ScRIBE: The design of a large-scale event
notification infrastructure

Antony Rowstronh, Anne-Marie Kermarrelg Peter Drusché)
and Miguel Castrb

IMicrosoft Research Ltd., St. George House,
1 Guildhall Street, Cambridge, CB2 3NH, UK.
2Rice University MS-132, 6100 Main Street,
Houston, TX 77005-1892, USA.

PRELIMINARY DRAFT

Abstract

In this paper we outline the design of Scribe, a reliabledasgale event no-
tification infrastructure, built on top of a peer-to-peejjeat location and routing
infrastructure overlayed on the Internet (Pastry). Scplmvides large-scale dis-
tributed applications with a highly flexible group commuation protocol. Scribe
leverages Pastry [1] and benefits from its robustness bik#ja self-organization
and locality properties. The peer-to-peer model of Pastyery well suited to
a scalable implementation of group communication. TherPasuting scheme
is used to create a group (a topic) and to build an efficienttioagt tree for
the dissemination of events within groups composed of anpielly large set of
members (subscribers). Scribe is highly scalable and gapostpotentially bil-
lions of topics and subscribers per topic and multiple miigis per topic. Scribe
relies on an efficient tree control mechanism, which recemég the multicast
tree to track changes in group membership and use.

1 Introduction

Scalable event notification is an important component of yniawernet-wide dis-
tributed applications. Its publish-subscribe paradignvedi-suited to the loosely cou-
pled nature of many such applications. Subscribers radisédr interest in an event
or a pattern of events; once subscribed, they are asynchsgnootified of any event
matching their interest, regardless of the event’s souropic-based publish-subscribe
is similar to group-based communication; subscribing to@d is equivalent to be-
coming a member of a group. Events are associated with apkatitopic, and all the
subscribers of that topic receive the event.

The publish-subscribe paradigm is very general. Consdtyy@pplications built
around the publish-subscribe paradigm have varying chematics, both in terms of
the number of subscribers and the number of publishers.il\itte same application,
the number of publishers and subscribers can vary over tirog.instance, a flash-
crowd phenomenon can occur, where the number of subsciiieases suddenly.

Two example applications with very different numbers ofsuribers per topic are
instant messaging/presence monitoring and topical news &ports result) dissem-
ination. Instant messaging/presence notification is gjfyicharacterised by a small
group of subscribers (‘buddies’) for each topic (an indiad), whilst in the topical
news dissemination each topic can have millions of subsigiand potentially multi-
ple publishers.

This motivates the need for a general-purpose, highlytlexand reliable event-
notification infrastructure capable of supportin@ topics and subscribers per topic.
IP multicast is not widely deployed and lacks reliabilityagantees, and this motivates
the need for application-level multicast protocols. Agprate algorithms and systems
for scalable subscription management and scalable, kelmbpagation of events are
still an active research area [2, 3, 4]. A particularly premg approach, exemplified by
Scribe, is to employ an application-level multicast praidauilt on top of a scalable,
self-organizing and secure peer-to-peer overlay network.

In this paper we sketch the design and a preliminary evaloatf Scribe, a large-
scale event notification infrastructure. Scribe is desigioebe an efficient and highly-
flexible application-level multicast protocol able to scab a large number of sub-
scribers, publishers and topics. Scribe is built as a semictop ofPastry, a scalable,
secure and self-organizing peer-to-peer overlay netwbfk $cribe is a peer-to-peer
system with no centralised components.

A group communication protocol or publish subscribe systedesigned to main-

tain topic or group membership information and dissemieants. For both of these
activities, centralization is inappropriate as it limitsatability with respect to both the
number of topics and the number of subscribers per topicteBstited is the de-
centralised model of a peer-to-peer system, where eacltipating node has equal
responsibilities. Load balancing is achieved in Scribeaose the membership man-
agement is fully distributed over the participating nodes.

Scribe uses Pastry to subscribe, unsubscribe and raistsewen particular topic.
Scribe uses an efficient tree control mechanism. As the nuwibsubscribers in-
creases for a given topic, Scribe adjusts the configuratidhenassociated multicast
tree. The depth of the multicast tree automatically adaptise number of subscribers,
thus achieving a balance between the load on individualhadd the latency of event
delivery. Moreover, Scribe leverages the robustness,sgHnization, security, local-
ity and reliability properties of Pastry.

The rest of the paper is organized as follows. Section 2 gavesverview of the
Pastry routing and object location substrate. Section 8rie=s the design of Scribe.
We present some preliminary performance results in Sedtaond discuss related work
in Section 5. Section 6 offers conclusions and outlinesréutvork.

2 Pastry

In this section we briefly describe Pastry [1], a peer-torpeeation and routing sub-
strate that provides the basic infrastructure for Scribastiy forms a secure, robust,
self-organizing overlay network in the Internet. Any Imtet connected host that runs
the Pastry software and has proper credentials can pat&ip the overlay network.

Each Pastry node has a unique, 128-bit nodeld; the existidglds are uniformly
distributed. The basic capability Pastry provides is tocedfitly and reliably route
messages towards the node whose nodeld is numericallystkosa given destination
nodeld (destld), among all live nodes. Moreover, Pastryasinave good locality
properties. At each routing step, a message is forwardedrioda whose nodeld
shares a longer prefix with the destld than the current notidevravelling the least
possible distance in the underlying Internet. Distanceefinéd here according to a
scalar proximity metric, such as the number of IP hops.

Pastry is highly efficient, secure, scalable, fault restliend self-organizing. As-
suming a Pastry network consisting df nodes, Pastry can route to any node in less
than|log., N| steps on average {s a configuration parameter with typical value 4).

With concurrent node failures, eventual delivery is gusgad unlessl/2 | nodes with
adjacent nodelds fail simultaneously (s a configuration parameter with typical value
16).

The tables required in each Pastry node have @ly 1) x [log,» N| + 21 entries,
where each entry maps a nodeld to the associated node’s t€sadoreover, after a
node failure or the arrival of a new node, the invariants iafiécted routing tables can
be restored by performin@(log,» N) remote procedure calls (RPCs). In the following,
we give a brief overview of the Pastry routing scheme. Mortitkd information
about Pastry can be found in [1].

For the purpose of routing, nodelds are thought of as a seguErdigits with base
2°. A node’s routing table is organized into levels with— 1 entries each. Thg’ — 1
entries at leveh of the routing table each refers to a node whose nodeld shizees
present node’s nodeld in the firsdigits, but whose: + 1th digit has one of the” — 1
possible values other than thet 1th digit in the present node’s id. Note that an entry
in the routing table points to one of potentially many nodéwge nodeld have the
appropriate prefix. Among such nodes, the one closest tordsept node (according
to the proximity metric) is chosen in practice.

In addition to the routing table, each node maintains posrtie the set of nodes
whose nodelds are numerically closest to the present nodelsld, irrespective of
prefix. (More precisely, the set contaifh® nodes with larger and/2 with smaller
nodelds). This set is called theaf set. Figure 1 depicts the state of a hypothetical
Pastry node with the nodeld 10233102 (base 4), in a systehusiea 16 bit nodelds
and a value ob = 2.

In each routing step, a node normally forwards the messagadoe whose nodeld
shares with the destld a prefix that is at least one digib {@ts) longer than the prefix
that the destld shares with the present node’s id. If no sode exists, the message is
forwarded to a node whose nodeld shares a prefix with theddasibng as the current
node, but is numerically closer to the destld than the ptasahe’s id. It follows from
the definition of the leaf set that such a node exists in thesktaunlesg /2| adjacent
nodes in the leaf set have failed simultaneously.

2.1 Locality

Pastry can route messages to any nodédmg,, V| steps in the common case. Another
issue is the distance (in terms of the proximity metric) a sage is travelling. Recall
that the entries in the node routing tables are chosen tot@the nearest node with

Neighborhoodet

02212102 | 22301203 | 31203203 | 33213321

Routingable

)
0
2
3

e

) Gozzaz | |
0 [Tomw [
2 | (T .

Leaket

Figure 1: State of a hypothetical Pastry node with nodeld3B@R2,6 = 2. All
numbers are in base 4. The top row of the routing table reptedevel zero. The
neighborhood set is not used in routing, but is needed duraralg addition/recovery.

the appropriate nodeld prefix. As a result, in each step aageds routed to the near-
est node with a longer prefix match (by one digit). While tluisdl decision process
clearly can’'t achieve globally shortest routes, simulagibave shown the average dis-
tance travelled by a message is only 40% higher than thendistaetween the source
and destination in the underlying network [1].

2.2 Node addition and failure

A key design issue in Pastry is how to efficiently and dynaithjigaaintain the node
state, i.e., the routing table, leaf set and neighbourhet&l & the presence of node
failures, node recoveries, and new node arrivals. The pobdis described and evalu-
ated in [1].

Briefly, an arriving node with the new nodeld can initialize its state by contacting
a nearby nodel (according to the proximity metric) and askingto route a special
message to the existing nodewith nodeld numerically closest t&i. X then obtains
the leaf set fron¥, the neighbourhood set from, and theith row of the routing table
from theith node encountered along the route frainto /. One can show that using
this information, X can correctly initialize it state and notify nodes that nezénow
of its arrival, thereby restoring all of Pastry’s invariant

To handle node failures, neighbouring nodes in the nodeddespwhich are aware
of each other by virtue of being in each other’s leaf set)quically exchange keep-
alive messages. If a node is unresponsive for a pefipi is presumed failed. All
members of the failed node’s leaf set are then notified ang upeate their leaf sets
to restore the invariant. Since the leaf sets of nodes wifacadt nodelds overlap,
this update is trivial. A recovering node contacts the nddets last known leaf set,
obtains their current leaf sets, updates its own leaf setlaenl notifies the members
of its new leaf set of its presence. Routing table entriesréfar to failed nodes are
repaired lazily; the details are described in [1].

2.3 Pasiry API

In this section, we briefly describe the application progrmang interface (API) ex-
ported by Pastry to applications such as Scribe. The pred&x®l is slightly simpli-
fied for clarity. Pastry exports the following operations:

nodeld = pastrylnit(Credentials) causes the local node to join an existing Pastry
network (or start a new one) and initialize all relevant staReturns the lo-
cal node’s nodeld. The credentials are provided by the egiplin and contain
information needed to authenticate the local node and tarebgoin the Pastry
network. Pastry’s security model is discussed in [5].

route(msg,destld) causes Pastry to route the given message to the node witlhdnode
numerically closest to destld, among all live Pastry nodes.

Applications layered on top of Pastry must export the follaywperations:

deliver(msg,destid) called by Pastry when a message is received and the locaknode
nodeld is numerically closest to destld, among all live reode

forward(msg,destld,nextld) called by Pastry just before a message forwarded to the
node with nodeld = nextld. The application may change theesusa of the
message or the value of nextld. Setting the nextld to NULL t&iiminate the
message at the local node.

newl eafs(leafSet) called by Pastry whenever there is a change in the leaf ses. Th
provides the application with an opportunity to adjust aggilon-specific in-
variants based on the leaf set.

In the following section, we will describe how Scribe is |age on top of the Pastry
API. Other applications built on top of Pastry include PA&Persistent, global storage
utility [5, 6].

3 Scribe

Scribe is a scalable event notification infrastructuretharil top of Pastry. It allows
nodes to create evetdpics. Other nodes can then register interest in specific topics
thereby becomingubscribers to the topic. Scribe disseminates events published to
a topic to all the topic’s subscribers. Events are deliveatidbly (under certain as-
sumptions), and events sent by the same publisher are abzliirethe same order they
were sent. Nodes can subscribe or publish to many topicstagics can have many
publishers and subscribers. Scribe is scalable becauaa gupport many topics and
many subscribers per topic.

Scribe offers a simple API to applications:

Create(credentials, topicld) creates a topic with topicld, where credentials allow a
mechanism for checking that that the node creating the togsdhe authority to
do so.

Subscribe(credentials, topicld, eventHandler) causes the node to subscribe to atopic,
and all events that are received for that topic are passée teMent handler spec-
ified. The credentials are used to perform access controertis call returns,
all subsequent events published to the topic will be reckive

Unsubscribe(credentials, topicld) causes the node to unsubscribe to a topic.

twithin the design of Scribe it is possible that events thatHzeen published to a topic before the
subscription to a topic can be retrieved. However, the abaimd mechanism for controlling this is not
yet fully designed, and is therefore, currently omitted.

7

Publish(credentials, topicld, event) causes the event to be published to the topic
specified provided the credentials allow the caller to dse.thi

The next section sketches the design of Scribe. We are ¢lyrferalizing a secu-
rity model for Scribe and analysing its properties and,¢fane, these are not described
in this paper.

3.1 Design

Scribe uses the Pastry overlay network to manage topiciereamnd subscription lists,
and to disseminate events published to the various topicaseds Pastry to choose
and locate aendez-vous point for each topic. Then, it creates a multicast tree to
disseminate the events published to the topic. Subsanipmd unsubscriptions to a
topic are managed in a decentralized way to enable Scrilhgofmost large subscription
lists and fast changes in these lists.

Scribe creates a separate tree for each topic that is rottied #opic’s rendez-vous
point. It builds the tree on top of the Pastry network usinglaesne similar to reverse
path forwarding [7]: the tree is formed by the set contairtimg reverse of the Pastry
routes from each subscriber to the rendez-vous point.

Both Pastry and Scribe are fully decentralised, all denosiare made locally with
every node having the same level of responsibility, andyenede being symmetric. A
node can act as a publisher, a root of a rendez-vous poinhscsber to a topic, or a
forwarder in the multicast tree (or any sensible combimatbthese). The scalability
and reliability of Scribe and Pastry relies on this peepé®r model.

For the sake of clarity, we first describe the base mechanissd to build the
multicast trees, manage topic creation and subscripti@tti@ 3.3 discusses event
publishing and dissemination. Section 3.4 describes anaweal mechanism that re-
duces multicast latency and space overhead. The technigedso maintain the tree
when nodes fail and to provide reliable event delivery ased$sed in Section 3.5.

3.2 Base mechanism

To create a topic with identifietopicld, a CREATE message is routed using Pastry
to the node with thenodeld numerically closest taopicld. This node becomes the
rendez-vous point for the topic. Thetopicld is the hash of the topic’s textual name
concatenated with its creator’s name. The hash is compusied a collision resistant
hash function (e.g. SHA-1 [8]). This ensures an even digtidin of topics across

8

Pastry nodes becausedelds have a uniform distribution. Additionally, rendez-vous
points can be located using Pastry given only the textualesaof the topic and its
creator without the need for an additional naming servickréaction.

We are considering alternative techniques to name topiddauate rendez-vous
points. For example, we could choose the rendez-vous poioe the node withodel d
closest to the topic creaton®deld. Therefore, the creator would be the rendez-vous
point for the topic but when it failed the node with the nexis#stodeld would take
over. We would then use Pastry to map textual names todtkeld of the topic creator.
This can be advantageous when the creator publishes ewetitse topic frequently
because it is the root of the multicast tree in the common.case

Scribe creates a separate multicast tree for each topigstihadted at the topic’s
rendez-vous point. The nodes in the multicast tree aredcédlevarders. Some for-
warders are subscribers but others are not. Each forwardartans aforwarding
table (per topic) with the IP addresses of its children in the ncali tree.

A node can subscribe to a topic by using Pastry to routeia message with the
topic’stopicld as the destination. This message will be routed towardsetidez-vous
point for the topic, which is the root of the tree. Each nodmnglthe route checks if
it is already a forwarder for the topic. If it isn’t, it sendsgtJOIN message to the next
node along the route and becomes a forwarder for the topidslélready a forwarder,
it does not send the message again. In either case, it adgssthieus node along the
route to its forwarding table for the topic.

Figure 2 illustrates the base subscription mechanism. irbkes represent nodes,
and some of the nodes have theadeld shown. For simplicityp = 1, so the pre-
fix is matched one bit at a time. In this figure, we assume thexetis a topic with
topicld 1100 whose rendez-vous point is the node with the same identifiee. node
with nodeld 0111 is subscribing to this topic. In this example, Pastry willt® the
JOIN message through nodé801 and 1101 before it arrives ati100. This route is
represented with the solid lines in Figure 2.

Let us assume that nodég801 and1101 are not forwarders for topit100 at the
beginning. The subscription of nodé&11 causes the other two nodes along the route
to become forwarders for the topic, and to add the precedialg mn the route to their
forwarding tables. Now let us assume that nédlé0 decides to subscribe to the same
topic. The route of itgoIN message is shown using a dot-dash line. Since moge
is already a forwarder, it adds no@&00 to its forwarding table for the topic, and
the JOIN message is not routed any further. Unsubscription reqaesthandled in a
similar fashion as described in Section 3.4.2.

9

Subscriber

T

N |
N i
\\ ’s
Ny 0111\
o
1001 Subscriber

Root

Figure 2: Base Mechanism for Subscription and MulticaseTCeeation.

This mechanism is well-suited to topics with a large numbesudoscribers. The
list of subscribers to the topic is distributed across theéasan the multicast tree. The
randomization properties of Pastry ensure that the treeeis valanced and that the
forwarding load is evenly balanced across the nodes. Tlablea Scribe to support
extremely large groups.

Additionally, subscription requests are handled locatlaidistributed fashion. In
particular, the root does not need to handle all subscnptguests, and the locality
properties of Pastry ensure that mostN messages reach a forwarder that is topo-
logically close (according to Pastry’s distance metrid)islenables Scribe to provide
efficient support for topics whose subscription lists charapidly.

The other interesting property is that most subscribershildren of a forwarder
that is topologically close. This reduces the number of iapks of the same packet
that are sent in the same physical network link, which impeogcalability to large
groups.

3.3 Event dissemination

Publishers to a topic use Pastry to locate the root of the®piulticast tree. To raise
an event on a given topic for the first time, a publisher semdappropriate request
using the Pastry operatianout e(event, t opi cl d) . Pastry routes the event to
the root of the tree. Events are disseminated from the roanhdo the leaves of the
multicast tree in the obvious way.

To improve performance, a publisher caches the IP addre$sbe root for each
topics it publishes to. This allows it to subsequently sewehis for dissemination

10

directly to the root without routing through Pastry, unledailure has occurred.

There is a single multicast tree for each topic and all phlelis use the procedure
above to publish events to the topic. This has the advantegettallows the root to
perform access control, and it can be used to ensure ordguiaigntees across events
from different publishers.

An alternative would be for each publisher to the topic taetitto the multicast
tree and flood events over the tree from its attachment pdihts has the potential
of decreasing latency for all subscribers that descend tr@rsame child of the root
as the publisher. Unfortunately, these are o#gb(with b = 4) of all subscribers on
average. For the remaining subscribers, latency incrdasemuse the event is routed
(less efficiently) to the root before it can be forwarded terth Additionally, note that
all events must be received by the root in both alternatitfesyoot’s bandwidth and
processing power limit the rate of event dissemination ithladternatives.

A third alternative would be to build a separate multicasetrooted at each pub-
lisher to the topic. This has the potential to decrease lad¢mty and improve through-
put when compared to the previous alternatives. Howeveantplicates tree mainte-
nance, and increases space overhead and message traffiotaimthe trees. Latency
would not improve by more than a factor of two for topics withaage number of
subscribers, and bandwidth would likely not improve beeatln® bottleneck in sys-
tems like this is usually the link to the slowest subscriddrerefore, we rejected this
alternative.

3.4 Tree maintenance

For topics with few subscribers, the basic subscription lmetsm described above
produces deep trees that have long paths with no branchihg uhnecessarily in-

creases the number of forwarders, and the latency for evesgghination. This section
describes a mechanism to adjust the height of a topic’s ocagititree as the number
of subscribers and the load on nodes varies. The tree growa Wie number of sub-

scribers or the load on forwarders increases, and it shivfien the parent of a node
acting as a forwarder in the multicast tree is capable of agthe load.

3.4.1 Growingthetree

When growing a tree, nodes do not automatically become faisva for a topic when
they receive @oIN message. Instead, the message is forwarded along the Ragey

11

to the root until it reaches a node that is already a forwafoleis the root). Then, this
node decides whether it can add the subscriber to its foimgutdble. This decision

is made by examining the local resources of the node, egtpthl number of entries

in the forwarding tables of all the topics it forwards, the#able network bandwidth,
and its processing power. If the node is not overloaded,dsdtle subscriber to its
forwarding table for the topic. Otherwise, the precedindein the route is added to

the forwarding tablep uses the same procedure to decide whether to add the original
subscriber to its forwarding table.

To help clarify this, consider Figure 2 again. If the root rq@l100) is not over-
loaded wherd)111 subscribes tdopicld 1100, it will add 0111 to its forwarding table
directly, and1101 and1001 do not become forwarders. But if the root is overloaded,
1101 will be added to its forwarding table. Then,01 may add)111 to its forwarding
table if it is not overloaded.

Of course, we need a mechanism for an overloaded node to shddoly drop-
ping entries from its forwarding table. Otherwise, sulisers that Pastry routes to an
overloaded node would be unable to join the multicast tréés hechanism classifies
nodes according to their distance in Pastry hdmgs(, p, ¢) = k if the Pastry route
from p towards the root of topi¢ hask hops betweep andg.

When a node; becomes overloaded, it rejects requests to add any podiéh
hops(t, p, ¢) > 1 to its forwarding table fot. But it always accepts requests to add any
nodep with hops(¢, p, ¢) = 1. In the latter case, nodgattempts to reduce its load by
removing any node in its forwarding table for some topi¢ such thahops(t', o, q) >
1. This is done by informing that it should send a newoIN message for topic¢'.
This new message may reaglagain buty will add the preceding node in the route to
its forwarding table rather than thereby growing the multicast tree.

We are still experimenting with different heuristics toesgtlwhich forwarding table
entries to drop. Here, we describe the heuristic we use irefperimental results
presented in this paper. The overloaded n@dbooses topi¢’ and node to drop as
follows:

1. ¢ is the topic with the shortest prefix match wigts nodeld such thaty’s for-
warding table fort’ has an entry with distance greater than 1 hop. If more than
one topic satisfies this condition chooses one of them randomly with uniform
probability.

2. oisthe entry iny’s forwarding table for’ with the minimum value offiops(t', o, q)
greater than 1. If there are several entries with the mininvafoe, ¢ chooses

12

one of them randomly with uniform probability.

The choice oft’ is designed to keep multicast trees small for topics with alsm
number of subscribers; trees for such topics have forwgrditle entries only on
nodes that match a large prefix of the topic’s identifier. Theice ofo is designed to
reduce the overhead to grow the tree, and reduce the numi@mafrders in the tree
that are not subscribers.

There is an additional problem that is important to addr&sse to the properties
of Pastry routing, the average number of nogeasich thahops(¢, p, ¢) = 1 increases
with the length of the prefix of's topicld that is matched by’s nodeld. For example,
if ¢ is the root of the multicast tree for topidt can be chosen as a representative of a
domain at any level for Pastry routing. If nodes are unifgrdiktributed in topological
space and all Pastry nodes subscribe to a topic, the roo¢ ¢bfic is expected to have
an average of 15 nodes (when b=4), which have no common préfixtlae topic’s
topicld, in its forwarding table. These nodes chose the root as thpiesentative in
level O for the domain where thepicld lies but there arq% — 1 other nodes that could
be chosen as the representative at level 0.

The problem can be fixed by having an overloaded nptltat matches a topics
topicld to levell drop from its forwarding table fot nodes that match thspicld to
level m < [— 1. These nodes are asked to send a new message for the topic
using an alternative representative instead of npd@astry nodes maintain redundant
information to provide fault tolerance, which makes rogtithrough an alternative
possible in most cases.

3.4.2 Shrinkingthetree

The multicast tree for a topic should shrink when the numbesubscribers to the
topic decreases. This improves latency and reduces resoonsumption (forwarding
table space, processing, and bandwidth) at forwardersatigapruned. This section
describes the handling of unsubscriptions and a mechaoishrink a tree.

When a node wishes to unsubscribe to a topic it proceedslag/folIf it does not
have any entry in the forwarding table for that topic, it se@lEAVE message to its
parent in the multicast tree, and the parent removes thefnoahats forwarding table.
Otherwise, the node simply registers that it is no longert@ssriber.

When the number of entries in a node’s forwarding table famad drops below a
threshold, it sends @HRINK message to its parent asking if it could take these entries.
The message contains the entries and indicates if the ssralsubscriber. The parent

13

checks its load, decides whether or not to accept the recaredsends the appropriate
reply to the requester. If the request is accepted, the stguelears its forwarding
table, and the parent adds the new entries to its forwardibtetand removes the
requester if it is not a subscriber.

The SHRINK message is sent when the number of entries in the forwardinig t
drops below a threshold for a certain period of time. It is artpnt to wait for a certain
period of time to prevent instability when the tree is groguirA node also waits for
the same period of time after a request to shrink the treeriiede The values for both
the threshold and the time period are still under study.

In the example of Figure 2, consider that the nadel has only two entries in its
forwarding table for topid 100 and this is below the threshold. Node01 will send
a shrink request to its parent to take over nod&s) and0111. If the parent node
accepts, it adds100 and0111 to its forwarding table and, since node01 is not a
subscriber, it is removeR)01. As a result, nodeg8100 and0111 will receive events
directly through node 101, and nodel001 does not consume resources on behalf of
the multicast tree for topit100.

35 Rdiability

Scribe relies on Pastry to achieve resilience to node fanllswe intend to use TCP to
disseminate events reliably in the presence of lossy links.

Periodically, each parent in the multicast tree sends albesrmessage to its chil-
dren. Most of these messages can be piggybacked on the &edmgsdisseminated,
and on the heartbeat messages already exchanged betwé&gmBdss. A child sus-
pects that its parent is faulty when it fails to receive haesat messages. When this
happens, it uses Pastry to routecaN message to a different parent.

All forwarders for a topic keep a small buffer containing tast events published
to the topic that they received. The new parent uses thigbtdfretransmit messages
that the new child missed while detecting and recoverinmftbe old parent’s fault.

For example, in Figure 2, consider the failure of nddé1. Node1001 detects
the failure of1101 and uses Pastry to routeyalN message towards the root through
an alternative route. The message reaches nbtlewho addsl001 to its forwarding
table and, since it is not a forwarder, sendscaNn message towards the root. This
causes nodél100 to add1111 to its forwarding table. Nodé&100 retransmits events to
nodel111 that might have been missed. These are then retransmittextite 001.

Forwarding table entries are soft-state that is discardddss it is periodically

14

refreshed. Children periodically send messages to thearpan the multicast tree
restating their interest in the topic. The parent discandsrtentry in the forwarding
table if they fail to refresh it for a certain time period.

Scribe can also tolerate faults of multicast tree roots. Jta¢e associated with
the rendez-vous point, which identifies the creator and Inagcaess control list, is
replicated across the closest nodes to the root node in the nodeld space (where a
typical value ofk is 5). It should be noted that these nodes will be in the letaf se
of the root node. If the root fails, the node whasadeld is now the closest to the
topicld becomes the new root. Children of the old root will detect ib&iled and
will be rerouted to the new root when they run the procedurscdieed above. The
same will happen with publishers. When a publisher startdighing to the new root,
it uses its event buffer for the topic to retransmit eveng thight have been lost while
recovering from the fault.

These fault recovery mechanisms scale well: fault detedsadone by sending
messages to a small number of nod@$l6g.: V)), and recovery from faults is local;
only a small number of node&)(log,» N)) is involved.

4 Preliminary experimental results

We are currently evaluating Scribe in a simulated networkrenment. We present
some preliminary results of experiments in this section.

These experiments ran in a Pastry network with= 100, 000 nodesp = 4, and
I = 16. The topological distance metric used by Pastry to optimizde locality
was determined as follows: each node was mapped to a pointwio dimensional
Cartesian space, and the distance between two nodes wastsetdistance between
the points they mapped to. The nodes were uniformly distetbwver the Cartesian
space.

There was a single topic and we varied the number of subssribeéhe topic from
1 to N. The subscribers were chosen randomly with uniform prdigiiiom the set
of all Pastry nodes. When a node had more thantries in its forwarding tables, it
was considered overloaded for the purpose of controlliag growth (as described in
Section 3.4).

Figure 3 shows the average and maximum depth of the multicsstgenerated
whenc = 0 andc = 75 for different numbers of subscribers. Setting= 0 is
equivalent to using the base mechanism for tree construdescribed in Section 3.2.

15

»

—— Averagéredeptli75)

=—Maximundepthtfe€75)

—&— Averagé&eeeptl0)

== Maximurntreeeptl0)

Depthtfee
N w
i

1 10 100 1000 10000 100000
Numbewsubscriber§100,0000des)

Figure 3: Maximum and average depth of multicast tree wher) andc = 75 versus
number of subscribers, with= 4 and N = 100, 000.

The results indicate that the multicast tree is well baldnées expected, the results
show that withc = 0 the height of the tree is largely independent of the number of
subscribers. The height of the tree in this case is deteahigehe number of Pastry
nodes and not by the number of subscribers to the topicldyisN = 4.15 on average
and the maximum heightis 5, which is the ceiling of this vaMéth ¢ = 75, the height
of the tree is determined by the number of subscribers todpie t It grows withlog.n
(wheren is the number of subscribers to the topic). This reducestalisgemination
latency, and the number of forwarders that are not subsstibe

5 Related work

Scribe implements a form of application-level multicagpesposed by several projects,
for example, Narada [9] and Overcast [10]. This approachthagotential to over-
come the naming, scalability, security, and deploymenblgms that have plagued IP
multicast [11, 12] at the expense of decreased performameication-level multicast
duplicates packets on physical links and incurs highentatdut the experimental re-
sults presented here and in [10, 9] suggest that this pediocepenalty is acceptable.
Like Scribe, Overcast and Narada implement multicast usirgglf-organizing
overlay network, and they assume only unicast support flwerunderlying network
layer. Overcast builds a source-rooted multicast treegusimd-to-end bandwidth mea-

16

surements to optimize bandwidth between the source andhtig group members.
Narada uses a two step process to build the multicast treest, Kibuilds a mesh
per group containing all the group members. Then, it contdra spanning tree of
the mesh for each source to multicast data. The mesh is dgadynoptimized by

performing end-to-end latency measurements and addingeandving links to re-

duce multicast latency. The mesh creation and maintendgegtams assume that all
group members know about each other and, therefore, do alat t&clarge groups.

Scribe follows a similar two level approach: it builds a ndsst tree on top of
a Pastry network and it performs end-to-end measuremeruptimize this network
according to some metric (e.g., IP hops, latency, or baniwid he main difference
is that the Pastry network can scale to an extremely largebeuof nodes because the
algorithms to build and maintain the network have space amel ¢osts of)(logys N).
This enables support for extremely large groups and shafitige Pastry network by
a large number of groups.

The recent work on Bayeux [4] is the most similar to Scribey@a is built on top
of a scalable peer-to-peer object location system callgeStay [13] (which is similar
to Pastry). Like Scribe, it supports multiple groups, andutlds a multicast tree per
group on top of Tapestry but this tree is built quite diffdignEach request to join a
group is routed by Tapestry all the way to the node acting esdbt. Then, the root
records the identity of the new member and uses Tapestryute @nother message
back to the new member. Every Tapestry node (or router) aloisgoute records the
identity of the new member. Requests to leave the group flemdpic are handled in
a similar way.

Bayeux has two scalability problems when compared to Sckirstly, it requires
nodes to maintain more group membership information. Tl keeps a list of all
group members, the routers one hop away from the route keegp eohtaining on
average% members (where b is the base used in Tapestry routing), and.s&ec-
ondly, Bayeux generates more traffic when handling group bezship changes. In
particular, all group management traffic must go throughrtta. Bayeux proposes
a multicast tree partitioning mechanism to ameliorateagl@eblems by splitting the
root into several replicas and partitioning members actbhem. But this only im-
proves scalability by a small constant factor.

In Scribe, the expected amount of group membership infaondtept by each
node is bounded by a constant independent of the number apgrembers. Ad-
ditionally, group join and leave requests are handled lgcalhis allows Scribe to
scale to extremely large groups and to deal with rapid chainggroup membership

17

efficiently.

The height of multicast trees in Bayeux grows with the lothen of the number
of nodes in the Tapestry network. Whereas in Scribe, thehheigthe multicast trees
grows with the logarithm of the number of group members. Ehisresult in lower la-
tency in Scribe for small group sizes, which are common iteinsmessaging/presence
notification applications.

The mechanisms for fault resilience in Bayeux and Scribeatse very different.
All the mechanisms for fault resilience proposed in Bayetexsender-based whereas
Scribe uses a receiver-based mechanism. In Bayeux, rqutestively duplicate out-
going packets across several paths or perform active ptolsdect alternative paths.
Both these schemes have some disadvantages. The mech#émasmerform packet
duplication consume additional bandwidth, and the medmasithat select alternative
paths require replication and transfer of group memberstiggmation across differ-
ent paths. Scribe relies on heartbeats sent by parentsitattieren in the multicast
tree to detect faults, and children use Pastry to reroutaliffexent parent when a fault
is detected. Nodes keep a window of recently seen packet®tolacal repair when
a node attaches to a new parent. Additionally, Bayeux doepmowide a mechanism
to handle root failures whereas Scribe does.

Herald [3] is a companion project that shares the goals ab8cr

There are several peer-to-peer object location and rogthgmes that are similar
to Pastry, for example, Tapestry [13], Chord [14], and Cohfeddressable Networks
(CAN) [15]. We are currently evaluating whether Scribe canbloilt on top of these
systems, and what properties can be achieved using eacérof th

6 Conclusonsand Futurework

We have presented Scribe, a large-scale event notificatgiars built on top of Pastry,
a peer-to-peer object location and routing infrastruct@eribe is designed to scale to
billions of subscribers and topics, and supports multiplblighers per topic. Scribe
can support many topics with a wide range of subscribersgméc,thence the same in-
frastructure can concurrently support applications sicimstant messaging/presence
notification, topical news distribution (e.g. sports résyland stock price broadcast-
ing.

Scribe relies on the Pastry routing mechanism to perforrs@yfition management
and to configure multicast trees used to disseminate evertsét subscribers for a

18

topic. The properties of Pastry ensures that the multicasstare balanced, and tree
management techniques are used to ensure that Scribe odly egapt to changes in
the number of subscribers to a topic. Resilience to failar&cribe is based on the
Pastry self-organization properties.

Preliminary simulations results are very promising and weauirrently perform-
ing a detailed analysis of results obtained from the sinmubat A security model
for Scribe is currently under development, and we are addimgore sophisticated
network topology model to the Pastry simulator to allow ubétter understand the
characteristics of Pastry and Scribe with respect to ndt\omality.

Acknowledgements

We would like to thank Marc Shapiro and Andrew Herbert, areldther members of
the Microsoft Research Cambridge Distributed Systems foutheir insightful and
helpful comments.

References

[1] Antony Rowstron and Peter Druschel. Pastry: Scalablstriduted ob-
ject location and routing for large-scale peer-to-peetesys, January 2001.

http://www.research.microsoft.com/ antr/PAST/

[2] Patrick Eugster, Sidath Handurukande, Rachid Gueiranne-Marie Kermar-
rec, and Petr Kouznetsov. Lightweight probabilistic bioast. InProceedings of
The International Conference on Dependabl e Systems and Networ ks (DSN 2001),
July 2001.

[3] Luis F. Cabrera, Michael B. Jones, and Marvin Theimer.rattk Achieving a
global event notification service. HotOSVIII, May 2001.

[4] Shelly Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, RandKbtz, and John
Kubiatowicz. Bayeux: An Architecture for Scalable and Fdalerant Wide-
Area Data Dissemination. IRroc. of the Eleventh International Workshop on
Network and Operating System Support for Digital Audio and Video (NOSSDAV
2001), June 2001.

19

[5] Peter Druschel and Antony Rowstron. PAST: A persistert anonymous store.
In HotOS VIII, May 2001.

[6] Antony Rowstron and Peter Druschel. Storage manageredtcaching in
PAST, a large-scale, persistent peer-to-peer storageyufiD01l. Accepted for
SOSPO1nttp://www.research.microsoft.com/ antr/PAST/

[7] Yogen K. Dalal and Robert Metcalfe. Reverse path forwagaf broadcast pack-
ets. Communications of the ACM, 21(12):1040-1048, 1978.

[8] FIPS 180-1. Secure hash standard. Technical Reportidatibh 180-1, Fed-
eral Information Processing Standard (FIPS), Nationdltlite of Standards and
Technology, US Department of Commerce, Washington D.Cril AP95.

[9] Yang hua Chu, Sanjay G. Rao, and Hui Zhang. A case for estsymulticast.
In Proc. of ACM Sgmetrics, pages 1-12, June 2000.

[10] John Jannotti, David K. Gifford, Kirk L. Johnson, M. s Kaashoek, and
James W. O'Toole. Overcast: Reliable Multicasting with are@ay Network. In
Proc. of the Fourth Symposium on Operating System Design and | mplementation
(OSDI), pages 197-212, October 2000.

[11] S. Deering and D. Cheriton. Multicast Routing in Datagrinternetworks and
Extended LANs ACM Transactions on Computer Systems, 8(2), May 1990.

[12] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.,ldaad L. Wei. The PIM
Architecture for Wide-Area Multicast RoutingEEE/ACM Transactions on Net-
working, 4(2), April 1996.

[13] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Josephpestry: An in-
frastructure for fault-resilient wide-area location amditing. Technical Report
UCB//CSD-01-1141, U. C. Berkeley, April 2001.

[14] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Hldkaishnan. Chord: A
scalable peer-to-peer lookup service for Internet appboa. Technical Report
TR-819, MIT, March 2001.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Sni&re A Scalable
Content-Addressable Network. Rroc. of ACM SGCOMM, August 2001.

20

