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Abstract—A cooperative approach to the sensing task of wire-
less cognitive radio (CR) networks is introduced based on a basis
expansion model of the power spectral density (PSD) map in space
and frequency. Joint estimation of the model parameters enables
identification of the (un)used frequency bands at arbitrary loca-
tions, and thus facilitates spatial frequency reuse. The novel scheme
capitalizes on two forms of sparsity: the first one introduced by the
narrow-band nature of transmit-PSDs relative to the broad swaths
of usable spectrum; and the second one emerging from sparsely lo-
cated active radios in the operational space. An estimator of the
model coefficients is developed based on the Lasso algorithm to ex-
ploit these forms of sparsity and reveal the unknown positions of
transmitting CRs. The resultant scheme can be implemented via
distributed online iterations, which solve quadratic programs lo-
cally (one per radio), and are adaptive to changes in the system.
Simulations corroborate that exploiting sparsity in CR sensing re-
duces spatial and frequency spectrum leakage by 15 dB relative to
least-squares (LS) alternatives.

Index Terms—Cognitive radios, compressive sampling, cooper-
ative systems, distributed estimation, parallel network processing,
sensing, sparse models, spectral analysis.

I. INTRODUCTION

S PECTRUM sensing is a critical prerequisite in envisioned
applications of wireless cognitive radio (CR) networks

which promise to resolve the perceived bandwidth scarcity
versus under-utilization dilemma. Creating an interference map
of the operational region plays an instrumental role in enabling
spatial frequency reuse and allowing for dynamic spectrum
allocation in a hierarchical access model comprising primary
(licensed) and secondary (opportunistic) users [21], [22]. The
non-coherent energy detector has been widely used to this end
because it is simple and obviates the need for synchroniza-
tion with unknown transmitted signals; see e.g., [11], [12],
[14], and [17]. Power information (or other statistics [8], [9])
collected locally per CR is fused centrally by an access point
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in order to decide absence or presence of a primary user per
frequency band. At the expense of commensurate communi-
cation overhead [12], these cooperative sensing and detection
schemes have been shown to increase reliability, reduce the
average detection time, cope with fading propagation effects,
and improve throughput [9], [11], [14], [17]. Recently, the
possibility of spatial reuse has received growing attention. It
was noticed that even if a frequency band is occupied, there
could be locations where the transmitted power is low enough
so that these frequencies can be reused without suffering from
or causing harmful interference to the primary system. These
opportunities are discussed in [15], and a statistical model for
the transmitters’ spatial distribution is advocated in [16].

The present paper goes in the direction of sensing these
reusable zones, by means of a collaborative scheme whereby
receiving CRs cooperate to estimate the distribution of power
in space and frequency as well as localize, as a byproduct,
the positions of transmitting CRs. The main contribution is a
distributed online approach to estimating a map of the power
spectral density (PSD) at arbitrary locations in space. This is
particularly useful in wide area ad-hoc networks, where the
power transmitted by primary users reaches only a small subset
of CRs. Knowing the spectrum at any location allows remote
CRs to reuse dynamically idle bands. It also enables secondary
users to adapt their transmit-power so as to minimally interfere
with primary users. In this context, the threshold for deciding
occupancy of a frequency band is not set according to the prob-
ability of false alarms, but through comparing PSD estimates
with minimum power levels prescribed by the primary users.

The goal of estimating the power distribution in space and fre-
quency is admittedly very ambitious. The PSD estimate sought
however, does not need to be super accurate but precise enough
to identify (un)used bands. This relaxed objective motivates the
proposed PSD estimator using a parsimonious basis expansion
model. The general setup includes receiving CRs willing
to cooperate in estimating the location of transmitting ra-
dios as well as the frequency bands used for transmission. Upon
constructing a basis expansion model of the PSD map ,
in spatial location and frequency , the novel cooperative
scheme amounts to estimating the basis expansion coefficients
of based on PSD frequency samples collected at re-
ceiving CRs located at positions . These coefficients are in-
herently sparse given the narrow-band individual transmissions
compared to the overall band scanned, as well as the scarce dis-
tribution of active transmitters in the area. Sparsity is then ex-
ploited as prior information to improve estimation performance
by suitably modifying the least-absolute shrinkage and selection
operator (Lasso) in [20].

The novel distributed algorithm termed D-Lasso implements
Lasso using an ad-hoc network of nodes. It does not require
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coordination through a central unit but the local nodes (or
CRs in the present application context) reach consensus on
the coefficients by exchanging low-overhead messages with
their single-hop neighbors. Global optimality is ensured in the
sense that the distributed estimator approaches its centralized
counterpart obtained when all observations are available at
a central unit. The online version of D-Lasso is capable of
tracking changes in the transmit-PSDs; e.g., when a transmitter
joins or departs.

The overall sensing approach applies readily to hierarchical
cognitive radio networks, where the transmitters belong to a pri-
mary system and the sensing receivers are secondary users. This
is not compulsory however, since the resultant algorithms work
as general sensing and localization tools.

The rest of the paper is organized as follows. Section II intro-
duces the basis expansion model and describes the PSD data
used for the model fitting approach. A centralized estimator
is developed in Section III with the CR positions being un-
known, case in which the PSD model becomes over-complete
and sparsity in the vector of expansion coefficients is exploited
to reveal the locations and frequency bands of the transmitting
CRs. The distributed batch and online algorithms are derived in
Section IV. Performance analysis of the expansion coefficient
vector and resultant PSD estimators is provided in Section V.
Numerical tests are presented in Section VI, and conclusions
are drawn in Section VII. Detailed proofs can be found in the
Appendixes.

II. PSD BASIS EXPANSION MODEL

Consider sources (transmitters) located at position vec-
tors with respect to (w.r.t.) a global reference system;
and let
denote the received signal at position representing the
superposition of the transmitted signals , convolved with
linear (possibly time-varying) finite-impulse response fading
channels , and observed in the presence of
additive white noise .

Received data are parsed in blocks each containing
samples, where is chosen equal to the coherence interval
of the system over which remains invariant w.r.t.

. These blocks are indexed by so that , with
.

The frequency-selective fading propagation model used
throughout will obey the following assumption.

Assumption 1: Channels are zero mean
with frequency response , and known gain

; e.g., , where
is a known function of the source-receiver distance. In

addition, channels are stationary w.r.t. and un-
correlated across the block variable , across the lag variable
, and across the spatial variables and .

Uncorrelatedness of channels across space is realistic since
sources are sufficiently apart relative to the high carrier frequen-
cies for which wavelengths are short. Because is sta-
tionary and uncorrelated across lags , its PSD
can be readily shown to be time and frequency invariant with

, where
.

Gain in Assumption 1 can be acquired via training. How-
ever, this requires cooperation of the primary system and the

Fig. 1. Expansion with non-overlapping rectangular bases of unit height.

ability to separate the sources. The alternative followed here
is to adopt a pathloss model . One pos-
sible choice for is the inverse polynomial law for which

, where and , are
preselected constants that depend on the propagation environ-
ment. It is worth stressing that the pathloss here does not apply
to each realization but to the PSD; hence, the wireless
fading channels in this paper are allowed to be frequency selec-
tive.

With regards to the transmitting radios, the following is as-
sumed.

Assumption 2: Sources are stationary, mutu-
ally uncorrelated, independent of the channels
with vanishing correlation per coherence interval; i.e.,

,
where . Furthermore, with sufficiently
large the PSD of each source is well approximated by the basis
expansion model

(1)

where is a collection of known bases, and
denote the expansion coefficients to be estimated.

Note that although each receiving CR is assumed to know
its location , the source locations are not assumed
known.

Possible choices of include Gaussian bells, or,
the set of non-overlapping rectangles of unit height spanning the
bandwidth of interest; see Fig. 1. For the rectangular basis, the
coefficient represents the power emitted by source on the
frequency band corresponding to the basis function .

With a single source received in the absence of noise, the
assumption of uncorrelated channel taps independent of the
stationary sources combined with the vanishing memory of

allows one to express the received autocorrelation as
; and hence the received

PSD as . When sources and receiver
noise are present, it follows from the spatial uncorrelatedness
of channels and sources that

(2)

where the vector is formed by stacking the
columns of the matrix with entries , and by concate-
nating the columns of the matrix with entries . Note
that the noise-free PSD in the linear model (2) is completely
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specified at any receiving point and any frequency bin ,
provided that becomes available.

The sensing strategy aiming to obtain (along with )
will rely on the periodogram estimate of . The fast
Fourier transform of , namely , and the peri-

odogram are computed per
coherence block . These are averaged across blocks to obtain

. In the limit, this averaging pro-
cedure attains the expectation over the channels and transmitted
signals. As a result, the averaged periodogram asymptotically
yields [4, p. 123], with probability
one (w.p. 1).

To allow for tracking of slow-varying PSDs, the sample mean
across coherence blocks will be replaced by an exponentially
weighted moving average (EWMA) with exponent , given by

(3)

The EWMA estimate in (3) weighs more recent values
and “forgets” past values. It can be seen as an average
modulated by a sliding window of equivalent length

. This property al-
lows one to track PSDs that can be considered stationary over a
window of coherence blocks. If the EWMA is used instead
of the periodogram average, the following result is proved in
Appendix A.

Proposition 1: If Assumption 1 and Assumption 2 hold, then
the exponentially weighted moving average periodogram in (3)
approximates the received PSD at any point and frequency

as

(4)

with (asymptotic) variance bounded as follows:
.

The bound on the variance of the estimate in (4) reflects the
trade-off present in selecting between tracking ability, which
increases with a shorter memory, and estimation accuracy which
improves with a wider window.

III. COOPERATIVE SPARSE PSD ESTIMATION

Based on (2) and (4), this section introduces an estimator of
using at frequencies collected

by a set of cooperating CRs. Instead of LS applied to the
linear model in (2), the criterion for estimating (and thus the
noise-free PSD anywhere) will exploit two forms of sparsity
tacitly present.

Sparsity in is manifested because the linear model in (2) is
parsimonious both in frequency as well as in space. Indeed, rel-
ative to the possibly huge (over say 10 GHz) system bandwidth,
individual transmissions typically occupy a small fraction (in
the order of MHz). Likewise, active transmitters will be present
only at a small fraction of the candidate source locations . If
no source is active at point , then for all . But even
when a transmitter is present at , the entries for all
the bases with support outside the bandwidth occupied
by this radio. The net effect to be exploited when estimating

Fig. 2. Virtual network grid with � � �� candidate locations, two transmit-
ting sources, and � � � receiving CRs.

is that only a few (but unknown) entries of are nonzero. Identi-
fying those entries (a.k.a. support of ) will reveal the positions
of active transmitters and their transmission bands.

Substituting (2) into (4) yields

per frequency . Letting denote the vector

with entries , and defining likewise, we ar-
rive at the local vector-matrix model

(5)

where matrix is formed to have rows , and denotes
the vector of all ones.

The key enabler of cooperative PSD sensing is that is
common to all receiving CRs. This allows estimation of
in the linear regression model (5) using the non-negative (NN),
and thus non-linear, LS criterion

(6)

where the non-negativity constraints are naturally imposed to
prevent negative PSD estimates.

With position vectors (and/or ) unknown, even the
model in (2) is nonlinear and the NN-LS optimization in (6)
is rendered non-convex with multiple local minima. To bypass
this challenge, the idea here relies on a virtual grid of candidate
source locations depicted in Fig. 2. Vectors in Fig. 2 no
longer describe the actual positions of e.g., primary users but
grid points with known spatial coordinates, where transmitting
or receiving radios could be present. This virtual grid model
was introduced in our preliminary CR sensing work [1], and
also independently in [6] for the purpose of target localization.
It removes the nonlinearity from the model which renders
the estimation problem convex at the price of increasing the
number of unknowns.

Aided by this virtual grid, one solution of (6) with unknown
position vectors is possible via exhaustive search, as follows:
Assume that only one transmitter is present and for each can-
didate location on the grid, estimate using (6). Subsequently,
assume that two transmitters are present and for each pair of
candidate locations on the grid, obtain estimates of via (6);
and so on, until exhausting all grid points. Comparing the re-
sultant LS errors and taking into account the model complexity
(number of unknowns as in e.g., Akaike’s information theoretic
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criterion) it is possible to procure the unknown parameters of
the parsimonious basis expansion model.

The exhaustive search is clearly undesirable because it incurs
combinatorial complexity in the number of grid points. Recent
results in the area of compressed sensing on the other hand, see
e.g., [5], [7] and [20], prompted us to avoid this search through
the use of convex reformulations of (6) that are particularly suit-
able when the vector of unknowns is sparse, and the locations
of the nonzero entries in are unknown.

These methods share the idea of minimizing the norm
of the unknown vector in order to exploit the sparsity present.
In particular, the least-absolute shrinkage and selection oper-
ator (Lasso) [20], a.k.a. de-noising basis pursuit [7], amounts
to augmenting (6) with the norm
weighted by a tuning parameter . The present setup entails the
following NN-Lasso criterion

(7)

modified by the PSD-imposed non-negativity constraints under
which .

How is selected trades off lower LS error for higher de-
gree of sparsity in the solution. Indeed, setting yields the
NN-LS solution, while increasing pushes the solution towards
the origin. The choice of for the standard Lasso can be found
in [7], and for the NN-Lasso considered here in Appendix B.
In this tradeoff, model over-fitting produces spurious coeffi-
cients at locations where no transmitter is present. This in turn
compromises the generalization capability of the PSD model
by rendering the resultant expansion inaccurate at arbitrary lo-
cations different from the positions of receiving CRs. Recov-
ering the sparsity via Lasso will reveal the location of transmit-
ters and their bands, and judicious selection of will minimize
spatio-spectral leakage to spurious locations.

If the data from all receiving CRs are available to
a central processing unit, the minimization in (7) can be readily
carried out using quadratic or second-order cone programming
(SOCP); see, e.g., [3] and [19].

In the ensuing section, a distributed solver of (7) will be
sought in lieu of a central unit—a task of paramount interest
especially for cognitive sensing tasks pertaining to mobile
ad-hoc CR networks. But before pursuing this goal, a remark is
due on the consistency of the estimator obtained by solving
(7).

Remark 1: Similar to LS, the identifiability and mean-square
sense consistency of Lasso estimators depend on the rank prop-
erties of the overall regression matrix .
Necessary and sufficient conditions for the consistency of the
support and nonzero values of are available but incur com-
binatorial complexity to check beforehand [23], [24]. Alterna-
tively, LS-weighted versions of Lasso estimators can be prov-
ably consistent for properly chosen values of [24]. Albeit re-
lated, establishing these conditions for NN-Lasso is challenging
and goes beyond the scope of this paper. Extensive simulations
however, suggest that NN-Lasso estimators are always consis-
tent when periodogram data are collected from a number of re-
ceiving radios that sufficiently exceeds the number of transmit-
ting radios. Intuition from source localization indicates that one
must have , but in the present setup additional factors

affect consistency. Those include the channel gains, the chosen
bases, and the resolution of the virtual grid selected.

IV. DISTRIBUTED LASSO

Solutions of (7) yield estimates that enable estimation at
arbitrary receiving points in space of the aggregate PSD com-
prising the superposition of signals emitted from transmitting
radios positioned at unknown locations. However, the approach
developed so far requires availability of the data at a
designated central unit. The goal of this section is to develop
a distributed solution of (7), implementable through cooper-
ating CRs that exchange messages with one-hop neighbors
over a dedicated control channel. The novel distributed Lasso
(D-Lasso) scheme will be developed in two forms: off-line for
batch operation and online for tracking operation.

A. Batch D-Lasso

Using the identity , consider rewriting
(7) as

(8)

Note that data vector is available locally at CR and matrix
depends only on , which is also known locally because re-

ceiver knows and for each candidate source position, points
on the grid are known. This means that knowing and

locally, the data required for the problem are readily distributed.
However, the challenge arises because is a global vector

common to all radios, the very fact that enabled cooperation
among radios as mentioned in Section III. Fortunately, it is pos-
sible to overcome this impasse by applying recent distributed
optimization approaches based on consensus. Inspired by [18],
the idea is to define local copies of and constrain them to
coincide within the set of single-hop neighboring CRs cor-
responding to each receiver . To this end, extra constraints are
added in (8) to arrive at

(9)

Problems (9) and (8) are equivalent provided that radios are con-
nected in the sense that:

Assumption 3: There always exists a (possibly multi-hop)
path linking any two nodes of the connected CR network.

Connectivity in Assumption 3 need not be strong, meaning
that a CR must have just enough power to reach single-hop
neighbors but not all nodes in the CR network. Nonetheless, As-
sumption 3 ensures that for all . In
words, this means that not only the local variables coincide per
neighborhood but across the entire network. With a common
replacing each in (9) one readily arrives at (8); see also [18].

Although problems (8) and (9) are equivalent, only the latter
turns out to be amenable to distributed implementation. Defer-
ring proofs to Appendix C, the processing steps needed for the
minimization in (9) are carried out in neighborhoods by itera-
tively solving ( denotes iteration index)
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(10)

and iteratively updating for the vector vari-
ables ( denotes the cardinality of )

(11)

which represent the “price” of constraint violation, and are
expressed analytically as the superposition of Lagrange
multipliers associated with the consensus constraints (see
Appendix C for details).

Iterations (10) and (11) constitute our batch D-Lasso scheme,
which is tabulated as Algorithm 1. All CRs keep track of the
local estimates and along with the local
price vector . At the beginning of the iteration, the CR

has collected estimates from its neighbors , and
has locally available a vector of prices from the previous
iteration. It proceeds by utilizing and as parameters
in the quadratic optimization problem (10) that allows it to ob-
tain the updated local estimate along with an updated
estimate of the local noise power . Then the exchange
phase of iteration takes place in which the CR sends its up-
dated estimate to all its neighbors , and re-
ceives their local copies as well. These new estimates
are used by the CR to adjust its local price vector via
(11). Intuitively, the local copies will percolate across neighbor-
hoods after several iterations, and the minimization of the last
quadratic term in (10) together with the price update will ensure
consensus across the network at equilibrium. Problem (10) is
again solvable via quadratic programming or SOCP algorithms
and incurs comparable complexity with the centralized solver on
(7), but of course without the need for a central processing unit.
The main analytical result of this section pertains to the conver-
gence of D-Lasso, which is summarized in the next proposition
proved in Appendix C.

Algorithm 1: Consensus-based D-Lasso

CR initializes , , and , and
locally runs

for do

S1. Update and via (10).
S2. Exchange with all neighbors in .
S3. Update via (11).

end for

Proposition 2: Under Assumption 3 and with local commu-
nications among single-hop neighbors, the iterates in Al-
gorithm 1 converge to the centralized solution of (7) for any se-
lection of the constant step-size .

The D-Lasso algorithm exhibits a number of desirable fea-
tures. As stated in Proposition 2, it converges for any constant
step-size to the centralized estimator solution of (7). It is fully
distributed in the sense that each sensing CR only interacts with
its neighbors. This makes it implementable in an ad-hoc network

and also facilitates the incorporation of new CR users. Only one
price is updated per node, even if there are several constraints
(one per neighbor). Furthermore, these prices do not need to
be exchanged. The only variables to be communicated are the
local estimates; and these are highly sparse, which trans-
lates to reduced overhead for cooperation. On the other hand,
D-Lasso requires knowledge of the number of nodes and the
global parameter , which according to Appendix B, is chosen
as , with available locally.

An extra consensus protocol is thus needed to consent on
across the network. This is relatively simple and also pos-

sible to perform in a distributed fashion using the steps S1 and
S2 of Algorithm 2. Convergence of Algorithm 2 is summarized
in the following proposition.

Algorithm 2 : Consensus on

CR initializes with and locally runs
for do

S1. Exchange with all neighbors in .
S2. Update

end for

Proposition 3: Under Assumption 3 and with local commu-
nications among one-hop neighbors, Algorithm 2 drives
to after iterations, where denotes the diameter
of the CR network graph.

Proof: Suppose w.l.o.g. that node initializes with the
maximum, that is . Then at the iteration,

for all nodes located at most hops away from .
Therefore, at most after iterations reaches all CRs at
distance from the receiver , and thus the information about
the maximum percolates across the entire network.

Remark 2: A related consensus-based approach was also
developed in [18] for distributed estimation based on general
criteria using the alternating direction method of multipliers
(ADMoM) [2]. However, to form the ADMoM cost in [18], a
subset of sensors called bridge sensors is required. In turn, an
algorithm to find the bridge sensor set is necessary to run when-
ever sensors become inactive or new sensors are activated. Set-
ting all sensors as bridges is possible but the communication
overhead is considerably increased. Compared to [18], D-Lasso
does not require such a bridge sensor set, and in this sense it of-
fers a fully distributed, low-overhead approach.

B. Online D-Lasso

The real-time requirements on the sensing radios and the con-
venience of an estimator that adapts to changes in the PSD are
the motivating reasons behind the online D-Lasso algorithm of
this subsection. In the off-line iteration (10), the periodogram
observations pertain to those collected up to block and the
same is used to update for the entire run of Algo-
rithm 1. An online version of D-Lasso results if successive iter-
ations are carried out across coherence blocks, and the current
data acquired during block is incorporated in the esti-
mator. This is possible after substituting for in (10),
and merging the iteration with coherence block indexes into a
single index . In addition, since depends on (as
detailed in Appendix B), the penalty parameter will in principle
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become block dependent, namely . Taking these modifica-
tions into account, (10) and (11) are replaced by

(12)

where

and

(13)

The resulting distributed online iteration (online D-Lasso) is
summarized next as Algorithm 3. In a stationary environment,
the iterates of (12) will converge to the solution of (9) even
with constant . Likewise, if the transmit-PSDs are
slowly varying will closely approach the true receive PSD,
which is approximately time-invariant. In this case too, running
(12) and (13) with remaining constant across several blocks
will endow D-Lasso with tracking capability while minimally
affecting estimation accuracy and avoiding the updates of per
coherence block. Rigorous convergence analysis of Algorithm
3 goes beyond the scope of this work. Nevertheless, it will be
illustrated by simulations.

Algorithm 3: Online-D-Lasso

CR initializes , and , and
locally runs
for do

S1. Update and via (12).
S2. Exchange with all neighbors in .
S3. Update via (13).

end for

In a nutshell, this section introduced distributed Lasso al-
gorithms for batch and adaptive operation. The contribution is
twofold: a distributed solution to variable selection and com-
pressive sampling approaches; and a rather neat application to
the emerging area of cooperative sensing the ambient PSD map,
which is instrumental for assessing the “interference tempera-
ture” in mobile ad-hoc CR networks.

V. PERFORMANCE ANALYSIS

The present section will analyze the large-sample
mean-square error (MSE) performance of the Lasso pa-
rameter estimator obtained as the solution of the constrained
minimization problem in (7). The MSE of will be subse-
quently used for MSE analysis of the noise-free PSD estimator

at any receiving point and any frequency
. As is usually the case with nonlinear estimators that are not

expressible in closed form, the analysis will be valid asymptot-
ically; that is, for a sufficiently large number of grid points ,
frequencies , and/or receiving points . Two types of errors

will be considered: those due the finite grid approximation, and
those emerging from the estimation process.

A. Grid-Induced Errors

The gains present in the regression matrix were so
far assumed known because the unknown source locations were
taken to lie at known candidate positions on the vertices
of the given grid. If instead the sources lie in the interior of a
grid cell at locations , then the true noise-free PSD
is . Relative to
the estimated approximate PSD with candidate sources assumed
to lie on the vertices of the grid, which is given by

, the error can be expressed as

(14)

where in deriving (14) we added and subtracted . Clearly,
the first double sum in the right hand side (r.h.s.) of (14) corre-
sponds to the estimation errors, while the second one is due to
the finite grid approximation effects.

It will be argued that for an increasingly dense grid with
candidate locations, this second double sum is negli-

gible. Indeed, if is sufficiently smooth, a first-order Taylor’s
expansion around the point yields

where denotes the derivative of .
As the grid becomes increasingly dense (that is the candidate

source locations ), it holds that , which in turn
implies based on the last approximation that . This
formalizes the assertion that the second double sum in the r.h.s.
of (14) will diminish gracefully as the density of the virtual grid
increases.

B. Estimation Errors

It will be assumed henceforth, that the grid is sufficiently
dense to induce no errors. Thus, skipping the second double sum
in the r.h.s. of (14), and rewriting the first one in a vector form
leads to

(15)

The MSE of the latter is expressed as

(16)

where denotes the covariance matrix of the Lasso parameter
estimator in (7). Equation (16) shows that the MSE of the PSD
estimator is readily obtained after is found.

Aiming at a tractable expression of , consider concate-
nating the matrices for in (5)
to form an matrix ; and similarly for the
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vectors to form the vector . Likewise, collect vari-
ables into the vector . Since
each variable is repeated times (cf. the vector in (5)), it is
convenient to introduce the repetition matrix ,
where denotes the identity matrix of range and
the Kronecker product. With these notational conventions, the
system of linear equations in (5) can be compactly written
as

(17)

where the error vector is zero-mean with covariance matrix
. The mean of is indeed zero provided that is large

enough and grid-induced errors are thus negligible.
For the linear regression model in (17), we wish to analyze

the MSE performance of the estimator obtained as the solution
of (7). Because the minimization problem in (7) is constrained
and the resultant estimator is nonlinear, developing an expres-
sion for can become tractable if one focuses on the nonzero
entries of , which are denoted by the vector . To this end,
let denote the entries of corresponding to , and the
corresponding sub-matrix of . To proceed, the following as-
sumption is necessary.

Assumption 4: The support of is included in the support
of the estimate .

As the number of data (size of ) in (17) grows large,
consistency of the Lasso estimator ensures that the supports of

and coincide; and thus, Assumption 4 holds true asymptot-
ically. But even for finite values, Assumption 4 is valid
so long as the Lasso criterion in (7) does not produce false neg-
atives, but only false positives in selecting the entries of to
be set to zero. Note that even the ordinary linear LS estimator,
which does not account for the sparsity present in , satisfies
Assumption 4 too.

Under Assumption 4, the error in estimating the nonzero en-
tries of the Lasso estimator can be expressed as summarized in
the next lemma (see Appendix D for the proof).

Lemma 1: If obeys Assumption 4, the estimation error of
its nonzero entries can be expressed as

(18)

where , and .
The next step is to take expectations of the error vector and

its norm in (18), to assess the bias and MSE in estimating the
nonzero entries of . This is challenging though, because the
sub-matrix is selected in accordance with the nonzero entries
of the random vector ; hence, is itself random. To simplify
the analysis, we will approximately treat as deterministic,
which basically amounts to considering that the bias, covariance
matrix, and MSE of are largely affected by the number of
spurious nonzero entries of , while the positions those entries
occur have minimal effect.

Under this approximation, taking expectations in (18) shows
that even when the grid effects are negligible ( is indeed zero
mean), the Lasso estimator remains biased. The bias is given by

. With regards to the covariance matrix of
, the following proposition can be readily established from

(18).

Proposition 4: If Assumption 4 holds and is zero mean, the
covariance matrix of is approximately given by

(19)

The trace of in Proposition 4 yields not only the MSE

of but also the MSE of , since the entries of not in
are zero. Formally stated, the following corollary can be easily
established.

Corollary 1: If Assumption 4 holds, the MSE of obtained
as the solution of (7) is approximately given by

(20)

In order to gain intuition and confidence on the approximate
expressions (19) and (20), it is instructive to look at the fol-
lowing special case.

Special Case: Suppose that the parameters in (7) are
known so that the term can be removed from (17), and
hence in (18). Furthermore, suppose that matrix
(and thus ) is orthonormal, and is white with .
Since , it is straightforward to show from (20) that

, where denotes the size of
. In comparison, the MSE of the ordinary LS estimator for the

same setup is , where . While can be large,
is typically in the order of the length of which, given that

is sparse, is much smaller than .
At least this special case confirms that the Lasso yields an

“oracle” estimator, which approximately deciphers the support
of at the cost of adding bias relative to the “oracle”
LS estimator which knows perfectly the support of . Lasso’s
improved MSE performance over the support-agnostic LS es-
timator is the result of effectively exploiting the additional in-
formation available, namely the sparsity. This allows Lasso to
reduce the over-fitting that the LS estimator incurs because it
returns non-zero values in all entries of .

Remark 3: The oracle properties of the Lasso estimator are
formally reviewed in [24], where a weighted version of Lasso
is proved to ensure asymptotically unbiased, MSE- and sup-
port-consistent estimators. The weighted Lasso (termed adap-
tive Lasso in [24]) has the norm in (7) weighted by the inverse
of the LS estimator entries, and applies readily to the present
context as well. The main reason for not adopting it here is sim-
plicity in computation and exposition.

Having available an approximate expression for the covari-
ance matrix of the Lasso estimator, the MSE for the PSD esti-
mator follows immediately after substituting (19) into (16). The
resultant MSE is given next as a corollary.

Corollary 2: If Assumption 4 holds, the MSE of at an
arbitrary location is approximately given by

(21)

where is a sub-vector of obtained by selecting the
entries, where is strictly positive.
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The covariance matrix needed to find in (21) can
be estimated by sample averaging multiple realizations of . If
those are not available, a single realization based approximate

is suggested in Appendix A [c.f (26) and (27)] as

(22)

where , ,
, and denotes the Hadamard

(entry-wise) product. The rationale behind this selection
is that contains PSD estimates; hence, its entries can be
substituted for in (26)
and (27). Likewise, the entries of can replace

. Note also that the Hadamard
product sets entries corresponding to different re-
ceivers to zero in order to account for the uncorrelated channel
gains and thus periodograms received at distinct locations.

VI. SIMULATED TESTS

The simulations described here to validate and compare the
algorithms of this paper, are performed with reference to the CR
network depicted in Fig. 3 (top). The setup includes CRs
that cooperate to estimate the PSD map in space and frequency,
generated by two sources located at unknown positions on a
grid of candidate locations. The cooperating CRs scan

frequencies from 15 to 30 MHz, and adopt the basis
expansion model in (1) over this band comprising
rectangles as frequency bases. The average gains of the network
links obey an inverse polynomial pathloss model for with

and .
For coherence blocks , the transmit-PSDs

of the sources are spanned by three bases each, as shown in
Fig. 3 (bottom). At coherence block , the high-frequency
source shuts off, and only one source remains. This corresponds
to a true parameter vector of size with only
six non-zero entries set to one for ; and only
three non-zero entries remaining equal to one from to

.
The first test compares the centralized Lasso estimator (7)

with the NNLS solution of (6). The batch D-Lasso algorithm
is also tested as a solver of (7) using an EWMA snapshot at

. In addition, the online D-Lasso iterations are run to
check its ability to track the change in the topology after

. Subsequently, a test point at location not coinciding with
any of the four receiving CR locations, is selected to assess the
generalization (prediction) capabilities of the aforementioned
PSD estimators. Finally, the performance of the Lasso estimator
is studied by comparing Monte Carlo MSE estimates against the
approximate MSE expressions of Section V.

The data are generated using the transmit-PSDs described
earlier, a Rayleigh channel model with taps, and additive
white Gaussian receiver noise at 0 dB. The channel deviates are
generated per coherence block to acquire snapshots of the eight
frequency-selective instantaneous channel gains
between the two transmitters and the four receiving CRs. With
these receive-PSDs per coherence block , frequency , and
CR , the mean of an exponentially distributed random variable
is subsequently used to simulate the (asymptotic) behavior

Fig. 3. (top) Simulated CR network with two sources, four receiving CRs, and
one test point; (bottom) transmit-PSDs of the two sources.

of the periodogram estimates . Those are then averaged
across coherence blocks according to (3) with
(corresponding to a window of 100 coherence blocks). Across
coherence blocks , the resulting fre-
quency samples are collected to form the data vector .

A. Centralized Lasso Algorithm

At each coherence block from to the batch
Lasso estimator of (7) is run assuming that all the data are avail-
able at a central unit. The trajectories of successive parameter
estimates for are compared against the true
vector , and the norm of their difference is normalized by .
The evolution of this normalized difference is depicted in Fig. 4
(top) along with that of the NNLS algorithm (6). It is seen that
the norm in (7) is effective in exploiting the sparsity present in
the model—the a priori information not exploited by the NNLS
estimator. The price paid by the sparsity-agnostic NNLS is in
excess of 15 dB of error in the steady state.

An alternative visualization of the improvement effected
when exploiting sparsity is provided by Fig. 4 (bottom), which
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Fig. 4. (top) Comparison of the ����� � ���� errors normalized by �����; (bottom)
aggregate spurious power of PSD estimates.

compares the aggregate spurious power each estimate places in
frequency bands that are actually free, or, in candidate locations
where there is no transmitter. The spurious power is compared
with the aggregate transmit-power (in dBs), and demonstrates
that the centralized Lasso estimator outperforms the NNLS
both in localizing the free bands and also in positioning the
sources.

When the high-frequency source becomes inactive after
, the memory of the EWMA produces traces of the disap-

pearing source in that require an interval of approximately
coherence blocks to vanish. This inertia man-

ifests itself as a jump in the error and spurious power estimates
at . The jump is magnified when normalizing with ,
which becomes smaller. On the bright side, the EWMA is re-
sponsible for the ability of the online Lasso to overcome this
transition, and settle down to a lower error. The linear decaying
trend of the error measured in dB reflects the exponential evo-
lution of the EWMA.

To highlight the localization capabilities of Lasso relative to
LS, we tested a setup with five sources transmitting over non-
overlapping frequency bands, a virtual grid with can-
didate locations, and sensing CRs at receive-

. The estimated maps of the spatial PSDs (superimposed

Fig. 5. (top) Estimated power map via Lasso; (bottom) via NNLS. True spatial
PSD generated by 5 sources.

over all 5 frequency bands) are plotted using a mesh format for
the Lasso [Fig. 5 (top)], and the NNLS [Fig. 5 (bottom)]. Rela-
tive to NNLS, the Lasso map is more accurate, separating signal
from noise and revealing the position of the five sources (only
four sources are “seen” by the NNLS solution).

B. Batch D-Lasso Algorithm

The distributed off-line iterations (10), (11) are tested at
. The sensing CRs communicate with their neighbors

as depicted in Fig. 3 (top), where CRs 2 and 3 can reach all
other radios while CRs 1 and 4 do not communicate with each
other. Consensus of the local iterates is
achieved rapidly. Fig. 6 (top) illustrates that the errors between

and estimates of its neighbors decay to after
ten iterations. Fig. 6 (bottom) compares the error between the
estimate , which is taken as representative of the local
off-line iterates, and the centralized estimate at ,
normalized by the norm of the latter, confirming the conver-
gence of Algorithms 1 and 2. The knee in the error plot occurs
when the estimates transition from a first phase in which
grows from zero to the power level being transmitted, to a
second phase in which fine tuning takes place.

C. Online D-Lasso Algorithm

When the online iterations (12) and (13) are simulated, the
local iterates reach consensus within ten iterations, after which
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Fig. 6. (top) Batch D-Lasso iterations based on � � ��� blocks reach con-
sensus; (bottom) comparison of batch D-Lasso with the centralized Lasso esti-
mate.

their differences stay below in absolute value. Again,
is taken as representative of the four local estimates, and

is compared with the “true” sequence adopted for
the simulations. The error trajectory and the amount of spurious
power estimates are shown in Fig. 4 along with the centralized
Lasso estimate. This comparison confirms that the online iter-
ates follow closely the trajectory generated through successive
runs of the centralized batch estimator. As in the centralized
case, the online D-Lasso algorithm adapts to the changes in the
ambient PSD produced at by the disappearing source
after the EWMA adjusts to the updated network topology.

D. Generalization Capability

A test point placed in the area sensed by the four re-
ceiving CRs is marked with a cross in Fig. 3 (top). The PSD
estimate at the test point is obtained per coherence block using
the online D-Lasso parameter estimate , and the adopted
model (2). Fig. 7 depicts PSD estimates obtained by the dif-
ferent methods after and after coherence
blocks, and compares them against the true PSDs corresponding

Fig. 7. (top) PSD estimate at the test point after � � ��� blocks; (bottom) after
� � ���� blocks.

to the transmit-PSDs generated by the source(s), and the average
gains of the channels (from each source to the test point) com-
puted using the pathloss model described earlier. The estimate
generated by the NNLS algorithm is shrunk by a factor of 10
and shown together with the centralized and online D-Lasso so-
lutions.

The ability of D-Lasso to exploit sparsity is the main reason it
outperforms NNLS in estimating accurately the PSD at the test
point. In this experiment, the NNLS solution overfits the data
and places power in all candidate locations in order to match
the observations as faithfully as possible in the LS sense. In
addition, NNLS interprets flat PSDs corresponding to receive
noise spectra as transmit-PSDs emitted by sources occupying
the bands. With power placed in wrong locations and in free
bands, the NNLS estimate produces an erroneous PSD map at
locations other than the sensing points. The (D-) Lasso instead
succeeds in finding an estimate of the PSD map whose support
approximates the support of the PSD generated by the “true”

. This translates to accurately localizing the transmitting
sources and correctly declaring the (un)occupied bands at ar-
bitrary points in space and frequency.
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Fig. 8. (top) MSE of the parameter estimator; (bottom) MSE of the PSD esti-
mator �� ���.

E. Performance Analysis

In this test case, the approximate expressions for the MSE
of the parameter estimator in (20), and the MSE of the PSD
estimator (at the test point) in (21), are validated. Forty
one SNR values (from 20 to 20 dBs) are tested, with all CRs
having the same SNR every time, and 200 samples of the data
vector generated per SNR value. The first 100 sam-
ples are used to estimate the aforementioned MSEs by averaging
over Monte Carlo runs (both estimates are labelled as Lasso in
Fig. 8). The Lasso criterion in (7) is used per run with all data
available centrally. The second part of the sample is used to esti-
mate , which is subsequently used in (20) and (21) to obtain
the line labelled as PA1. The line PA2 corresponds to the ap-
proximation of in (22). These results are shown in Fig. 8
along with the MSE of the NNLS estimator obtained by aver-
aging over Monte Carlo realizations. All MSEs exhibit a floor at
high SNR values. This is because the error in the model is pro-
portional to the PSD square [see (4)] that does not vanish with
the background noise. In order to push this error to zero, the
EWMA window must be opened but this trades off the ability
to track changing environments.

VII. CONCLUDING REMARKS

The key challenge in developing cognitive wireless trans-
ceivers is enabling them to sense the ambient power spectral
density at arbitrary locations in space. The present paper
addressed this challenging task through a parsimonious basis
expansion model of the PSD in frequency and space. This
model reduces the sensing task to estimating a sparse vector of
unknown parameters. As a byproduct, sparsity also facilitates
localization of transmitting radios even under multipath fading.
The associated estimators rely on the Lasso algorithm, which
here enforces sparsity in the solution to reveal the position and
frequency bands of transmitting radios. Once these become
available, the model characterizes how power is distributed in
frequency and space—the major step enabling spatial frequency
reuse.

The novel cooperative sensing approach, D-Lasso, is de-
signed to be implemented in an ad-hoc network where the
radios exchange information locally only with their one-hop
neighbors, eliminating the need for a fusion center, and with
guaranteed convergence to the globally optimum solution. Sim-
ulations corroborated that CRs reach consensus on their PSD
estimates and the online implementation of D-Lasso adapts to
changes in the transmit-PSDs. Additional tests demonstrated
how online-D-Lasso succeeds to estimate the free and occupied
bands at an arbitrary location not coinciding with the receiving
CRs. Finally, the simulations confirmed that exploiting sparsity
is well justified in distributed sensing because LS alternatives
incur 15 dB higher leakage of power across space and fre-
quency.

A number of intriguing directions open up for future research.
In the CR network sensing front, the present approach accounts
for pathloss in the fading links but not for shadowing effects.
One approach to cope with shadowing is to complement the
distance-only dependent propagation functions with a non-para-
metric model that can be learned from the data. Preliminary re-
sults in this direction can be found in [13]. As far as the dis-
tributed Lasso, it will be interesting to explore online coordi-
nate descent type solvers to further lower the complexity of
local iterations. Finally, it will be nice to develop algorithms
with quantifiable performance for distributed localization in the
presence of spatial inhomogeneities and test their application in
multi-target and jammer identification settings.

APPENDIX A
PROOF OF PROPOSITION 1

Since the average periodogram is (asymptotically) un-
biased and the EWMA does not affect its mean, the error

in (4) is zero-mean. Thus, the variance of

is equal to that of as . In order to prove
that the bound holds for the variance of the latter, recall that

is per coherence block an inconsistent estimator of

, with asymptotic
variance [4, p. 125]. But since the periodograms and
channels are uncorrelated across coherence blocks, it follows
under Assumption 1 and Assumption 2 that [see (23), shown
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at the bottom of this page], where we used the identities
and

for large and . In establishing the last
approximation it was further assumed that the variances and
expectations in the sum do not depend on , which follows from
stationarity and is corroborated next. As for the interchange of
limits with or , the distributions of random fading
channels encountered in practice (e.g., Rayleigh ones) have
finite moments; thus, the periodogram moments with respect to

are finite, which is sufficient. Focusing on the expectation of
the squared sum in (23), it holds that

As the channel gains are square amplitudes of complex
Gaussian random variables, they are (exponentially) dis-
tributed. Hence, after recalling that , it
follows that , and
the last expression reduces to

(24)

As for the variance term in (23), it holds that

(25)

Putting (23)–(25) together one arrives at

(26)

which in light of (2) completes the proof.
A similar procedure can be used for deriving an expres-

sion for the covariance shown in the equation at the bottom
of the next page, where the identity

was used along with the asymptotic uncorrelatedness
of periodogram values at distinct frequencies, that is

, and the
asymptotic unbiasedness of the periodogram to obtain

. This last expression requires knowledge of the channel

(23)
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correlation across frequencies. If this information is not avail-
able, the Cauchy-Schwartz inequality can be used for a simpler
bound: ,
which for and leads

to , and hence

(27)

APPENDIX B
SELECTION OF

Concatenating (5) for yields the aggregate
model , where represents the Kronecker
product, and . If the columns
of are orthonormal and the noise is white, the optimum
Lasso estimator for this linear regression model can be found
in closed form [10]. Exploiting the latter and its asymptotic (as

) minimax optimality, [7] advocated choosing
, even when the columns of are not necessarily

orthogonal. Our selection of here will follow these guidelines,
accounting for the norm of the columns of , and also for the
color of the noise present in our context.

B1. Equivalent Noise Level:

The averaged periodogram estimates comprising our data
vector , are known to be asymptotically unbiased with asymp-
totic variance proportional to the square of the PSD [4, p. 125].
The asymptotic unbiasedness implies that the covariance matrix
of coincides with that of ; while the asymptotic variance
dictates that the error at a frequency of an occupied band will
have higher variance than that of a free band. This implies that
the entries in the diagonal of the covariance matrix of are not
identical. Given that, a reasonable choice for a scalar equivalent
noise power is

(28)

To justify the choice in (28), recall that provides a PSD es-
timate formed at CR . Furthermore, the variance of aver-
aged across frequencies is bounded by

(cf. Proposition 1). Clearly, selecting the maximum noise vari-
ance across receiving CRs represents a conservative worst-case
choice for the “equivalent noise” power.

B2. Normalized :

The next item needed in deciding the proper in our con-
text is an (at least approximate) expression for the norm of the
columns of .

Let , denote the column of cor-
responding to the transmitter and the basis . With de-
noting the frequency of the periodogram and the receiving
CR, we have .

If the frequency bases are non-overlapping boxes as
in Fig. 1, then for frequencies and zero
for the remaining frequencies. Hence,

which for sufficiently large can be well
approximated by

(29)

If receivers are uniformly distributed over a region of area ,
and is adopted as the PSD loss model,
the expectation in (29) can be approximated as

(30)

Substituting (30) into (29) it follows that

(31)

To finalize the selection of for the model with white-noise-
equivalent variance given by (28) and regressor norms approx-
imated as in (31), consider the Lasso cost for the aggregate re-
gression model:

(32)

With change of variables , the problem (32) is clearly
equivalent to

(33)
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Upon expanding the product and taking out of the
norm, (33) reduces to

(34)

For this problem the regressors have unit norm, which al-
lows one to select the tradeoff factor .
For the original problem, this implies . Com-
bining the latter with (31), we arrive at

(35)

Plugging (28) into (35), the chosen trade-off parameter takes the
form of

(36)

APPENDIX C
PROOF PROPOSITION 2

The goal here is to prove that iterations (10) and (11) converge
to the solution of (9). But since (9) is equivalent to (7), this
will automatically establish that the iterate converges to
the solution of (7) as well. The proof amounts to showing that
these iterations can be put in the form of the alternating direction
method of multipliers (ADMoM), which is known to converge
[2, pp. 249-260].

Consider all pairs of neighboring CRs included in the
constraints of (9). For each one of these pairs consider the two
unidirectional links and , and define the auxiliary
variables and . These variables will enforce consensus
indirectly, and also decouple the problem (9) w.r.t. the variables

. Specifically, using these variables (9) can be equivalently
written as

(37)

where for notational brevity we defined

Letting and denote the Lagrange multipliers asso-
ciated with the constraints and , respectively,
the augmented Lagrangian corresponding to (37) is

(38)

where the curly brackets
denote the set of all the variables included.

Based on the augmented Lagrangian, the ADMoM comprises
the following iterations:

(39)

(40)

(41)

(42)

where denotes the step-size.
The ADMoM iterates converge to the minimizer of the orig-

inal problem for any constant [2, pp. 253-260]. For the case
studied in this appendix, this implies that the iterates given by
(39)–(42) converge to the minimizer of (37). The remainder of
the proof aims at showing that these iterations are equivalent
with the D-Lasso ones in (10) and (11).

To this end, notice that (38) is quadratic and unconstrained in
the variables ; hence, (40) can be solved in closed form. Fur-
thermore, (40) decouples for each variable into sub-prob-
lems of the form

(43)

which are solved in closed form as

(44)

Substituting (44) into (41) and (42), yields

(45)

(46)

If , it is easy to recognize by inspection
that . Arguing by induction, it further fol-
lows readily that ; thus, (45) and (46)
reduce to

(47)

(48)

Consider now interchanging subscripts and in (47).
Comparing the resulting recursion with (47), it follows that

.
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Turning attention to (39), observe that it can also be decou-
pled for each pair of variables , into sub-problems
of the form [see (49) at the bottom of this page]. Recall that

and , which implies that

(c.f (44)): . Using these identities

to eliminate , , and from (49), we arrive at

(50)

Equation (50) evidences that CR does not need to update a sep-
arate price vector per neighbor, but only the sum of them
denoted by . Using , problem (50)
is written as

(51)

and is updated as in (47) after summing w.r.t. ;
that is,

(52)

Since the convergent ADMoM iterations (39)–(42) can be
rewritten as in (VII)–(52), it follows readily that the D-Lasso
iterations (10) and (11) are also convergent, which concludes
the proof of the proposition.

APPENDIX D
PROOF OF LEMMA 1

Let and denote the Lagrange multipliers corresponding
to the non-negativity constrains on and , respectively; and

, where is the vector of all ones. Using (17),
the Lagrangian function corresponding to (7) is given by

(53)

The pair and solving (7) satisfies the following equations
that result from setting to zero the gradients of the Lagrangian
respect to and , that is

(54)

(55)

Let (resp. ) denote the sub-vector of with nonzero (resp.
zero) entries. The entries of are collected in and , those
of in and , and the columns of in the sub-matrices
and , always using the partition defined by the separation of

into and .
The equations in (54) can be separated accordingly in the fol-

lowing two sets

(56)

Henceforth, only the second set of equations will be used. By the
complementary slackness conditions, and (56) reduces
to

(57)

where we used the fact that ,
because is null by definition.

Replacing in (57) from (17), yields

and upon rearranging terms we arrive at

(58)

Using Assumption 4, it follows that , and (58)
becomes

(59)

The same steps of substituting , ,
and , transform (55) into

(60)

But the estimate is positive, because otherwise must in-
crease in size and amplitude to fit the noise power ; this in turn
will increase the penalty term in the Lasso cost (7). Hence,
the complementary slackness conditions force to be null. In
addition, satisfies by definition , where denotes
the identity matrix. Thus, (60) becomes

(61)

(49)
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Substituting from (61) into (59), we obtain

from which the error can be expressed as

and the results follows.
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