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Abstract

In this paper we outline the design of Scribe, a reliable large-scale event no-

tification infrastructure, built on top of a peer-to-peer object location and routing

infrastructure overlayed on the Internet (Pastry). Scribeprovides large-scale dis-

tributed applications with a highly flexible group communication protocol. Scribe

leverages Pastry [1] and benefits from its robustness, reliability, self-organization

and locality properties. The peer-to-peer model of Pastry is very well suited to

a scalable implementation of group communication. The Pastry routing scheme

is used to create a group (a topic) and to build an efficient multicast tree for

the dissemination of events within groups composed of a potentially large set of

members (subscribers). Scribe is highly scalable and can support potentially bil-

lions of topics and subscribers per topic and multiple publishers per topic. Scribe

relies on an efficient tree control mechanism, which reconfigures the multicast

tree to track changes in group membership and use.
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1 Introduction

Scalable event notification is an important component of many Internet-wide dis-

tributed applications. Its publish-subscribe paradigm iswell-suited to the loosely cou-

pled nature of many such applications. Subscribers register their interest in an event

or a pattern of events; once subscribed, they are asynchronously notified of any event

matching their interest, regardless of the event’s source.Topic-based publish-subscribe

is similar to group-based communication; subscribing to a topic is equivalent to be-

coming a member of a group. Events are associated with a particular topic, and all the

subscribers of that topic receive the event.

The publish-subscribe paradigm is very general. Consequently, applications built

around the publish-subscribe paradigm have varying characteristics, both in terms of

the number of subscribers and the number of publishers. Within the same application,

the number of publishers and subscribers can vary over time.For instance, a flash-

crowd phenomenon can occur, where the number of subscribersincreases suddenly.

Two example applications with very different numbers of subscribers per topic are

instant messaging/presence monitoring and topical news (e.g. sports result) dissem-

ination. Instant messaging/presence notification is typically characterised by a small

group of subscribers (‘buddies’) for each topic (an individual), whilst in the topical

news dissemination each topic can have millions of subscribers and potentially multi-

ple publishers.

This motivates the need for a general-purpose, highly-flexible and reliable event-

notification infrastructure capable of supporting109 topics and subscribers per topic.

IP multicast is not widely deployed and lacks reliability guarantees, and this motivates

the need for application-level multicast protocols. Appropriate algorithms and systems

for scalable subscription management and scalable, reliable propagation of events are

still an active research area [2, 3, 4]. A particularly promising approach, exemplified by

Scribe, is to employ an application-level multicast protocol built on top of a scalable,

self-organizing and secure peer-to-peer overlay network.

In this paper we sketch the design and a preliminary evaluation of Scribe, a large-

scale event notification infrastructure. Scribe is designed to be an efficient and highly-

flexible application-level multicast protocol able to scale to a large number of sub-

scribers, publishers and topics. Scribe is built as a service on top ofPastry, a scalable,

secure and self-organizing peer-to-peer overlay network [1]. Scribe is a peer-to-peer

system with no centralised components.

A group communication protocol or publish subscribe systemis designed to main-
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tain topic or group membership information and disseminateevents. For both of these

activities, centralization is inappropriate as it limits scalability with respect to both the

number of topics and the number of subscribers per topic. Better suited is the de-

centralised model of a peer-to-peer system, where each participating node has equal

responsibilities. Load balancing is achieved in Scribe, because the membership man-

agement is fully distributed over the participating nodes.

Scribe uses Pastry to subscribe, unsubscribe and raise events on a particular topic.

Scribe uses an efficient tree control mechanism. As the number of subscribers in-

creases for a given topic, Scribe adjusts the configuration of the associated multicast

tree. The depth of the multicast tree automatically adapts to the number of subscribers,

thus achieving a balance between the load on individual nodes and the latency of event

delivery. Moreover, Scribe leverages the robustness, self-organization, security, local-

ity and reliability properties of Pastry.

The rest of the paper is organized as follows. Section 2 givesan overview of the

Pastry routing and object location substrate. Section 3 describes the design of Scribe.

We present some preliminary performance results in Section4 and discuss related work

in Section 5. Section 6 offers conclusions and outlines future work.

2 Pastry

In this section we briefly describe Pastry [1], a peer-to-peer location and routing sub-

strate that provides the basic infrastructure for Scribe. Pastry forms a secure, robust,

self-organizing overlay network in the Internet. Any Internet connected host that runs

the Pastry software and has proper credentials can participate in the overlay network.

Each Pastry node has a unique, 128-bit nodeId; the existing nodeIds are uniformly

distributed. The basic capability Pastry provides is to efficiently and reliably route

messages towards the node whose nodeId is numerically closest to a given destination

nodeId (destId), among all live nodes. Moreover, Pastry routes have good locality

properties. At each routing step, a message is forwarded to anode whose nodeId

shares a longer prefix with the destId than the current node, while travelling the least

possible distance in the underlying Internet. Distance is defined here according to a

scalar proximity metric, such as the number of IP hops.

Pastry is highly efficient, secure, scalable, fault resilient and self-organizing. As-

suming a Pastry network consisting ofN nodes, Pastry can route to any node in less

thandlog2bNe steps on average (b is a configuration parameter with typical value 4).
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With concurrent node failures, eventual delivery is guaranteed unlessbl=2 nodes with

adjacent nodeIds fail simultaneously (l is a configuration parameter with typical value16).

The tables required in each Pastry node have only(2b� 1) � dlog2bNe+2l entries,

where each entry maps a nodeId to the associated node’s IP address. Moreover, after a

node failure or the arrival of a new node, the invariants in all affected routing tables can

be restored by performingO(log2bN) remote procedure calls (RPCs). In the following,

we give a brief overview of the Pastry routing scheme. More detailed information

about Pastry can be found in [1].

For the purpose of routing, nodeIds are thought of as a sequence of digits with base2b. A node’s routing table is organized into levels with2b � 1 entries each. The2b � 1
entries at leveln of the routing table each refers to a node whose nodeId sharesthe

present node’s nodeId in the firstn digits, but whosen+1th digit has one of the2b�1
possible values other than then+ 1th digit in the present node’s id. Note that an entry

in the routing table points to one of potentially many nodes whose nodeId have the

appropriate prefix. Among such nodes, the one closest to the present node (according

to the proximity metric) is chosen in practice.

In addition to the routing table, each node maintains pointers to the set ofl nodes

whose nodeIds are numerically closest to the present node’snodeId, irrespective of

prefix. (More precisely, the set containsl=2 nodes with larger andl=2 with smaller

nodeIds). This set is called theleaf set. Figure 1 depicts the state of a hypothetical

Pastry node with the nodeId 10233102 (base 4), in a system that uses 16 bit nodeIds

and a value ofb = 2.

In each routing step, a node normally forwards the message toa node whose nodeId

shares with the destId a prefix that is at least one digit (orb bits) longer than the prefix

that the destId shares with the present node’s id. If no such node exists, the message is

forwarded to a node whose nodeId shares a prefix with the destId as long as the current

node, but is numerically closer to the destId than the present node’s id. It follows from

the definition of the leaf set that such a node exists in the leaf set unlessbl=2 adjacent

nodes in the leaf set have failed simultaneously.

2.1 Locality

Pastry can route messages to any node indlog2bNe steps in the common case. Another

issue is the distance (in terms of the proximity metric) a message is travelling. Recall

that the entries in the node routing tables are chosen to refer to the nearest node with
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Figure 1: State of a hypothetical Pastry node with nodeId 10233102,b = 2. All

numbers are in base 4. The top row of the routing table represents level zero. The

neighborhood set is not used in routing, but is needed duringnode addition/recovery.

the appropriate nodeId prefix. As a result, in each step a message is routed to the near-

est node with a longer prefix match (by one digit). While this local decision process

clearly can’t achieve globally shortest routes, simulations have shown the average dis-

tance travelled by a message is only 40% higher than the distance between the source

and destination in the underlying network [1].

2.2 Node addition and failure

A key design issue in Pastry is how to efficiently and dynamically maintain the node

state, i.e., the routing table, leaf set and neighbourhood sets, in the presence of node

failures, node recoveries, and new node arrivals. The protocol is described and evalu-

ated in [1].
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Briefly, an arriving node with the new nodeIdX can initialize its state by contacting

a nearby nodeA (according to the proximity metric) and askingA to route a special

message to the existing nodeZ with nodeId numerically closest toX. X then obtains

the leaf set fromZ, the neighbourhood set fromA, and theith row of the routing table

from theith node encountered along the route fromA to Z. One can show that using

this information,X can correctly initialize it state and notify nodes that needto know

of its arrival, thereby restoring all of Pastry’s invariants.

To handle node failures, neighbouring nodes in the nodeId space (which are aware

of each other by virtue of being in each other’s leaf set) periodically exchange keep-

alive messages. If a node is unresponsive for a periodT , it is presumed failed. All

members of the failed node’s leaf set are then notified and they update their leaf sets

to restore the invariant. Since the leaf sets of nodes with adjacent nodeIds overlap,

this update is trivial. A recovering node contacts the nodesin its last known leaf set,

obtains their current leaf sets, updates its own leaf set andthen notifies the members

of its new leaf set of its presence. Routing table entries that refer to failed nodes are

repaired lazily; the details are described in [1].

2.3 Pastry API

In this section, we briefly describe the application programming interface (API) ex-

ported by Pastry to applications such as Scribe. The presented API is slightly simpli-

fied for clarity. Pastry exports the following operations:

nodeId = pastryInit(Credentials) causes the local node to join an existing Pastry

network (or start a new one) and initialize all relevant state. Returns the lo-

cal node’s nodeId. The credentials are provided by the application and contain

information needed to authenticate the local node and to securely join the Pastry

network. Pastry’s security model is discussed in [5].

route(msg,destId) causes Pastry to route the given message to the node with nodeId

numerically closest to destId, among all live Pastry nodes.

Applications layered on top of Pastry must export the following operations:

deliver(msg,destId) called by Pastry when a message is received and the local node’s

nodeId is numerically closest to destId, among all live nodes.
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forward(msg,destId,nextId) called by Pastry just before a message forwarded to the

node with nodeId = nextId. The application may change the contents of the

message or the value of nextId. Setting the nextId to NULL will terminate the

message at the local node.

newLeafs(leafSet) called by Pastry whenever there is a change in the leaf set. This

provides the application with an opportunity to adjust application-specific in-

variants based on the leaf set.

In the following section, we will describe how Scribe is layered on top of the Pastry

API. Other applications built on top of Pastry include PAST,a persistent, global storage

utility [5, 6].

3 Scribe

Scribe is a scalable event notification infrastructure built on top of Pastry. It allows

nodes to create eventtopics. Other nodes can then register interest in specific topics

thereby becomingsubscribers to the topic. Scribe disseminates events published to

a topic to all the topic’s subscribers. Events are deliveredreliably (under certain as-

sumptions), and events sent by the same publisher are delivered in the same order they

were sent. Nodes can subscribe or publish to many topics, andtopics can have many

publishers and subscribers. Scribe is scalable because it can support many topics and

many subscribers per topic.

Scribe offers a simple API to applications:

Create(credentials, topicId) creates a topic with topicId, where credentials allow a

mechanism for checking that that the node creating the topichas the authority to

do so.

Subscribe(credentials, topicId, eventHandler) causes the node to subscribe to a topic,

and all events that are received for that topic are passed to the event handler spec-

ified. The credentials are used to perform access control. When this call returns,

all subsequent events published to the topic will be received1.

Unsubscribe(credentials, topicId) causes the node to unsubscribe to a topic.
1Within the design of Scribe it is possible that events that have been published to a topic before the

subscription to a topic can be retrieved. However, the control and mechanism for controlling this is not

yet fully designed, and is therefore, currently omitted.
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Publish(credentials, topicId, event) causes the event to be published to the topic

specified provided the credentials allow the caller to do this.

The next section sketches the design of Scribe. We are currently finalizing a secu-

rity model for Scribe and analysing its properties and, therefore, these are not described

in this paper.

3.1 Design

Scribe uses the Pastry overlay network to manage topic creation and subscription lists,

and to disseminate events published to the various topics. It uses Pastry to choose

and locate arendez-vous point for each topic. Then, it creates a multicast tree to

disseminate the events published to the topic. Subscriptions and unsubscriptions to a

topic are managed in a decentralized way to enable Scribe to support large subscription

lists and fast changes in these lists.

Scribe creates a separate tree for each topic that is rooted at the topic’s rendez-vous

point. It builds the tree on top of the Pastry network using a scheme similar to reverse

path forwarding [7]: the tree is formed by the set containingthe reverse of the Pastry

routes from each subscriber to the rendez-vous point.

Both Pastry and Scribe are fully decentralised, all decisions are made locally with

every node having the same level of responsibility, and every node being symmetric. A

node can act as a publisher, a root of a rendez-vous point, a subscriber to a topic, or a

forwarder in the multicast tree (or any sensible combination of these). The scalability

and reliability of Scribe and Pastry relies on this peer-to-peer model.

For the sake of clarity, we first describe the base mechanism used to build the

multicast trees, manage topic creation and subscription. Section 3.3 discusses event

publishing and dissemination. Section 3.4 describes an improved mechanism that re-

duces multicast latency and space overhead. The techniquesused to maintain the tree

when nodes fail and to provide reliable event delivery are discussed in Section 3.5.

3.2 Base mechanism

To create a topic with identifiertopicId, a CREATE message is routed using Pastry

to the node with thenodeId numerically closest totopicId. This node becomes the

rendez-vous point for the topic. ThetopicId is the hash of the topic’s textual name

concatenated with its creator’s name. The hash is computed using a collision resistant

hash function (e.g. SHA-1 [8]). This ensures an even distribution of topics across
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Pastry nodes becausenodeIds have a uniform distribution. Additionally, rendez-vous

points can be located using Pastry given only the textual names of the topic and its

creator without the need for an additional naming service indirection.

We are considering alternative techniques to name topics and locate rendez-vous

points. For example, we could choose the rendez-vous point to be the node withnodeId

closest to the topic creator’snodeId. Therefore, the creator would be the rendez-vous

point for the topic but when it failed the node with the next closestnodeId would take

over. We would then use Pastry to map textual names to thenodeId of the topic creator.

This can be advantageous when the creator publishes events to the topic frequently

because it is the root of the multicast tree in the common case.

Scribe creates a separate multicast tree for each topic thatis rooted at the topic’s

rendez-vous point. The nodes in the multicast tree are called forwarders. Some for-

warders are subscribers but others are not. Each forwarder maintains aforwarding

table (per topic) with the IP addresses of its children in the multicast tree.

A node can subscribe to a topic by using Pastry to route aJOIN message with the

topic’s topicId as the destination. This message will be routed towards the rendez-vous

point for the topic, which is the root of the tree. Each node along the route checks if

it is already a forwarder for the topic. If it isn’t, it sends the JOIN message to the next

node along the route and becomes a forwarder for the topic. Ifit is already a forwarder,

it does not send the message again. In either case, it adds theprevious node along the

route to its forwarding table for the topic.

Figure 2 illustrates the base subscription mechanism. The circles represent nodes,

and some of the nodes have theirnodeId shown. For simplicityb = 1, so the pre-

fix is matched one bit at a time. In this figure, we assume that there is a topic with

topicId 1100 whose rendez-vous point is the node with the same identifier.The node

with nodeId 0111 is subscribing to this topic. In this example, Pastry will route the

JOIN message through nodes1001 and1101 before it arrives at1100. This route is

represented with the solid lines in Figure 2.

Let us assume that nodes1001 and1101 are not forwarders for topic1100 at the

beginning. The subscription of node0111 causes the other two nodes along the route

to become forwarders for the topic, and to add the preceding node in the route to their

forwarding tables. Now let us assume that node0100 decides to subscribe to the same

topic. The route of itsJOIN message is shown using a dot-dash line. Since node1001
is already a forwarder, it adds node0100 to its forwarding table for the topic, and

the JOIN message is not routed any further. Unsubscription requestsare handled in a

similar fashion as described in Section 3.4.2.
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Root

Subscriber
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Figure 2: Base Mechanism for Subscription and Multicast Tree Creation.

This mechanism is well-suited to topics with a large number of subscribers. The

list of subscribers to the topic is distributed across the nodes in the multicast tree. The

randomization properties of Pastry ensure that the tree is well balanced and that the

forwarding load is evenly balanced across the nodes. This enables Scribe to support

extremely large groups.

Additionally, subscription requests are handled locally in a distributed fashion. In

particular, the root does not need to handle all subscription requests, and the locality

properties of Pastry ensure that mostJOIN messages reach a forwarder that is topo-

logically close (according to Pastry’s distance metric). This enables Scribe to provide

efficient support for topics whose subscription lists change rapidly.

The other interesting property is that most subscribers arechildren of a forwarder

that is topologically close. This reduces the number of duplicates of the same packet

that are sent in the same physical network link, which improves scalability to large

groups.

3.3 Event dissemination

Publishers to a topic use Pastry to locate the root of the topic’s multicast tree. To raise

an event on a given topic for the first time, a publisher sends an appropriate request

using the Pastry operationroute(event,topicId). Pastry routes the event to

the root of the tree. Events are disseminated from the root down to the leaves of the

multicast tree in the obvious way.

To improve performance, a publisher caches the IP addressesof the root for each

topics it publishes to. This allows it to subsequently send events for dissemination
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directly to the root without routing through Pastry, unlessa failure has occurred.

There is a single multicast tree for each topic and all publishers use the procedure

above to publish events to the topic. This has the advantage that it allows the root to

perform access control, and it can be used to ensure orderingguarantees across events

from different publishers.

An alternative would be for each publisher to the topic to attach to the multicast

tree and flood events over the tree from its attachment point.This has the potential

of decreasing latency for all subscribers that descend fromthe same child of the root

as the publisher. Unfortunately, these are only116 (with b = 4) of all subscribers on

average. For the remaining subscribers, latency increasesbecause the event is routed

(less efficiently) to the root before it can be forwarded to them. Additionally, note that

all events must be received by the root in both alternatives;the root’s bandwidth and

processing power limit the rate of event dissemination in both alternatives.

A third alternative would be to build a separate multicast tree rooted at each pub-

lisher to the topic. This has the potential to decrease both latency and improve through-

put when compared to the previous alternatives. However, itcomplicates tree mainte-

nance, and increases space overhead and message traffic to maintain the trees. Latency

would not improve by more than a factor of two for topics with alarge number of

subscribers, and bandwidth would likely not improve because the bottleneck in sys-

tems like this is usually the link to the slowest subscriber.Therefore, we rejected this

alternative.

3.4 Tree maintenance

For topics with few subscribers, the basic subscription mechanism described above

produces deep trees that have long paths with no branching. This unnecessarily in-

creases the number of forwarders, and the latency for event dissemination. This section

describes a mechanism to adjust the height of a topic’s multicast tree as the number

of subscribers and the load on nodes varies. The tree grows when the number of sub-

scribers or the load on forwarders increases, and it shrinkswhen the parent of a node

acting as a forwarder in the multicast tree is capable of handling the load.

3.4.1 Growing the tree

When growing a tree, nodes do not automatically become forwarders for a topic when

they receive aJOIN message. Instead, the message is forwarded along the Pastryroute
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to the root until it reaches a node that is already a forwarder(or is the root). Then, this

node decides whether it can add the subscriber to its forwarding table. This decision

is made by examining the local resources of the node, e.g., the total number of entries

in the forwarding tables of all the topics it forwards, the available network bandwidth,

and its processing power. If the node is not overloaded, it adds the subscriber to its

forwarding table for the topic. Otherwise, the preceding nodep in the route is added to

the forwarding table;p uses the same procedure to decide whether to add the original

subscriber to its forwarding table.

To help clarify this, consider Figure 2 again. If the root node (1100) is not over-

loaded when0111 subscribes totopicId 1100, it will add 0111 to its forwarding table

directly, and1101 and1001 do not become forwarders. But if the root is overloaded,1101 will be added to its forwarding table. Then,1101 may add0111 to its forwarding

table if it is not overloaded.

Of course, we need a mechanism for an overloaded node to shed load by drop-

ping entries from its forwarding table. Otherwise, subscribers that Pastry routes to an

overloaded node would be unable to join the multicast tree. This mechanism classifies

nodes according to their distance in Pastry hops:hops(t; p; q) = k if the Pastry route

from p towards the root of topict hask hops betweenp andq.
When a nodeq becomes overloaded, it rejects requests to add any nodep with

hops(t; p; q) > 1 to its forwarding table fort. But it always accepts requests to add any

nodep with hops(t; p; q) = 1. In the latter case, nodeq attempts to reduce its load by

removing any nodeo in its forwarding table for some topict0 such thathops(t0; o; q) >1. This is done by informingo that it should send a newJOIN message for topict0.
This new message may reachq again butq will add the preceding node in the route to

its forwarding table rather thano, thereby growing the multicast tree.

We are still experimenting with different heuristics to select which forwarding table

entries to drop. Here, we describe the heuristic we use in theexperimental results

presented in this paper. The overloaded nodeq chooses topict0 and nodeo to drop as

follows:

1. t0 is the topic with the shortest prefix match withq’s nodeId such thatq’s for-

warding table fort0 has an entry with distance greater than 1 hop. If more than

one topic satisfies this condition,q chooses one of them randomly with uniform

probability.

2. o is the entry inq’s forwarding table fort0 with the minimum value ofhops(t0; o; q)
greater than 1. If there are several entries with the minimumvalue,q chooses
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one of them randomly with uniform probability.

The choice oft0 is designed to keep multicast trees small for topics with a small

number of subscribers; trees for such topics have forwarding table entries only on

nodes that match a large prefix of the topic’s identifier. The choice ofo is designed to

reduce the overhead to grow the tree, and reduce the number offorwarders in the tree

that are not subscribers.

There is an additional problem that is important to address.Due to the properties

of Pastry routing, the average number of nodesp such thathops(t; p; q) = 1 increases

with the length of the prefix oft’s topicId that is matched byq’s nodeId. For example,

if q is the root of the multicast tree for topict it can be chosen as a representative of a

domain at any level for Pastry routing. If nodes are uniformly distributed in topological

space and all Pastry nodes subscribe to a topic, the root of the topic is expected to have

an average of 15 nodes (when b=4), which have no common prefix with the topic’s

topicId, in its forwarding table. These nodes chose the root as theirrepresentative in

level 0 for the domain where thetopicId lies but there areN16 �1 other nodes that could

be chosen as the representative at level 0.

The problem can be fixed by having an overloaded nodeq that matches a topict’s
topicId to level l drop from its forwarding table fort nodes that match thetopicId to

level m < l � 1. These nodes are asked to send a newJOIN message for the topic

using an alternative representative instead of nodeq. Pastry nodes maintain redundant

information to provide fault tolerance, which makes routing through an alternative

possible in most cases.

3.4.2 Shrinking the tree

The multicast tree for a topic should shrink when the number of subscribers to the

topic decreases. This improves latency and reduces resource consumption (forwarding

table space, processing, and bandwidth) at forwarders thatare pruned. This section

describes the handling of unsubscriptions and a mechanism to shrink a tree.

When a node wishes to unsubscribe to a topic it proceeds as follows. If it does not

have any entry in the forwarding table for that topic, it sends aLEAVE message to its

parent in the multicast tree, and the parent removes the nodefrom its forwarding table.

Otherwise, the node simply registers that it is no longer a subscriber.

When the number of entries in a node’s forwarding table for a topic drops below a

threshold, it sends aSHRINK message to its parent asking if it could take these entries.

The message contains the entries and indicates if the senderis a subscriber. The parent
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checks its load, decides whether or not to accept the request, and sends the appropriate

reply to the requester. If the request is accepted, the requester clears its forwarding

table, and the parent adds the new entries to its forwarding table and removes the

requester if it is not a subscriber.

The SHRINK message is sent when the number of entries in the forwarding table

drops below a threshold for a certain period of time. It is important to wait for a certain

period of time to prevent instability when the tree is growing. A node also waits for

the same period of time after a request to shrink the tree is denied. The values for both

the threshold and the time period are still under study.

In the example of Figure 2, consider that the node1001 has only two entries in its

forwarding table for topic1100 and this is below the threshold. Node1001 will send

a shrink request to its parent to take over nodes0100 and0111. If the parent node

accepts, it adds0100 and0111 to its forwarding table and, since node1001 is not a

subscriber, it is removes1001. As a result, nodes0100 and0111 will receive events

directly through node1101, and node1001 does not consume resources on behalf of

the multicast tree for topic1100.

3.5 Reliability

Scribe relies on Pastry to achieve resilience to node faultsand we intend to use TCP to

disseminate events reliably in the presence of lossy links.

Periodically, each parent in the multicast tree sends a heartbeat message to its chil-

dren. Most of these messages can be piggybacked on the eventsbeing disseminated,

and on the heartbeat messages already exchanged between Pastry nodes. A child sus-

pects that its parent is faulty when it fails to receive heartbeat messages. When this

happens, it uses Pastry to route aJOIN message to a different parent.

All forwarders for a topic keep a small buffer containing thelast events published

to the topic that they received. The new parent uses this buffer to retransmit messages

that the new child missed while detecting and recovering from the old parent’s fault.

For example, in Figure 2, consider the failure of node1101. Node1001 detects

the failure of1101 and uses Pastry to route aJOIN message towards the root through

an alternative route. The message reaches node1111 who adds1001 to its forwarding

table and, since it is not a forwarder, sends aJOIN message towards the root. This

causes node1100 to add1111 to its forwarding table. Node1100 retransmits events to

node1111 that might have been missed. These are then retransmitted tonode1001.

Forwarding table entries are soft-state that is discarded unless it is periodically
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refreshed. Children periodically send messages to their parent in the multicast tree

restating their interest in the topic. The parent discards their entry in the forwarding

table if they fail to refresh it for a certain time period.

Scribe can also tolerate faults of multicast tree roots. Thestate associated with

the rendez-vous point, which identifies the creator and has an access control list, is

replicated across thek closest nodes to the root node in the nodeId space (where a

typical value ofk is 5). It should be noted that these nodes will be in the leaf set

of the root node. If the root fails, the node whosenodeId is now the closest to the

topicId becomes the new root. Children of the old root will detect that it failed and

will be rerouted to the new root when they run the procedure described above. The

same will happen with publishers. When a publisher starts publishing to the new root,

it uses its event buffer for the topic to retransmit events that might have been lost while

recovering from the fault.

These fault recovery mechanisms scale well: fault detection is done by sending

messages to a small number of nodes (O(log2bN)), and recovery from faults is local;

only a small number of nodes (O(log2bN)) is involved.

4 Preliminary experimental results

We are currently evaluating Scribe in a simulated network environment. We present

some preliminary results of experiments in this section.

These experiments ran in a Pastry network withN = 100; 000 nodes,b = 4, andl = 16. The topological distance metric used by Pastry to optimizeroute locality

was determined as follows: each node was mapped to a point in atwo dimensional

Cartesian space, and the distance between two nodes was set to the distance between

the points they mapped to. The nodes were uniformly distributed over the Cartesian

space.

There was a single topic and we varied the number of subscribers to the topic from

1 toN . The subscribers were chosen randomly with uniform probability from the set

of all Pastry nodes. When a node had more than entries in its forwarding tables, it

was considered overloaded for the purpose of controlling tree growth (as described in

Section 3.4).

Figure 3 shows the average and maximum depth of the multicasttree generated

when  = 0 and  = 75 for different numbers of subscribers. Setting = 0 is

equivalent to using the base mechanism for tree construction described in Section 3.2.
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Figure 3: Maximum and average depth of multicast tree when = 0 and = 75 versus

number of subscribers, withb = 4 andN = 100; 000.

The results indicate that the multicast tree is well balanced. As expected, the results

show that with = 0 the height of the tree is largely independent of the number of

subscribers. The height of the tree in this case is determined by the number of Pastry

nodes and not by the number of subscribers to the topic. It islog2bN = 4:15 on average

and the maximum height is 5, which is the ceiling of this value. With  = 75, the height

of the tree is determined by the number of subscribers to the topic. It grows withlogn
(wheren is the number of subscribers to the topic). This reduces event dissemination

latency, and the number of forwarders that are not subscribers.

5 Related work

Scribe implements a form of application-level multicast asproposed by several projects,

for example, Narada [9] and Overcast [10]. This approach hasthe potential to over-

come the naming, scalability, security, and deployment problems that have plagued IP

multicast [11, 12] at the expense of decreased performance.application-level multicast

duplicates packets on physical links and incurs higher latency but the experimental re-

sults presented here and in [10, 9] suggest that this performance penalty is acceptable.

Like Scribe, Overcast and Narada implement multicast usinga self-organizing

overlay network, and they assume only unicast support from the underlying network

layer. Overcast builds a source-rooted multicast tree using end-to-end bandwidth mea-
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surements to optimize bandwidth between the source and the various group members.

Narada uses a two step process to build the multicast tree. First, it builds a mesh

per group containing all the group members. Then, it constructs a spanning tree of

the mesh for each source to multicast data. The mesh is dynamically optimized by

performing end-to-end latency measurements and adding andremoving links to re-

duce multicast latency. The mesh creation and maintenance algorithms assume that all

group members know about each other and, therefore, do not scale to large groups.

Scribe follows a similar two level approach: it builds a multicast tree on top of

a Pastry network and it performs end-to-end measurements tooptimize this network

according to some metric (e.g., IP hops, latency, or bandwidth). The main difference

is that the Pastry network can scale to an extremely large number of nodes because the

algorithms to build and maintain the network have space and time costs ofO(log2bN).
This enables support for extremely large groups and sharingof the Pastry network by

a large number of groups.

The recent work on Bayeux [4] is the most similar to Scribe. Bayeux is built on top

of a scalable peer-to-peer object location system called Tapestry [13] (which is similar

to Pastry). Like Scribe, it supports multiple groups, and itbuilds a multicast tree per

group on top of Tapestry but this tree is built quite differently. Each request to join a

group is routed by Tapestry all the way to the node acting as the root. Then, the root

records the identity of the new member and uses Tapestry to route another message

back to the new member. Every Tapestry node (or router) alongthis route records the

identity of the new member. Requests to leave the group from the topic are handled in

a similar way.

Bayeux has two scalability problems when compared to Scribe. Firstly, it requires

nodes to maintain more group membership information. The root keeps a list of all

group members, the routers one hop away from the route keep a list containing on

averageSb members (where b is the base used in Tapestry routing), and soon. Sec-

ondly, Bayeux generates more traffic when handling group membership changes. In

particular, all group management traffic must go through theroot. Bayeux proposes

a multicast tree partitioning mechanism to ameliorate these problems by splitting the

root into several replicas and partitioning members acrossthem. But this only im-

proves scalability by a small constant factor.

In Scribe, the expected amount of group membership information kept by each

node is bounded by a constant independent of the number of group members. Ad-

ditionally, group join and leave requests are handled locally. This allows Scribe to

scale to extremely large groups and to deal with rapid changes in group membership
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efficiently.

The height of multicast trees in Bayeux grows with the logarithm of the number

of nodes in the Tapestry network. Whereas in Scribe, the height of the multicast trees

grows with the logarithm of the number of group members. Thiscan result in lower la-

tency in Scribe for small group sizes, which are common in instant messaging/presence

notification applications.

The mechanisms for fault resilience in Bayeux and Scribe arealso very different.

All the mechanisms for fault resilience proposed in Bayeux are sender-based whereas

Scribe uses a receiver-based mechanism. In Bayeux, routersproactively duplicate out-

going packets across several paths or perform active probesto select alternative paths.

Both these schemes have some disadvantages. The mechanismsthat perform packet

duplication consume additional bandwidth, and the mechanisms that select alternative

paths require replication and transfer of group membershipinformation across differ-

ent paths. Scribe relies on heartbeats sent by parents to their children in the multicast

tree to detect faults, and children use Pastry to reroute to adifferent parent when a fault

is detected. Nodes keep a window of recently seen packets to allow local repair when

a node attaches to a new parent. Additionally, Bayeux does not provide a mechanism

to handle root failures whereas Scribe does.

Herald [3] is a companion project that shares the goals of Scribe.

There are several peer-to-peer object location and routingschemes that are similar

to Pastry, for example, Tapestry [13], Chord [14], and Content Addressable Networks

(CAN) [15]. We are currently evaluating whether Scribe can be built on top of these

systems, and what properties can be achieved using each of them.

6 Conclusions and Future work

We have presented Scribe, a large-scale event notification system built on top of Pastry,

a peer-to-peer object location and routing infrastructure. Scribe is designed to scale to

billions of subscribers and topics, and supports multiple publishers per topic. Scribe

can support many topics with a wide range of subscribers per topic, hence the same in-

frastructure can concurrently support applications such as instant messaging/presence

notification, topical news distribution (e.g. sports results), and stock price broadcast-

ing.

Scribe relies on the Pastry routing mechanism to perform subscription management

and to configure multicast trees used to disseminate events to a set subscribers for a
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topic. The properties of Pastry ensures that the multicast trees are balanced, and tree

management techniques are used to ensure that Scribe can rapidly adapt to changes in

the number of subscribers to a topic. Resilience to failure in Scribe is based on the

Pastry self-organization properties.

Preliminary simulations results are very promising and we are currently perform-

ing a detailed analysis of results obtained from the simulations. A security model

for Scribe is currently under development, and we are addinga more sophisticated

network topology model to the Pastry simulator to allow us tobetter understand the

characteristics of Pastry and Scribe with respect to network locality.
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