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A successful revenue management system requires accurate demand forecasts for each customer
segment. The forecasts are used to set booking limits for lower value customers to ensure an

adequate supply for higher value customers. The very use of booking limits, however, constrains the
historical demand data needed for an accurate forecast. Ignoring this interaction leads to substantial
penalties in a firm’s potential revenues. We review existing unconstraining methods and propose a new
method that includes some attractive properties not found in the existing methods. We evaluate several
of the common unconstraining methods against our proposed method by testing them on intentionally
constrained simulated data. Results indicate our proposed method outperforms other methods in two of
three data sets. We also test the revenue impact of our proposed method, expectation maximization
(EM), and “no unconstraining” on actual booking data from a hotel/casino. We show that performance
varies with the initial starting protection limits and a lack of unconstraining leads to significant revenue
losses.
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1. Introduction
Revenue management has been credited with improv-
ing revenues 3–7% in the airline, hotel, and car rental
industries (Cross 1997). One of the core concepts be-
hind revenue management is the reservation of a por-
tion of capacity for higher value customers at a later
date. The amount of capacity to reserve is typically
determined through the calculation of booking limits,
which place restrictions on the amount of capacity
made available to a lower value segment of customers
so as to reserve capacity for a higher value segment
that may arrive in the future. Most booking limit
calculations depend on the deduction of a demand
distribution for each customer value segment from
past demand data that occurred under similar circum-
stances and operating environments. In practice, how-
ever, true demand data are difficult to obtain because
many firms are unable to record all demand requests

that arrive after a booking limit has been exceeded and
capacity for that customer segment has been restricted.

To overcome this problem, “unconstraining” meth-
ods are used to extrapolate the true demand distribu-
tion parameters from truncated demand data collected
over previous selling opportunities. Once a firm sells
out of capacity for a given segment, the sales data for
that segment represents truncated demand (equal to
the booking limit) instead of true demand. Although
there is no perfect way to unconstrain sales data,
Weatherford and Polt (2002) claim that, in the airline
industry, switching from one common industry
method to a better method increases revenues 0.5 to
1.0%. Because most firms using revenue management
have low marginal costs, maximizing revenues trans-
lates into maximizing operating profits. Hence, uncon-
straining methods significantly impact revenues and,
in turn, profits and deserve closer research attention.
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Despite the significant impact unconstraining has
on the success of a revenue management application,
this topic has received much less attention in the lit-
erature compared with the work on methods for set-
ting and adjusting booking limits. This is surprising
because the demand distribution parameter estimates
represent a primary input to most booking limit tech-
niques, fundamentally linking the value of the former
with the quality of the latter. A firm facing constrained
sales data faces three choices: (1) leave the data con-
strained, (2) directly observe and record latent de-
mand, or (3) statistically unconstrain the data after the
fact.

If historical sales data are left constrained, true de-
mand is underestimated, creating a spiral-down effect
on total revenue where the firm’s expected revenue
decreases monotonically over time (Cooper, Homem-
de-Mello, and Kleywegt 2006). Unfortunately, due in
part to the absence of research and teaching in this
area, this practice is common in firms using less so-
phisticated revenue management systems. In Section 5
we demonstrate how ignoring constrained data im-
pacts revenue using actual booking data from a hotel/
casino.

Direct observation involves the recording of latent
(unsatisfied) demand. Many hotels, for example,
record both bookings (requests that are met) and turn-
downs (requests that are not met). Care must be taken,
however, because turndowns may be attributed to
availability (denials) or price (regrets). The former is
considered latent demand, whereas the latter is not.
To differentiate between the two, some hotel chains
have invested in systems and training for their reser-
vations agents to track turndowns and rely on these
direct observations to unconstrain their sales data.
Unfortunately, there are many issues with using turn-
down data for unconstraining. These issues include
multiple availability inquiries from the same cus-
tomer, incorrect categorization of turndowns by res-
ervations agents, and customer requests that arrive
through a channel not controlled by the firm (Orkin
1998). The latter provides the largest hurdle for most
industries.

Direct observations of demand are not an option for
many industries because of their distribution chan-
nels. For example, traditionally most airline bookings
have been made via travel agents using global distri-
bution systems like Sabre and Worldspan, and no
turndown information is collected on these bookings.
Although airlines have recently been striving to in-
crease their direct sales and improve their customer
information, the percentage of total demand collected
through firm-owned channels is still very small. On
the other hand, hotels and casinos have historically
taken the majority of their bookings through their own
agents, either at the property itself or through a central

reservations center. The advent of the Internet has
compromised the quality of hotels’ turndown data.
Although Internet direct sales is a growing channel for
hotels, with some hotels taking up to 10% of their
booking through this channel, most companies have
yet to incorporate turndowns from their own Web
sites into their total demand picture, and for good
reason. Carroll and Siguaw (2003) point out that only
20% of hotel customers checking availability via the
direct Internet channel actually book their rooms at
the same site. Along with the growth in direct Internet
sales, sales via third-party Web sites (such as Expedia
and Travelocity) have grown at an even faster rate.
Most third-party Web sites do not provide any turn-
down information. The net effect for hotels is an in-
creasing proportion of bookings from channels with
no turndown information and, as a result, hoteliers
have an increasing interest in alternative unconstrain-
ing methods.

Statistical unconstraining covers a spectrum of op-
timization and heuristic techniques that rely only on
observed bookings and a state indicator (open/
closed). The purpose of this paper is to compare com-
mon statistical unconstraining methods to our pro-
posed forecasting-based method. In addition, we
apply the most accurate of these methods to actual
hotel booking data. Previous studies on unconstrain-
ing methods tested a subset of the methods against
simulated airline data.

Most traditional unconstraining methods follow a
common methodology. Demand observed over time is
categorized as constrained or unconstrained, and dis-
tribution parameter value estimates are adjusted
based on the percentage of data that was constrained.
In these unconstraining methods, a demand stream
constrained 20 days before the end of the booking
window is treated the same as a demand stream con-
strained 1 day before. This methodology ignores an
important aspect of the revenue management environ-
ment: firms often know the time periods when de-
mand was constrained. Our proposed method takes
advantage of this information and uses it when calcu-
lating the demand distribution parameter estimates.
In addition, our method offers two other advantages
over many of the alternative statistical methods: (1) it
is based on a widely accepted statistical forecasting
technique (double exponential smoothing) requiring
minimal computations and (2) it is nonparametric,
requiring no a priori assumptions about the shape of
the booking curve or the distribution of the final total
demand.

We illustrate the key concept behind our proposed
method through the sample booking curve shown in
Figure 1. Most traditional unconstraining methods
only use the final observed demand and whether the
demand was constrained. Our proposed method also
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uses the time the demand was truncated (30 days
before the guest arrival in our example). Our method
then uses a forecasting technique (double exponential
smoothing) to project total demand that would have
been observed in the absence of any booking limits
(the dashed part of the booking pace curve). Through
a simulation experiment, we find our method outper-
forms most of the traditional statistical methods in
estimating the demand distribution parameters of
constrained data sets. Compared to the only method it
does not always outperform, our method is simpler
and works under conditions where the other method
does not, such as when all historical data sets are
constrained. Because there is no clear dominance by
either method, we evaluate the impact on revenue the
two methods provide using actual booking and reve-
nue data from a leading hotel/casino.

The rest of the paper is organized as follows. In
Section 2 we review the literature, in Section 3 we
define the proposed method, in Section 4 we test the
method against other common methods used in prac-
tice, and in Section 5 we test the two best performing
methods on real hotel/casino data and measures their
impact on the hotel’s revenue. Finally, in Section 6 we
offer conclusions and recommendations.

2. Literature Review
Weatherford and Bodily (1992) and McGill and van
Ryzin (1999) provide general reviews of the broad
range of literature in the revenue management field.
Talluri and van Ryzin (2004b) provide an excellent
overview of the current state-of-the-art in all aspects of
revenue management systems. As these studies dem-
onstrate, the primary research focus has been
weighted toward the development of overbooking
and booking limit techniques with little focus on un-
constraining (also called uncensoring) sales data. We
concentrate here on reviewing the unconstraining re-
search.

Reliability engineers, biomedical scientists, and
econometricians have used unconstraining proce-
dures for many years to compensate for the early

termination of experiments. This parallels how reve-
nue managers “terminate” demand for a particular
customer segment through the use of booking limits.
Relevant research in these fields include Cox (1972),
Kalbfleisch and Prentice (1980), Lawless (1982), Cox
and Oakes (1984), Schneider (1986), Nelson (1990), and
Liu and Makis (1996). These methods rely heavily on
the hazard rate function to determine the probability
distribution of lifetime data. To our knowledge, van
Ryzin and McGill (2000) provide the only use of this
type of method in a revenue management framework
when they utilize a method based on demand life-
tables. We include the lifetable method of uncensoring
data in our comparison as described by Lawless
(1982).

Weatherford and Polt (2002) and Zeni (2001) com-
pare unconstraining methods using simulation and
apply the best methods to an airline’s reservation data
to test the revenue impact of different methods. Six
unconstraining methods are tested: three different av-
eraging methods, a booking profile method, projection
detruncation (PD), and expectation maximization
(EM). The averaging methods are the simplest com-
putationally and therefore are often used in practice.
We compare our proposed method (DES) against the
three best performing methods found in research by
Weatherford and Polt (2002): the most accurate aver-
aging method (referred to as Naı̈ve 3 by Weatherford
and Polt, abbreviated to AM in this paper), EM, and
PD. Both Weatherford and Polt (2002) and Zeni (2001)
conclude the EM method outperforms the others and
increases revenues by 2–12% in full-capacity situa-
tions. We also find the EM method outperforms PD.

Of the three best methods used by Weatherford and
Polt (2002) and Zeni (2001), only EM is grounded in
statistical theory. Dempster, Laird, and Rubin (1977)
prove the theory behind the EM method based on data
from a univariate distribution. The EM method dis-
cussed by Dempster, Laird, and Rubin (1977) is essen-
tially the same as the tobit model used in econometrics
(Maddala 1983). McGill (1995) extends the EM method
to a multivariate problem when demand for different
classes (segments) of a good is correlated.

The PD method closely resembles the EM method,
but takes a conditional median in place of a condi-
tional mean. Additionally, the PD method allows us-
ers to change a weighting constant to obtain more
aggressive demand estimates. The tradeoffs include
increased computation and increased risk of no solu-
tion convergence (Weatherford and Polt 2002).

Liu et al. (2002) examine unconstraining demand
data through the lens of the hotel industry and argue
the EM method is unrealistic in application because of
its computational intensity. The authors argue that
parametric regression models take into account all
relevant information and are computationally more

Figure 1 Sample Booking Pace Curve.
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feasible in real-world applications. They develop a
parametric regression model that uses booking curve
data, but requires knowledge of the shape of the de-
mand distribution and other specifics of the demand
constraints. This knowledge requirement restricts the
general use of their model, because firms often do not
know a priori the shape of the booking curve. Also,
the authors do not provide comparisons between their
proposed parametric method and the methods dis-
cussed in other papers. We do not include their
method in our comparison because we do not assume
a known, functional form for the booking curve. We
do agree, however, with their criticism regarding the
computational intensity of the EM method. Our pro-
posed method is much easier to calculate but, unlike
the parametric models, does not require knowledge
about the shape of the booking curves.

To test the revenue impact of our new unconstrain-
ing method, we must set the protection levels effec-
tively. To do so, we use the most common seat pro-
tection heuristic used in practice, the expected
marginal seat revenue (EMSR-b) algorithm (Belobaba
1989). McGill and van Ryzin (1999) give an explana-
tion of the EMSR-b method along with a review of the
booking limits problem in general.

Our research provides a unique approach by using
field data to support a simulation study. This differs
from the trend of using either survey or case study
data for empirical research (Gupta, Verma, and Vic-
torino 2006). Some notable exceptions of other re-
searchers including a variety of data collection meth-
ods are Baker and Collier (2003), who similarly use
hotel data to run a simulation for improved price
setting within a RM system, and Hendricks and Sin-
ghal (2005), who analyze the long-term impact of sup-
ply chain glitches using stock price data.

3. Proposed Unconstraining Method
Our proposed method uses double exponential
smoothing (DES), or “Holt’s Method,” to forecast the
constrained values of a given data set. DES uses two
smoothing constants: one for smoothing the base com-
ponent of the demand pattern and a second for
smoothing the trend component. Armstrong (2001)
provides a good review of this method. Below, we
describe how it may be used to solve the unconstrain-
ing problem where demand is constrained only once,
prior to the final period. In the Appendix we provide
an example of how this method can be used to solve
the unconstraining problem where demand is con-
strained multiple times due to reopening closed book-
ing classes.

Let t represent the time periods between I, the pe-
riod that reservations are initially accepted, and B, the
period where demand reaches the booking limit (time

is counted backward from I days before arrival until B
days before arrival). That is, t � [I, I � 1, . . . B], I � B.
After period B, demand continues to occur but is
unobserved. If demand is never constrained then B
� 0. Thus, “demand seen” equates to the cumulative
demand observed from periods I to B and is always
less than or equal to true demand. From Figure 1, I
corresponds to period 140 and B corresponds to pe-
riod 30, after which demand is unobserved. Now de-
fine the following:

At � actual cumulative demand in period t;
Ft � the exponentially smoothed base component

for period t;
Tt � the exponentially smoothed trend component

for period t;
FITt � the forecast of cumulative demand including

trend for period t;
� � base smoothing constant;
� � trend smoothing constant.

The forecast for the upcoming period t is

FITt � Ft � Tt , (1)

where

Ft � FITt�1 � �� At�1 � FITt�1 � and (2)

Tt � Tt�1 � ��Ft � FITt�1 �. (3)

The smoothing constants, � and �, are decision vari-
ables. For each constrained demand instance, we use a
nonlinear optimization routine to select the � and �
values that minimize the sum of the squares of the
forecast error:

min
�,�

�
t�I

B

�At � FITt�
2. (4)

For the initial values, FI and TI, we use the actual
demand in period I as our estimate for the base com-
ponent and the average trend over the available ob-
served cumulative demand as our estimate for the
initial slope component. Because the problem is not
jointly convex in � and �, a nonlinear search algorithm
such as tabu search or simulated annealing is needed
to find the global minimizers. The forecasting model is
then used to project the cumulative demand over the
periods in the data set where demand is constrained,
i.e., over periods B � 1 to 0. It does so by taking the
last forecast where it was possible to update with
observed demand, FITB � FB � TB, and projecting the
final B periods where demand is constrained: FIT0
� FB � BTB.

We demonstrate our method using the booking
curve shown in Figure 1. First, initial estimates of F140
and T140 are calculated using the cumulative demand
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in period 140 and the average trend between period
140 and period 30 (the last period in which we observe
unconstrained demand). If A140 � 1 and A30 � 25, then
F140 � 1 and T140 � (25 � 1)/(140 � 30) � 0.22. Next,
we choose an initial value of 0.1 for both the � and the
� smoothing coefficients and perform one-period-
ahead forecasting to find FITt for periods t � 140 � 30
(the initial starting values chosen for the smoothing
coefficients are not important as long as we use a
search algorithm that does not get stuck at local min-
imums to find the smoothing coefficients that best fit
the data available). We then choose the � and �
smoothing coefficients that minimize ¥t�30

140 (At

� FITt)
2. Let �� and �� represent the smoothing coeffi-

cients that result from this minimization search. These
smoothing coefficients are used to recalculate FITt; call
the new forecasts FITt � F� t � T� t, for periods t
� 140, . . . , 30. Because we know the actual demands
that occurred during days 140 to 30, we calculate
FIT140 to FIT30 using the recursive methods of (1), (2),
and (3) for each day until we reach FIT30 � F� 30 � T� 30,
after which we no longer know true demand and can
no longer update our forecast. The remaining 30 pe-
riods (t � 29, . . . , 0) are when demand is constrained
in our example. Our objective is to determine the final
cumulative demand (if demand was not constrained)
at the terminating period t � 0. We estimate this value
using FIT0 � F� 30 � 30T� 30.

The cumulative demand over the observed and pro-
jected components of the booking curve (FIT0) is then
used as a single point estimate of true cumulative
demand for a particular selling occurrence (i.e., a
given Thursday-night stay for a given fare class at a
hotel). Call this individual point estimate for the ith
booking curve Xi. We repeat this procedure over each
constrained booking curve in a given data set (i.e., all
Thursday-night stays for a given fare class at a hotel).
Thus, if there are n historical booking curves in the
data set, we end up with a set of point estimates (X1,
X2, . . . , Xn). The final demand distribution parameters
(mean � and variance �2) are then estimated using this
set of point estimates by

�� �
¥i�1

n Xi

n and �� 2 �
¥i�1

n �Xi � �� �2

n . (5)

The basic model of DES described above is a very
general method for forecasting demand and, as pre-
sented, does not account for seasonality, intermittent
demand, and other specifics that might be relevant in
application. However, DES can be easily adjusted to
incorporate seasonality (Armstrong 2001). In Section
4.2, we provide an alternative formulation that can be
used when total demand is small and intermittent.

4. Comparison of Unconstraining
Methods

In this section we compare four of the most common
statistical unconstraining methods that have previ-
ously appeared in the literature with our proposed
DES method. To compare the performance of the dif-
ferent methods, we simulate booking curves repre-
senting true demand and then impose booking limits
to create constrained data. We apply five different
unconstraining methods to the constrained data sets
and compare the estimated demand parameters
against the true parameters. We define the best uncon-
straining method as the method that estimates the
demand distribution parameters closest to the true
parameters.

To compare the performances of the chosen meth-
ods, we first simulate booking curves and set booking
limits to constrain the demand data. To test each un-
constraining method against a broad range of demand
scenarios, we simulate three data sets with 100 book-
ing curves each and 140 days in each booking curve.
The three data sets represent three common shapes of
booking curves: convex, homogeneous, and concave
(Liu et al. 2002), as shown in Figure 2. The 100 booking
curves represent 100 historical demand records (for
each shape curve) a hotel or airline may use to predict
future demand. For example, a hotel may keep de-
mand data from its last 100 Thursday-night stays to
estimate demand for future Thursday-night stays. Be-
cause most hotels and airlines observe the majority of
their reservations within 140 days before the day of
arrival or departure, we simulate 140 days of daily
demand arrivals for each booking curve, resulting in
100 individual booking curves of 140 days each, or
14,000 individual data points. For each booking curve
shape, we look at demand observed for all 100 book-
ing curves simultaneously (some where the total de-
mand was not constrained and others where total
demand exceeded the booking limits) and use each
unconstraining method to estimate the true demand
distribution parameters.

To construct the booking curves, we assume arrivals

Figure 2 Concave, Homogeneous, and Convex Booking Curves.
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on a given day are randomly drawn from a Poisson
distribution. This assumption is common in the liter-
ature and matches closely with actual data from the
hotel and airline industries (Rothstein 1974; Bitran and
Mondschein 1995; Bitran and Gilbert 1996; Badinelli
2000; Liu et al. 2002). For the homogeneous booking
curve, we maintain a constant mean arrival rate over
all 140 days. For the convex (concave) booking curves,
we increment the mean arrival rate from low to high
(high to low), respectively, so the expected total de-
mand over the 140-day period is approximately equal
for all three curves (average demand for concave,
homogeneous, and convex curves is 700, 698, and 696,
respectively).

After we create the demand curves, we calculate
booking limits. A user sees the minimum of true de-
mand and the booking limit. A simple example is
shown in Table 1. If daily demand arrivals are Poisson
and the demands on different days are independent,
then total demand is again Poisson. Because the mean
of the Poisson-distributed total demand is sufficiently
large, the distribution of total demand is approxi-
mately normal. Thus, we calculate an expected aver-
age (�) and standard deviation (�) of the total demand
and generate five sets of booking limits representing
various ranges of constraint levels. For example, a 20%
constraining level means that, on average, 20% of the
data sets have their total demand constrained by the
booking limit. To find the booking limits at these
various levels, we use the z-score from a standard
normal distribution corresponding to the 20, 40, 60, 80,
and 98% constrained levels, where z represents the
number of standard deviations above or below zero
for a standard normal distribution. Thus, to find the
z-score corresponding to 98%, we find the point where
the area under the standard normal curve equals 0.98,
or z � 2.05. We then set our corresponding booking
limits using � � z*�. (See the appendix for more
explanation on how we constructed these curves and
set our booking limits to constrain them.)

We test the five unconstraining methods across the
three booking curve shapes (homogeneous, convex,
and concave) for each of the five constraining levels to
test how each method performs under varied condi-
tions. We chose the unconstraining methods to test
from previous research; the first three methods are the
best performing methods from Weatherford and Polt’s
(2002) comparison. These methods include: (1) AM,
called Naı̈ve #3 by Weatherford and Polt, (2) PD, and

(3) EM. Medical and reliability engineering research-
ers commonly use lifetables (LT), the fourth method.
Additionally, van Ryzin and McGill (2000) use life-
tables in a revenue management context. We provide
a short description of each of these methods in the
Appendix. The fifth method is DES, which was de-
scribed in Section 3.

4.1. Results of Comparison
Overall, the DES, EM, and AM methods outperform
the LT and PD methods. Table 2 compares the per-
centage error for each unconstraining method versus
the actual mean of the demand distribution (the per-
centage errors were similar but slightly larger for the
estimated variances). DES outperforms all methods
for the homogeneous and convex data sets because its
error remains less than 0.5% for all levels of constrain-
ing, compared with a maximum 5% error for the other
methods. In the concave data set, however, AM and
EM outperform DES. The strong performance of AM
in the concave data set skews its average error, and so
on average, AM outperforms the other methods over
all three curves. Table 2 summarizes the results of the
comparison and Figure 3 graphically summarizes the
mean absolute error over all three curves.

Previous comparisons (Zeni 2001; Weatherford and
Polt 2002) demonstrate EM outperforming PD; we
confirm this result. Aside from the accuracy issues, PD
has two disadvantages compared to EM: it takes more
iterations to converge than EM and it requires the
choice of a weighting parameter, 	, creating an oppor-
tunity for varying results. A 	 � 0.5 can lead to better
results, but increases both the time to convergence and
the chance for no convergence. The AM shows consis-
tent performance across the data sets, with especially
strong performance in the concave data set. Unfortu-
nately, the concave demand pattern is typically the
pattern least important in setting booking limits. Air-
lines often offer cheaper fares to customers booking at
least 3 weeks in advance. Because of this and other
similar restrictions, the lowest valued segment is often
forced to follow the concave demand pattern. As a
result of the fundamental concepts behind revenue
management, estimating the true demand for the low-
est valued segments is typically less important than
estimating the demand for higher valued segments.

The LT method of unconstraining data produces
estimates with errors very close to zero and even
outperforms the DES and EM methods in a few of the
concave cases. However, this method requires many
computations and a large quantity of historical de-
mand data. In a dynamic environment such as the
travel industry, customer demand data changes
quickly due to changes in the economic climate,
broader market supply–demand–price relationships,
and customer preference. Because of this, sufficient

Table 1 Example of True Demand vs. Demand Observed

True demand 100 110 91 95 103
Booking limit 98 105 103 99 102
Demand seen 98* 105* 91 95 102*

* Constrained demand, also called a closed segment.
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historical demand is often not available for the LT
method to produce effective results.

For the homogeneous data pattern, the DES method
has negligible error across the range of constrained
data sets because of the high predictability when ar-
rival rates are constant over a given time period. For
this data pattern, the DES method estimates the dis-

tribution mean up to 4% closer to the true mean than
the next closest method. Similarly, for the convex data
set, the DES method provides the most accurate esti-
mate over all of the constraining conditions.

The DES method does not perform as well on the
concave data set, although it still performs within a 1%
error until demand is constrained in over 80% of the

Table 2 Percentage Error between Calculated and Actual Mean for Each Unconstraining Method

Booking curve

Percentage of data sets constrained

20 40 60 80 98

Homogeneous
AM �0.12 �0.25 �0.45 �0.44 �1.12
PD 0.23 0.43 0.56 �0.53 �2.99
EM �0.06 �0.23 �0.56 �0.22 �0.58
LT �0.17 �1.31 �1.53 0.20 0.43
DES 0.00 0.00 0.00 0.00 �0.14

Convex
AM �0.16 �0.27 �0.39 �0.41 �0.63
PD 0.26 1.29 0.98 �0.91 �2.99
EM �0.08 0.39 �0.25 �0.85 �1.10
LT 0.13 0.76 0.89 0.55 5.72
DES 0.00 0.14 0.00 �0.14 �0.29

Concave
AM �0.01 0.05 �0.02 �0.17 �0.23
PD 0.24 0.73 1.78 �0.35 �3.24
EM �0.08 �0.09 0.09 �0.19 �0.93
LT �0.21 �0.83 1.14 �0.11 2.29
DES 0.29 0.71 1.00 1.86 3.43

Mean absolute error over all
three booking curves

AM 0.09 0.19 0.29 0.34 0.66
PD 0.24 0.82 1.11 0.60 3.07
EM 0.07 0.24 0.30 0.42 0.87
LT 0.17 0.97 1.19 0.29 2.81
DES 0.10 0.28 0.33 0.67 1.29

Figure 3 Average Absolute Error from True Demand for Each Unconstraining Method.
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observations. DES underperforms on this demand
pattern because booking segments close farther away
from the arrival date for the concave booking curve, so
many more data points must be estimated compared
with the convex or homogeneous demand patterns.
Here, the trend component of DES affects its accuracy
because high demand occurring early in the booking
curve is projected to continue once the booking limit
has been met. For this booking curve shape, a fore-
casting method with a trend that is dampened over
time may perform better. In practice, however, an
inaccuracy in unconstraining demand following a con-
cave demand pattern is not a great concern, because
the concave pattern typically corresponds to the low-
est fare customers, as explained previously.

4.2. Performance with Smaller Demand
The first set of results (Table 2) compares unconstrain-
ing methods when total demand averaged 698 units.
However, in many applications, total demand is much
smaller than 698, so we run a similar experiment with
an average total demand of 19. We call this the “small
demand” data set (Figure 4). Just as before, we ran
simulations on homogeneous, concave, and convex
booking curve shapes, with 100 trials of 140 days each
for each shape. The DES and EM methods provide the
most accurate results across a range of constrained
data, and the AM provides the least accurate results.
Because of difficulties in predicting data with inter-
mittent demand (many periods with zero demand),
the small demand data has less accurate results than
the large demand data. This observation is consistent
with previous studies; goods with intermittent de-
mand are difficult to forecast and require specialized
forecasting tools for the most effective results (Altay,
Rudisill, and Litteral 2005).

Because DES has significantly higher error with the
small demand data set than with the large demand
data set, we sought an alternative formulation. Cros-
ton’s forecasting method (Croston 1972) is a simple
exponential smoothing method designed to accommo-
date small or intermittent demand. This method fore-
casts the size of the nonzero demands and interarrival
time between nonzero demands. (See the Appendix
for explanation of this method.) In a simple simulation
over 60 trials and 60 days with a total demand of 12
(based on the smallest observed demand segment of
our partner hotel), Croston’s method outperforms
DES across the range of constraints, as shown in Fig-
ure 5. These results provide evidence that Croston’s
method may be superior to DES for unconstraining
intermittent demand. When the percentage of days
with zero demand exceeds 10% of the total number of

Figure 4 Unconstraining Error with Small Demand Data Set.

Figure 5 Unconstraining Error with Small Demand Data Set—DES vs.
Croston’s Method.
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days in the booking curve, Croston’s method begins to
outperform DES.

5. Revenue Impact Using Industry
Data

In this section we compare the potential revenue im-
pact of a major hotel/casino using DES, EM, and no
unconstraining. Because unconstraining methods only
provide estimated parameters for the demand distri-
bution, we use the EMSR-b algorithm (Belobaba
1989)—a widely accepted method for setting booking
limits for a basic revenue management system—to
translate the demand distribution parameters (and
corresponding room rates) into booking limits. We
applied the booking limits to booking data from a
hotel/casino to calculate the total revenue impact.
Thus, we compare the revenue convergence using EM,
DES, and “ignoring unconstraining” based on actual
(but normalized) booking and revenue data from a
major hotel/casino. Although the examples presented
in this section are very useful for illustrating the ef-
fectiveness of the methods, they cannot lead to con-
clusions about industry performance. Such conclu-
sions can only be drawn from trials in practice.

5.1. Demand Data
We use actual hotel/casino booking data to test how
unconstraining impacts revenue. We use booking
curve data for 12 consecutive Friday-night stays, un-
constrained using direct observation of turndowns.
Extra care was taken to ensure that all demand was
captured for this data set, including demand that oc-
curred after booking limits were met. Because of the
increased cost involved in such careful data collection,

we limited the data collection period to 12 weeks and
used bootstrapping to create 1000 booking curve sam-
ples from the initial data. Hotel reservations vary
greatly by day of the week, depending on the type of
hotel. For this hotel, weekends are the most popular
and, therefore, have the highest constraining rate. To
control for differences in demand between different
days of the week, we focus on Friday-night stays
during the 12-week period. Within any Friday night’s
booking data, this hotel/casino has many different
customer segments, with some customer segments so
valuable they are rarely constrained (revenue per
night from the highest fare customer can be 12 times
the revenue from the lowest fare customer); therefore,
we focused our unconstraining efforts on the most
popular four segments that are constrained.

We base many of our simulation choices on the
hotel/casino data characteristics. To understand these
characteristics, we plotted the unconstrained demand
data for the four customer segments for 12 consecutive
Friday-night stays. The shape of a given customer
segment arrival rate was consistent throughout the
12-week period, although each of the four customer
segments had a distinctly different booking curve. We
present one such diagram in Figure 6 to illustrate the
variety of booking curve shapes. Based on the similar
arrival rates throughout the 12-week period, we utilized
bootstrapping to create a sufficient number of different
demand realizations for our simulation study.

We created bootstrapped samples as follows. The 12
Friday-night-stay booking curves illustrated that the
slope of the curve changed dramatically at different
intervals before arrival. Based on these slope changes,
we created multiple intervals within the 60-day win-

Figure 6 Cumulative Hotel/Casino Reservations for Four Separate Fare Classes.
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dow that had similar arrival rates. Picking randomly
(with replacement) from 12 weeks’ worth of Friday-
night booking patterns within a similar arrival rate
interval, we used the bootstrap method with replace-
ment to create 1000 different 60-day booking curves
for each of the four customer segments.

The hotel would temporarily close the lower valued
segments midway through the 60-day booking curve;
thus, we simulated this practice of opening and clos-
ing the classes multiple times. We closed a fare class
(constrained demand) midway through the booking
curve, reopened the fare class, and then closed it again
before the actual day of arrival. We initially closed the
fare class if cumulative demand reached the first book-
ing limit within 30 days of accepting bookings. We
reopened the fare classes with 30 days left in the
booking period and closed the fare class again if de-
mand reached the second booking limit. We set pro-
tection levels so that 50% and then 75% of a given data
set would be constrained to test our methodology
against different constraining levels. To set protection
levels so that 50% of a given data set would be con-
strained, we calculated the first booking limit as the
average cumulative demand after 30 days of accepting
bookings; the second booking limit was the average
cumulative demand over the 60-day period. Similarly,
for 75% constrained data, we used the average and
standard deviations at 30 and 60 days to find the
z-score corresponding to 25% unconstrained data (�
� z*�). We did this for each of the four different
segments in all 1000 replications.

Using both DES and EM, we unconstrained the data
sets and compared the distribution parameter esti-
mates for each method against the true parameter
values. Both methods performed well, with average
errors listed in Table 3. Just as in previous trials, all
methods performed better with less constrained data.
The methods better predict mean values than stan-
dard deviations. Over 1000 instances, both methods
predict the mean within 5% of the true mean, showing
the methods performed well even when demand was
constrained multiple times in a booking curve.

Although it provides a useful comparison, such a
simple test as the one above does not, however, cap-

ture the true impact the use of an unconstraining
method has in practice. Three main issues are yet to be
addressed: (1) in practice, a hotel will never have 1000
historical booking curves available to estimate a de-
mand distribution during a period of stationary de-
mand; (2) protection levels evolve over time (the study
above does not capture the transient nature of demand
information updating or learning); and (3) there are no
previous studies linking the accuracy of an unconstrain-
ing method to the revenue impact of the user. We at-
tempt to address these issues in the following study.

In the next study, we test the impact each uncon-
straining method has on the hotel’s total expected
revenue. Total expected revenue from a revenue man-
agement system is the ultimate indicator of a system’s
success, but unconstraining methods only provide es-
timates for the demand distribution parameters. Thus,
we borrow van Ryzin and McGill’s (2000) general
methodology for translating protection levels into rev-
enue. To test convergence and robustness, we start
with purposefully high and low protection levels, sim-
ilar to van Ryzin and McGill (2000). Note our switch to
protection levels rather than booking limits for this
study. Protection levels are the opposite of booking
limits, i.e., how many units of capacity are at a given
class to protect for higher fare classes. To illustrate,
consider a hotel with two fare classes, high and low,
and a total capacity of 100 rooms. If a booking limit for
the low-fare rooms is set at 60, the corresponding
protection level for the high-fare rooms is 100 � 60
� 40 rooms protected for high-fare customers.

Protection levels must be set at some estimated level
for initial product offerings and for existing products
when there has been a fundamental shift in the under-
lying demand distributions. As more demand is ob-
served over time, the firm adjusts protection levels ac-
cordingly to increase total revenue. The convergence rate
to the optimal protection levels depends on both the
starting levels chosen and the unconstraining method
used. Thus, we test protection level convergence and
total revenue convergence using the top performing un-
constraining methods (EM and DES) with two different
starting protection levels—low and high. To underscore
the importance of unconstraining, we included data with
no unconstraining, labeled (spiral) for the decreasing
revenue named after the “spiral-down effect” (Cooper,
Homem-de-Mello, and Kleywegt 2006), which occurs
when data are not unconstrained.

Cooper, Homem-de-Mello, and Kleywegt (2006)
give the name spiral-down effect to the phenomenon
of systematic decreased revenue as a result of incor-
rect customer behavior assumptions inherent in many
revenue management systems. Specifically, they show
how assuming that customers will remain in a given
fare class, regardless of availability of other (less ex-
pensive) fare classes, negatively impacts revenue with

Table 3 Error Comparison between EM and DES with Interrupted
Arrivals and Actual Data

50% of data sets
constrained (%)

75% of data sets
constrained (%)

Mean
EM 0.84 1.72
DES 0.84 4.87

Standard deviation
EM 7.38 14.72
DES 7.65 23.86
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each successive calculation of a protection level. Our
spiral data have a similar downward spiraling reve-
nue pattern with each successive calculation of a new
protection level, but this is due to using constrained
data in forecasts, rather than incorrect assumptions of
customer behavior. This downward spiral effect has
been recognized as a problem and can occur when
using constrained data or when using underestimated
unconstrained data (Weatherford and Polt 2002). No
matter the cause or terminology, these research papers
demonstrate that poor setting of protection levels
leads to increasingly poor revenue performance over
time. We compare revenue results between uncon-
strained data and constrained data to illustrate the
importance of unconstraining.

5.2. Setting Protection Levels:
The EMSR-b Method

For setting the protection levels for the hotel rooms,
we use a variation of the EMSR heuristic (Belobaba
1989) called EMSR-b. This is the most common heu-
ristic used in practice for setting protection levels. The
EMSR-b method does not produce optimal protection
levels under all real-world conditions, but is represen-
tative of a basic revenue management system and is
sufficient for comparing unconstraining methods. The
EMSR-b method works as follows: Given the estimates
of the means, �̂i and standard deviations, �̂i for each
customer value segment i, the EMSR-b heuristic sets
protection level 
i so that fi�1 � f�iP(X� i � 
i), where X� i

is a normal random variable with mean ¥j�1
i �̂j and

variance ¥j�1
i �̂j

2, fi is the fare for customer value
segment i, and f�i is weighted average revenue from
classes 1, . . . , i, given by f�i � ¥j�1

i fj�̂j/¥j�1
i �̂j.

In simpler terms, this rule performs a marginal anal-
ysis on the benefits of holding capacity for a higher
valued customer versus the cost of turning away the
next lower valued customer. To demonstrate the
EMSR-b method, consider the data given in Table 4
representing a hotel with four fare classes. The nested
protection levels calculated using the EMSR-b method
are given in the far right column (note that fractional
values are rounded up). Thus, for this example, 49 rooms
should be reserved for fare class 1 customers (the highest
paying), 125 rooms should be reserved for fare class 1
and 2 customers, 257 rooms should be reserved for fare
class 1, 2, and 3 customers, and any remaining rooms can
be sold to the lowest fare class customers (class 4).

The example above shows how demand distribu-
tions can be converted to recommended protection
levels for a revenue management system. However,
revenues can only be optimized if the true demand
distribution parameters are known; hence, there is
need for a good unconstraining method.

5.3. Simulation
We test the revenue impact of the unconstraining meth-
ods by applying protection levels (based on the EMSR-b
method using the distribution parameter estimates from
the unconstraining method) to the industry data de-
scribed in Section 5.1. As in the study by van Ryzin and
McGill (2000), we assume nested fare class allocations,
low-fare classes book strictly before high-fare classes,
demand for each fare class is independent, and there are
no cancellations or no-shows. Although in reality low-
fare classes may not completely book before high-fare
classes, our data plotted in Figure 6 illustrate evidence
that the majority of a low-fare class will book before the
higher fare class (especially when the impact of booking
limits are considered). Because of this behavior, the as-
sumption of low booking before high is a reasonable
approximation.

It should be noted that standard practice within
airline revenue management includes updating pro-
tection levels at set intervals throughout the booking
period. This allows airlines to adjust protection levels
to actual demand. We do not incorporate this practice
into our simulation because for hotels (especially ca-
sinos) a large percentage of the highest fare class cus-
tomers book hours before arrival, not days or weeks.
This late booking practice makes accurate forecasting
(including unconstraining) even more important
within this application.

We define notation in the following manner: Xi

� demand for fare class i; Ii � inventory (hotel rooms)
available for fare class i; n � number of fare classes;
and Ri � revenue earned from fare class i. We can now
calculate total revenue using

Total revenue � �
i�1

n

Ri , (6)

where

Ii � �
Capacity � 
i�1 for i � n

Capacity � 
i�1 � �
j�i�1

n

min(Ij , Xj) for 1 � i � n

Capacity � �
j�i�1

n

min(Ij , Xj) for i � 1

(7)

and

Table 4 Example of Protection Levels Set Using the EMSR-b Heuristic

Class Fare Mean Variance Protection level 
i

1 250 50 50 49
2 150 75 75 125
3 100 125 125 257
4 50 500 500 Capacity

Crystal et al.: Unconstraining Methods to Improve Revenue Management Systems
Production and Operations Management 16(6), pp. 729–746, © 2007 Production and Operations Management Society 739



Ri � f *i min�Xi , Ii	. (8)

(See the Appendix for an example of this revenue
calculation with a particular demand realization.)

Normalizing the fare class data from our hotel/
casino on a scale from $1 to $100, the per-night ex-
pected revenues for the four customer segments are
$25, $35, $62, and $100. These expected revenues are
based on the total amount a customer in that segment
is expected to spend at the hotel/casino per night,
including the revenue from the room rate, food, bev-
erages, shows, and casino. The hotel/casino tracks
customer spending by issuing frequent-stay cards,
which record each time the customer makes a trans-
action.

Because estimates for the parameter values of the
demand distribution and the corresponding protec-
tion levels evolve over time, we simulate this evolu-
tion in our study. First, we split each of the four sets of
1000 booking curves described in Section 5.1 into 10
sets of 100 booking curves. Working with the first set
of 100 booking curves, we estimate initial protection
levels for each customer segment (two initial starting
protection levels are used for each segment, one lower
and the other higher than the protection levels calcu-
lated with perfect demand information). These initial
protection levels are rough estimates of demand and
equate to rough demand estimates when a firm offers
a new product. Hence, with high protection levels, we
set the protection levels to approximately equal aver-
age demand plus one standard deviation for the three
highest fare classes. Similarly, with low protection
levels, we set the protection levels to approximately
equal average demand minus one standard deviation
for the three highest fare classes.

We then calculate the revenue the hotel/casino
would have received if they used these initial protec-

tion levels for each customer segment over all 100
booking curves in the set. The first data point in Fig-
ures 7 and 8 is the percentage difference in revenues
the hotel/casino would have received using these ini-
tial protection levels versus if they had used optimal
protection levels calculated with the true demand dis-
tribution parameters. Next, we applied the initial pro-
tection levels to the first 10 booking curves (booking
curves 1–10 of the 100 in the set). Thus, some segments
of the first 10 booking curves were constrained by the
calculated protection levels. We apply each of the
unconstraining methods to this group of 10 con-
strained booking curves and calculate new protection
levels for the next group of 10 booking curves (book-
ing curves 11–20 of the 100 in the set). Based on these
new protection levels, we calculated the revenue gen-
erated if these protection levels were used on all 100
booking curves in the set. We continue this procedure,
unconstraining the demand data and readjusting the
protection levels every 10 booking curves. This proce-
dure simulates a hotel manager watching demand for
10 consecutive Fridays, adjusting his protection levels
for the next 10 Fridays, and continuing this procedure
for a total of 100 consecutive Fridays.

For robustness, we applied this methodology to 10
sets of 100 booking curves to calculate a standard error
of our estimates. Figures 7 and 8 represent average
results over the 10 sets. All of the methods (EM, DES,
spiral) use the same data sets (the simulations are
coupled).

We compare revenues for each of the unconstrain-
ing methods to optimal revenue. We calculate the
perfect information calculated revenue by finding the
mean and standard deviation of each set of 1000 book-
ing curves (one set of 1000 for each of four customer
segments). Because the initial data were uncon-

Figure 7 Revenue Achieved Using High Protection Limits for EM, DES, and No Unconstraining.
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strained, we know the true demand for every booking
curve and, hence, know the true mean and standard
deviation parameter estimates. We apply EMSR-b us-
ing these parameters to find protection levels and
then, using nested protection levels, apply (6–8) to
calculate total revenue.

Figure 7 illustrates a convergence to the perfect
information calculated revenue for DES and EM meth-
ods after starting with the high initial protection lev-
els. Here, both unconstraining methods converge to
the perfect information calculated protection levels
and, hence, achieve the benchmark. The DES and EM
methods yield similar results, both starting at 95.5% of
the perfect information calculated revenues and im-
proving to almost 100% after only one iteration. (Ten
Friday-night stays equals one iteration.) High starting
protection levels restrict early bookings in the lower
value segments while saving capacity for the high-
value segments. When historical data are limited and
the difference in revenue between high- and low-
value segments is large, a firm may want to initially
employ high protection levels.

Compared to the high starting protection levels in
Figure 7, the low starting protection levels in Figure 8
converge to the perfect information calculated reve-
nue for both unconstraining methods at a much
slower rate. Because all three of the highest fare classes
are initially 100% constrained and the EM method
requires at least one unconstrained booking curve, we
cannot use the EM method during the first iteration.
Instead, we increase the protection limits by 10% for
each group of 10 booking curves until at least one
booking curve is not constrained, at which point we
can begin using the EM method. Although this prac-
tice may seem arbitrary (justifiably so), it is represen-
tative of techniques commonly applied in practice.
The DES method does not suffer from such a limita-

tion; thus, it outperforms the EM method during the
early stages of the low starting protection levels case.
Once the EM method can be used, revenue quickly
converges to greater than 99% of the perfect informa-
tion calculated revenue. DES performs better in early
iterations and then converges to just above 98% of the
perfect information calculated revenue, slightly trail-
ing the EM method’s performance.

Both Figures 7 and 8 illustrate that unconstrained
data may lead to a loss in revenue. When starting with
low protection levels, Figure 8 illustrates that the no
unconstraining (spiral) data never improves past the
initial 89% of optimal revenue. This compares unfa-
vorably with the two unconstraining methods, which
steadily improve as more demand is observed. Figure
7 illustrates that when using high initial protection
levels, failing to unconstrain data causes revenue to
decrease every time protection limits are recalculated
as the historical data become more and more con-
strained. This shows graphically the spiral-down ef-
fect (Cooper, Homem-de-Mello, and Kleywegt 2006)
mentioned earlier.

Because the revenue converges to the perfect infor-
mation calculated revenue much faster in Figure 7
than in Figure 8, one may conjecture from a compar-
ison of Figures 7 and 8 that it is always better to start
with high protection levels versus low. However, such
a generalization is incorrect because this phenomenon
is an artifact of this particular hotel’s fare class struc-
ture. For this hotel, the difference in revenues between
the highest fare class ($100) and the next highest ($62)
is much larger than the difference between the two
lowest fare classes ($35 and $25). If these differences
had been reversed (say fare classes of $100, $90, $63,
and $25), starting with low initial protection levels
would converge to the perfect information calculated

Figure 8 Revenue Achieved Using Low Protection Limits for EM, DES, and No Unconstraining.
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revenue much faster than starting with high protec-
tion levels.

We note a few additional observations from our
bootstrapping results. First, when demand has sudden
shifts or a large number of constrained days, all sta-
tistical methods become less accurate. In practice, we
recommend qualitative adjustments to the demand
data or the numerical forecast for these situations.
Second, statistical unconstraining should be supple-
mented by a physical constrained count, where possi-
ble, to check the validity of unconstrained forecasts.
For a hotel, this physical count could include reserva-
tion agents and bellhops keeping a manual tally of the
number of people turned away. A store selling phys-
ical goods might better promote “rain checks” of sold-
out items and keep track of how many people ask for
the sold-out good. Third, EM becomes more accurate
for larger sample sizes, but often performs poorly for
small sample sizes. In these cases, DES may be a better
solution until more historical data are available.
Fourth, a small firm with a limited information tech-
nology budget may not have the resources to afford a
sophisticated statistical program to run the EM
method. Such a firm may find it more useful to use the
straightforward DES method to estimate total de-
mand. Finally, if data are fully constrained, EM does
not work and an alternate method must be used.
Either an alternative unconstraining method or a “rule
of thumb” adjustment to the protection level is needed
until unconstrained demand is observed.

6. Conclusions/Recommendations
This paper examines the often overlooked but essen-
tial topic of unconstraining sales data. True demand
distribution parameters are a critical ingredient to rev-
enue management systems; unfortunately, the data
available are often constrained. Ignoring the con-
strained data problem results in significant reductions
in revenue and observing demand after it exceeds
capacity is often impractical; thus, statistical uncon-
straining methods are often used to estimate the pa-
rameters of the demand distribution. We propose a
new unconstraining method (DES) based on a com-
mon forecasting model that, unlike traditional statis-
tical unconstraining methods, takes into account the
point in time on the historical demand booking curves
that demand was constrained. We find our proposed
DES method outperforms other methods in two of
three data sets. When little historical data are available
or all demand sets are constrained, DES is a better
choice than EM.

We test the revenue impact of DES, EM, and no
unconstraining on actual booking data from a hotel/

casino. We show expected revenue performance var-
ies with the initial starting protection limits and a lack
of unconstraining leads to significant revenue losses.
In our example, starting with high (low) initial protec-
tion levels converges to the perfect information calcu-
lated revenue more quickly (slowly). Low initial pro-
tection levels can lead to completely constrained
classes, forcing firms using the EM method for uncon-
straining to use other methods until some uncon-
strained booking curves are observed. Both EM and
DES take numerous iterations (five and three, respec-
tively) to converge to within 2% of the perfect infor-
mation calculated revenue with low initial protection
levels. On the other hand, both EM and DES converge
to within 0.3% of the perfect information calculated
revenue after only one iteration when starting with
high protection levels. These results demonstrate that
both EM and DES are effective methods for uncon-
straining and provide significant improvements in to-
tal revenues over performing no unconstraining on
the demand data at all.

As is true with all research, there are limitations to
our work. In our section on revenue impact, we as-
sume independent demand for a given customer value
segment. That is, a customer associated with value
segment 2 will not turn up as demand in segments 1 or
3, even if value segment 2 is closed. This is a very
realistic assumption in a casino application, where
customer gaming habits are not dependent upon the
rate program they book under, but vice versa. How-
ever, in many other revenue management applica-
tions—particularly airlines—demand for a given seg-
ment often depends on the choice of segments
available. The independence assumption is commonly
used, however, in most booking limit algorithms. To
incorporate consumer choice behavior such as buy-up
or buy-down behavior, Talluri and van Ryzin (2004a)
present a model that explicitly accounts for the prob-
abilities that customers in a given fare class (value
segment) will purchase from other fare classes if their
preferred fare class is unavailable. To use this model,
a firm must know the probabilities that customers in
all classes will buy up or buy down, probabilities that
are rarely known in practice. Further development of
such models along with unconstraining methods to
accommodate them is a promising area of future re-
search. Additionally, our DES method does not ac-
count for seasonality or price promotions. Like most
other forecasting methods, historical data should be
decomposed into components of promotion effects,
seasonality, and competitive effects before DES is ap-
plied. For further information on these adjustments,
see Armstrong (2001). Despite these limitations, this
work contributes needed analytical tools to an emerg-
ing research field.
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Appendix

Applying the DES Method to Booking Curves That
Were Opened and Closed Multiple Times
(Section 3)
Our DES method can be used when a booking curve is
opened and closed multiple times. The methodology di-
rectly follows from the steps used when a booking curve is
only closed once. To demonstrate, refer again to Figure 1,
where the booking curve is closed after t � 30. Imagine now
that the booking class is reopened after t � 15 and then
closed again after t � 5 for the remaining five periods. In this
example, we must estimate the demand occurring from t
� 29 to t � 15 and then again from t � 4 to t � 0.

For this example, our method works as follows. First, we
estimate the unseen demand from day 29 – 15 (instead of
29 – 0 in our earlier example from Section 3). These smooth-
ing coefficients are used to recalculate FITt; call the new
forecasts FITt � F� t � T� t for periods t � 140, . . . , 30. We
estimate the cumulative demand up to the closest period
where demand is not constrained, FIT15 in our example,
using FIT15 � F� 30 � 15T� 30. Because we know the actual
demands that occurred during days 14 to 5, we calculate
FIT14 to FIT5 using the recursive methods of (1), (2), and (3)
for each of these days until we reach FIT5 � F� 5 � T� 5, after
which we no longer know true demand and cannot continue
to update our forecast. As before, our objective is to deter-
mine the final cumulative demand (if demand was not con-
strained) at the terminating period t � 0. We estimate this
value using FIT0 � F� 5 � 5T� 5.

Description of Unconstraining Methods (Section 4)
Averaging Method (AM). As described by Weatherford

and Polt (2002), divide the booking horizon into 10 separate
booking periods. At the end of each booking period, record
the number of bookings received since the end of the pre-
vious period. For each booking period, replace the “closed”
observations with the larger of (a) the “seen” bookings or (b)
the average bookings from the “open” observations. Con-
tinue in this fashion for each subsequent booking period.
After applying the method to each of the 10 periods, sum the
demands over all 10 periods for each historical booking
curve. Finally, calculate the average and standard deviation
parameter estimates based on these final total demand esti-
mates for each booking curve.

The AM is demonstrated using five observations for de-
mand from 5 different booking curves at two points in time.
Although the method was applied to all 10 booking periods,
we demonstrate the method below using only the last period
(period 10).

Observation number 1 2 3 4 5

Total cumulative bookings
through period 9 16 15 15 16 16

Bookings observed in period 10 2 4 2 3 4
Total demand estimates used

to calculate the distribution
parameters 18 19 18 19 20

The boldface values represent demands that were not
constrained or open in that period. Since the second and
third observations (4 and 2) were constrained, we estimate
the total demand for these two booking curves as the cumu-
lative estimated demand through period 9 plus the larger of
the “observed demand” (4 and 2, respectively) or the aver-
age of the cumulative bookings across the open observations
(averaging 2, 3, and 4 gives an average value of 3). Hence,
for the second booking curve, 4 � 3, so the total estimated
demand � 15 � 4 � 19 but for the third booking curve, 2
� 3, so the total estimated demand � 15 � 3 � 18.

Expectation Maximization (EM). As explained by Tal-
luri and van Ryzin (2004b), suppose we have M � N obser-
vations of bookings for a given product, z1, . . . zM�N, of
which M observations are constrained because the product
was closed. We ignore the time-series aspect of the observa-
tions and treat z1, . . . zM�N as an unordered set of observa-
tions generated by an i.i.d. process. Our goal is to find the
parameters of an underlying demand distribution for these
observations. Assume that the underlying demand distribu-
tion is normal with mean � and standard deviation �. We
further assume that all the observations come from a com-
mon distribution and that the observations are constrained
at random, i.e., they appear randomly in the sample. Be-
cause we are treating the observations as unordered, assume
z1, . . . zM are constrained at booking limits b1, . . . , bM, so
that z1 � b1, . . . , zM � bM. The remaining N observations are
unconstrained.

If the data were not constrained, then it would be easy to
construct the complete-data likelihood function. Namely,

L��, �, M � N� � �
i�1

M�N 1

�2��
e��� zi���2	/ 2�2,

with the complete-data log-likelihood function given by

ln L��, �, M � N�

� �
M � N

2 ln 2� � �M � N� ln � �
¥i�1

M�N �zi � ��2

2�2 .

The � and � that maximizes ln L� in the above equation are
given by the closed-form solution

�̂ �
1

M � N �
i�1

M�N

zi

�̂2 �
1

M � N �
i�1

M�N

� zi � �̂�2.

However, we do not know the true values of the M con-
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strained observations z1, . . . zM and, therefore, cannot use
this procedure directly. Instead, we use the following steps:

Step 0 (Initialize). Initialize � and � to be �(0) and �(0).
Good candidates for these starting values are the sample
mean and sample standard deviation of all the uncon-
strained observations. Let 
 � 0 be a small number, to be
used as a stopping criterion.

��0� �
¥i�M�1

M�N zi

N

��0� � �¥i�M�1
M�N � zi � ��0��2

N

Step 1 (E-step). Calculate the expected value of the cen-
sored data in the log-likelihood function assuming that they
come from a normal distribution X with parameters (�(k�1),
�(k�1)). That is, for i � 1, . . . , M calculate

Ẑi
�k�1� � E�X�X � bi , X � N���k�1�, ��k�1��	

and

�Ẑi
2��k�1� � E�X2�X � bi , X � N���k�1�, ��k�1��	.

Next, for each censored observation i � 1, . . . , M, replace zi

by Ẑi
(k�1) and zi

2 by (Ẑi
2)(k�1) to form the complete-data

log-likelihood function Q(�, �). In this way, we replace the
constrained values in the log-likelihood function by their
expected values given the current estimates of the mean and
standard deviation.

Step 2 (M-step). Maximize Q(�, �) with respect to � and
� to obtain �(k), �(k), yielding

��k� �
1

M � N � �
i�1

M

Ẑi
�k�1� � �

i�M�1

M�N

zi�
and

��k� �
1

M � N � �
i�M�1

M�N

((Ẑi
2)�k�1� � 2Ẑi�

�k�1�

� (��k�1�)2) � �
i�M�1

M�N

( zi � ��k�1�)2� .

Step 3 (Convergence test). If 	�(k) � �(k�1)	 � 
 and 	�(k)

� �(k�1)	 � 
, then stop; else, k 4 k � 1, go to step 1.
Once convergence has been achieved—say, in iteration

K—the unconstrained values for zi, i � 1, . . . , M can be
taken as E[X�X � bi], where X is normally distributed with
mean �(K) and standard deviation �(K).

Projection Detruncation (PD). As explained by
Weatherford and Polt (2002), this is a variation of the EM
method, which uses a weighted value, 	, to scale the aggres-
siveness of unconstraining. Instead of calculating a condi-
tional expectation, it iteratively finds a mean and standard
deviation such that 	 � area under normal curve from the
unconstrained mean to infinity divided by the area under
the normal curve from the constrained mean to infinity. The
user chooses 	, where 0 � 	 � 1. 	 � 0.5 performs similarly
to EM, using the conditional median rather than a condi-

tional mean. 	 � 0.5 produces larger estimates for distribu-
tion parameters than 	 � 0.5.

Lifetables (LT). As described by van Ryzin and McGill
(2000), let n denote the total number of observations (cen-
sored and uncensored). Let t1 � t2 � . . . , tm be m distinct
intervals. (Call [tj, tj�1) interval j.) Let nj be the number of
observations with values tj or more (the number of “at-risk”
observations at the start of interval j); let dj be the number of
uncensored observations that fall in interval j (the number
of “deaths” in the interval j); and let wj be the number of
censored observations that fall in interval j (the number
of “withdrawals” because of censoring in interval j). Define
n0 � n and note that nj � nj�1 � dj � wj, j � 1, . . . , m.

The life table estimate is given by

Ŝ
 tj � tj�1

2 � � �
i�1

j 
1 �
di

ni � wi/ 2� .

Each term 1 � (dj/(ni � wi/2) is an estimate of the condi-
tional probability that demand exceeds ti�1 given that it
exceeded ti. The denominator, ni � wi/2, is an estimate of
the number of samples at risk during period i, where wi/2 is
a correction term for the number of censored observations in
period i. We used 20 intervals in our work.

The life table estimator can now be used to estimate the
mean and standard deviation of the distribution by linear
regression. Specifically, let 
(x) be the standard normal
distribution and let 
�1(x) denote its inverse. Define sj

� 
�1(1 � Ŝ((tj � tj�1)/2)). If demand is normally distrib-
uted, the points (sj, tj) j � 1, . . . , n should lie approximately
on a straight line, namely sj � atj � b. Using linear regres-
sion, we use our estimates of the slope, â, and the intercept,
b̂, to estimate the mean, �̂ � 1/â, and the standard deviation,
�̂ � �b̂/â.

Creation of Sample Booking Curves (Section 4)
In this section we explain how we created the three booking
curves (concave, convex, and homogeneous) used to test the
unconstraining methods in Section 4.

Concave. We created 100 concave booking curves,
which simulate arrival rates over a 140-day period. To create
a concave booking curve, the arrival rate must decrease over
the 140-day booking period. Hence, for days 140 – 121, we
randomly generated arrival rates for each day out of a
Poisson distribution with � � 8. Next, we randomly gener-
ated arrival rates for days 120 – 101 from a Poisson distri-
bution with � � 7. We continued in this manner, decreasing
� by 1 every 20 days until we reached days 20 – 1 with � � 2.
After simulating one booking curve in this manner, we
repeated this procedure 99 times to generate 100 concave
booking curves.

These 100 concave booking curves have an average total
demand, � � 700.20, and a standard deviation, � � 26.96.
Using the previously stated formula for booking limits,
booking limit � � � z*�, we found a target booking limit to
constrain 20, 40, 60, 80, and 98% of all booking curves
(values found below).

Crystal et al.: Unconstraining Methods to Improve Revenue Management Systems
744 Production and Operations Management 16(6), pp. 729–746, © 2007 Production and Operations Management Society



% of booking
curves constrained 20 40 60 80 98

Target booking limit 722.89 707.03 693.37 677.51 644.83

Given the 100 concave booking curves and the target
booking limit of 722.89 for constraining 20% of the total
booking curves, we generated random booking limits for
each of 100 booking curves. We randomly generated 100
numbers out of the normal distribution with � � 722.89 and
� � 26.96. Those 100 numbers served as the booking limit for
the 100 booking curves. Hence, if the first curve had a total
demand of 726 and its corresponding booking limit was 720,
the first curve had constrained demand. Once the booking
limits were matched to the booking curves, we determined
which curves were constrained or unconstrained. Next, we
unconstrained each constrained booking curve using each of
the described methods (AM, EM, PD, DES, LT). We then
calculated the average and standard deviation of total de-
mand across our unconstrained data and compared this
value to the average and standard deviation of total demand
across the true demand. This simulation was repeated for
the scenarios where we constrained 40, 60, 80, and 98% of all
booking curves.

Convex. The convex booking curves were created simi-
larly to the concave curves. To create a convex booking
curve, the arrival rate must increase over the 140-day book-
ing period. Hence, for days 140 – 121, we randomly gener-
ated arrival rates for each day out of a Poisson distribution
with � � 2. Next, we randomly generated arrival rates for
days 120 – 101 from a Poisson distribution with � � 3. We
continued to increase � by 1 after 20 days of arrival until we
reached days 20 – 1 with � � 8. After simulating one book-
ing curve in this manner, we repeated it 99 times to generate
100 convex booking curves.

The 100 convex booking curves had an average total
demand, � � 696.74, and standard deviation, � � 27.93. Just
as with the concave data set, we used the booking limit
formula to find target booking limits to constrain 20, 40, 60,
80, and 98% of all booking curves.

% of booking
curves constrained 20 40 60 80 98

Target booking limit 720.25 703.82 689.66 673.23 639.38

For the 20% constrained level, we randomly generated
100 numbers out of the normal distribution with � � 720.25
and � � 27.93. Those 100 numbers served as the booking
limit for the 100 booking curves. Hence, if the first curve had
a total demand of 726 and its corresponding booking limit
was 720, the first curve had constrained demand. Once the
booking limits were matched to the booking curves, we
determined which curves were constrained or uncon-
strained. Next, we unconstrained each constrained booking
curve using each of the described methods (AM, EM, PD,
DES, LT). We then calculated the average and standard
deviation of total demand across our unconstrained data
and compared this value to the average and standard devi-
ation of total demand across the true demand. This simula-
tion was repeated for the scenarios where we constrained 40,
60, 80, and 98% of all booking curves.

Homogeneous. We created 100 homogeneous booking
curves by randomly generating 140 arrival rates out of a
Poisson distribution with � � 5. After simulating one book-
ing curve in this manner, we repeated it 99 times to generate
100 homogeneous booking curves. The 100 booking curves
average had an average total demand � 698.14 and �
� 26.52. Using the booking limit formula, we found a target
booking limit to constrain 20, 40, 60, 80, and 98% of all
booking curves.

% of booking
curves constrained 20 40 60 80 98

Target booking limit 720.46 704.86 691.42 675.82 643.67

Booking limits were formed and tested as in the convex
and concave cases.

DES for Small and Intermittent Demand
(Section 4.2)
In this section we provide a review of Croston’s method as
described by Shenstone and Hyndman (2005). Let Yt be the
demand occurring in time period t and Xt be the indicator
variable for nonzero demand periods; i.e., Xt � 1 when
demand occurs at time period t and Xt � 0 when no demand
occurs. Furthermore, let jt be the index of the nonzero de-
mand such that jt � ¥i�1

t Xi. Let Y*j represent the size of the
jth nonzero demand and Qj the interarrival time between
Y*j�1 and Y*j.

Croston’s method separately forecasts the time between
nonzero demand and the size of nonzero demand using
simple exponential smoothing. Let Zj and Pj be the forecasts
of the ( j � 1)th demand size and interarrival time, respec-
tively, based on data up to demand j. Croston’s method
gives

Zj � �1 � �� Zj�1 � �Y*j

and

Pj � �1 � �� Pj�1 � �Qj .

The smoothing parameter � ranges from 0 to 1 and is chosen
as the value that minimizes actual demand and interarrival
time (respectively) from projected interarrival time at time �
j. We assume � is the same for both Y*j and Qj. Let l � jn
denote the last period of demand. Then the mean demand
rate, which is used for the next nonzero demand at time n
� h, is estimated by the ratio Yn�h � Zl/Pl.

Sample Calculation of Total Revenue for a Given
Demand Realization (Section 5.3)
To demonstrate our method for calculating the percentage of
optimal revenue obtained by using inaccurate demand dis-
tribution parameters, we refer back to the sample data given
in Table 4. Suppose a particular unconstraining method
gives the incorrect parameter estimates for fare class 1 of a
mean and variance of 45 (as opposed to the correct param-
eter values of 50 for each). If all the other parameter esti-
mates were the same, using the incorrect parameter esti-
mates in the EMSR-b heuristic would result in nested
protection levels of 44, 120, and 252 for fare classes 1, 2, and
3, respectively. Now suppose a particular realization for all
four class booking curves results in total demand for fare
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classes 1, 2, 3, and 4 of 51, 75, 135, and 510, respectively.
Assume the capacity of the hotel is 500 rooms. The total
revenue using the protection levels calculated from the true
distribution parameter values (Table 4) is detailed in the
following calculations:

I4 � Capacity � 
3 � 500 � 257 � 243;
I3 � Capacity � 
2 � ¥j�4

4 min(Ij, Xj) � 500 � 125
� min(243, 510) � 132;

I2 � Capacity � 
1 � ¥j�3
4 min(Ij, Xj) � 500 � 49

� [min(132, 135) � min(243, 510)] � 76;
I1 � Capacity � ¥j�2

4 min(Ij, Xj) � 500 � [min(76, 75)
� min(132, 135) � min(243, 510)] � 50;

Ri � f *i min[Xi, Ii];
R1 � f *1 min[X1, I1] � 250 � 50 � 12,500;
R2 � f *2 min[X2, I2] � 150 � 75 � 11,250;
R3 � f *3 min[X3, I3] � 100 � 132 � 13,200;
R4 � f *4 min[X4, I4] � 50 � 243 � 12,150;
Total revenue � ¥i�1

n Ri � $49,100.
Using Equations 6, 7, and 8 but assuming incorrect pro-

tection levels of 44, 120, and 252 yields total revenue of
$48,100. Thus, using the incorrect protection levels from this
example results in total revenues that are 98% (48,100/
49,100) of optimal for this particular demand realization.
Although every realization of demand does not result in
higher total revenue for the correct protection levels versus
the incorrect protection levels, on average the correct pro-
tection levels yield higher total revenues than the incorrect
protection levels.
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