

PESOA
Process Family Engineering in Service-Oriented Applications

BMBF-Project

Principles of Software Product Lines and
Process Variants

Authors:
Joachim Bayer
Stefan Kettemann
Dirk Muthig

PESOA-Report No. 03/2004
February 06, 2004

PESOA is a cooperative project supported by
the federal ministry of education and research
(BMBF). Its aim is the design and prototypical
implementation of a process family engineer-
ing platform and its application in the areas of
e-business and telematics.
The project partners are:

· DaimlerChrysler Inc.
· Delta Software Technology Ltd.
· Fraunhofer IESE
· Hasso-Plattner-Institute
· Intershop Communications Inc.
· University of Leipzig

PESOA is coordinated by
Prof. Dr. Mathias Weske
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

www.pesoa.org

 v

Abstract

Emerging technologies and new trends such as web services and the in-
creasing collaboration between companies have reinforced the importance
of the business process for the design and development of future software.
This and the increasing need for individualization via mass customisation re-
quires technologies that facilitate the efficient customizing of processes – or
in other words, the efficient management of process variants. Today, the
leading approach for successful software mass customisation is software
product line technology. It therefore represents a key technology for manag-
ing process variants.
This report presents the main principles of software product line technology
and sketches their application for the management of process variants.

Keywords: PESOA, Software Product Lines, Business Process Modeling, Software
Variants.

 vii

Table of Contents

1 Introduction 1
1.1 Project Context 2
1.1.1 Fraunhofer IESE 2
1.1.2 PuLSE 3
1.1.3 Goal 4
1.2 Outline 5

2 Principles of Software Product Lines 6
2.1 Product Line Engineering 6
2.2 Product Line Concepts 12
2.2.1 Commonality 12
2.2.2 Variability 12
2.3 Product Line Infrastructures 13
2.3.1 Product Line Information 13
2.3.2 Elements of Product Line Infrastructures 16
2.3.3 Processes as Variability Driver 21

3 Process Variants 22
3.1 Origins and System Evolution 22
3.2 Process Modeling – Standards 24
3.3 Need for Process Variants 25
3.4 Modeling Process Variants 26
3.5 An Infrastructure for Managing Process Variants 28

4 Conclusion and Outlook 30

5 List of Abbreviations 32

6 References 33

 1

1 Introduction

A software product line is a set of similar software systems that are devel-
oped and maintained together [Don00] [Cha02]. The basic idea that under-
lies product line engineering is to exploit the similarities of different systems
and to reuse common parts of them. A product line has been defined as “a
family of products designed to take advantage of their common aspects and
predicted variability” [WL99]. Another often used definition was proposed by
the Software Engineering Institute (SEI): “A software product line is a set of
software-intensive systems that share a common, managed set of features
satisfying the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way.”
[CN02].

Figure 1 shows the generic product line engineering life cycle that is split into
the two phases domain engineering and application engineering. Domain
engineering itself is decomposed into domain analysis (i.e., the scoping of
the domain and the creation of reusable requirements that encompass the
domain), domain design (i.e., the creation of a common architecture for all
systems in the domain), and domain implementation (i.e., the implementa-
tion of reusable assets used to build the systems in the domain).

Figure 1. Generic Product Line Engineering Life Cycle.

Domain EngineeringDomain Engineering

Domain
a small invisible line

Analysis

Domain
a small invisible line

Design

Domain
a small invisible line

Implementation

Domain
a small invisible line

Analysis

Domain
a small invisible line

Analysis

Domain
a small invisible line

Design

Domain
a small invisible line

Design

Domain
a small invisible line

Implementation

Domain
a small invisible line

Implementation

Application EngineeringApplication Engineering

Application
a small invisible line

Analysis

Application
a small invisible line

Design

Application
a small invisible line

Implementation

Application
a small invisible line

Analysis

Application
a small invisible line

Analysis

Application
a small invisible line

Design

Application
a small invisible line

Design

Application
a small invisible line

Implementation

Application
a small invisible line

Implementation

Product 3Product 3

Product 1Product 1

Product 2Product 2

 2

The result of domain engineering is a product line infrastructure that contains
assets that are used during application engineering. Application engineering
is also split in three phases (application analysis, application design, and
application implementation), in which the assets that have been created dur-
ing domain engineering are used to build actual systems in the domain.

There are numerous approaches proposed in literature for software product
line engineering [Cha02, Don00]. However, it has not been used yet from a
process perspective.

1.1 Project Context

PESOA is a cooperative project financed by the federal ministry of education
and research (BMBF). Its aim is the design and prototypical implementation
of a process family engineering platform and its application in the areas of e-
business and telematics. This will be achieved by enhancing the approved
technologies from the area of domain engineering, product line engineering
and software generation with new methods from the area of workflow
management.

Fraunhofer IESE is internationally recognized as one of the leading institutes
in product line technology. For example, Fraunhofer IESE developed
PuLSE™ (Product Line Software Engineering) - a product line method for
enabling the conception and deployment of software product lines in a large
variety of enterprise contexts (see section 1.1.2).

In the context of PESOA, the IESE will enhance process methodology with
innovative product line technology. Vice versa, approved product line meth-
ods – in particular PuLSE - will be extended with the workflow perspective.

1.1.1 Fraunhofer IESE

The Fraunhofer Institute for Experimental Software Engineering (IESE) fo-
cuses on applied research, development and technology transfer in the ar-
eas of innovative software development approaches, quality and process
engineering, product lines, as well as continuous improvement and organiza-
tional learning. To prepare industrial software developers and users for cur-
rent and future information technology challenges, new techniques, meth-
ods, processes, and tools are being developed to base software develop-
ment on sound engineering principles. The IESE thus provides competence,
as well as the methods and tools necessary to mature industrial software
development practices and give companies a competitive market advantage.

Fraunhofer IESE offers an extensive portfolio of services to companies of
any size or type. Partner companies work in areas where the quality of the
products and services depends heavily on the quality of the supporting soft-

 3

ware - like automobile production, telecommunications, transportation, trade,
banking and insurance, software production. Services range from case-
oriented consulting to setting up new structures and processes in software
development (Learning Software Organization). They include support for in-
troducing continuous improvement programs as well as selecting, adapting,
evaluating, and introducing innovative software development approaches.
Special attention is given to the growing lack of software experts. By offering
job-oriented education programs as well as technology related education
and training courses, the Fraunhofer IESE helps create new chances for
people entering the field of software engineering from a different profes-
sional background. It also helps secure jobs and reduce the problems com-
panies have with existing personnel lacking up-to-date education in Software
Engineering.

1.1.2 PuLSE

Product line software engineering aims at creating generic software assets
that are reusable across a family of target products. PuLSE™ (Product Line
Software Engineering) is a method for enabling the conception and deploy-
ment of software product lines in a large variety of enterprise contexts
[BFK+99].

The components of the PuLSE method are shown in Figure 2. The life cycle
of a software product line in PuLSE is split into the following deployment
phases: initialisation, product line infrastructure construction, usage, and
evolution. PuLSE provides technical components for the different deploy-
ment phases that contain the technical know how needed to operationalise
the product line development. The technical components provided by PuLSE
are customisation, scoping, modelling, architecting, instantiating, as well as
evolving and managing. The technical components are customisable to the
respective context. Customisation of PuLSE to the context where it will be
applied ensures that the process and products are appropriate.

 4

Figure 2. Pulse Method.

PuLSE-Initialization

Deployment Phases

Product Line
Infrastructure
Construction

PL
 In

fr
as

tr
uc

tu
re

M

an
ag

em
en

t &
 E

vo
lu

tio
n

PL Infrastructure Use

Support Components

Entry Points Org. Issues Maturity Scale

Technical
Components

Customization

Scoping

Modeling

Architecting

Instantiating

Evolving & Manag.

PuLSE-Initialization

Deployment Phases

Product Line
Infrastructure
Construction

PL
 In

fr
as

tr
uc

tu
re

M

an
ag

em
en

t &
 E

vo
lu

tio
n

PL Infrastructure Use

Support Components

Entry Points Org. Issues Maturity Scale

Technical
Components

Customization

Scoping

Modeling

Architecting

Instantiating

Evolving & Manag.

In the initialisation phase, the other phases and the technical components
are tailored. Through this tailoring of the technical components, a custom-
ized version of the construction, usage, and evolution phases of PuLSE is
created.

The principle dimensions of customisation are the nature of the application
domain, the organizational context, reuse aims and practices, as well as the
project structure and available resources.

PuLSE has been applied successfully in various different contexts for differ-
ent purposes. Among other things it has proved helpful for introducing sound
documentation and development techniques into existing development prac-
tices.

1.1.3 Goal

The goal of this report is to present the state of the art in product line tech-
nology and its relations to business process technology. As there is only little
research work available that addresses the usage of product line technology
in the area of business processes, the report develops some initial concepts
for the fruitful combination of the two disciplines.

 5

1.2 Outline

The remainder of this report is structured as follows. Chapter 2 presents the
principles of software product lines that are then used in Chapter 3 for the
discussion of business process variants. Chapter 4 summarizes this report
and presents the subsequent research steps of Fraunhofer IESE within
PESOA.

 6

2 Principles of Software Product Lines

This chapter presents the principles that underlie software product line engi-
neering. First, the principal software engineering approach that is followed in
software product line engineering is given in section 2.1. Section 2.2 then
presents the major concepts in product line engineering, namely commonal-
ities and variabilities. The product line infrastructures that enable large-scale
reuse are described in section 2.3.

2.1 Product Line Engineering

In general, product line engineering aims at the systematic development of a
set of similar software systems by understanding and controlling their com-
mon and distinguishing characteristics. Product line engineering is an ap-
proach towards software reuse. A straightforward and commonly used ap-
proach to software reuse is independent application engineering where an
organization develops each product as part of an independent application
engineering project. The artifacts making up the resulting product are stored
in an artifact base with the intent to reuse them in subsequent projects. In-
dependent application engineering and its challenges are shown in Figure 3.

Figure 3. Independent Application Engineering.

Software Development
Organization

Artifact
Base

Product

Evaluation
Classification

Documentation

Independent
Application
Engineering

Product
Requirements

Integration

Adaptation

Evolution

?

Re
us

e

Re
co

rd

Identification

Coordination

Software Development
Organization

Artifact
Base

Product

Evaluation
Classification

Documentation

Independent
Application
Engineering

Product
Requirements

Integration

Adaptation

Evolution

?

Re
us

e

Re
co

rd

Identification

Coordination

 7

As many organizations have experienced, however, such a simple, straight-
forward approach usually does not achieve the expected improvements in
reuse. The simple approach typically does not define a means for organizing
and managing reusable artifacts in a way that effectively supports applica-
tion engineering projects and thus does not typically make people promote
reuse in an organization.

The challenges that an effective approach must cover to be successful (see
[BR91]) are all related to the artifact base as depicted by the black ellipses in
Figure 3. These challenges must be tackled by more advanced reuse ap-
proaches that aim at improving the role of reuse with respect to independent
application engineering.

Domain engineering is such a reuse approach that pioneered the idea of
planning and partially developing similar systems — systems in the same
application domain — concurrently [Pri90]. Thereby an application domain is
defined by the rough characterizations of the set of systems understood as
being part of the application domain of interest.

Domain engineering analyzes an application domain, its abstract concepts,
entities, and relationships in order to build a reference model for systems in
the domain including domain-specific reusable artifacts. Thus, artifact sub-
sumes all kinds of work products manipulated by development activities.
Concrete applications are then constructed mainly by reusing the domain-
specific artifacts, which represent the domain concepts or features required
for the concrete application.

Domain engineering initially started with the Draco approach published by
Jim Neighbours [Nei80, Nei89]. An overview of the genealogy of domain en-
gineering methods can be found in [Lim98]. Overviews of, and comparisons
between particular domain engineering methods can be found at numerous
places in the literature, for example, in [Ara89, Mut97, Lim98, SS99, CE00].

Domain engineering tackles all the reuse challenges identified above with
the concepts of the real-world application domain. Table 1 describes the so-
lutions proposed by domain engineering, for each of the reuse challenges.
Hence, the table characterizes domain engineering as a reuse approach ac-
cording to the dimensions of the reuse taxonomy introduced by Krueger
[Kru92]. The details of its four dimensions: abstraction, selection, specializa-
tion, and integration depend on the particular implementation of the general
domain engineering approach in an organization.

 8

Table 1. Software Reuse Challenges and Domain-Oriented Solutions.

Challenge Problem Domain-Oriented Solution

Documenta-
tion

Each artifact placed in the artifact
base must be documented to
facilitate its reuse.

The entities and relationships in the
domain are used to document the reus-
able artifacts.

Classifica-
tion

All artifacts and associated docu-
mentation must be structured
according to a common classifica-
tion scheme that optimally sup-
ports the reuse process.

Artifacts are classified according to the
structure of the domain by domain ex-
perts.

Identifica-
tion

An identification mechanism (i.e.,
classification scheme) is needed
to provide information available
reusable components.

Places that could benefit from reuse
often correspond to problems in the
domain of interest. Thus, searching the
artifact base for solutions to the domain
problem can identify reuse candidates.

Evaluation When a set of potential reuse
candidates has been identified, the
candidates must be evaluated with
respect to adaptation and/or de-
velopment effort.

Reuse candidates can be evaluated
using the domain abstractions; differ-
ences are then expressed in terms of
domain variabilities.

Adaptation When a reuse candidate has been
selected, it must be adapted or
parameterized to fully match the
actual requirements. In order to
keep reuse efficient, effort spent
on adaptation must be smaller
than the development from the
scratch.

The variability in the domain is explicitly
modeled and documented for each
reusable artifact in the domain artifact
base. Adaptation thus means for a
significant part of the adaptation simply
customizing all points of variation in a
clearly defined way with respect to the
actual requirements.

Coordina-
tion

An organization must coordinate
concurrent application engineering
projects to avoid identical adapta-
tions within different projects.

The split of the development life cycle
enforces feedback of the application
engineering projects to the domain
engineering activities.

Integration Reused artifacts must be inte-
grated with the application under
development so as to remove
conflicting assumptions about the
environment and architectural
mismatches.

A reference architecture simplifies inte-
gration because the artifacts are built to
be reusable for this architecture and
any associated implicit assumptions
concerning the domain.

Evolution The maintenance of artifacts re-
used in numerous applications is
more complex than for artifacts
used only in a single application.

Domain engineering coordinates the
processing of the many change re-
quests originating from users of specific
applications in the domain. Since the
maintenance of all reusable artifacts is
primarily performed at the domain level,
maintenance effort is integrated and
minimized.

 9

Figure 4. Domain Engineering.

Software Development Organization

Domain

Family Engineering

Application Engineering

Domain
Artifact

Base

Feedback

Evaluation

Classification

Identification Integration

Coordination

Documentation

Evolution

Adaptation

Product
Product

Requirements

Software Development Organization

Domain

Family Engineering

Application Engineering

Domain
Artifact

Base

Feedback

Evaluation

Classification

Identification Integration

Coordination

Documentation

Evolution

Adaptation

Product
Product

Requirements

Domain engineering is shown in Figure 4. As can be seen there, domain en-
gineering adds another main phase to the overall software life-cycle. In addi-
tion to application engineering, which is still responsible for building concrete
products, a family engineering stage is performed in which the domain is
analyzed and domain-specific artifacts are defined and constructed for reuse
only. A product family is thus the subset of potential systems in a domain
that contains the systems considered while the domain artifact base is con-
structed.

From an external point-of-view any software development organization de-
livers products based on product requirements. However, the key difference
between an organization performing independent application engineering
and a domain engineering organization can be clearly identified when do-
main engineering is viewed as an application-engineering approach that ex-
ploits the fact that organizations mostly perform more than a single applica-
tion-engineering project over time. Domain-engineering organizations, there-
fore, explicitly analyze their application domains in addition to the construc-
tion of concrete products. Hence, domain engineering can be defined as a
domain-analysis-based approach towards application engineering.

The artifacts that the product consists of are in an ideal case completely
produced by reusing artifacts from the domain artifacts base that has been
built up during the initial family-engineering activities. The reuse of artifacts,
as well as the construction of artifacts for reuse, is thus an integral and ex-
plicit part of the overall approach. That is, software reuse is an inherent and
central paradigm of software development organizations applying domain-
analysis-based application engineering.

In general, there are three potentially complementary ways for reusing do-
main-specific knowledge. First, the knowledge is integrated into a domain-
specific language, or description technique, used to specify applications

 10

throughout application engineering. Second, the knowledge is captured in
form of decisions that must be taken throughout the application-engineering
process and thus are documented in the underlying process model. Third,
the knowledge is captured in generic artifacts for which a generation proce-
dure is defined to systematically transform these generic artifacts into con-
crete artifacts matching the context of a particular application. That is, the
product model of the used products provides a means for capturing variabil-
ity. The three alternatives span a domain of approaches for reusing domain-
specific knowledge.

Although domain engineering represents a significant step forward in the
support of reuse, practical experience has shown that the definition of the
domain under consideration is problematic. When the domain is chosen to
be too small, the domain model and the reference architecture fail to ad-
dress important issues. As a result, significant changes will typically be re-
quired in future projects, undermining the value of the whole domain engi-
neering effort. On the other hand, when the chosen domain is too big, the ef-
fort invested in domain engineering is higher than is really necessary, and
the already significant investment involved in domain engineering goes be-
yond that which is cost effective. In short, although domain engineering pro-
vides a powerful set of solutions to the fundamental reuse problem identified
previously, the success of a domain engineering effort is highly sensitive to
the correct definition of the domain. If a domain is chosen to be too big or
small, domain engineering can do more harm than good.

Product line engineering solves this problem by using only the characteris-
tics of a finite number of concrete (existing, planned, or future) products to
define the domain. Everything required by a concrete product is part of the
domain - everything else is outside [DS98]. Figure 4 visualizes this concept
of defining the domain through a set of products.

Figure 5. Product Line Engineering.

Software Development Organization

Domain

Family Engineering

Application Engineering

Product Line
Infrastructure

(Domain
Artifact Base)

Feedback

Evaluation

Classification

Identification Integration

Coordination

Documentation

Evolution

Adaptation

Requirements C
Requirements B

Product
Requirements A

Product
Product

Requirements

Software Development Organization

Domain

Family Engineering

Application Engineering

Product Line
Infrastructure

(Domain
Artifact Base)

Feedback

Evaluation

Classification

Identification Integration

Coordination

Documentation

Evolution

Adaptation

Requirements C
Requirements B

Product
Requirements A

Product
Product

Requirements

 11

The resulting domain is the subset of the application domain that corre-
sponds to the concrete set of considered products. This subset is called the
product line scope.

When the scope has been defined, there is no basic difference between
product line engineering and domain engineering as described above except
that the invested effort is applied in a more focused way. Because product
line engineering defines the content of the effort by the requirements on a
set of concrete systems, family engineering more efficiently produces an in-
frastructure beneficial to projects in an organization than is usually the case
with traditional domain engineering, which completely analyzes an abstract
application domain defined by fuzzy boundaries.

However, product line engineering does not completely avoid fuzziness and
uncertainty. With respect to the problem of continuously changing require-
ments that many single-system projects face, requirements on future sys-
tems, which are key for a more concrete scope definition, can in reality typi-
cally also not be seen as fixed. The capabilities of competitor products, the
technologies that can or must be supported, as well as the concrete and de-
tailed needs of customers are unknown or at least uncertain for the future.

Product line scoping usually refers to the discipline of determining the
bounds promising the best return on investment on a product line effort
[Sch00]. The fuzziness of the resulting scope is related to the fuzziness in-
troduced by the selection and the number of products taken into account, as
well as on the level of detail considered during the scoping activities.

To summarize the historical evolution, the effort spent on finding a success-
ful reuse approach has led to product line engineering consisting of a com-
bination of intelligent scoping and efficient domain engineering. In other
words, the success of product line engineering as a reuse approach de-
pends on the quality of the defined scope. Unfortunately, a product line
scope always contains some uncertainty; especially in the software context
where technology changes fast and customer requirements evolve con-
stantly. Consequently, any decision made during domain engineering could
eventually turn out to have been wrong and the effort needed for its correc-
tion may be so large that the whole product line effort could be questioned.
In these cases, there is no return of the investments and thus product line
engineering is perceived as a non-successful reuse approach.

A way out of this dilemma is to accept the reuse infrastructure, as an imper-
fect, non-optimal but nevertheless effective tool for meeting business needs.
If this view is accepted, an evolutionary approach towards product line engi-
neering allows the infrastructure to be continuously adapted and improved
and thus to meet the typically rapidly changing business needs determined
by the products under development [TCO00].

 12

2.2 Product Line Concepts

This Section discusses the essential characteristics of product line engineer-
ing. From an abstract point of view, it is the concurrent consideration, plan-
ning, and comparison of similar systems that distinguishes product line engi-
neering from single-system development. The intention is to systematically
exploit common system characteristics and to share maintenance effort.

In order to do so, the common and the varying aspects of the systems must
be considered throughout all life-cycle stages and integrated into a common
infrastructure that is the main focus of maintenance activities.

Commonalities and variabilities are equally important: commonalities define
the skeleton of systems in the product line, variabilities bound the space of
required and anticipated variations of the common skeleton.

2.2.1 Commonality

Product line engineering is only useful when an organization develops sev-
eral systems in one application domain. By definition, this implies that these
systems have at least some characteristics in common, otherwise it would
be difficult to view them as occupying the same domain. In a sense, there-
fore, the common characteristics of a family of products serve to character-
ize the domain. Typically, organizations limit themselves to the domain or
domains that they have expertise in.

Commonalities are important for establishing a common understanding
within an enterprise of the kinds of applications that it provides. The determi-
nation of whether a characteristic is a commonality or variability is often a
strategic decision rather than an inherent property of the product family. For
example, the execution platform can be a commonality when an organization
decides to provide a solution for only one particular platform.

2.2.2 Variability

Variabilities are characteristics that may vary from application to application.
One goal of the product line approach is to control the variabilities among
systems in a family, that is, to minimize the number of unexpected adapta-
tions and features within application engineering projects by planning, in ad-
vance, for future requirements. Therefore, markets and customer behavior
must be observed and analyzed to get good predictions of future domain re-
quirements and trends.

Variabilities that an organization wants to support are explicitly modeled,
documented, and integrated with the product line infrastructure. In general,
all variabilities can be described in terms of alternatives. At a coarse-grain

 13

level, one artifact can be seen as an alternative to another artifact. Then dur-
ing application engineering, the artifact that best matches the context of the
system under development is selected. Although simple in theory, providing
an effective representation of the variabilities in a product family is an impor-
tant factor in successfully managing a product line infrastructure.

Simply identifying and modeling alternatives among the products in a prod-
uct line does not define what characteristics are associated with what prod-
ucts, as well as what dependencies and interrelationships exist among vari-
abilities. This information must also be captured, which is often the role of a
decision model. Essentially a decision model consists of decisions that relate
user visible options to specific system characteristics. Its goal is to support
the evolution of the product line infrastructure and to guide application engi-
neers in using the infrastructure while building new applications.

2.3 Product Line Infrastructures

One of the core elements of a software product line is an artifact base (or in
particular a product line infrastructure). The name artifact base stems from
the basic reuse model where all kinds of artifacts produced in a project are
stored and, if possible, retrieved and reused in subsequent projects. Storage
and retrieval can be handled by ordinary file systems or simple databases
but if the artifact base is optimized for the support of application engineering
in the context of product line engineering, an artifact base is customized to
the needs of an individual product line and, thus, it is called a product line in-
frastructure.

As depicted in Figure 5, a product line infrastructure is an internal part of a
software development organization. The product line infrastructure represent
information on the organization’s planned and delivered products in an inte-
grated form. From the external customer’s point of view, only information on
individual products is visible and the organization - as any other software
development organization - develops a series of products each fulfilling cer-
tain customer requirements.

2.3.1 Product Line Information

The core idea of product line engineering is to analyze a set of systems and
exploit their commonalities systematically rather than developing system by
system individually. This implies that information in a product line context is
mainly concerned with multiple systems. One possible way to structure such
information is to compare a set of systems but to keep the information on
each individual system separately visible. Such a separation of system in-
formation is typically required at two places in the product line life-cycle:

 14

• First, during family engineering when the scope of the product line infra-
structure is analyzed to plan a product line infrastructure. There, each
system to be considered as part of the product line is characterized and
compared to all other systems of the family.

• Second, during application engineering where for particular customers,
only his/her system is relevant. Even though these systems are (partially)
derived from the product line infrastructure, information discussed with,
validated by, and delivered to the customer only contains information on
a particular system.

Product line engineering, therefore, manipulates information on systems in
two ways as depicted in Figure 6. Family engineering analyzes information
on single systems, integrates it by consideration of commonalities and vari-
abilities, and stores the integrated information as part of the product line in-
frastructure. Application engineering uses the integrated information and
specializes it according to the needs of a particular customer.

In the latter case, information about single systems is relevant and thus
there is nothing product-line-specific. In the former case, again only informa-
tion on single-systems is captured but in a second step (e.g. product line
scoping) multiple systems are compared. The performed comparison may be
product-line-specific but the artifacts that capture the information are similar
to artifacts also used for market surveys or product portfolio descriptions in a
non-product-line context.

Figure 6. Information in the Product Life Cycle.

Software Development Organization

Product Line
Infrastructure

1
2

N

…
Characteristics,
Requirements, …
on individual systems

1
2

M

… Individual systems

Family Engineering:
Information Integration

Application Engineering:
Information Specialization

Software Development Organization

Product Line
Infrastructure

1
2

N

…
Characteristics,
Requirements, …
on individual systems

1
2

M

… Individual systems

Family Engineering:
Information Integration

Application Engineering:
Information Specialization

 15

Examples of this kind of artifact are the product map, which relates features
and systems in a tabular form, as used by [Sch01] throughout scoping, or
the requirement documents used by the viewpoint-oriented domain require-
ments definition method (VODRD) that put the stakeholders’ viewpoints on
multiple product line members side by side [MKH98].

In the remaining and larger part of the product line life cycle, the characteris-
tics of systems are handled and captured in an integrated way. That is, in-
formation captured by artifacts focuses on an application domain in general,
its commonalities and variabilities, rather than on comparing common and
varying characteristics of particular systems. Of course, mappings between
the integrated product line information on the one side and each system that
has either been input to product line planning or been derived from the prod-
uct line infrastructure, on the other side, is needed. This is particularly impor-
tant because this traceability information enables the sharing of maintenance
and evolution effort among product line members in the long run. Such a
mapping is defined with a decision model that is also part of the product line
infrastructure. When product line information is integrated, commonalities
and variabilities are part of one artifact, a product line artifact.

A product line artifact is an artifact that captures product line concepts such
as commonalities or variabilities in an integrated and explicit form. A product
line artifact that captures no variabilities is identical to an artifact used in a
single-system context.
The difference between a product line artifact and a non-product line artifact
is that a product line artifact not only contains run-time variability but also
development-time variability that expresses the difference between products
in a product line. Because run-time variabilities are an inherent part of soft-
ware, they are already handled effectively by traditional techniques. There-
fore, to capture run-time variability, in general, no special artifacts are re-
quired.
Product line engineering, in contrast, is more concerned with variabilities
among systems that are typically resolved before a software system is
loaded onto its final execution environment. The problem is that there is no
strict boundary between development-time variabilities and run-time variabili-
ties as described above. Deciding whether a variability should be realized as
a choice during development time, or whether it should be built into a system
for resolution at run-time, is a strategic decision that can have a large bear-
ing on the success of a product.

Independent of the technical realization of variability, the key difference be-
tween single systems’ run-time variability and variability in an application
domain (i.e., development time variability) is that the former is an inherent
part of the final software system, while information on the latter must be ex-
plicitly controlled to effectively and successfully manage a product line and
use it to create systems. Basically all activities in the product line life-cycle
require information on what varies from one system to another, what moti-

 16

vates these variations, and where these variations impact software solutions
and related artifacts.

This variability information is important all over the product line life cycle.
Even if there is an agreement on the importance of variability information
and the need to handle it differently from usual run-time variability, the right
level of detail and presentation style of (development-time) variabilities must
still be determined. Because they have always had to deal with run-time
variabilities, most graphical modeling languages already have rudimentary
facilities for representing them. Often, variabilities are handled by a combina-
tion of generality and constraints. Information is typically presented at a level
of generality that covers all possible run-time variations, and is accompanied
by textual constraints that specify which of the many possible combinations
are acceptable.

In theory, development-time variabilities could be handled in the same fash-
ion as run-time variabilities (as mentioned above, development-time variabili-
ties can be realized as run-time variabilities instead) this basic approach
could still be used to handle product lines. In other words, information could
be generalized to the point where it makes statements that accommodate all
members of the family, and could be supported by constraints describing
how the general information changes among family members. However, this
approach has two major drawbacks. First it would mean that the information
about variabilities is actually captured in separate constraints rather than in-
tegrated with the artifacts it relates to. This defeats the whole object of easily
accessing and understanding variability information because information
must always be intellectually related to the attached constrains. Second, and
more importantly, it means that variabilities that distinguish family members
in a product line are mixed up with the run-time variabilities that are “com-
mon” to all members of the product line. In short, it suppresses the very in-
formation that is essential for effectively understanding and using a product
line.

As motivated above, information on variability is key to activities all over the
product line life-cycle. Hence, the variability information must be easy to ac-
cess and understand. Therefore, variability information is captured and
documented explicitly and it is integrated with information on commonality
and other variability as well. How this is done in the PuLSE method is pre-
sented in the next section.

2.3.2 Elements of Product Line Infrastructures

A product line artifact is any kind of artifact that captures information about
the systems of a product line. The artifacts are built to be reused when sys-
tems in the product line are developed. As described above, there are two
types of information captured: information that is valid for all systems in the
family (i.e., commonalities) and information that varies from system to sys-

 17

tem (i.e., variabilities). Variation points in the artifacts denote variability by
showing the different possible alternatives.
The variation points in a product line infrastructure must be resolved when a
particular product line member is specified. Resolving variation points means
that parts of the artifact are specialized, included, or excluded.
Figure 7 shows a product line artifact, a UML class diagram. There, variation
points are represented using the stereotype concept of the UML. In this way,
generic assets can be modeled in a UML compatible way (the UML itself
does not provide any means to capture variability). Figure 7 describes the
structure of a loan manager component that is used in a library system to
manage loans of library users. Some libraries supported with a product line
member provide the possibility for a user to reserve an item in the case that
it is already loaned to someone else. Other libraries do not provide reserva-
tion facilities. Therefore, reservation is a variability that is related to three
variation points in the class diagram (the two classes Reservation and Re-
servationManager, and the method reserve of the LoanManager).

Figure 7. Class Diagram for a Generic Loan Manager Component.

loan(Book, Account)

<<variant>>reserve(Book, Account)

return(Book)

extend(Book)

Book

label:String

bibliographicInfo:Struct

loan(Account)

return()

extend()

Account

user:Struct

print()

<<variant>>
Reservation

reservationDate:Date

Loan

returnDate:Date

noExtensions:int

extend()

*

* *

0..1*

*

<<variant komponent>>
ReservationManager

reserve(Book, Account)

<<subject>>
LoanManager

loan(Book, Account)

<<variant>>reserve(Book, Account)

return(Book)

extend(Book)

Book

label:String

bibliographicInfo:Struct

loan(Account)

return()

extend()

Account

user:Struct

print()

Account

user:Struct

print()

<<variant>>
Reservation

reservationDate:Date

<<variant>>
Reservation

reservationDate:Date

Loan

returnDate:Date

noExtensions:int

extend()

Loan

returnDate:Date

noExtensions:int

extend()

*

* *

0..1*

*

<<variant komponent>>
ReservationManager

reserve(Book, Account)

<<variant komponent>>
ReservationManager

reserve(Book, Account)

<<subject>>
LoanManager

There is typically a large number of variation points in the assets of a com-
plete product line infrastructure. Consequently, it is, even for experts, hard to
control the rationales for each variation point, as well as the complex interre-
lationships and dependencies among them.

To support the intellectual control, a decision model, which captures this kind
of domain knowledge, is built on top of the variation points.
A decision model consists of a decision hierarchy, which is grounded on
simple decisions that capture the rationale and the possible choices for a

 18

single point of variation. Dependencies among decisions are explicitly cap-
tured by constraints. Usually, additional decisions are introduced. These de-
cisions are not directly related to a point of variation of an asset but they rep-
resent domain variability at a higher level of abstraction. This higher abstrac-
tion level is related to sets of interdependent variation points.

The following table shows the decision model for Figure 7.

Table 2. Decision Model for Resolving Variation Points.

ID Question Variation Point Resolution Effect

Yes (default) remove stereotype
<<variant>>

operation Loan-
Manager.reserve()

No remove operation
LoanMan-
ager.reserve()

Yes (default) remove stereotype
<<variant>>

class Reservation

No remove stereotype
<<variant>>

Yes (default) remove stereotype
<<variant>>

1.1. Is reservation facility
needed?

class Reservation-
Manager

No remove stereotype
<<variant>>

A decision consists of a unique id for identification, a question that is asked
for resolving the decision, the variation point it is related to, a set of possible
resolutions (of which one is identified as the default resolution), and a de-
scription of the effects the resolutions have on the diagrams. In KobrA, OCL
(Object Constraint Language - a notation to describe UML diagrams) [WK99]
can be used to describe the effects of a decision in addition to textual de-
scriptions as they are used above.
A product line instance (or product line member) is a system that is devel-
oped with the reuse of product line artifacts for a particular customer. It is the
output of application engineering, the process of developing specific product
line members. The tailoring of a product line asset while reusing it is a two-
step process: first, its instantiation in the space of supported variabilities and,
second, its extension with aspects that are not supported by the product line
asset but that are required by a particular customer.
The decision model drives the application engineering process, that is, while
traversing the decision hierarchy, decisions are resolved — one at a time.
When a decision is resolved that constrains variation points of a product line
asset, the artifact is instantiated accordingly, that is, the variation point is
removed and replaced by the concrete realization that corresponds to the
selected resolution. The resolution process stops when all simple decisions

 19

are resolved. The resulting asset instance is the variant of the variants sup-
ported by the product line infrastructure that is closest to what is required in
the specific context. Often, even the closest variant is not exactly what is re-
quired and, thus, further modifications are necessary.

The specific variants that are obtained by resolving the variation points of the
generic LoanManager component are depicted in Figure 8 and Figure 9.

Figure 8. Specific LoanManager Component without Reservation Facility.

loan(Book, Account)

return(Book)

extend(Book)

Book

label:String

bibliographicInfo:Struct

loan(Account)

return()

extend()

Account

user:Struct

print()

Account

user:Struct

print()

Loan

returnDate:Date

noExtensions:int

extend()

Loan

returnDate:Date

noExtensions:int

extend()

*

0..1*

<<subject>>
LoanManager

Figure 9. Specific LoanManager Component with Reservation Facility.

loan(Book, Account)

reserve(Book, Account)

return(Book)

extend(Book)

Book

label:String

bibliographicInfo:Struct

loan(Account)

return()

extend()

Account

user:Struct

print()

Reservation

reservationDate:Date

Loan

returnDate:Date

noExtensions:int

extend()

*

* *

0..1*

*

ReservationManager

reserve(Book, Account)

<<subject>>
LoanManager

loan(Book, Account)

reserve(Book, Account)

return(Book)

extend(Book)

Book

label:String

bibliographicInfo:Struct

loan(Account)

return()

extend()

Account

user:Struct

print()

Account

user:Struct

print()

Reservation

reservationDate:Date

Reservation

reservationDate:Date

Loan

returnDate:Date

noExtensions:int

extend()

Loan

returnDate:Date

noExtensions:int

extend()

*

* *

0..1*

*

ReservationManager

reserve(Book, Account)

ReservationManager

reserve(Book, Account)

<<subject>>
LoanManager

 20

Potentially all artifacts used to document software can be extended to be
product line artifacts. Figure 10 depicts one instance of a product line infra-
structure in a table-like structure.

Figure 10. Overview of an instance of a product line infrastructure.

OPT-23 A user can reserve a book when it is cur-
rently loaned by another user.

ALT-24-1 A user can loan a book if it is not
reserved by another user

ALT-24-2 A user can loan a book.

... ...

#define RESERVATION YES /* or NO */
class LoanManager {

#if RESERVATION == YES
ReservationManager *reservationMgr;

#endif
public:

int loanBook(Book *book, Account
*account);

int returnBook(Book *book);
#if RESERVATION == YES

int reserveBook(Book *book,
Account *account);

#endif
int extendBook(Book *book);

};
...
#if RESERVATION == YES
int LoanManager::reserveBook(Book *book,
Account *account) {

return reservationMgr->reserve-
Book(book, account);
}
#end

Product Line Artifacts

A
rc

hi
te

ct
u

re
/D

es
ig

n
Im

p
le

m
en

ta
tio

n
R

eq
u

ir
em

en
ts

Decision Model(s)

Product Line Assets

Reservation?

Reservation Fee?

Reservation Fee?

Reservation?

reserve() ?

ReservationManager ?

Reservation ?

ReservationManager ?

reserve() ?

reserve() ?

reserve?

reserved?
Reservation ?

Reservation ?

Reservation ?

OPT-23 A user can reserve a book when it is cur-
rently loaned by another user.

ALT-24-1 A user can loan a book if it is not
reserved by another user

ALT-24-2 A user can loan a book.

... ...

#define RESERVATION YES /* or NO */
class LoanManager {

#if RESERVATION == YES
ReservationManager *reservationMgr;

#endif
public:

int loanBook(Book *book, Account
*account);

int returnBook(Book *book);
#if RESERVATION == YES

int reserveBook(Book *book,
Account *account);

#endif
int extendBook(Book *book);

};
...
#if RESERVATION == YES
int LoanManager::reserveBook(Book *book,
Account *account) {

return reservationMgr->reserve-
Book(book, account);
}
#end

Product Line Artifacts

A
rc

hi
te

ct
u

re
/D

es
ig

n
Im

p
le

m
en

ta
tio

n
R

eq
u

ir
em

en
ts

Decision Model(s)

Product Line Assets

Reservation?

Reservation Fee?

Reservation Fee?

Reservation?

reserve() ?

ReservationManager ?

Reservation ?

ReservationManager ?

reserve() ?

reserve() ?

reserve?

reserved?
Reservation ?

reserve() ?

ReservationManager ?

Reservation ?

ReservationManager ?

reserve() ?

reserve() ?

reserve?

reserved?
Reservation ?

Reservation ?

Reservation ?

 21

Its rows correspond to life-cycle stages, such as requirements, architecture,
design, or implementation. Its columns split each row into two pieces: on the
left-hand side, product line artifacts, and on the right-hand side, the related
decision model, that is the information that allows the artifacts’ variabilities to
be controlled. The shown instance of a product line infrastructure is an infra-
structure for the library system example used above. The modeled variability
is again the optional reservation feature. The decision model allows this op-
tional feature to be traced throughout all life-cycle stages and all variation
points related to reservation to be identified within the product line artifacts
that are part of the product line infrastructure.

The product line artifacts shown in Figure 10 are (from top to bottom): fea-
ture model, textual requirements document, a business process model, a
UML class diagram, and a C-source-code file. Each of the shown product
line artifacts captures product line information and also some variability,
such as optional features, alternative requirements, optional activities of a
business process, alternative classes, or optional source-code elements.

The variant parts of a product line artifact yield variation points within an arti-
fact that must be resolved later to specialize the artifact to the needs of a
particular product context

2.3.3 Processes as Variability Driver

In principle all non-generic artifacts used in software engineering can be
used in a product line infrastructure. To this end, they need to be made ge-
neric artifacts. Details on how to achieve that can be found in [Mut02].

Within enterprise applications, business processes are a major driver for
variability. For example, a process variant may be required for a different
customer or just as a natural evolution of the process over time (details see
section 3.3).

The next chapter gives an overview of the state of the art regarding the en-
gineering of business process variants.

 22

3 Process Variants

3.1 Origins and System Evolution

Historically, the term business process emanated from the area of Enterprise
Resource Planning - ERP. Here, the business process was introduced in or-
der to describe information flows in the enterprise [Sch97]. Concerning ERP
systems, business processes have now been implemented for almost 30
years now. From a system evolution point of view, however, different cur-
rents have to be distinguished. The most important ones are discussed in
the following:

Enterprise Resource Planning

The first systems for enterprise resource planning emerged in the 70s, for
example SAP and ORACLE [Sch97]. The initial motivation of these systems
was to cover recurring functionality in business administration such as pro-
duction planning, finance, accounting and human resources. In most cases,
this lead to architectures with functional building blocks as main characteris-
tic (Figure 12). In these architectures process logic is rarely managed as an
isolated artifact but is rather spread or “distributed” over different modules.

Workflow Management Systems

The first workflow management systems emerged in the late 80s during the
wave of “office automation” [JBS97]. The motivation was to improve typical
office workflows via automation. In most cases the workflow is defined in a
descriptive notation that is then processed and monitored by a so-called
workflow execution engine. In this way workflow systems focus on the work-
flow that consequently forms an explicit part in the system architecture. This
is a contrast to the traditionally function and module - oriented ERP systems
where processes exist on a more implicit level (see above). Yet another dif-
ference between workflow systems and ERP systems is that workflow sys-
tems traditionally focus on documents whereas ERP processes operate on
relational data in databases. Over the time, however, ERP systems have
partially adapted a more explicit workflow orientation.

Business Process Management Systems – BPMS

A new emerging trend since the late 90s is the application of the workflow
paradigm for the integration of different enterprise information systems
[DGH03]. This renaissance of the workflow paradigm can be seen as a
combination of classical ERP systems with the workflow paradigm. Here
business processes are explicitly defined in a central repository and partici-

 23

pating systems are linked into the process at defined stages. This new type
of systems is often referred to as Business Process Management Systems.
Because of its system integration focus it is often discussed in the context of
Enterprise Application Integration.

Figure 11 summarizes the different motivations and architectural properties
of the discussed systems. From an evolution point of view, there is a clear
trend for increasing process-orientation, integration and handling of the vari-
ation in business processes.

Figure 11. Evolution of Business Process Oriented Systems.

Caracteristics

Motivation /
Architectural
Driver

Dominant
Design
Methodology

Architectural
View(s)

Main
Characteristics

Architectural
Manifestation
of Process

1980

ERP Systems

Functionality for
Business
Administration

Functional
Decomposition

Business
Components

Functional
Building blocks
(e.g. SAP: FI, HR,
SD, PM)

Implicit:
Process Logic is
spread over
Source Code

2000

BPMS

Process oriented
Integration of
Business Appl.

Isolation of
Process Logic,
Integration

- Process
- Integration

Process-centric
Integration of
Business
Applications

Explicit:
Process Repository
and Process
Execution Engine

PESOA

BP Variability

Business Process
Variability

Variant Management,
Product Line
Methodology

- Process
- Variation
- Integration

Product Line
Architecture

Explicit:
Process Repository
and Process
Execution Engine

1990

Workflow Systems

Workflow for
Workdocuments

Isolation of Process
Logic (Separation of
Concerns)

- Process

Explicit Workflow
and Workdocuments,
Single System (no
integration)

Explicit:
Process Repository
and Process
Execution Engine

Business Process Aspect and Process-Oriented Views

Even though the systems have specializations, they all share the aspect of a
business process or workflow. A process-oriented view, however, may be
used for the visualization of any flow-oriented aspect.

For example, a “technical process” like the initialization sequence of busi-
ness objects during the start up of an application may also be represented in
a process-oriented view. This means that a process-oriented view can be
used to visualize different aspects – such as business processes or specific
technical processes (e.g., an object initialization sequence).

An aspect may require the focus on specific issues – for example, the repre-
sentation of user interaction in a business process. This is the reason why

 24

specialized views and modeling techniques have been developed over time
(see section 3.2).

PESOA deals with business processes as well as with technical processes.
Therefore the term “process” will be used in the following for denoting any
kind of process – business or technical.

3.2 Process Modeling – Standards

In parallel to the evolution of systems with process-orientation, an abun-
dance of standards and technologies for process modeling and process im-
plementation has evolved [Bal00, PW87, Sch97, JBS97, WFM02]. Figure 12
provides an overview of the most popular standards including a rough seg-
mentation into main application areas (technical or business processes).

Figure 12 Origins and Evolution of Standards for Business Process Description.

Business ProcessesTechnical Processes

Digital Design
(1970)

Enterprise Ressource
Planning (1980) BPMS (2000)

ASM Charts
Event Triggered
Process Chains

UML Activity
Diagrams

Object Management
Group (1995)

Workflow Manage-
ment Coalition (2002)

BPML

XML Process
Definition Language

Dynamic System
Theory (1962)

Petri Nets

The interesting issue when comparing the different standards is that the
used core elements are often similar, if not identical. This strong commonal-
ity motivates for the isolation of a common meta-model that could be used
as unified basis for the description of process variants (see section 4).
A complete comparison of the different standards goes beyond the scope of
this report. Exemplary we focus on a brief comparison of three standards:

• UML Activity Diagrams represent that part of the Unified Modeling Lan-
guage that deals with modeling business processes [Oes+03].

• Event Triggered Process Chains represent the business process mod-
eling technique that is used within ARIS [Sch97].

• The Workflow Process Definition Standard defined by the workflow
management Coalition [WFM02].

 25

Each standard is based on a specific meta-model with core elements and
their relation to each other, e.g. [WFM02, p. 8]. Table 1 provides a compari-
son between the core elements of the three standards - activities, transi-
tions, states and decisions [Sch97, [Oes97], [WFM02, pp. 8-11]. The com-
monalities between the different approaches are striking.

Table 3. Corresponding Core Elements in different Process Meta Models.

Activity Diagrams
(UML)

Event-triggered Proc-
ess Chains

Workflow Process Definition

Activity Function Workflow Process Activity,
Atomic Activity.

Transition between
Activities

Transition between
Functions and Events

Transition between Activities

Transition between
Activity and Object
State

Event Transition information or Flow
Control Conditions

Decision Decision Condition

3.3 Need for Process Variants

The main reasons for business process variants in practice are industry-
specific process requirements and continuous changes in business organi-
zations and collaborations [Sch97].

Industry-Specific Process Requirements

It is a mere fact that different industry sectors require specific business proc-
esses. E.g., the order fulfillment process of an industrial material supplier
contains a process step Availability Check in order to provide the customer
with information about the concrete availability and delivery time for the or-
dered goods. In contrast, a simple online order and delivery restaurant that
offers its meals within a guaranteed delivery time will not require a process
step Availability Check. The crucial point is that the two business processes
are not totally different. Rather they represent variants of the same generic
business process Order Fulfillment (see section 3.4).

Changes in Business Organizations and Collaborations

The business processes of companies are subject to continuous changes.
Typical drivers in this area are organizational changes (e.g., a new sales and
distribution structure), new types of collaboration with business partners
(e.g., collaboration with suppliers in a supply chain) and new legal regula-
tions (e.g., the deregulation of the German energy market) [Sch+03,
DGH03].

 26

3.4 Modeling Process Variants

Up to now only little work has addressed the modeling of variation in busi-
ness processes. The few existing examples express variation via the com-
mon concept of variation points. Figure 13 illustrates the usage of a varia-
tion point (which is depicted as black rhomb) for the modeling of a generic
order fulfillment process using UML.

Figure 13. Generic Business Process "Order Fulfillment" with Variation Point.

Optional

Order [created]

Order Creation

Plausibility Check

Billing Delivery

/ [Availability not OK]

Order [plausability checked]

Availability Check

/ [Availability OK]

Order Cancellation

Variation Point

 27

In the example, the activity Availability Check (as well as the framed suc-
ceeding steps) is optional. Consequently there are two variants that can be
instantiated from the generic process - a variant with Availability Check
(Figure 14) and one without Availability Check (Figure 15).

Figure 14. Specific Order Fulfillment Process with Availability Check.

Order [created]

Order Creation

Plausibility Check

Billing Delivery

/ [Availability not OK]

Order [plausability checked]

Availability Check

/ [Availability OK]

Order Cancellation

 28

Figure 15. Specific Order Fulfillment Process without Availability Check.

Order [created]

Order Creation

Plausibility Check

Billing Delivery

Order [plausability checked]

3.5 An Infrastructure for Managing Process Variants

Figure 16 sketches an exemplary infrastructure that supports the manage-
ment of variability in business processes. The presented architecture follows
the product line principles presented in chapter 2. The product line part con-
tains all available assets for building a business process. Using the funda-
mental elements for process modeling in UML, the assets are typed into ac-
tivities, transitions and object states. In addition, the product line infrastruc-
ture contains a decision model that defines possible variabilities and related
consistency rules. For example, the information that the activity Availability
Check is optional is defined here.

 29

Figure 16. Product Line Infrastructure for Managing Variability in Business Processes.

Product Line Infrastructure for Managing Variability in Processes

Product Line Asset Base for generic Processes

Decision Model with Variabilities and Rules for consistent Configuration

Activities
Order Creation
Plausability Check
Availability Check
Billing, Delivery

Transitions
Order Creation -> Plausability Check
Plausability Check -> Availability Check
Billing
Delivery

„Order Fulfillment with Availability Check“
Order Creation
Plausability Check
Availability Check
Billing, Delivery

Order Creation
Plausability Check

Billing, Delivery

Process Variants based
on generic order
fulfilment process

Process Execution Engine

Process Instantiation

Order [created]
Order [plausability checked]

Object States

„Order Fulfillment without Availability Check“

Process Instantiation

Product Line Engineering

Application Engineering

The presented approach has the following advantages:

• Flexible Management of Variability in Business Processes. This is
the quality with the top interest for PESOA. As suggested in Figure 16,
the management of business process variants is achieved with a typical
product line software architecture that comprises generic process ele-
ments and that uses a decision model for instantiating specific process
variants.

• Isolation of Process Logic improves Changeability. The clear
separation of process logic from application logic simplifies and facilitates
change management on process level. Business process logic in tradi-
tional ERP systems is often mixed with application logic what makes it
often difficult and tedious to modify processes.

• Flexibility for Integration. The interfaces to external systems that are
used within the process can easily be identified and exchanged with al-
ternative components. This facilitates the integration and/or replacement
of new components to/from the process.

 30

4 Conclusion and Outlook

This report presented the essentials of software product line technology, the
leading approach for software mass customization, and analyzed its applica-
tion for managing variability in the area of business processes.
The analysis shows that process-oriented software domains can benefit from
product line technology, in particular concerning the efficiency and consis-
tency with which variations in business processes can be managed.
Concretely, the transfer of product line technology to process-oriented soft-
ware domains yields a process-oriented product line infrastructure that sup-
ports and facilitates the management of process variability.
Using such an infrastructure, software engineers create concrete process-
variants by selecting and combining the process entities from an asset base
with generic process elements. A decision model helps to resolve the exist-
ing variation points in a consistent way.

The presented state of the art in software product line technology and man-
agement of business process variability lead to an initial sketch for the de-
sign of a process oriented product line architecture.

The development of a consistent platform for process family engineering,
however, requires further research regarding the following product line is-
sues:

• Domain Engineering and Business Process Modeling. The existing
domain engineering approaches will be analyzed concerning their ability
for the modeling of generic business processes.

• Product Line Engineering and Project Management. Compared to
single system development, the creation of a process-oriented product
line requires different project management capabilities. The state of the
art in project management for product lines and their specific adaptation
towards process-oriented product lines will be analyzed here.

• Asset Scoping. The identification of reusable components is a crucial
step in all product line approaches. PuLSE has developed scoping in-
struments that support the proper identification and selection of reusable
components. However, these instruments will need to be adapted to-
wards the specific requirements in a process family.

• Process Configuration and Process Meta-Model. The proper instan-
tiation of specific processes from the process family should be based on
a common business process meta-model. The obviously large intersec-
tion between the different modeling standards (section 3.2) motivates to
distill a unified process meta-model.

 31

• Decision Models and Configuration Technologies. The process in-
stantiation can be characterized as a configuration activity where com-
plex decisions have to be resolved in a consistent way. Here, the usage
of configuration technologies is promising. Existing configuration tech-
nologies will be surveyed, selected and adapted to the process-
instantiation needs of within a process family platform.

• Integration of Domain Engineering with Process Modeling. This part
will develop the methodology for applying domain engineering with proc-
ess modeling.

• Project Management and Process Family Engineering. Based on the
analysis of project management guidelines within product lines (see
above), concrete guidelines will be derived for the efficient implementa-
tion of the process-oriented product line methodology in practice.

 32

5 List of Abbreviations

ARIS Architektur Integrierter Informationssysteme

BPML Business Process Markup Language

BPMS Business Process Management System

EAI Enterprise Application Integration

ERP Enterprise Resource Planning

ETPC Event Triggered Process Chains

IESE Institute for Experimental Software Engineering

OCL Object Constraint Language

PESOA Process Family Engineering in Service-Oriented Applications

PuLSE Product Line Software Engineering

UML Unified Modeling Language

VODRD Viewpoint-Oriented Domain Requirements Definition Method

WFMC Workflow Management Coalition

 33

6 References

[Ara89] G. Arango. Domain Analysis - From Art Form to Engineering
Discipline, in Proceedings of the Fifth International Workshop on
Software Specification and Design, Sept. 1989.

[Bal00] H. Balzert. Lehrbuch der Software-Technik. Bd 1. Software-
Entwicklung. 2. Aufl., Spektrum. 2000.

[BFK+99] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J.-M. DeBaud. PuLSE: A methodology to develop
software product lines. In Proceedings of the Symposium on
Software Reuse (SSR'99), Los Angeles, CA, USA, May 1999.

[BR91] V. Basili and D. Rombach, Support for Comprehensive Reuse, in
Software Engineering Journal, Sep. 1991.

[CE00] K. Czarnecki and U. Eisenecker. Generative Programming -
Methods, Tools, and Applications, Addison-Wesely, 2000.

[Cha02] G. J. Chastek (ed). Software Product Lines. Proceedings of the
Second International Conference (SPLC2), San Diego, Califor-
nia, USA, August 2002.

[CN02] P. Clements and L. Northrop. Software Product Lines. Practices
and Patterns. Addison-Wesley, 2002.

[DGH03] S. Dustdar, H. Gall, M. Hauswirth. Software-Architekturen für
Verteilte Systeme. Springer 2003.

[Don00] P. Donohoe (ed.) .Software Product Lines - Experience and Re-
search Directions. Proceedings of the First International Soft-
ware Product Lines Conference (SPLC1), Denver, Colorado,
USA, August 2000.

[DS98] J.-M. Debaud and K. Schmid. A Systematic Approach to Derive
the Scope of Software Product Lines, in the Proceedings of the
21st International Conference on Software Engineering (ICSE),
IEEE computer Society, 1998.

[JBS97] S. Jablonski, M. Böhm, W. Schulze. Workflow Management –
Entwicklung von Anwendungen und Systemen. Dpunkt Verlag
1997.

 34

[Kru92] C. Krueger. Software Reuse, ACM Computing Surveys, vol. 24,
no.2, June 1992.

[Lim98] W. C. Lim. Managing Software Reuse - A Comprehensive Guide
to Strategically Reengineering the Organization for Reusable
Components, Upper Saddle River: Prentice Hall PTR, 1998.

[MKH98] M. Mannion, B. Keepence, and D. Harper. Using Viewpoints to
Define Domain Requirements, IEEE Software, Jan. 1998.

[Mut97] D. Muthig. Supporting the Specification of System Families, su-
pervised by J.-M. Debaud, J. Bayer, D. Rombach, Diploma The-
sis, University of Kaiserslautern, Dec. 1997.

[Mut02] D. Muthig. A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines. Dissertation im
Fachbereich Informatik Universität Kaiserslautern, 2002.

[Nei80] J. Neighbours. Software Construction Using Components, Ph.D.
Thesis, Department of Computer Science, University of Califor-
nia, Irvine, 1980.

[Nei89] J. Neighbours. Draco: A Method for Engineering Reusable Soft-
ware Systems, in Software Reusability - Volume I: Concepts and
Models, T. Biggerstaff, A. Perlis (Eds.), ACM Press, Frontier Se-
ries, Addison-Wesley, 1989.

[Oes97] B. Oestereich. Objektorientierte Softwareentwicklung mit der uni-
fied modeling language. 3. Auflage, Oldenbourg, 1997.

[Oes+03] B. Oestereich, C. Weiss, C. Schröder, T. Weilkiens, A. Lenhard.
Objektorientierte Geschäftsprozessmodellierung. dpunkt Verlag
2003.

[Pri90] R. Prieto-Diaz, Domain Analysis: An Introduction, ACM
SIGSOFT Software Engineering Notes, vol. 15, p. 47, April 1990.

[PW87] F.P. Prosser, D.E. Winkel. The Art of Digital Design. An Introduc-
tion to Top-Down Design. Prentice Hall, 1987.

[Sch97] A.-W. Scheer. Wirtschaftsinformatik, Referenzmodelle für indus-
trielle Geschäftsprozesse. 7. Auflage, Springer 1997.

[Sch00] K. Schmid. Scoping Software Product Lines - An Analysis of an
Emerging Technology in [Don00].

[Sch01] K. Schmid. People Issues in Developing Software Product Lines,
in Proceedings of the 2nd Workshop on Software Product Lines:

 35

Economics, Architectures, and Implications held in conjunction
with the 23rd Internation Conference on Software Engineering
(ICSE), 2001.

[Sch+03] A.-W. Scheer, F. Abolhassan, W. Jost, M. Kirchner. Change Ma-
nagement im Unternehmen. Springer 2003.

[SS99] J. Sodhi and P. Sodhi. Software Reuse: Domain Analysis and
Design Processes, McGrawHill, 1999.

[TCO00] P. Toft, D. Coleman, and J. Ohta. A Cooperative Model for
Cross-Divisional Product Development for a Software Product
Line, in[Don00].

[WFM02] Workflow Management Coalition. Workflow Process Definition In-
terface. – XML Process Definition Language. Document Number
WFMC – TC – 1025. Version 1.0, October 2002.

[Wl99] D. M. Weiss and C. T. R. Lai. Software Product Line Engineer-
ing: A Family Based Software Engineering Process. Addison-
Wesley, 1999.

[WK99] J. B. Warmer and A. G. Kleppe. The Object Constraint Lan-
guage. Precise Modeling with UML. Addison-Wesley, 1999.

