
Physica D 134 (1999) 406–418

Discrete breathers and Anderson modes: two faces of the same
phenomenon?

J.F.R. Archillaa,∗, R.S. MacKayb, J.L. Marínc

a Faculty of Computer Science, Avda Reina Mercedes, 41013 Sevilla, Spain
b The Nonlinear Centre, Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Silver Street, Cambridge CB3 9EW, UK
c Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK

Received 22 November 1998; received in revised form 4 May 1999; accepted 6 May 1999
Communicated by A.C. Scott

Abstract

Time-periodic localized oscillations occur in a variety of contexts, in particular in weakly coupled anharmonic lattices and
in disordered harmonic networks of oscillators, where they are known respectively as discrete breathers and Anderson modes.
It is shown numerically in some examples of systems which interpolate between these two limits that discrete breathers can
be continued to Anderson modes, modulo small jumps associated with resonance with Anderson modes on other parts of the
network. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Spatially localized time-periodic oscillations, or
“localized oscillations” (LO) for short, appear in var-
ious types of spatially discrete models. In particular
they occur in lattices of weakly coupled anharmonic
oscillators and in disordered lattices of linear oscilla-
tors, but their origins in these two contexts have up
till now been thought of as independent. For example,
Scott’s assessment of the numerics of Feddersen [1]
on a disordered discrete self-trapping (DST) equation
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is that “Anderson localization is completely different
from anharmonic localization” (Section 5.2 of [2]),
because the numerics show Anderson modes delocal-
izing rapidly as the anharmonicity is turned on. In our
paper, however, it is shown numerically that on mov-
ing parameters in the opposite direction in a family of
models, LOs of anharmonic ordered systems can be
connected virtually continuously to LOs of harmonic
disordered systems. First we recall the basic results
in the two contexts.

LOs are common in anharmonic lattices and have
received considerable attention recently (for a review,
see [3]). They have been given a variety of names, but
the one we shall use is “discrete breather”, or more
simply “breather”. In particular, MacKay and Aubry
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[4] proved analytically the existence of breathers in
Hamiltonian lattices of weakly coupled oscillators of
nonlinear Klein–Gordon type — those with an anhar-
monic1 on-site potential. The breathers are proved to
exist as smooth continuations of the trivial solutions
at zero coupling where some oscillators are on peri-
odic orbits and the remainder at rest. This limit has
been called the anti-integrable or anti-continuous limit
[7], but is most simply referred to as the “uncoupled
limit”. Proofs have also been given for some systems
with no on-site potential, e.g. [8,9].

On the other hand, localization is also a physical
phenomenon observed in the context of wave prop-
agation through disordered media. By “disorder” for
a classical lattice we mean that the local frequen-
cies and/or couplings between oscillators are random.
When the disorder is sufficiently large, certain types
of waves become trapped and the spreading of any
initial wave packet is anomalously slow or impossible.
Instead, the eigenfunctions are spatially localized, so
give localized modes that we call “Anderson modes”,
following the pioneering work of Anderson for
Schrödinger equations with random potential [10–12].

In this paper we address the question raised in [13],
whether there is a connection between these two dif-
ferent types of LO, i.e. if there is a continuous path
that transforms a breather in an anharmonic ordered
lattice into an Anderson mode in a harmonic disor-
dered lattice. We study the question numerically, us-
ing a variant of the continuation method developed in
[14,15].

Our models are of the form

H=
m∑

n=1

1
2 p2

n+1
2ω2

nu
2
n − s u3

n + ε 1
2

m−1∑
n=1

(un − un+1)
2,

(1)

where ε is fixed at 0.05, the “site frequencies”ωn

are chosen randomly from a 2-point distribution of
variable widthρ, and the “anharmonicity”s is also
variable. We consider paths in the(ρ, s) plane con-

1 “Anharmonic” means that the period of oscillation varies with
amplitude. A better term is “non-isochronous”, cf. [5], because the
harmonic oscillator is by no means the only potential for which
the period is independent of amplitude, e.g. [6].

necting the extremes (1,0) (random harmonic) to (0,1)
(translation-invariant anharmonic). This type of model
differs from that of [1] in three ways. Firstly, Fed-
dersen’s model has global phase rotation symmetry
which gives it special features (e.g. conserved excita-
tion “number” and existence of “stationary solutions”
— discrete breathers with time-dependence purely of
the form eiωt ). 2 Secondly, Feddersen has a disordered
coupling matrix in addition to random site frequen-
cies.3 Thirdly, Feddersen’s distribution of site fre-
quencies is continuous rather than discrete. Further
work will be required to assess the effects that such
differences can make, but we note that Kopidakis and
Aubry [17] have recently studied a similar model to
ours but with a continuous distribution of site frequen-
cies, and it will be interesting to compare their results.

There are some mathematical results on this prob-
lem. Continuation of Anderson modes to weak non-
linearity (equivalently, from infinitesimal to small am-
plitude in a nonlinear system) was studied mathemat-
ically by Albanese and Fröhlich [18]. They proved
that Anderson modes have a “continuation” to a Can-
tor set of amplitudes whose complement has vanish-
ing relative measure in the neighbourhood of zero
amplitude. Their proof leaves gaps in the set of al-
lowed amplitudes because of the possibility of reso-
nance with nearby Anderson modes. Noncontinuabil-
ity across these gaps is a priori quite likely but we
considered it interesting to investigate numerically to
what extent there is a genuine obstacle.

In the other direction, the proofs of existence of dis-
crete breathers apply equally well to disordered sys-
tems as to translation invariant lattices: simply, more
care must be taken to satisfy the condition of nonres-
onance between the breather frequency and the lin-
earized frequencies about the equilibria [19] (see also
[13] for a special case). Thus continuation of discrete
breathers from the ordered nonlinear regime is guar-

2 DST models (also known as discrete nonlinear Schrödinger
equations) were an important early source of LOs in nonlinear
lattices [16], but the recent wave of activity on LOs is connected
with the realization that the phenomenon is much more general.

3 He also kept the disorder fixed, but by scaling the field by the
square root of the nonlinearity this is equivalent to decreasing the
disorder to zero as the nonlinearity goes to infinity.
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anteed to at least some amount of disorder and weak-
ening of the nonlinearity.

The questions we address here numerically are
whether one can find continuous paths of LOs
from the ordered nonlinear regime to the edge of
the Albanese–Fröhlich regime and whether there
is a genuine obstacle to continuation within the
Albanese–Fröhlich regime. The answer we find in our
chosen model is that all the discrete breathers we stud-
ied continue to Anderson modes except for some small
discontinuities occurring in the Albanese–Fröhlich
regime.

Throughout the paper we use the term LO for An-
derson modes, breathers and any time-periodic spa-
tially localized oscillations in between. We avoid the
terms “mode”, which suggests a linear regime, and
“intrinsic”, which is supposed to denote an effect not
requiring randomness, because our message is that
localized oscillation is a more general phenomenon
encompassing both limits.

We begin by describing the chosen model in Sec-
tion 2. Then in Sections 3–5, respectively, we describe
the numerical methods used to obtain a breather in the
anharmonic ordered case, to continue it towards the
linear disordered case, and to compute its linear stabil-
ity. The results are presented in Sections 6 and 7. The
paper concludes with a short summary in Section 8.

2. The model

We study an anharmonic Hamiltonian system of the
Klein–Gordon type, given by the Hamiltonian,

H =
m∑

n=1

1
2 p2

n + 1
2ω2

n u2
n − su3

n

+ε 1
2

m−1∑
n=1

(un − un+1)
2, (2)

where{un}mn=1 are the coordinates of them particles
with respect to their equilibrium positions and{ωn}mn=1
the frequencies of small amplitude oscillation of the
particles, which can be different as will be explained
shortly; −su3

n is the anharmonic part of the on-site
potential for the particlen, and therefore a softening

potential,s is a parameter which describes the degree
of anharmonicity and takes its value in [0,1],s = 0
being the harmonic case, andε is the coupling parame-
ter,ε = 0 corresponding to no coupling. The coupling
potential is harmonic and nearest neighbour, though
both these assumptions can be relaxed.

The disorder is implemented here by means of the
curvaturesω2

n of the local potentials at their minima.
Since the masses have all been chosen equal to 1, this
gives rise to frequenciesωn. Suppose they take two
values randomly distributed, say

ωn = ω0

(
1 + ρ

rn

2

)
. (3)

Hereρ is the disorder parameter, taking its value in
[0,1]. At ρ = 0, there is no disorder and all the fre-
quencies are equal toω0, which is taken to be 1;
{rn}mn=1 are the components of a random vector of±1.
At ρ = 1, the most disordered case, the frequencies are
0.5ω0 or 1.5ω0. The parameterρ is to be considered
a monotonic functionρ = ρ(s) of the nonlinearitys,
with ρ(0) = 1 andρ(1) = 0, giving a path from the
anharmonic ordered case to the harmonic disordered
case. Examples of these paths are

ρ = 1 − sq, q > 0. (4)

We study paths withq = 1 andq = 1/4 in this paper
(it might have been more natural to take onlyC∞

paths, but we were interested to investigate the effect
of theq = 1/4 approach to the disordered linear limit
too, because of the small number of bifurcations on it).

We could have chosen random masses or random
coupling strengths instead of or as well as random
curvatures, or a continuous distribution forωn rather
than a discrete one, but we think that our choice is
a good first case to study. For a study of an exam-
ple with continuous distribution ofωn, see [17]. Note
also how this approach differs from that used in [1]:
in that work, the degree of disorder was kept fixed
while the nonlinearity was tunable; here we tune both.
We suspect that this is more relevant than the possi-
ble differences arising from the two underlying mod-
els (a Hamiltonian lattice of classical oscillators vs. a
discrete self-trapping equation). We consider only 1D
chains, but it would also be interesting to study 2D
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or 3D models and models in which the randomness
arises partially or completely from a random network
of couplings.

The dynamical equations of the system are (ṗn =
ün = −∂H/∂un):

Fn(u, s, ε) = ün + ω2
nun − 3s u2

n

+ε(2un − un−1 − un+1) = 0. (5)

3. Obtaining breathers and Anderson modes

3.1. Obtaining a breather

Numerical methods for finding breathers are de-
scribed in [14,15,20]. We work in the space of
time-periodic, time-symmetric solutions of specified
frequency ωb, with continuous second derivative,
which is denoted byE2

s (ωb). Therefore the functions
un(t) can be approximated by truncated Fourier series
(rotating wave approximation) of the form:

un(t) =
km∑

k=−km

zk
n eikωbt = z0 +

k=km∑
k=1

2zk
n cos(kωbt).

(6)

The second equality holds becausezk
n is real andzk

n =
zk−n, as a result of the operator in Eq. (5) being real
and the time-symmetry ofun(t).

Using the Newton–Raphson method, we first find
a solution for the isolated oscillator with a given fre-
quencyωb, using as a seed the solution of the harmonic
problem. The starting seed for obtaining a breather is
a particle with this solution and the others at rest. By
varying ε from ε = 0, with small steps, we are able
to obtain a breather from the uncoupled limit.

3.2. Obtaining Anderson modes

This is a much simpler task. When the on-site po-
tential is harmonic the dynamical equations of the sys-
tem (5) can be written:

ün = −ω2
nun − ε(2un − un−1 − un+1), (7)

or in more compact notation:

Fig. 1. The components of two Anderson modes, which are at the
end of the paths with (a)q = 1/4, and (b)q = 1.

ü = −Ωu. (8)

Then it is simply a question of finding eigenvectorsu

of the matrixΩ and checking whether they are spa-
tially localized. In one dimension (cf. [21]), for arbi-
trarily weak disorder the spectrum ofΩ consists of
m eigenvaluesω̃2

k in (0, ∞), whose eigenvectorsvk

are localized nearn = k and decay exponentially as
|n| → ∞. Thus Eq. (8) has periodic solutions:

uk
n(t) = cos(ω̃kt)v

k
n, sin(ω̃kt)v

k
n. (9)

As we are working in the space of time-reversible so-
lutions, we are only concerned with the first set of
solutions of Eq. (9). They are easy to obtain numeri-
cally. Two of them are shown in Fig. 1, which are the
LOs at the end of theq = 1/4 andq = 1 paths.

4. Continuation of localized oscillations

Here we explain the method that we have used for
continuing the breather in its path towards disorder.
Sample results are presented in Sections 6 and 7.

The continuation cannot be done at constant fre-
quency as there is no guarantee that at the harmonic
limit there is any Anderson mode with the breather
frequency (except for the trivial solution,un = 0, ∀n).
Instead, we choose to maintain constant the action of
the loop,
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I =
m∑

n=1

∮
pn dqn =

m∑
n=1

∮
u̇n dun (10)

(perhaps better called its “area”, as “action” has many
other meanings). Among other advantages, this pre-
vents the continuation from moving towards the zero
solution. As the periodic functions of arbitrary fre-
quency do not form a vector space, we change the
time scaling:t → φ = ωbt . Denoting differentiation
with respect toφ by prime (′), we haveü = ω2

bu
′′,

and ωb will appear in the dynamical function as a
parameter to be determined. Therefore, we work in
Es(2π) ×R, Es(2π) being a suitable Banach space of
time-symmetric 2π -periodic functions. The action is
I = ωb

∑m
n=1

∫ 2π

0 (u′
n)

2 dφ.
Substituting the expressions (6) withφ = ωbt into

the dynamical equations (5), withu′′ = ω2
bü, and col-

lecting the terms in the exponentials exp(ikφ), we ob-
tainm(km+1) different algebraic equationsG(z, s) =
{{Gk

n(z, s)}km

k=0}mn=1 for the m(km + 1) variablesz =
{{zk

n}km

k=0}mn=1 and the frequency of the self-localized
modeωb. Using the expressions forun in Eq. (6), I
can be easily calculated to be

I (z, ωb) = πωb

m∑
n=1

km∑
k=1

(k 2zk
n)

2. (11)

Then, we add to the system of equationsG, the equa-
tion

GI (z, ωb) = I (z, ωb) − I0 = 0. (12)

The dynamical equations are reduced to a set of
m(km+1)+1 algebraic equations in them(km+1)+1
unknownszk

n andωb. Hereafter we will use the nota-
tion

G̃ = (G, GI ) and z̃ = (z, ωb). (13)

The Jacobian of̃G with respect of̃z is of special im-
portance. On the one hand its invertibility is the condi-
tion for the Implicit Function Theorem (IFT) to apply
and, therefore, to guarantee the existence of a unique
branch of solutions̃z(s) in the neighbourhood of a so-
lution z̃0 at s0. On the other hand, it is used within
the Newton method for continuing a solution, which
is the practical realization of the IFT. If(z̃0, s0) is a

solution ofG̃(z̃, s) = 0, ands1 = s0 + δs is a nearby
value, writingz̃1 = z̃0 + δz̃, we have

G̃(z̃0 + δz̃, s1) ≈ G̃(z̃0, s1) + ∂z̃G̃(z̃0, s1) δz̃. (14)

Therefore, we obtain a first approximation for the so-
lution at s1 by making the last expression zero. This
approximation is

z̃1 = z̃0 + δz̃ = z̃0 − [∂z̃G̃(z̃0, s1)]
−1G̃(z̃0, s1). (15)

Using z̃1 as a new seed instead ofz̃0, and repeating
this procedure, we are able to obtain a sequence of ap-
proximations to the solution ats1 which, provided it
exists and it is close enough tos0, converges quadrat-
ically to machine precision.

We need an initial breather solution ats0 = 1 to start
our continuation procedure. This can be obtained by a
preliminary continuation from the uncoupled limit, as
discussed in Section 3.1. In our numerics we started
with the simplest configuration, single breathers (i.e.
those which correspond in the uncoupled limit to one
particle oscillating and the others at rest). Once the so-
lution is continued to the desired value of the coupling
ε, it becomes the starting point for our continuation
into Anderson modes. We have used a model with 21
particles, a number which proves to be large enough
to observe the LOs.

For every initial condition and path in parameter
space that we examined, we found several values of
s where the Jacobian∂z̃G̃ has zero eigenvalues, so in
principle a bifurcation could take place. In spite of that,
the Newton method generated an almost continuous
path of LOs.

To clarify whether an eigenvalue is really zero or
only very small, because of the inaccuracy of the trun-
cations of the Fourier series and the numerical error,
we have plotted the whole set of eigenvalues with
respect tos. Then it is easy to observe the evolu-
tion of the different eigenvalues, and if one of them
changes sign it is clear that we have a zero eigen-
value. As the eigenvalues{vi} can be complex we
plot abs(vi) sign(Revi), which gives the clearest plot.
A complex eigenvalue whose real part changes sign
would appear as a discontinuity, but there are two of
them, and they are easily recognized and checked with
the plot of their counterpart abs(vi) sign(Im vi).
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Most of the eigenvalues of∂z̃G̃ are easily recog-
nized, due to the fact that most oscillators in an LO are
oscillating with very small amplitudes. An easy way
to trace their origin is to analyze the spectrum from
the limit of weak coupling. In such a case, the dynam-
ical equations corresponding to oscillators with small
amplitudes are

Fn(u, s) = ω2
bu

′′
n + ω2

n(s)un = 0. (16)

Substitution of the Fourier representation in terms of
the modeszk

n coskφ, gives

−k2ω2
bz

k
n + ω2

n(s)z
k
n = 0. (17)

That is, these oscillators would only contribute with
diagonal entries in the Jacobian∂z̃G̃, of the form

vk
n = ω2

n(s) − k2ω2
b(s). (18)

As ωn can take only two different values,ω±(s) =
ω0 ± 1

2ρ(s), we obtain

vk
± = ω2

±(s) − k2ω2
b(s). (19)

Therefore, we obtain 2(km +1) different possible val-
ues for these eigenvalues. Atε = 0, each of these has
a degeneracy coinciding with the number of oscilla-
tors at rest with frequencyω+(s) or ω−(s), respec-
tively. When the couplingε is switched on, each of
these will split into a “band”, and that degeneracy will
generically be raised.

Then there will be other eigenvalues of differ-
ent origin, those associated to sites which are in a
high-amplitude oscillation (just one site for a single
breather). Those will be typically detached from the
bands discussed above, so they are easily spotted. An-
other complex conjugate pair of isolated eigenvalues
comes from the last equation (Eq. (12)). It is associ-
ated with the interchange of amplitude and frequency
that maintains the action constant.

5. Linear stability

The linear stability of an LO can be calculated by
means of the monodromy matrix, cf. [7,15,19,20,22].
This is obtained as follows; supposeu = {un(t)}mn=1 is

an LO for a certain value ofs, with frequencyωb and
periodTb = 2π/ωb andξ(t) = {ξn(t)}mn=1 a C2

m small
perturbation ofu(t) defined on [0, Tb]. Linearization
of Eq. (5) gives the equations,

ξ̈n + ω2
n ξn − 6s un(t) ξn + ε(2ξn − ξn−1 − ξn+1)

= 0. (5)

Writing the momentaπn(t) = ξ̇n(t), we obtain a
set of dynamical equations for({ξn(t)}, {πn(t)}),
which can be integrated numerically. As the functions
(ξ(t), π(t)) are determined linearly by their initial
conditions att = 0, and the integration determines
their values att = Tb, we obtain a 2m × 2m linear
operator, called the monodromy matrix,T0:( {ξn(Tb)}

{πn(Tb)}
)

= T0

( {ξn(0)}
{πn(0)}

)
. (21)

Therefore the linear stability of the LO is deter-
mined by the eigenvalues of the monodromy matrix,
called Floquet multipliers. The fact that the system is
Hamiltonian and real implies that ifλ is an eigenvalue,
then 1/λ, λ∗, 1/λ∗ are also eigenvalues. Then a nec-
essary condition for linear stability is that all the Flo-
quet multipliers be on the unit circle in the complex
plane. Setting aside the cases with multiple Floquet
multipliers of mixed symplectic signature, this is also
a sufficient condition for linear stability.

6. Results

Here we give details and explanations of some nu-
merical simulations, and present the results. The num-
ber of particles ism = 21, the coupling parameter is
ε = 0.05. The number of Fourier coefficients was be-
tween 7 and 11, that iskm ∈ {6, . . . , 10}, which may
appear small, but in fact we considered the truncation
good only when the last Fourier coefficient is at least
10−6 times smaller than the largest one (which is al-
waysk = 1 or 2). Of course, when we approach the
disordered linear limit, this ratio diminishes to values
of the order of 10−20. We have increasedkm as a test to
values up to 14, but this does not produce any change
(apart from the computational time), even at the dif-
ficult points where the eigenvalues of∂z̃G̃ approach
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zero and a change of behaviour is produced. The ran-
dom vector of±1, which determines which particles
have high or low frequency is

rn = (1, −1, −1, −1, 1, −1, 1, 1︸︷︷︸
A

, −1, 1, −1, −1︸ ︷︷ ︸
C

,

1, 1, −1, 1, 1︸ ︷︷ ︸
B

, −1, −1, 1, 1), (22)

where we have labeled the groups of particles A (parti-
cles 7 and 8), C (particles 11 and 12), and B (particles
13–17), for future reference. Several paths followed
from nonlinearity-order,s = 1, to linearity-disorder,
s = 0, have been studied. Also we have studied paths
backwards starting ats = 0, which usually lead to
multi-breathers. Here we comment on two significant
ones froms = 1: the linear one, where the functionρ
of Eq. (3) isρ = 1 − s, and the pathρ = 1 − s1/4,
which we will refer to as the 1/4 path.

6.1. The linear path

We start with the single breather with frequency
ωb = 0.85 obtained from the uncoupled limit coded 0
for all the particles, except the central particle, number
11, coded+1. The code means 0 for particles at rest,
+1, for particles oscillating with phase 0 att = 0, and
−1, for initial phaseπ (see, for example [7]). This
frequency allows a relatively large window of values
outside the linear modes [7]. The Fourier spectrum of
this breather appears in Fig. 2, and its projection onto
the local phase planes in Fig. 3. Its action (area) was
found to beI = 0.1286.

Then we continued it froms = 1 towardss = 0.
As s diminishes, the two particles C with the same
frequency at rest begin to oscillate in phase, evolving
to what we will call the double central LO, that is the
two particles C oscillating in phase and the others al-
most at rest. At the same time two new LOs appear;
one of them consists of the group B, oscillating with
code(+1, −1, 0, −1, +1), and the other is the group
A of particles with code(−1, +1). All these oscilla-
tions can be seen in the Fourier spectrum that appears
in Fig. 4. At s1 = 0.322, the oscillation C disappears.

Fig. 2. Fourier components of the breather withωb = 0.85 and
s = 1. Vertical lines separate the coefficients of the particles.
Crosses give the Fourier coefficients. We can see that only the first
two or three of each particle (four for the eleventh one) contribute
significantly to the spectrum.

Fig. 3. Phase space of the breather. The exterior curve corresponds
to the particle 11, the first interior curve corresponds to both the
two neighbouring particles.

At s2 = 0.234 the oscillation A is annihilated and, in
the end, the only surviving LO is B.

In Fig. 5 we can see the evolution of the eigenvalues
of ∂z̃G̃(z̃, s). At smaller scale it can be seen that only
the group of eigenvalues labelledw1− crosses the zero
line, which happens abouts1. Inspection of the Fourier
components shows that fors < s1, the odd Fourier
components are negligible, therefore the frequency is
in fact doubled: we have an inverse period doubling
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Fig. 4. LO at halfway to the disordered linear regime. From the
single breather a two-particle LO, C, is formed at 11 and 12, which
will completely disappear ats = 0.322, bif. 1. The two-particle
LO, C, at particles 7 and 8, will disappear ats = 0.234, bif.
2. There is a five-particle LO, B, at (13,14,15,16,17) which in
the end will be completely symmetrized and the only surviving
localized oscillation of nonnegligible amplitude. For these last two
modes the largest Fourier component isk = 2, and the oddk’s are
negligible. Therefore their frequency is in fact double that shown
— we are close to a period doubling bifurcation.

bifurcation ass decreases, and the resulting LO for
s < s1 is an orbit of half the action taken twice over.

The eigenvalues of the monodromy matrix evolve
along the path, as shown in Fig. 6. To numerical res-
olution they sometimes cross each other but do not
appear to abandon the unit circle, even when some
with opposite symplectic (Krein) signature [7] cross,
or when a pair of conjugates join at±1. If observed
on a small scale, however, we expect that one would
see small bubbles of instability near these collisions,
cf. [15,20,23].

6.2. The 1/4 path

This path starts with the same single breather, at the
particle 11, but the evolution of the LO is much sim-
pler. The neighbouring particle 12 begins to oscillate
in phase, and we get a double LO in C that evolves to
the double Anderson mode in C. The evolution of the
eigenvalues of the Jacobian can be observed in Fig. 7,
with an enlargement in Fig. 8. The eigenvalue crossing
zero atsc = 0.2938 can be identified with resonance

Fig. 5. Evolution of the eigenvalues of the Jacobian∂z̃G̃(z̃, s).
Most of the eigenvalues correspond to linear modes on the parti-
cles close to rest; these are labelled bywk±, wherek ∈ Z denotes
the dominant temporal Fourier harmonic involved and the± sign
indicates whether the mode is associated with particles with dis-
order variablern = ±1, see Eq. (2). The eigenvalues associated
with perturbation of the excited sites are labelledbk; however, the
first two are mixed with the linear modes. Finally, the eigenvalue
labelledIw is a complex conjugate pair related to the interchange
of amplitude and frequency that maintains the action constant; the
apparent discontinuity is due to the change of sign of the real part.

Fig. 6. Evolution of the eigenvalues of the monodromy for the
linear path. All of them appear to remain of modulus 1. The
two groups of eigenvalues ats = 1 which have different Krein
signature cross arounds = 0.8 at −1 (phaseπ ) and again mix
abouts = 0.4 at 1 (phase 0) without apparent loss of stability.
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Fig. 7. Evolution of the eigenvalues of the∂z̃G̃(z̃, s) along the 1/4
path. The labels are the same as in Fig. 5.

Fig. 8. Enlargement of Fig. 7, showing the eigenvalues in the group
w1−. Apparently only one eigenvalue crosses the zero line; it is
related to a change of phase of a small amplitude mode on particle
5. The double LO on particles 11 and 12 evolves continuously.
Also visible in this picture is the group of eigenvaluesw2+ at
very smalls, which crosses the zero line at abouts = 0.01; this
is related to the disappearance of the Fourier components with
k 6= 1 at the linear limit.

with a linearized mode on particles 1–6; the oscilla-
tion of this group increases ass approachessc from
either side, but with opposite phase on the two sides,
as illustrated in Fig. 9. Also, the whole group labelled
w2+ crosses zero nears = 0.01, as mentioned in the
figure caption.

Fig. 9. Evolution of the LO through the zero eigenvalue at
s = 0.2938 on the 1/4 path: on the right, Fourier components be-
fore the bifurcation, ats = 0.294, on the left, after the bifurcation,
at s = 0.293; at the top, the 21 particles, at the bottom, particles
1–6.

7. Bifurcation study

We have studied in some detail the important bifur-
cations, that is those that involve changes of behaviour
of nonnegligible amplitude. These bifurcations can be
detected in several ways: slowness and/or difficulty of
convergence of the Newton method, including jumps
in the step prescribed; looking at the points where an
eigenvalue of the Jacobian crosses or approaches zero;
and abrupt changes in the Fourier spectrum or in the
plot of the coordinates versus time. Special care has
to be taken when an eigenvalue approaches zero and
turns back. Is the Newton method jumping to another
branch of solutions, or are we dealing with a bifurca-
tion? With our present program, we cannot expect to
reach the exact point where a bifurcation takes place,
as the Jacobian is not invertible there (this could be
solved by using arc-length continuation with a suit-
able choice of transversal). A great help is obtained,
however, by restarting the Newton method after the
bifurcation, and tracing it backwards, seeing if the so-
lutions take the same path or another one, and in this
case, which one. Some other considerations such as
approximate symmetries can be used, as we shall see
below.
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Fig. 10. Bifurcation diagram along the 1/4 path. The bifurcation
variable is the component in Fourier space in the direction of
the eigenvector with zero eigenvalue for the operator∂z̃G̃(z̃, s)

at s = 0.2938, which is shown in the inset. The outer prongs,
composed of the central oscillation plus an oscillation similar to
this eigenvector, with the same phase for the upper prong, and
a phase difference ofπ for the lower one, lead to nonlocalized
oscillations in the nonlinear limit.

We depict bifurcation diagrams by plotting with re-
spect to the parameters a bifurcation variable, which
is the projection of the solutions on the null subspace
of the Jacobian at the bifurcation, that is the centre
subspace. If we do not have exactly zero eigenval-
ues, or two very small ones crossing or approaching
zero, we may have to decide which is the appropriate
centre subspace where the bifurcation is taking place.
This can be done by comparing the corresponding
eigenvectors just before and after the bifurcation and
observing the evolution of the eigenvalues.

7.1. Bifurcations in the 1/4 path

This is a very simple path as there is only an iso-
lated eigenvalue crossing zero (Fig. 8), except when
we get very close to the linear disordered case (s =
0.01), where a group of linear modes crosses zero. We
think that the bifurcation associated with this eigen-
value crossing zero is a typical feature for LOs in ran-
dom systems, when they resonate with linear modes
on other parts of the system. The bifurcation diagram
can be seen in Fig. 10. To understand this, it is helpful
to compare with Fig. 9 and to notice how the frequen-

Fig. 11. Frequencies of the LO (also twice its frequency) and all
the linearized modes about equilibrium for the 1/4 path.

cies of the LO and a linearized mode located mainly
on particles 2–4 cross (Fig. 11).

If the frequencies of a (time-symmetric) LO of ac-
tion I on one finite chain of oscillators and a linearized
mode on another finite chain cross as a parameters

passes through a valuesc, then for the joint system
of two independent chains there is a pitchfork bifur-
cation in the set of time-symmetric LOs of actionI
at s = sc, because one can add any small amount of
the linearized mode, in either phase, and decrease the
action of the LO correspondingly. Generically, these
changes cause a slight shift in the frequency ratio, re-
quiring a compensating shift in parameter leading to
a pitchfork. If one now connects the two chains by
coupling their ends to make a single chain, the pitch-
fork can be expected generically to break (unless some
spatial symmetry is preserved), making an imperfect
pitchfork. This can be seen in the bifurcation diagram
in Fig. 10. We have obtained the two outer prongs
of the pitchfork by the following procedure: we add
to a solution{un}, not too close to the bifurcation,
the eigenvector corresponding to the centre subspace,
scaled so that both have the same action. We rescale
again so as to obtain a vector with the same action as
our solutions. This is used as a seed for the Newton
method to obtain a branch of solutions that joins to the
previous one at the bifurcation point. Subtracting the
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eigenvector, instead of adding, we are able to obtain
the other branch.

This can be confirmed easily by comparing the plots
of the coordinates versus time before and after the bi-
furcation. It shows the change of phase in a group of
six particles. Moreover, the null eigenvector is com-
posed mainly of the first Fourier components of these
particles.

This is not a standard imperfect pitchfork bifurca-
tion, however, as both the “horizontal” branches are
observed to be linearly stable, in contrast to a standard
imperfect pitchfork for periodic orbits of a Hamilto-
nian system for which the “horizontal” branch would
change stability. We conjecture that the bifurcation
diagram should be completed by creation of a pair
of unstable time-asymmetric LOs by a “Rimmer bi-
furcation” (pitchfork for periodic orbits of reversible
Hamiltonian systems) [24] from one of the “vertical
branches” after a short interval of instability.

Note that although the standard setting for analyzing
bifurcations of periodic orbits in Hamiltonian systems
is to consider variation of the set of periodic orbits
of given energyE with respect toE and/or external
parameters, the same results apply for given actionI ,
because dI/dE = T , the period, which is neither zero
nor infinite.

7.2. Bifurcations in the linear path

The bifurcation diagram can be seen in Fig. 12. The
bifurcation variable is the projection of the solutions
on the centre subspace for bif. 2. The breather starts
at s = 1 with code +1 on particle 11 (in group C) and
follows the path 1(+), on which the LOs A and B grow
ass decreases. The first eigenvalue crossing the zero
line is not visible in Fig. 12, but corresponds to a linear
mode on another part of the chain, given a discontinu-
ity like the one described above. The second produces
the first important bifurcation, i.e. related to interac-
tions of LOs of nonnegligible amplitude. This is bif.
1, at s1 = 0.322. There the central mode on C, dis-
appears, producing path 2, on which the odd Fourier
coefficients are negligible and presumed to be due to
numerical error, i.e. the frequency is doubled. Contin-
uation of the solution backwards from the bifurcation

leads to path 1(−), where the solution is identical to
that on path 1(+) except for a phase change ofπ , lead-
ing ats = 1 to the single breather coded−1 on parti-
cle 11. Manipulation of the solutions in path 1, before
and near the bifurcation, eliminating the central LO,
and continuing it forwards and backwards, makes it
possible to find a third branch, path 5, which leads at
s = 1 to a general oscillation of the system.

Putting these together, we obtain an inverse
period-doubling bifurcation, shown in the inset to Fig.
12 by using as bifurcation variable a coordinate on
the centre subspace for bif. 1, which distinguishes be-
tween the two phases 1(±). It is not a standard period
doubling bifurcation (as described in [25] for generic
Hamiltonian systems or [24] for reversible Hamilto-
nian systems), however, because numerics show that
all branches are linearly stable. Our conjecture is that
there is a short interval of instability on path 5 which
terminates in another period doubling bifurcation,
generating an unstable LO which differs from that
on path 1 mainly by group C being phase-shifted by
π/2. This would still be a time-symmetric orbit, but
aboutt = T/4 rather thant = 0 (T being the period).

Continuation of path 2 leads to bif. 2, ats2 = 0.234,
where it jumps onto path 3, where the LO A has dis-
appeared, and ats = 0, it is the only surviving LO.
Using analogous procedures to the above, we also ob-
tain two other nearby branches, giving paths 4 and 6.
On path 4, the LO A(−) differs from A(+) by a phase
π , and on path 6, the LO A is absent. The limits of
paths 4 and 5 leading backwards to general oscilla-
tions give, approaching tos = 1, different oscilla-
tions. The approximate symmetry between paths 4 and
5 occurs only near the bifurcation. We identify this
bifurcation as an imperfect pitchfork, but again since
all the branches shown are linearly stable, there must
be some unstable branches too and we conjecture the
same diagram as in the previous subsection.

7.3. General comment

In each case, we found only a limited number of
eigenvalues crossing zero, which are the eigenvalues
of the two or three first linear modes of the particles
with frequenciesω+ or ω− near rest, and the com-
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Fig. 12. Bifurcation diagram along the linear path. The bifurcation variable is the component in Fourier space in the direction of the
eigenvector with zero eigenvalue for the operator∂z̃G̃(z̃, s) at bif. 2 (bif. 1 in the inset). It is fully explained in the text.

pound modes, depending on the path followed; their
number is of the order of the number of particles. In-
creasing the number of Fourier components does not
change this fact; only the very few first components
differ appreciably from zero, and the higher modes
are of very small amplitude. Increasing the number of
particles, on the other hand, increases proportionally
the number of zero crossings. Therefore, we guess that
for infinite systems there will be an infinite number of
eigenvalues crossing zero.

8. Conclusion

Discrete breathers are time-periodic localized
oscillations (LO) of weakly coupled networks of an-
harmonic oscillators. Anderson modes are LOs for
spatially random networks with linear dynamics. For
a model which interpolates between these two limits,
we have found numerically that although Anderson
modes typically4 evolve to a “general oscillation”

4 Not always: in some cases, the computation continued an An-
derson mode onto a discrete breather, but this depended on how
fast it went through some bifurcation points where there was a
“random” choice of branches.

with no spatial localization, on moving parameters
in the opposite direction, discrete breathers can be
followed almost continuously to Anderson modes,
which are often (though not always) localized around
the same sites as the breathers. This asymmetry is
natural in view of the fact that there are many more
time-symmetric periodic solutions of given period at
the ordered anharmonic limit ((3m − 1)/2 for a sys-
tem of sizem) than at the disordered harmonic limit
(m), but onlym of them are single-site breathers. The
others are “multi-site breathers” [4].

No paths have been found, however, that completely
avoid degeneracies in the linearized continuation op-
erator. We found bifurcations at these points. They are
often fold bifurcations, which strictly speaking makes
it impossible to continue further. Nevertheless, at ev-
ery fold point we always found a very nearby path
onto which to jump and continue towards the disor-
dered linear limit. For some paths these bifurcations
are related to changes in behaviour of groups of parti-
cles near rest. This happens, for example, in the path
called the 1/4 path. The maximum value of the Fourier
coefficients of the particles involved in the bifurcation
are about 10−2 times the largest of the whole system.
Even less significant are the eigenvalues of thek = 2
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modes crossing zero almost at the linear limit where
they will disappear. No change of stability is observed
in these paths, although it can be found in some oth-
ers. A detailed study of the main bifurcations has been
made, obtaining the different branches and plotting
them in numerically determined centre subspaces. We
found inverse period doublings and broken pitchforks.
Bifurcations such as these, destroying LOs as disor-
der increases and nonlinearity decreases, should be ex-
pected, since there are many more time-symmetric pe-
riodic orbits of given action at the ordered anharmonic
limit than at the disordered harmonic limit, as already
remarked above. A very interesting project for the fu-
ture is to understand the generic bifurcations for such
systems, which are not standard ones because they are
unfoldings of bifurcations for decoupled systems.

A technical, but possibly important, point is that we
continue LOs at constant action, rather than constant
period.
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