarchy 
way: for each order of free page list, we re-organize the free pages 
to form 32 colored free lists according to the 5 bank bits. Each 
process has its own colors (i.e., a group of banks). When a page 
fault occurs, the OS kernel will search a colored free list and 
allocate a page for the process. This is transparent to applications   
so that programmers do not need to modify programs.  

For multi-programmed workloads, bank colors are assigned to 
each program. For multi-threaded workloads, we enhance OS 
kernel with new APIs for programmers to perceive the underlying 
bank colors so that programmers can map threads’ data into 
different colors on their demand. 

The overhead of the searching color operation is negligible. 
Experimental results show that the average kernel time accounts 
for only 0.3% for all workloads. 

4. Methodology and Metrics 
4.1 Hardware and software platform 
We conduct our experiments on a machine, which has 4 cores, 
2.8GHz Intel Core i7-860 processor with a shared 8MB 16-way 
associative last level cache and 8GB DDR3 main memory. The 
processor incorporates Hyper-Threading technology, so we can 
run 8 threads concurrently.   

We use CentOS Linux 5.4 with kernel 2.6.32.15. The memory 
system is 8GB with 64 banks (each bank is 125MB). There are 5 
bank bits, so the memory is divided into 32 colors, and each color 
represents 2 banks bundled together across dual-channel. In our 
experiments, colors are statically assigned to processes/threads at 
their starting time. Modern multi-thread servers often have enough 
memory for their running threads [11]. Therefore, we also disable 
OS swap. Moreover, for most experimental workloads, the 
memory capacity of 0.5~1GB (4~8 banks) is enough.  

We use Perfmon2 [1] and its corresponding libpfm library to 
access the performance counters to gather architectural 
information, such as memory bandwidth and last level cache miss 
rate. For memory system, because DIMMs are directly plugged 
into motherboard and it is difficult to measure memory power 
consumption, we adopt an in-house hardware tool [10], which 

consists of a wrapper card for each DIMM. The wrapper card is 
plugged into motherboard’s DIMM slot and memory power 
consumption can be measured precisely via the sensors embedded 
into the wrapper card. It should be noted that the wrapper card 
does not affect the memory access at all. 

4.2 Benchmarks 
We use the SPEC CPU2006 benchmarks for evaluation. We 
compile each benchmark using gcc 4.1.2 with -O3 optimizations. 
From these benchmarks, we randomly generate multi-
programmed workloads each of which contains 4/8 applications 
(due to space limitation, we omit a table depicting all workloads’ 
characteristics). We employ a multi-threaded benchmark 
streamcluster from PARSEC 2.1 [7]. We use the notion of “Miss 
Per Kilo-Instruction (MPKI) > 1” to define memory-intensive 
applications. We use ref input size for the SPEC benchmarks and 
the native for PARSEC.  

In our experiments, for each benchmark in 4-programmed 
workloads, each program has 8 colors (i.e., 16 banks/2GB); for 8-
programmed workloads, each program has 4 colors (i.e., 8 
banks/1GB). 

4.3 Metrics 
We use Weighted Speedup [18] (WS) to measure system 
throughput and use Maximum Slowdown (MS) [18] for fairness. 
We also report Improvement compared with the normal 
environment without BPM. 

Weighted  Speedup WS =   
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%&

 

Maximum  Slowdown MS = 𝑀𝑎𝑥
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%&
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#!"

 

Improvement_ws =   
𝑊𝑆!"# −   𝑊𝑆!"!!"#

𝑊𝑆!"!!"#
 

Improvement_fairness   =   
𝑀𝑆!"!!"# −𝑀𝑆!"#

𝑀𝑆!"!!"#
 

5. Results 
5.1 Overall system performance 
In this experiment, we use static uniform partition policy. Figure 4 
combines the improvement of both the fairness and system 
throughput across all 20 workloads. According to Figure 4, BPM 
can improve weighted speedup by 4.7% on average, and reduce 
the maximum slowdown (unfairness) by 4.5% on average.  

The improvement of Weighted Speedup is steady for all 
workloads and no workload’s performance degrades. We firstly 
study these 4-programmed workloads (workload 11~20 in Figure 
4). BPM can achieve a maximum weighted speedup by up to 5.9% 
for workload_11, which consists of 462.libquantum (MPKI = 50, 
RBL2 = 99.22%), 403.gcc (MPKI = 0.4), 447.dealII (MPKI = 0.5), 
444.namd (MPKI = 0.3). For the four benchmarks in workload_11, 
462.libquantum is obviously a memory intensive application, 
specifically a stream-like program (RBL = 99.22%), while the 
other three are memory non-intensive. In normal configuration 
without BPM, where memory accesses are interleaved across 
banks, 462.libquantum causes substantial row buffer conflicts due 
to its stream characteristics, affecting the other three applications’ 
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row buffer hit rate. Figure 5 shows the row buffer miss rate is 
almost 50% for workload_11. However, when using BPM, each  
application has 8 dedicated bank-colors (16 banks) and their 
memory requests can only be delivered to those banks. According 
to Figure 1, the performance for the four benchmarks decrease 
very slightly from 64 banks to 16 banks (92% for 462.libquantum 
and 99% for others). Since the memory interference is fully 
eliminated (the overall row buffer miss rate reduces by about 10% 
in Figure 5), the overall system performance is improved. In 8-
programmed workloads, we find the workload_1 can achieve the 
maximum improvement by 8.6%. Wokload_1 also includes 
462.libquantum, and it is a heavy memory-intensive workload (all 
programs’ MPKI > 2). The more intensive the threads are, the 
more interference on banks there would be. Thus, BPM would 
exhibit better improvements by totally eliminating the bank-level 
interference in such an environment.   

For the Fairness metric, workload_11 exhibits 10% improvement 
and workload_14 improves by even 15.8%. We find that 
workload_14 comprises of 462.libquantum, 456.hmmer (MPKI = 
5.7), 403.gcc, 444.namd. The only difference between 
workload_11 and workload_14 is replacing 447.dealII (MPKI = 
0.5) with 456.hmmer. Obviously, when workload_14 runs on 
normal environment, there will be more memory interference 
because 456.hmmer issues more memory requests than 447.dealII. 
As mentioned before, current memory controllers favor 
processing those memory requests that have good row buffer 
locality, thus memory intensive applications, which are more 
likely to have good locality, can obtain higher priority than 

memory non-intensive applications. The more memory intensive 
applications are there, the less opportunities do non-intensive 
applications get their memory requests been served. Therefore, the 
unfairness problems always occur in modern multicore systems. 
Obviously, BPM can effectively eliminate this unfairness. 

It should be noted that there are several workloads exhibiting 
worse fairness, i.e., workload_13, workload_15, workload_16 and 
workload_17. We find that those workloads have a common 
benchmark 429.mcf (MPKI = 99.8), which is an extreme memory 
intensive application. But the interesting thing is that when 
reducing bank amount from 64 to 16, unlike 462.libquantum 
whose performance decreases by 8%, the performance of 429.mcf 
almost does not decrease (only 2%). Therefore, BPM can improve 
429.mcf’s performance even more than other non-intensive 
applications, leading to a slight unfairness. For 8-programmed 
workloads, the average improvement of system throughput is 5.3% 
(up to 8.6%), which are slightly better than 4-programmed 
workloads (4.1%). This implies that BPM is able to exhibit better 
performance improvements in a worse interference scenario. 

5.2 Multi-threaded workload 
In practical, many servers are used to run multi-threaded 
workloads. We use streamcluster of PARSEC [7] to evaluate 
BPM. Its coloring scheme is nearly the same as that of multi-
programmed workloads. We use Native dataset (200000 *5 points) 
as input in our experiment. For a stream of these input points, they 
are divided into N chunks according to core number, the first N-1 
chunks contains the same amount of points, while the Nth chunk 
collects the rest points. Because streamcluster itself is a typical 
data parallelism computing multi-threaded program, we could 
partition the dataset in a straightforward way (Figure 6).  We get 
performance gains by 1.7% and 2.3% on 4/8-thread separately. 
The improvement is less than that of multi-programmed 
workloads because there is too much shared data among threads  

 
Figure 4: The Overall system performance of BPM across 20 workloads. The x-axis denotes the workload number, and the y-axis 
shows both the improvement of fairness and system throughput. Baseline is the conventional Linux kernel without BPM.  

 
Figure 6: Thread Level Coloring. The above array is 
mapped to different bank colors. The colored rectangle in 
dataset represents shared data. 



 
(the colored rectangle in dataset in Figure 6).  In our 
straightforward partition, the shared data belongs to blue banks. 
When other threads access the shared data, inter-thread bank 
conflicts occur. There are two ways to improve multi-threaded 
applications: 1) designing a better partition policy and 2) 
leveraging a dynamic color adjustment mechanism. We will do 
further study on these issues in the future work. 

5.3 What affects the BPM? 
In this subsection, we study the correlation between workloads’ 
characteristics and performance improvements. We investigate 
four indicators derived from memory bandwidth (BW) and row 
buffer locality (RBL) of individual benchmarks, which are 
collected by perfmon [1] when the benchmarks are running alone. 
Given a workload, we calculate the following four indicators: 1) 
The indicator Average(RBL) is the weighted average of the 4/8 
programs’ RBL, where BW is the weight.  This indicates the 
overall row buffer locality of the workload. 2) The indicator 
Sum(BW)  is the sum of the 4/8 programs’ BW. This indicates the 
intensity of the workload. 3) The indicator Stdev(RBL) is the 
weighted standard deviation of the 4/8 programs’ RBL. This 
indicates the difference of locality among programs. 4) 
Sum(BW)*Stdev(RBL) is the combination of the two indicator 
stated before. 

Figure 7 illustrates four curves, which represent the correlation 
between the improvements of BPM and the four indicators 
respectively. To fit them into one figure, we normalized the value 
of all the four indicators into range (0, 1). Besides, there are 6 
points on each curve; each point represents one workload or the 
average of multi workloads, which have close indicator values. 
According to the figure, none of the indicators can match the 
improvements of BPM perfectly except Sum(BW)*Stdev(RBL) – 
as the indicator increases, the improvements of BPM also increase 
steadily. Actually, we can use Sum(BW)*Stdev(RBL) to indicate 
the interference degree of a multi-programmed workload. The 
more interference is there, the more improvement can be achieved 
by BPM.  

5.4 Page-Policy and Power 
There are two page policies in memory system, open-page policy 
and close-page policy. Usually, open-page policy has better 
performance than close-page policy. But recent studies show 

 

 
that the row-buffer locality in multicore systems is sharply   
decreased to a lower level [35, 37]. Therefore, some server  
machines have to compromise to adopt close-page policy. Our 
experiments show that BPM can revive open-page policy in 
multicore systems. In our experiments, we change the page 
policies of the experimental machine and measure the system 
throughput improvement. Figure 8 shows that open-page with 
BPM outperforms close-page by 6.3% in terms of weighted 
speedup. This implies that if we partition banks appropriately, 
open-page policy can still be employed in heavily threads 
computing environment. 

The active operation is the most power-consuming operation in 
the DRAM system [3, 37], because it has to move an entire row 
from array to a row buffer. BPM can lower the power 
consumption of DRAM because of the reduced row buffer conflict 
miss rate (as illustrated in Figure 5). As mentioned in 4.1, we 
measure the power consumption by real hardware, so we can get 
the real value of power savings on memory system. Our 
experimental results show that BPM with open-page policy can 
save up to 5.2% of memory power consumption, better than the 
configurations without BPM. 

5.5 Comparison between Bank and Cache 
As mentioned in Section 3.2, there are 3 common bits for both 
bank partition and cache partition and 2 extra bits for bank- 
partition only. This mechanism allows us to evaluate the effect of 

 
Figure 7. The correlation of BPM improvements and four 
indicators. 

Figure 8. Improvement of weighted speedup of Open-Page 
policy with BPM over Close-Page policy. 

 
Figure 9. BPM vs. Cache-Partition-Only across 20 
workloads on average (Toward right top is better)  



different partition schemes on real machines. Figure 9 illustrates  
the comparison between cache-partition-only and BPM, which    
embraces cache partition.  When only adopting cache partition 
with 8 colors (3 bits), both system throughput and fairness are 
improved slightly (3.1% and 3.4%). Furthermore, when the two 
extra bits are used to form 32 bank colors (still 8 cache colors), 
the performance is further improved (4.7% and 4.5%), which 
proves that BPM is orthogonal to cache partition. 

5.6 The Correlation between BPM 
improvements and Per-core bandwidth 
Off-chip memory bandwidth is limited by the pin count of micro-
processor chip and thereby is considered as the major bottleneck 
of the scalability of on-chip core number [6, 34]. Since the core 
number is still increasing, memory bandwidth per core is 
decreasing, which causes more and more serious interference. In 
order to evaluate the influence of different per-core bandwidth on 
our BPM approach, we emulate different bandwidth scenarios by 
varying memory frequency from 1333 to 800 MHz so that the per-
core bandwidth decreases form 1.3GB/s to 0.8GB/s. 

Figure 10 illustrates that the correlation of performance 
improvements and per-core bandwidth is negative: BPM performs 
better when per-core bandwidth is less. In fact, our previous 
experiments also provide evidences from another perspective. For 
example, when we enable Hyper-Threading on the experimental 
machine, the per-thread memory bandwidth halves, but the overall 
system throughput still improve from 4.1% (4-programmed) to 5.3% 
(8-programmed). Therefore, BPM is a promising approach for 
future many-core architecture that arguably has even less per-core 
bandwidth. 

6. Related work 
There are a number of related studies. 
Thread Scheduling. Scheduling algorithms DI and DIO proposed 
in [39] aimed to distribute threads to get an even distribution of 
miss rate among multiple caches, which avoid severe contention 
on cache, memory controller, memory bus and prefetching 
hardware. Similar mechanisms are also proposed in [11, 21]. This 
method can alleviate contention, but cannot eliminate the bank 
interference among threads. 

Cache Partition. Either hardware based cache partition [13, 14, 
31, 36] or software page coloring based cache partition [4, 8, 23, 
24] are employed to partition shared cache to concurrent running 
threads, which can eliminate the interference between multi-
threads and hence reduce conflict at cache level. However, other 

resources such as MC, memory bus, and DRAM are also shared 
and confronted with contention and interference. 

Channel Partition. Data of different threads are mapped into 
different channels according to their memory access behavior in 
[30], which can eliminate the interference between threads at 
channel level. However, channel partition cannot be applied to 
system with cache line interleaving policy between channels [30], 
which limit its applicable scope. Furthermore, there are usually 
more threads than channels in a system, so some threads have to 
be assigned to the same channel, which still interference with each 
other. Besides, channel partition actually partitions the bandwidth 
of memory system into several portions. Since the total number of 
portions is limited by channel amount, which is usually small, it is 
challenging to seek a balance among channels so as to ensure no 
bandwidth wasted. 

Thread-based Memory Scheduling. Memory controllers are 
designed to distinguish the memory access behavior at thread-
level in [16, 18, 19, 25, 27], so that scheduling modules can adjust 
their scheduling policy at the running time. TCM [18], which 
dynamically groups threads into two clusters (memory intensive 
and non-intensive), and assign different scheduling policy to 
different group, is the best scheduling policy, which aim to 
address fairness and throughput at the same time. Yet, this method 
needs modification to memory controller, and the overhead at 
running time cannot be neglected. 

Row buffer optimization. In [35], frequently accessed data of 
different rows are dynamically migrated into row buffer, which 
can improve the row buffer usage and performance; power 
consumption is also lowered by reducing the operations of 
precharge and active. In [20], the content in row-buffer will be 
precharged after 4 times access, which target at the reduction of 
row-buffer conflicts.  

Comparison with BPM. To the best of our knowledge, this is the 
first work that implements and evaluates bank level partition in 
reality. Our work is quite different from the previous work [28, 
32]. First, we do not need to modify hardware, and our 
mechanism can be deployed on any Linux platforms. Second, our 
page-coloring mechanism takes both cache and bank bits 
information into account, which can eliminate both cache-level 
and bank-level conflicts, and ensure the fairness between threads. 

7. Conclusion 
We present Bank-level Partition Mechanism (BPM), a new 
approach to eliminate the interference between threads and 
improve the overall system performance. BPM achieves this goal 
by assign different group of banks to different threads to eliminate 
inter-thread bank-level interference. This leads to the reduction of 
row buffer misses as well as the energy consumption of memory 
system. To the best of our knowledge, BPM is the first bank level 
partition that is implemented on real machines and can be used in 
real multicore computing environment. 

Our experimental evaluations show that BPM can improve system 
throughput and reduce unfairness due to the elimination of 
interference between threads. Our analysis also shows that BPM 
can be an effective mechanism on future manycore platforms on 
which per-core bandwidth is decreasing. 
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