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Quantitative methods used to compare the performance of mathematical models of cognition

measure the ability of models to redescribe experimental data. Some also weight various

properties of the  models. Two theoretical approaches to model selection were compared in the

first part of the paper. One emphasizes flexibility, the other generalizability. In the second part,

simulations were carried out to gain a better understanding of the results of Massaro, Cohen,

Campbell, and Rodriguez (2001). Findings provide further insight into why measures of

generalizability, such as BMS, are preferable to measures of flexibility, such as RMSD, and also

show that the results from model recovery tests can be misleading if not interpreted relative to

the data on which they were evaluated.
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Flexibility versus Generalizability in Model Selection

Myung and Pitt (1997) introduced a method for selecting among mathematical models of

cognition, dubbed Bayesian Model Selection (BMS). It goes beyond current selection methods

by not only evaluating a model's ability to fit data (i.e., measuring goodness-of-fit using mean

squared error or percent variance accounted for), but also by considering another dimension of a 

model, its complexity, which conceptually refers to how many different data patterns the model

can fit a priori. Massaro, Cohen, Campbell, and Rodriguez (2001) carried out a more extensive

series of simulations, the primary purpose of which was to show that prior work demonstrating

the superiority of FLMP (Fuzzy Logical Model of Perception; Massaro, 1998) relative to WTAV

(WeighTed AVeraging model) was still valid when BMS was used in place of RMSD (Root

Mean Squared Deviation), their preferred selection method. 

These two selection methods are defined as follows:

f(D|2) is the likelihood function of observed data D, 2 is the parameter vector, B(2) is the prior

density of 2, ln denotes the logarithm of base 10, prd and obs denote predicted and observed

data, respectively, and finally, N is the number of data points being fitted.  BMS originated in

Bayesian statistics, and represents as the logarithm of the mean likelihood, averaged across the

full range of parameter values and weighted by the prior density. The model that maximizes

BMS should be selected. On the other hand, RMSD represents the square root of the average
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deviation between predicted and observed data. This selection method prescribes that the model

that minimizes RMSD should be preferred.1

Our interest in Massaro et al (2001) was in the performance of the two selection methods,

not the models that were compared. In some of the testing situations examined, they found that

RMSD performed just as well as BMS, even better in some cases, and concluded that for their

prototypical experimental setup, both methods can be used. In addition, they clarified their

position on some key theoretical issues that go to the core of the model selection enterprise. In

the current paper, we continue this dialogue by first clarifying our own approach to model

selection and distinguishing it from theirs. This discussion is followed by a re-examination of

their simulations. Large-scale simulations combined with new analysis techniques provide a

broader understanding of why the two selection methods performed as they did across various

tests. In addition, they further clarify the relationship between the two selection methods. The

paper closes with some thoughts on when and how both methods can be used productively.

The Goal of Model Selection

The goal of model selection is to identify the one model, from a set of competing models,

that best captures the regularities underlying the cognitive process of interest. The computational

methods that are applied in choosing among models should be an extension of this goal. The

measures that have been developed for this purpose differ in the approach taken to achieve this

goal and in the properties of the model that are evaluated.

Goodness-of-fit (GOF) measures, such as RMSD, have been the primary tools used to

compare models in psychology, and they are also championed by Massaro et al (2001; Massaro,

1998). They measure how well a model fits the experimental data. The model that provides the
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best fit is selected because it is assumed to approximate most closely the underlying cognitive

process.

This approach to model selection entails comparing competing models on their ability to

fit data sets generated by all participants in an experiment. For each set of data, the parameters of

the model vary freely to obtain the optimal fit. The model that yields the best mean fit when

averaged across participants is chosen. In defense of their method, Massaro et al contend that

fitting individual participants' data is necessary to avoid the potential distorting effects of fitting

averaged data, and  also maintain that allowing parameters to vary freely is a necessary part of

modeling.

We are in agreement with Massaro et al that care must be taken when fitting averaged

data (see Myung, Kim, & Pitt, 2000) and that without a minimal amount of initial exploratory

modeling, it is nonsensical to fix the parameters of a model prior to testing it on a given data set.

How else could good parameter estimates be obtained? 

We have reservations, however, about their approach to model selection and the types of

models it favors. To begin with, we takes issue with the practice of generating new parameter

estimates for each new set of data. By allowing parameters to vary anew when fitting each

participant's data using a GOF measure like RMSD, the model is, in effect, being optimally

tuned to each set of data. When these RMSD values are then averaged, the result is a measure of

the flexibility of the model in capturing the range of response patterns exhibited across

participants. Models that provide a good mean fit (i.e., small RMSD) are sufficiently agile to

cope most of the variability in the data. Less flexible models will provide poorer mean fits

because they are unable to do so. In essence, the model that is most adept at absorbing variability
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among response patterns is selected, and it is this model that is assumed to approximate most

closely the underlying cognitive process.

A shortcoming of this approach become apparent when one asks why the most flexible

model should be preferred. As flexibility increases, specificity about the form of the underlying

process decreases, because a more flexible model can mimic many more response patterns (i.e.,

potentially unique cognitive processes) than a less flexible one (Myung & Pitt, 1997). If the goal

of model selection is to narrow the set of candidate models to one, then emphasizing flexibility

works against this goal because models are kept in the running solely by virtue of their ability to

fit data, not because they are good approximations to a particular cognitive process. In the limit,

the preferred model would be a universal Turning machine, capable of fitting any data set

perfectly, while at the same time providing little information about the form of the cognitive

process being studied.

Emphasizing model flexibility leads to nontrivial errors in model selection. Variation in

the data due to sampling error, to individual differences, and to the cognitive process itself are

undifferentiated in Massaro et al's flexibility approach to model selection. All are considered

meaningful forms of variation, and models are evaluated on their ability capture all three, yet a

GOF measure like RMSD cannot distinguish among them. The following simulation illustrates

this problem.

RMSD was used to choose between two models from data that were generated to vary in

sampling error, individual differences, and the model (i.e., cognitive process) itself. One model

was a 16 parameter version of the original Fuzzy Logical Model of Perception (FLMPF; Massaro

& Cohen, 1983) and the other was a restricted (i.e., nested) version of this same model with only
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8 free parameters (FLMPR), obtained by fixing half of the sixteen parameters to constants. The

mathematical equation for FLMP and other models discussed in the present paper are listed in

Table 1. The ability of RMSD to recover the correct model was tested in five conditions. In the

first and fifth, all simulated subjects differed only in sampling error. In the second and fourth,

they differed in both sampling error and individual differences, with half the data sets being

generated using one set of parameters, and the remainder using the other set. In the third

condition, half of the simulated subjects were generated by one model, and half by the other

model.

In each condition and for each model (FLMPF or FLMPR), a given set of parameters was

run through the model to create a set of 64 response probabilities in an 8 x 8 factorial design.

From these, a sample of 64 simulated proportions was obtained by introducing sampling error

using the binomial probability distribution of sample size 20. This was repeated 50 or 100 times,

depending upon the condition, thereby creating the same number of replication samples (i.e.,

response patterns). Both models were then fit to each response pattern separately using RMSD.

When looked at from the standpoint of variability, the goal of model selection is to ignore

variation due to sampling error and individual differences, and capture only that due to the

cognitive process of interest. In the current test, an accurate selection method should ignore

sampling error (SE) and parameter variation (i.e., individual differences, ID), but not model

variation (different models, DM). Shown in each cell in Table 2 is the mean fit and the

percentage of time the particular model yielded the best fit. FLMPF, the more flexible model

because it has 8 additional parameters, was always selected regardless of the source of the data,

demonstrating that RMSD cannot discriminate between the types of variation. While FLMPF
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should have been selected in conditions in which it generated the data (SEF and SEF+ID, in rows

3a and 3b in Table 2, respectively), it should not have been chosen when data were generated by

the restricted model, FLMPR. No matter whether data differed in sampling error only (SER, row

1a), or both sampling error and individual differences (SER+ID, row 1b), FLMPF always

provided the best fit. Finally, RMSD also failed to distinguish the models when the data were

equally likely to come from either model (DM condition, row 2).

These results show that flexibility measures such as RMSD can be highly error prone.

Put simply, they get side-tracked by the quest to capture variability in the data, and end up

selecting the most flexible model, which may not be the best approximation of the cognitive

process.

This undesirable property of the flexibility approach to model selection is why we favor

an alternative, one in which the selection methods themselves do a better job of achieving the

goal of model selection -- to infer the form of the cognitive process. The approach that we

advocate differs in the conceptualization of the problem, though in practice it can appear, and

sometimes perform, quite similarly (reasons why will be explained later). In brief, model

selection is viewed as a statistical inference problem, analogous to estimating population

parameters from sample statistics. It begins with a recognition of the variability problem

discussed above: Data are always contaminated by noise. To model a mental process accurately,

one must devise a way to disentangle the sources of  noise (sampling error, individual

variability) from the variation due to the underlying cognitive process.

The problem of error is solved by shifting the focus of model selection from measuring a

model's fit to all response patterns (i.e., flexibility) to estimating a model's ability to fit unseen,
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future data sets generated by that same process (i.e., generalizability). That is, the goal of model

selection is to choose the model that generalizes best across all samples, because the one that

does has surely captured the cognitive process of interest, and not the random fluctuations that

any one sample will exhibit. This is the essence of generalizability, and a model should be

judged on its ability to generalize correctly, not on its flexibility to fit different data patterns. 

To measure a model's generalizability, the selection method must be sensitive to

properties of the model in addition to GOF. Collectively they define the complexity of the

model, which among other things includes the number of parameters in the model and the way

the parameters are combined in the model equation (i.e., functional form). RMSD and other

flexibility measures are insensitive to model complexity. For a more detailed discussion of

complexity and various measures of generalizability and its theoretical foundations, see Linhart,

and Zucchini (1986), Myung, Balasubramanian, and Pitt (2000), Pitt, Myung, and Zhang (in

press). One of these measures, cross validation, is mentioned in passing by Massaro et al (2001;

p.15), but they express uneasiness with it and with a central concept of generalizability:

prediction. It is used in the following simulation to demonstrate why generalizability, not

flexibility, should be the goal of model selection.

In cross validation, a model's generalizability is assessed by fitting the model to one

sample of data, holding those best-fitting parameters constant, and then measuring the model's fit

to another sample of data generated by the same cognitive process. Parameter retuning on the

second data set is not allowed. If the model perfectly captures the underlying process and there is

no noise (i.e., sampling error) in the data, the two fits will be equal. Most often, the second fit is

worse precisely because the data are noisy. The amount by which it is worse provides an
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estimate of how much the model overfit the first data set, capturing the spurious fluctuations due

to sampling error.

The two versions of FLMP used in the preceding simulation were again compared. One

hundred data sets were generated by FLMPR and fitted by both models. Mean RMSD of the fits

of each model to the data are shown in the first row of Table 3. This test is equivalent to the SER

condition in Table 2, and the results are identical. FLMPF fitted the data best 100% of the time.

Because FLMPR generated the data (i.e., it is the true model), it should have yielded the best fit

at least some of the time. The only way FLMPF could have always provided a better fit is by

fitting the variation due to sampling error. 

That FLMPF's superior fit is due to overfitting the data can be seen in the second row of

Table 3, where the generalizability of the models was assessed by fitting them to a second set of

100 samples, also generated by FLMPR. Mean fit was worse for both models, but the increase in

fit for FLMPF (.30) was double that for FLMPR (.16), indicating that FLMPF  absorbed twice as

much sampling variation as FLMPR in fitting the first 100 samples. As a result, FLMPF not only

yielded the poorest mean fit, but also provided the best fit least often. FLMPF's overfitting must

be caused by its eight extra parameters because its functional form is identical to FLMPR's.

This simulation illustrates that the model that provides the best fit may not generalize

the best. From the standpoint of generalizability, a suitable method of model selection must

balance these opposing goals. On the one hand, the model must provide a sufficiently good fit

to the data to capture the underlying process. On the other hand, the fit must not be so good as

to sacrifice generalizability. Measures of GOF, such as RMSD, concern themselves only with

the first goal, whereas measures of generalizability try to satisfy both.
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It is from the perspective of generalizability that BMS was offered as a measure of

model selection (Myung & Pitt, 1997). It is a good measure of generalizability precisely

because it is sensitive to the many aspects of model complexity in addition to measuring GOF.

RMSD is a poor measure precisely because it is insensitive to complexity. Massaro et al's

wariness of one feature of BMS, what they term "parameter invariance," reveals a fundamental

difference in the flexibility and generalizability approaches to model selection. In BMS, a

model is selected that does the best job of fitting a set of data across the full range of parameter

values. Averaging fits across parameter values is exactly what should be done if one is

interested in the generalizability of the model beyond the data in hand. Sampling error will

cause variability in future data sets, which the model (with parameters fixed) should still fit well

if it does a good job of capturing only the underlying process, and not also the ever-present

noise. Within the flexibility framework, such averaging over the parameter range is

counterproductive, as it unfairly penalizes models that possess the flexibility necessary to

capture all of the variation in the data, regardless of its source.

The superiority of generalizability over flexibility is easily shown by rerunning the

simulation in Table 2, but substituting BMS for RMSD. Model recovery is virtually perfect

(Table 4). The selection method is sensitive to model differences, but not sampling error or

individual differences. When variation due to sampling error (SER, SEF) or both sampling error

and individual differences (SER+ID, SEF+ID) were present in the data, they were ignored, and

the model that generated the data was almost always chosen. When the data came from each

model half of the time (DM), BMS was also able to determine which model generated the data,

selecting the correct model almost all of the time.
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The data across Tables 2-4 can give the impression that BMS is superior to RMSD,

which is not always what Massaro et al found. RMSD performed as well as BMS in at least half

of their simulations. In a few instances, BMS performed quite poorly. What is the cause of these

seemingly discrepant outcomes? In the remainder of this paper, we show that the discrepancies

are more apparent than real, and that BMS's "failures" are readily explainable by a

consideration of the details of the simulations and the limitations of all selection methods. We

focus first on the three simulations in which BMS underperformed RMSD.  These results serve

as a back-drop for understanding why both selection methods performed so similarly in the

other simulations. 

Re-Examination of Massaro et al’s (2001) Simulations

Evaluating the Selection Methods by Adding Noise to the parameters

In their Table 4, Massaro et al compared RMSD and BMS on their ability to recover the

correct model (FLMP or WTAV) when Gausian-distributed error and sampling error were

added to the population proportions (Pij in Table 1). Our focus is on the effects of adding

Gausian noise. The Gausian error distribution had one of seven standard deviations spanning a

range from 0.00 to 0.80. Performance of the two selection methods was evaluated by measuring

how well each could identify which of the two models (FLMP or WTAV) generated a sample of

data.  The sample was also generated by one of these two models, so the test assessed how well

RMSD and BMS "recovered" the data-generating model. Higher accuracy generally indicate

better recovery (i.e., ability to discriminate between the models).

 Model recovery of both selection methods was measured at each noise level. Their data

are reproduced in the first four columns of Table 5 of the present paper. As one might expect,
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performance of the two selection methods declined as the standard deviation of the noise

increased. Massaro et al were particularly concerned about the asymmetry that emerged with

BMS at the higher noise levels. When the data were generated by WTAV, recovery of the

correct model (WTAV) leveled off at 88%, misattributing the data as belonging to FLMP only

12% of the time. When the data were generated by FLMP, correct recovery leveled off at a

much lower value, 61%.  Massaro et al conjectured that this asymmetry is due to an inherent

bias in the selection method of favoring less complex models. In actuality, it is due to a

simulation error.

The addition of Gaussian-distributed error to Pij necessitated truncating the error

distribution at 0 and 1so that simulated response probabilities would stay within the range of 0

and 1. An unwanted side effect of truncating the error distribution in this way is that the

distribution itself becomes asymmetric. For example, when simulated probabilities are

generated by introducing truncated Gaussian errors around a given response probability, say

0.80, values above 1 will be obtained more often than values below 0 so truncated probabilities

will include more 1's than 0's. As a result, the mean of these probabilities will not in general be

the same as the original probability, unless the original value is exactly equal  to 0.5. 

Consequently, the Gaussian truncation procedure resulted in the creation of distorted response

patterns that are no longer FLMP response patterns. As such, FLMP could not have provided a

perfect fit to the data even in the absence of error. A prerequisite for evaluating model recovery

is that the model be able to do so. Otherwise, the performance of the selection method is

misrepresented.

Evidence that demonstrates the distorting effect of error truncation is provided in the last



Model Selection      14

two columns of Table 5. At each noise level, FLMP and WTAV were fitted to the response

patterns generated by each model when Gausian error and sampling error should have been

zero. The expectation of each observed proportion (i.e., response value) generated by each

model was estimated by sampling each Pij and the two noise distributions 10000 times and then

averaging the resulting values. If an error distribution is symmetrical, the averaged value will be

zero. Asymmetrical distributions will add a non-zero value, and thus distort Pij. If both error

distributions were symmetrical, the effects of error would have been eliminated and each model

should have fitted its own data perfectly, which would be reflected in values of 100% in the two

cells in the off diagonal at each noise level. Scanning across the seven noise levels, one can see

that FLMP was affected much more by noise truncation than WTAV.  Even at the .80 noise

level, WTAV absorbed 99.93% of the variance. In contrast, FLMP provided a poorer and

poorer fit as noise level increased, until by the .80 noise level, the model absorbed only 93.16%

of the variance, which is even less than that for WTAV (94.2%). As noise level increased, the

data-generating FLMP model became less and less FLMP-like, whereas WTAV changed little.

It is this asymmetry in the effects of noise truncation on the two data-generating models

that caused BMS to discriminate between the two models less well when the data were

generated by FLMP rather than WTAV. The parallel between the performance of BMS and the

FLMP-likeness of the data generating model is striking. When the data were generated by

FLMP, correct model recovery under BMS dropped the most between the .20 and .40 noise

levels, from 78% to 62%. Between these same noise levels is where the largest change in the

data generating model is found. Percent variance accounted for dropped 2.80% (from 98.66 to

95.86). Prior to this point, the largest drop was 0.59%.



Model Selection      15

Further evidence that demonstrates that truncation of the noise distribution was the

cause of the asymmetry in how BMS performed is shown in Table 6. The simulations in Table 5

were rerun using binomially distributed noise, which is an appropriate way of simulating

sampling variation given the experimental design (two response choices) and because it

eliminates the truncation problem. When binomially-distributed noise is used, noise level

cannot be varied by changing the standard deviation of the distribution. Instead, the sample size

must be varied, with smaller sample sizes being the equivalent of more noise (i.e., there is less

information about the identity of the model underlying the data). Model recovery using BMS

(right side of Table) shows no such bias in favoring the simpler model (i.e., WTAV), as

Massaro et al argued, performing exceptionally well all the way down to a sample size of 10.

Only with a sample size of five does BMS begin to have difficulty, and it is just the opposite of

what Massaro et al hypothesized: BMS recovered the correct model more often when FLMP

generated the data than when WTAV generated the data. Model recovery using RMSD (left side

of Table) performed as it did in Table 5, exhibiting a consistent bias to favor FLMP as noise

level increased.

Replication and Extension of Myung and Pitt (1997)

In Tables 1 and 2 of their paper, Massaro et al (2001) extended a model recovery

simulation carried out by Myung and Pitt (1997) in which BMS and RMSD were compared

across three parameter sets using two models, FLMP and LIM.  Massaro et al included two

additional parameter sets and the WTAV model. The results of Myung and Pitt were replicated.

Across the nine conditions, BMS always recovered the correct model most often. RMSD, in

contrast, recovered the correct model in only three of the nine conditions (always and only
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when FLMP generated the data). When LIM generated the data, RMSD's lack of sensitivity to

model complexity caused it to choose FLMP most often. When WTAV generated the data,

FLMP also won out, but twice by very little (~4%).

These same biases emerged with RMSD when model recovery was tested using the two

new data sets: The correct model was chosen only when FLMP generated the data. BMS

performed better, recovering the correct model in four of the six cases. In two cases, however,

BMS chose the wrong model most often. One was with their parameter set 4. BMS's

performance was absolutely appalling, choosing WTAV instead of FLMP 92% of the time

when FLMP generated the data. With parameter set 5, BMS performed more like RMSD,

choosing FLMP when WTAV actually generated the data, but only by a slight margin (4%). We

were rather surprised by these results and set out to learn why BMS performed in this way.

The unexpected results with parameter set 5 are in fact not a failure of BMS, but rather

the numerical integration method. Massaro et al used the Simple Monte Carlo (SMC) method to

estimate the marginal likelihood for BMS. This method can require a very large number of

iterations to settle on a solution. Massaro et al used a cut-off of one million. Even this can be

insufficient when the models are difficult to distinguish, causing the solution to be an under- or

overestimate of the true value. In these (and most) situations, Markov Chain Monte Carlo

(MCMC) methods (Gilks, Richardson & Spiegelhalter, 1996) will yield more accurate results.2

When MCMC was used in place of SMC, BMS performed as expected. Shown in the

first three columns of Table 7 are the BMS model recovery results of Massaro et al using

parameter set 5. BMS's failure can be seen in the third column, where WTAV data were thought

to have been generated by FLMP slightly more often that WTAV (52% vs 48%). The last
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column in the Table contains a replication of these simulations using MCMC. Mean marginal

likelihood values reversed between FLMP and WTAV, and the correct model was chosen 89%

of the time.

BMS's failure to choose the correct model when parameter set 4 was used is not due to a

convergence problem with the numerical integration method. When this simulation was rerun

using MCMC, BMS chose WTAV (the wrong model) 83% of the time when FLMP generated

the data. The magnitude of this failure intrigued us because BMS did not just have difficulty

distinguishing between the models (which would have led to a 50% recovery rate). Rather BMS

consistently chose the wrong model. Massaro et al offered no explanation for the result. We

hypothesized that it might be due to the set of parameters used to generate the data. That is,

perhaps FLMP response patterns generated using parameter set 4 were so much like typical

WTAV response patterns that BMS erroneously ascribed the data to WTAV.  In a sense, the

data tricked BMS into choosing the wrong model.

To explore this idea, a massive simulation was undertaken in which the entire parameter

space was sampled. The purpose was to identify FLMP response patterns that are very WTAV-

like, and determine whether they lead to the confusion that BMS exhibited. The same 2x8

design of the preceding simulations was used. Ten thousand sets of parameters were generated

(10 parameters for FLMP plus a weight parameter for WTAV) using a uniform density on [0,1].

Each of these parameter sets was then run through both models to create 10,000 FLMP response

patterns and 10,000 WTAV response patterns. Because we were interested in identifying FLMP

response patterns that resemble WTAV response patterns, WTAV was fitted to each of the

10,000 FLMP response patterns using RMSD as the measure of fit. Next, all parameter sets
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were then sorted as a function of this fit, with those yielding the smallest RMSD (i.e., best fit) at

the top of the list, and the worst fit at the bottom, essentially ranking the parameter sets by

confusability of the response pattern. Those at the top of the list yielded FLMP response

patterns that were most like WTAV response patterns; those at the bottom of the list yielded

response patterns that were more uniquely FLMP.

The rank-ordered parameter sets were then divided into six bins, and 100 parameter sets

were randomly selected from each to carry out a couple of analyses. In the first analysis, all

10,000 parameter sets were compared with parameter set 4 of Massaro et al to find the closest

match. Not surprisingly, this parameter set is one of the most confusable, coming from bin 2.

This and another similar parameter set are listed in Appendix A along with parameter set 4.

Also listed are two other parameter sets that caused BMS to recover the wrong model. What is

common among them is that they yield virtually parallel response functions, a characteristic of

WTAV, not FLMP, which is known for its football-shaped response patterns (Massaro, 1998).

Shown in the upper graph in Figure 1 are the FLMP response functions using parameter

set 4 and the FLMP response functions using one of the most similar parameter sets. The

similarity of the functions in shape and actual values suggests that parameter set 4 produced

confusable data and would most likely have belonged to bin 1 or 2 were it one of the 10,000

generated in the simulation. WTAV accounted for 99.81 of the variance when fitted to data

generated by parameter set 4 and 99.92 when fit to the other parameter set. BMS's failure in this

instance is therefore not surprising. In fact, the response pattern is so much like WTAV, one

might well wonder whether BMS's performance should be considered a failure at all: There is

every reason to believe the data were generated by WTAV. Given how WTAV-like the FLMP
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response pattern is, one might also wonder why RMSD performed so well, recovering the

correct model (FLMP) 77.5% of the time. (In contrast, BMS performed correctly only 8% of the

time.) An answer to this question is provided below.

In the second analysis of these data, the 100 parameter sets in each of the six bins were

used in six model recovery simulations, as in Table 5. For each set of parameters, a single data

sample (sample size of 20) was generated from each model and RMSD and BMS were

evaluated on their abilities to determine whether FLMP or WTAV generated the data. Shown in

the lower graph in Figure 1 are the percentages of errors made by each selection method in each

bin. Also shown is the percentage of errors in which both methods failed on the same parameter

set (i.e., the union of RMSD and BMS errors). Mean WTAV fit (percent variance accounted

for) to the 100 FLMP response patterns in each bin is shown on the y axis for reference.

The data provide additional insight into the similarities and differences of the two

selection methods, and the conditions in which they are likely to fail and succeed. Bin 1

contained the 500 parameter sets that yielded the most WTAV-like FLMP response patterns. As

can be seen, both selection methods faired quite poorly. The error rate for BMS was 55%, and

that for RMSD was 80%.  As the parameter sets yielded more distinguishable response patterns,

errors decreased for both selection methods, but much more so for BMS than RMSD. The

divergence of the two selection methods is most apparent in bin 3, where RMSD dropped from

80% to 60% errors and BMS dropped a proportionately much larger amount (from 45% to

18%). Error rates in bins 4-6 did not fluctuate greatly from the values in bin 3.

These data clearly demonstrate how much more error-prone RMSD can be than BMS.

The differences are quite large when averaged over bins. RMSD failed 65.0% of the time



Model Selection      20

(weighted averaged) and BMS failed 18.9% of the time. Both methods failed on the same

parameter sets in 15.7% of the tests (hashed bars). Comparison of the bars across bins shows

that the hashed bar is only slightly below the BMS bar, indicating that there were very few

parameter sets in which BMS failed and RMSD did not (3.2%). Looked at another way, if BMS

failed, RMSD was almost certain to fail. The reverse, however, was not true.

The data in this graph lump together the different types of errors that a selection method

made. These data were therefore broken down to reveal the types of errors that each selection

method made, and are shown in Table 8 in the familiar format used in preceding Tables. RMSD

exhibited its typical error pattern: When WTAV generated the data, there was a strong bias to

choose FLMP, the more complex model. That this bias remained stable across bins reminds us

that the bias is an inherent property of the selection method, having nothing to do with the

parameter set or the discriminability of the resulting response patterns. When FLMP generated

the data, RMSD performed surprisingly well in bin 1 (71% accuracy) given how WTAV-like

the response patterns were. Performance continued to improve across bins.

When BMS was the selection method, model recovery was good and consistent across

all bins when WTAV generated the data, selecting the correct model 90% or more of the time.

When FLMP generated the data, BMS performed as expected given the rank ordering of the

parameter sets. Model recovery was at chance in bin 1, which is where it should be when FLMP

response patterns are highly similar to WTAV response patterns. As the parameter sets yielded

response patterns that were more typical of FLMP (bins 2-6), recovery quickly improved,

becoming virtually perfect by bin 4.

In bin 1, RMSD performed unusually well when FLMP generated the data, better than
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BMS (71% vs 50%). Given that this outcome is found in what is surely the most difficult

condition in the simulation (i.e., where the response patterns of the two models were most

confusable) it can give the impression that RMSD will perform best when it really counts, and

seems at odds with the results in Figure 1. However, when evaluating RMSD's performance in

this condition, or in any model recovery test, it is important to remember that performance

cannot be attributed solely to the model recovery abilities of the selection method. Rather,

performance is partially due to the method's inherent bias in favoring the more complex model,

which just happens to be FLMP in this case. That is, RMSD's bias contributes to its successes as

well as its failures. The bias is omnipresent. It inflates performance when the bias works in

favor of the more complex model (i.e., FLMP), but in this situation it masquerades as accurate

recovery, making the bias invisible. This gives the appearance of RMSD performing better than

it really does. The magnitude of the bias is visible when it works against the less complex

model (i.e., WTAV). This condition is a more accurate reflection of the method's inability to

recover the correct model.

The severity of RMSD's bias is visible in the adjacent column in Table 8, where WTAV

generated the data. FLMP was incorrectly chosen as the data-generating model two–thirds of

the time, and this bias is evident over all bins. If the 71% recovery rate in bin 1 were due solely

to RMSD's good ability to discriminate between the models when the response patterns were

highly confusable, then recovery in other cells in the Table should have been equally good, if

not perfect. That they are not clearly indicates that the 71% recovery rate in bin 1 is an artifact

of bias.

A more accurate interpretation of the results in bin 1 is that the 50% correct recovery
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rate by BMS when FLMP generated the data is to be expected under the circumstances. The

most WTAV-like FLMP response patterns were present in this bin. Recovery should have been

near chance because FLMP data  mimicked WTAV data. The correct model was unrecoverable

because the data provided little or no information about the true identity of the data-generating

model. As one would expect, this situation quickly corrected itself across bins as the FLMP data

became less WTAV-like.

 The data in Figure 1 and Table 8 together should also dispel beliefs about the

omnipotence of any model selection method. No method, no matter how good it is, should

perform well when confronted with data from bins 1and 2. How could it when information is

essentially misleading?  In this regard, Massaro et al's (2001, p. 6) observation that selection

method performance appears to be data-dependent is right on the mark. One implication of the

data-dependent nature of model selection is that data patterns can always be found that will

cause a selection method to fail. Recovery results from one or two atypical parameter sets can

be misleading, especially when they produce response patterns that are representative of the

typical performance of the competing model. Only by sampling the entire parameter space, as

we did in this simulation, can a more accurate picture of the true recovery ability of a selection

method be obtained. Of course, simulations like this are only suggestive of general tendencies.

They are approximations, not proofs, of what is likely to be found.

Looked at another way, knowledge of the parameter sets and response patterns is

necessary to interpret model recovery results correctly. In a 2x2 matrix of recovery data, values

of 100% in the off diagonals is not always the correct prediction. By this criterion, what appears

to be a failure in model recovery can actually be reasonable selection behavior given the
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characteristics of the response patterns (e.g., when they are highly similar). Conversely, good

model recovery in situations like this can serve as a red flag that the selection method is

performing incorrectly, as was the case with RMSD in this same simulation.

A Test of Newton's Law

The third situation in which Massaro et al (2001) found BMS misrecovered the correct

model a high percentage of the time was when Newton's law (NMP) was compared with a

weighted additive version of Newton's law (WNAV). The data from this simulation are

reproduced in Table 9. RMSD again performed as expected, exhibiting a strong bias to select

the more complex model (NMP in this case) when WNAV generated the data,  but correctly

chose NMP 100% of the time when it generated the data.  BMS exhibited the opposite bias,

choosing WNAV instead of NMP when NMP generated the data (78% of the time), but

correctly choosing WNAV when WNAV also generated the data. Massaro et al again attributed

BMS's failure to an inherent bias in the selection method to favor the less complex model.

BMS's misrecovery rate was so great in this instance that we wondered whether, as in

the preceding section, the simulation is actually unrepresentative of how BMS typically

performs. Perhaps, as with parameter set 4, the parameter set generated an NMP response

pattern that is very much like a WNAV response pattern. To explore this possibility, we reran

the simulations and analyses in the preceding section using these two models. Ten thousand

parameter sets were generated to sample a large portion of the parameter space. They were then

sorted as a function of how WNAV-like the NMP resulting response pattern was, divided into

six bins, and then analyzed as before.

The data are shown in the two graphs in Figure 2, and tell a very similar story to those in
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Figure 1. In the upper graph, two NMP response patterns are plotted, one using the parameter

set of Massaro et al and the other the parameter set from the current simulation that most closely

matched theirs (parameter values are listed in Appendix A). The best-matching parameter set

came from bin 1. The similarity of the two response patterns confirms our suspicion that the

parameter set Massaro et al chose produced a particularly confusable (i.e., very WNAV-like)

response pattern, which is why BMS chose WNAV so frequently (78%) when NMP actually

generated the data. That RMSD produced no errors (NMP was chosen 100% of the time) with

this parameter set is unbelievable, and again indicates that RMSD's bias to favor complex

models had a significant influence on model selection. RMSD should have made errors

precisely because the underlying model is not easily identifiable from the data. All selection

methods should.

Overall model recovery performance of the two selection methods across bins is shown

in the lower graph. Both made the most errors when the parameter sets came from bins 1 and 2,

where NMP response patterns were most WNAV-like. As confusability of these response

patterns decreased, so did error rate. In each bin, including bin 6 in which the parameter sets

yielded the most discriminable data, RMSD made more errors than BMS. Overall, RMSD made

an average of 46.5% errors. BMS made almost one-third less (16.0%). As in Figure 1, the

frequency with which both methods erred on the same parameter set (10.9%) was slightly less

than BMS's error rate, replicating the findings that if BMS failed to recover the correct model,

RMSD almost certainly failed as well. In sum, there are actually very few parameter sets (5.1%)

that led RMSD to outperform BMS.3

Knowing that the parameter set used in the model recovery test in Table 9 created an
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NMP response pattern that was very WNAV-like casts a very different light on how the results

should be interpreted when NMP generated the data. Like BMS, RMSD should have been

fooled into thinking the data were generated by WNAV much of the time. Instead, RMSD

exhibited a strong bias to choose the more complex model (NMP). The extent of this bias is

visible when WNAV generated the data; RMSD incorrectly chose NMP 90% of the time. When

the two outcomes across data-generating models are considered together, RMSD's performance

seems paradoxical: How can the selection method discriminate perfectly between two models

given what are very confusable response patterns, and yet fail so miserably on another set of

response patterns, which in all likelihood are not nearly as confusable?

These two large-scale simulations demonstrate that model recovery results must be

interpreted with a thorough understanding of the models and the data on which recovery is

evaluated. In Massaro et al's simulations, the errors that BMS made, if they can even be called

that, stem from a limitation of the method in a very specific context: The parameter sets that

were used yielded response patterns that mimicked the typical behavior of the competing

model, causing mis-recovery. All selection methods should perform poorly in this situation

simply because there is not enough information in the data. That RMSD did not, and instead

frequently chose the more complex model, is strong evidence that bias played a significant role

in guiding model selection.

How Trustworthy is the Selection Method?

 When RMSD and BMS Perform Similarly

The results in the preceding sections might lead one to think that BMS should always

outperform RMSD, yet in three of the model selection tests that Massaro et al carried out (5x5
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bimodal integration data, 8-alternative bimodal integration data, and Pitt [1995] data), the two

selection methods performed equivalently. Why? Part of the answer, as Massaro et al discuss, is

that FLMP and WTAV are better matched in complexity than, for example, FLMP and LIM.

Whether these two selection methods will perform similarly will also be determined by the data.

To understand why, consider the data in the lower graph in Figure 1 again.  Just as there were

many parameter sets that yielded response patterns that one or both methods failed on, there

were also many parameter sets whose response patterns led to correct recovery by both

methods. A rough estimate of these can be gleaned from the graph. In each bin, the space to the

right of the bars (i.e., 100 minus the error rate) is an estimate of the percentage of response

patterns that each selection method would recover correctly. Collapsed over bins, RMSD and

BMS  performed correctly on 45% and 79.1% of the response patterns, respectively. Although

these estimates will change as a function of other factors (e.g., experimental design, sample

size), they demonstrate that there is plenty of opportunity for RMSD and BMS to yield the same

(correct) answer.

Because BMS takes into account model complexity and RMSD does not, the data in

Figure 1 also provide information on how much model complexity influenced model selection

in this experimental setup. The difference between the BMS and RMSD bars is a rough estimate

of this value. If the models were equal in complexity, then the two bars in each bin should be

equal in length because complexity would have had no effect on model recovery using RMSD.

The RMSD bars will lengthen relative to the BMS bars as the complexity of one of the models

increases. The difference between these two bars can therefore also provide an indication of

how much more complex one model is than the other.
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The frequency with which the two selection methods will perform similarly makes it 

reasonable to ask whether they are frequently interchangeable. The similar performance of

RMSD and BMS led Massaro et al to conclude that RMSD is likely to yield accurate and

reliable results in their testing situations. To the extent that such experiments advance the

science, these testing situations will undergo both small and large changes, particularly when

better models are introduced in place of ones shown to be inferior.  An advantage of using BMS

is that it will perform far more faithfully across these situations, as the simulations in the next

section demonstrate.

Generalizing Model Selection Performance

A virtue of selection methods that are sensitive to model complexity, like BMS, is that

they will perform more accurately and consistently across testing situations (e.g, variation in

sample size, data, experimental design, and the models themselves) than methods that do not.

The data in Figures 1 and 2 are proof of this. Differences in the reliability of the two methods is

further demonstrated in Table 10, where BMS and RMSD were compared in their ability to

recover different pairs of models across samples sizes. Shown in each cell of the Table is the

mean of the given selection criterion across simulated samples and the percentage of time the

particular model was selected under the selection method.

A comparison of FLMP and WTAV is shown in the middle of the Table for reference.

Just as Massaro et all found in some of their simulations, RMSD and BMS performed

equivalently and they did so across sample sizes. This outcome can give the impression that the

two selection methods are interchangeable, when in fact it is situation specific, as demonstrated

by the data on the left and right sides of the Table.  On the left, WTAV was compared with
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FLMPw, a geometrically weighted version of FLMP (see Table 1 for its model equation),

making the models equal in the number of parameters (11). BMS outperformed RMSD, but

only when the data were generated by WTAV. As sample size increased, RMSD's performance

approached that of BMS's. The same result was found on the right side of the Table, where

FLMP was compared with LIMT, a truncated version of LIM, defined in Table 1. RMSD  mis-

recovered the correct model, in particular for sample size 12, when LIMT generated the data.

BMS performed much more robustly. 

The law of large numbers is responsible for the improvements in recovery across sample

size. As it grows, sampling error diminishes, making it easier to discriminate between the

models. Essentially, there is less error to confuse the selection methods. The fact that both

methods perform similarly as sample size increases reminds us that BMS and RMSD are

asymptotically equivalent: Both will perform identically given an infinitely large sample of

data. This fact is one reason why the two theoretical approaches to model selection that were

discussed in the first part of the paper, flexibility and generalizability, will yield the same

answer. They differ primarily in how sampling error is treated, as potentially meaningful

variation (flexibility) or as meaningless variation (generalizability). When sample size is large

enough, sampling error becomes negligible to the point where its contribution to model

selection can be ignored. There is no more noise for a flexible model to erroneously absorb, and

when there is no more noise, models will generalize perfectly. However, because small samples

are the norm in experimentation, being constrained by a host of factors, including experimental

design and choice of stimuli (not to mention modelers being forced to use whatever data are

available), the accuracy and trustworthiness of BMS make it the safer choice a priori.
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Perhaps not surprisingly, sample size and data (i.e., response patterns) interact to

influence model selection. We close this section with an example that illustrates this point. The

rectangle in Figure 3 represents the space of all possible response patterns. Models A and B

occupy a region in this space. When the experimental data fall in a region that is close to only

one model (point C), model selection should be successful regardless of whether there is a small

or large amount of noise (concentric rings). When the data fall close to both models, it is much

more difficult to discriminate the source of the data when error is large, but easier when error is

smaller. Thus, model selection methods can be highly data dependent at small sample sizes

because of the presence of noise. As sample size increases, this dependency diminishes (see

Table 10). In the limit (i.e., asymptotically), model selection is data independent.

Conclusion

Selecting among  models of cognition given a limited amount of data is a difficult

problem. In psychology, it is particularly challenging because the mental process being studied

is not directly observable and our only tie to it is noisy data. By making generalizability the

goal, the problem of noise is mitigated and model selection becomes statistical inference based

on fit and complexity. The superiority of this approach is demonstrated by the robustness of its

selection methods, such as BMS (see Myung et al, 2000, Pitt et al, in press).  The intuitiveness

of generalizability makes it the approach of choice in other fields, such as computer science

(Rissanen, 1983; Vitanyi & Li, 2000; see also Hansen & Yu, 2001) , where a related selection

method, Minimum Description Length, is proving quite valuable. We believe it should be

preferred in psychology as well.

The simulations presented here, along with reanalyses of those carried out in Massaro et
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al (2001), reveal severe limitations of RMSD and clearly demonstrate the superiority of BMS as

a selection method. Nevertheless, we are not claiming that BMS is infallible or even that it is

bias-free. It may indeed be biased to select the simpler of two models, but the small pool of

evidence that Massaro et al presented to make this case is weak, and now even smaller given the

present results. Even if BMS is biased, its biases are far smaller than those of RMSD, as BMS's

consistently good recovery performance demonstrates. In this regard, it is important to

understand that BMS does not penalize the more complex model just because it is more

complex. Rather, it weighs a model's complexity relative to what is needed to provide a good fit

to the data. The more excess complexity a model has, the more it is penalized.  If a model's

complexity is justified by the data, then the complex model will be preferred over the simpler

model (see Pitt et al [in press] for further discussion).

Despite the many shortcomings of RMSD that the present and prior simulations reveal,

we do not advocate abandoning it. On the contrary, the work has been quite informative in

identifying when and how RMSD can safely to be used to guide  model selection. In particular,

RMSD will probably performs just as well as BMS when the models are similar in complexity.

This is the only condition, besides very large sample sizes, in which BMS and RMSD should

perform similarly, because complexity will minimally affect model selection. The fact that such

similar performance was found with FLMP and WTAV in many simulations suggests that these

models are closer in complexity than FLMP and LIM, as Massaro et al suggested.

The knowledge gained from this collective body of work suggests a productive way in

which to use RMSD in model selection. It can be used if it is first shown to perform well in a

model recovery simulation using similar response patterns and the same sample size. If
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recovery is good, the models are probably close enough in complexity that this factor is likely

to have a negligible impact on selection. When RMSD fails in such a situation, then it should be

an indication that the models are sufficiently different in complexity to require the use of a

selection method that takes into account this property of a model. Such a simulation can serve

as a useful diagnostic tool to assess the relative complexity of the models (albeit indirectly) and

determine which selection method to use.
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Appendix A

Parameter set 4 from  Tables 1 and 2 of Massaro et al (2001)

21 22 81 82 83  84  85 86  87 88

 ------------------------------------------------------------------------------------------------

0.45 0.55 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88

Four parameter sets that caused BMS to misrecover the correct model. The first two are the most similar

to those used by Massaro et al

0.3971 0.4523 0.1157 0.2402 0.397 0.5114 0.5982 0.6399 0.8038 0.9166

0.4416 0.4831 0.1451 0.3053 0.3731 0.4296 0.5549 0.7351 0.8252 0.86

0.7986 0.8093 0.1904 0.2707 0.3175 0.5356 0.5755 0.5942 0.7419 0.7928

0.5133 0.6254 0.3599 0.4845 0.4943 0.6659 0.6704 0.7655 0.8063 0.8201

Parameter set from  Table 6 of Massaro et al (2001)

21 22 81 82 83  84  85 86  87 88

 ------------------------------------------------------------------------------------------------

0.97 0.98 0.01 0.15 0.3 0.4 0.6 0.7 0.85 0.99

Four parameter sets that caused BMS to misrecover the correct model. The first two are the most similar

to those used by Massaro et al

0.9525 0.9642 0.1083 0.2472 0.3498 0.4403 0.5835 0.6462 0.8228 0.9651

0.9616 0.9858 0.03096 0.09027 0.2251 0.3899 0.5833 0.6806 0.8251 0.9022

0.7109 0.829 0.4783 0.484 0.5315 0.6371 0.662 0.7617 0.8098 0.8921

0.8165 0.8278 0.2478 0.2513 0.2929 0.6194 0.7119 0.7276 0.8841 0.9251
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Appendix B

Mean model recovery performance of RMSD and BMS in each of the six bins. Parameter sets

were rank ordered as a function of how WNAV-like the response function was that NMP

produced using each parameter set.

Selection Method
   RMSD BMS

Rank ordered Model  Data From Data From
parameter set Fitted NMP WNAV NMP WNAV

bin 1 NMP 0.0538 0.0611 -14.70 -18.00
(1-500) % win 66 50 72 8

WNAV 0.0565 0.0609 -15.41 -16.34
% win 34 50 28 92

bin 2 NMP 0.0509 0.0608 -14.36 -17.51
(501-2000) % win 72 39 73 11

WNAV 0.0559 0.0602 -15.26 -16.22
% win 28 61 27 89

bin 3 NMP 0.0477 0.0657 -14.08 -17.80
(2001-4000) % win 77 49 86 10

WNAV 0.0583 0.0660 -15.43 -16.54
% win 23 51 14 90

bin 4 NMP 0.0485 0.0635 -14.34 -17.90
(4001-6000) % win 90 37 92 3 

WNAV 0.0686 0.0614 -16.18 -16.08
% win 10 63 8 97

bin 5 NMP 0.0442 0.0648 -14.00 -17.99
(6001-8000) % win 99 32 98 8

WNAV 0.0852 0.0623 -17.02 -16.22
% win 1 68 2 92

bin 6 NMP 0.0315 0.0649 -13.02 -17.80
(8001-10000) % win 100 32 100 7

WNAV 0.1210 0.0594 -19.82 -15.94
% win 0 68 0 93



Model Selection      36

Author Note

Mark A. Pitt, Woo Jae Kim, and In Jae Myung, Department of Psychology, Ohio State

University.

This work was supported by research grant R01 MH57472 from the National Institute of

Mental Health.

Correspondence concerning this article should be addressed to any of the authors,

Department of Psychology, Ohio State University, 1885 Neil Avenue, Columbus, OH, 43210;

pitt.2@osu.edu,  kim.1124@osu.edu,  myung.1@osu.edu



Model Selection      37

Footnotes

1RMSD defined here and used in Massaro et al (2001) differ from the RMSD of Myung

and Pitt (1997), where it was defined as .RMSD prd obs N ki i= − −∑ ( ) / ( )2

2 All BMS results reported in the present paper were obtained using MCMC methods.

3 For completeness, the data in Figure 2 are presented in Appendix B broken down by

the types of errors made in each of the six bins. For the most part, the data add little to what was

learned from Table 8, so they will not be discussed further.
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Table 1
Five models of information integration employed in the present work. Each model assumes that
the probability of categorizing an input stimulus to one of two categories, denoted by Pij, is a
function of two parameters, 2i and 8j. The two parameters represent the degree of support for
the category of interest given the specific i and j feature dimensions of the stimulus where i =
1,...,q1, j = 1,...,q2, and take on values between 0 and 1.

Model Model Equation

FLMP Pij

i j

i j i j

=
+ − −

θ λ
θ λ θ λ( )( )1 1

FLMPW P
ij

i j

i j i j

w w

w w w w=
+ − −

−

− −

θ λ

θ λ θ λ

( )

( ) ( )( ) ( )

1

1 11 1

WTAV P w wij i j= + −θ λ( )1

LIM  Pij

i j=
+θ λ
2

LIMT  P
ij i j

= + −min(max( . , ), )θ λ 05 0 1
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Table 2
Model recovery rates across five conditions using RMSD. 

FLMPR FLMPF Model fitted
Data Generated From 21 22 23 24 FLMPR (k=8) FLMPF (k= 16)

1. Reduced Model with
a) Sampling Error (SER) 100 - - - 0.062 (0%) 0.054 (100%)
b) Sampling Error + 50 50 - - 0.063 (0%) 0.054 (100%)
      Individual Diffs (SER+ID)

2. Different Models (DM) - 50 50 - 0.092 (0%) 0.053 (100%)

3. Full Model with
a) Sampling Error (SEF) - - - 100 0.100 (0%) 0.055 (100%)
b) Sampling Error + - - 50 50 0.114 (0%) 0.053 (100%)
     Individual Diffs (SEF+ID)

Note: Sample size = 20
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Table 3
Comparison of Two Models differing in Complexity Using Two Selection Methods, Goodness of Fit and Generalizability.

Model fitted
Selection Method FLMPR (true model) FLMPF

Goodness of Fit 0.062 (0%) 0.054 (100%)
Generalizability 0.078 (81%) 0.084 (19%)

Note: Sample size = 20
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Table 4
 Mean Model Recovery Rates and Percentages of Wins Across Five Conditions Using BMS. 

FLMPR FLMPF Model fitted
Data Generated From 21 22 23 24 FLMPR (k=8) FLMPF (k= 16)

1. Reduced Model
a) Sampling Error (SER) 100 - - - -41.85 (99%) -46.41 (1%)
b) Sampling Error + 50 50 - - -42.44 (100%) -46.99 (0%)
       Individual Diffs (SER+ID)

2. Different Models (DM) - 50 50 - -51.02 (50%) -46.96 (50%)

3. Full Model
a) Sampling Error (SEF) - - - 100 -53.67 (2%) -49.98 (98%)
b) Sampling Error + - - 50 50 -55.85 (1%) -46.58 (99%)
        Individual Diffs (SEF+ID)

Note: Sample size = 20
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Table 5. 
Mean Model Recovery Rates and Percentages of wins for FLMP and WTAV using RMSD and BMS at Five Noise
Levels. The last two columns contain the mean percent variance accounted for when the specified model was fit to
the data without sampling error. Values in the off diagonal should be 100% .

Selection Method % Variance
RMSD BMS accounted for

Noise (SD) Model Data From Data From Expected Data From
Fitted    (Error-free)

FLMP WTAV FLMP WTAV FLMP WTAV

0.00  FLMP 0.0367 0.0864 -35.9 -41.9 99.99 94.67
% win 99 1 96 3
WTAV 0.1085 0.0539 -41.0 -37.5 93.39 99.99
% win 1 99 4 97

0.05 FLMP 0.0524 0.0920 -38.1 -43.4 99.93 95.12
% win 98 2 95 4
WTAV 0.1127 0.0650 -43.1 -38.1 93.43 99.98
% win 2 98 5 96

0.10 FLMP 0.0767 0.1071 -41.9 -46.0 99.69 95.45
% win 96 6 89 6
WTAV 0.1233 0.0881 -45.6 -40.4 93.49 99.94
% win 4 94 11 94

0.15 FLMP 0.1021 0.1267 -44.8 -49.3 99.25 95.53
% win 94 13 78 11
WTAV 0.1384 0.1137 -48.9 -43.2 93.51 99.9
% win 6 87 22 89

0.20 FLMP 0.1273 0.1478 -48.9 -52.6 98.66 95.39
% win 88 22 78 11
WTAV 0.1558 0.1390 -52.8 -46.5 93.54 99.86
% win 12 78 22 89

0.40 FLMP 0.2150 0.2278 -66.7 -70.1 95.86 93.87
% win 78 47 62 12
WTAV 0.2292 0.2281 -70.9 -63.0 93.73 99.9
% win 22 53 38 88

0.80 FLMP 0.3089 0.3141 -91.9 -95.2 93.16 91.92
% win 66 42 61 12
WTAV 0.3173 0.3192 -96.9 -86.4 94.02 99.93
% win 34 59 39 88
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Table 6
Mean Model Recovery Rates and Percentages of Wins for FLMP and WTAV Across Five Sample Sizes

Selection Method
RMSD BMS

Sample Model  Data From Data From
Size Fitted

FLMP WTAV FLMP WTAV
 

50  FLMP 0.0275 0.0829 -75.60 -139.56
% win 100 0 99 0
WTAV 0.1036 0.0453 -141.07 -92.93
% win 0 100 1 100

24 FLMP 0.0372 0.0917 -61.23 -96.63
% win 99 0 100 0
WTAV 0.1075 0.0628 -92.45 -76.74
% win 1 100 0 100

15 FLMP 0.0452 0.0995 -51.29 -76.85
% win 99 13 100 1
WTAV 0.1129 0.0820 -71.31 -66.73
% win 1 87 0 99

10 FLMP 0.0576 0.1147 -45.44 -64.73
% win 96 21 98 5
WTAV 0.1231 0.1000 -59.03 -58.55
% win 4 79 2 95

5 FLMP 0.0741 0.1385 -33.27 -46.09
% win 96 49 98 26
WTAV 0.1390 0.1407 -40.78 -44.57
% win 4 51 2 74
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Table 7
Shown each cell are the mean maximum log likelihood estimates and the percentage of wins by that model.
The first three columns contain the data from Table 2 of Massaro et al (2001) in which  parameter set 5 was used..
The last column is a replication of the simulation using MCMC when the data were generated by WTAV.

Data From MCMC replication
Model Fitted FLMP LIM WTAV WTAV

 
 FLMP -12.64 -15.53 -15.85 -16.52
 %win 94 12 52 11
 LIM -21.93 -15.28 -17.74
 %win 0 88 0
 WTAV -16.01 -16.25 -15.98 -15.88
 %win 6 0 48 89
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Table 8
Mean model recovery performance of RMSD and BMS in each of the six bins. Parameter sets were rank ordered as
a function of how WTAV-like the response function was that FLMP produced using each parameter set.

Selection Method
   RMSD BMS

   Data From Data From
Rank ordered Model
parameter set Fitted FLMP WTAV FLMP WTAV

bin 1 FLMP 0.0541 0.0647 -15.6 -18.31
(1-500) % win 71 66 50 5

WTAV 0.0564 0.0653 -15.84 -16.64
% win 29 34 50 95

bin 2 FLMP 0.053 0.063 -15.4 -18.27
(501-2000) % win 66 69 60 5

WTAV 0.0568 0.0642 -15.81 -16.57
% win 34 31 40 95

bin 3 FLMP 0.0482 0.0627 -15.08 -18.36
(2001-4000) % win 85 52 85 3

WTAV 0.0652 0.0632 -16.41 -16.59
% win 15 48 15 97

bin 4 FLMP 0.044 0.0615 -14.91 -17.96
(4001-6000) % win 100 55 97 4

WTAV 0.0795 0.0645 -17.44 -16.2
% win 0 45 3 96

bin 5 FLMP 0.0335 0.0577 -13.88 -17.37
(6001-8000) % win 100 69 98 10

WTAV 0.0967 0.0611 -18.51 -16.14
% win 0 31 2 90

bin 6 FLMP 0.0228 0.0562 -12.98 -17.11
(8001-10000) % win 100 61 100 10

WTAV 0.139 0.0598 -21.91 -16.04
% win 0 39 0 90



Model Selection      46

Table 9
Reproduction of the Model Recovery Data in Table 6 of Massaro et al (2001). 

Selection Method
 RMSD BMS

 Data From Data From
Model
Fitted NMP WNAV NMP WNAV

NMP 0.0517 0.0154 -23.19 -30.69 
% win 100 90 22 0 

WNAV 0.0764 0.0167 -13.81 -13.81 
% win 0 10 78 100 
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Table 10
Mean recovery rate and percentages wins comparing RMSD and BMS on three pairs of models at three sample sizes.

Selection Method Selection Method Selection Method
RMSD BMS RMSD BMS RMSD BMS

Sample Model Data From Data From Model Data From Data From Model Data From Data From
Size  Fitted FLMPW WTAV FLMPW  WTAV  Fitted FLMP WTAV FLMP  WTAV Fitted FLMP LIMT FLMP LIMT

50 FLMPW 0.025 0.0424 -40.67 -41.68 FLMP 0.0252 0.0793 -32.63 -55.58 FLMP 0.0252 0.0462 -32.63 -40.47
% win 100 18 98 6 % win 100 0 99 0 % win 100 6 100 0
WTAV 0.0899 0.0369 -54.01 -37.51 WTAV 0.1027 0.0369 -61.14 -37.51 LIMT 0.0888 0.0361 -57 -32.24
% win 0 82 2 94 % win 0 100 1 100 % win 0 94 0 100

24 FLMPW 0.036 0.0544 -30.44 -32.17 FLMP 0.0373 0.0865 -26.41 -38.32 FLMP 0.0373 0.0573 -26.41 -30.34
% win 99 39 99 17 % win 100 2 100 1 % win 99 22 99 2
WTAV 0.0952 0.0533 -36.8 -30.65 WTAV 0.1079 0.0533 -40.04 -30.65 LIMT 0.0955 0.0526 -36.77 -26.8
% win 1 61 1 83 % win 0 98 0 99 % win 1 78 1 98

12 FLMPW 0.0518 0.0714 -23.51 -24.83 FLMP 0.0511 0.0967 -20.67 -27.42 FLMP 0.0511 0.073 -20.67 -23.3
% win 100 61 100 32 % win 99 10 99 7 % win 100 52 97 10
WTAV 0.1064 0.0747 -26.46 -24.38 WTAV 0.1183 0.0747 -27.94 -24.38 LIMT 0.1061 0.0753 -25.34 -21.78
% win 0 39 0 68 % win 10 90 1 93 % win 0 48 3 90
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Figure Captions

Figure 1. Top graph is a plot of two FLMP response functions in a 2x8 experimental design.

One set of functions was produced using parameter set 4 from Table 2 of Massaro et al. The

other was produced using the parameter set from the current simulation that most closely

matched parameter set 4 (see Appendix B for parameter values) In the bottom graph, the

percentage of misrecoveries by BMS, RMSD, and those common to both, are plotted for each of

the six bins of parameter sets. The percentages along the y axis are the mean percent variance

accounted for when WTAV was fitted to the 100 FLMP response patterns in each bin.

Figure 2.Top graph is a plot of two NMP response functions in a 2x8 experimental design. One

set of functions was produced using the parameter set Massaro et al used in the simulation in

their Table 6. The other was produced using the parameter set from the current simulation that

most closely matched their's. In the bottom graph, the percentage of misrecoveries by BMS,

RMSD, and those common to both are plotted for each of the six bins of parameter sets. The

percentages along the y axis are the mean percent variance accounted for when WNAV was

fitted to the 100 NMP response patterns in each bin.

Figure 3. Illustration of how model recovery is influenced by data and sample size. Two

models, A and B, occupy a region of the space of all possible response patterns (rectangled

area). Two points represent different response patterns, with the concentric circles denoting the

amount of sampling error in the data (larger rings indicate more error).
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Percentage of Errors (misrecoveries) in Each Bin of Parameter Sets
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