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SOME REMARKS ON CATEGORIES OF MODULES

MODULO MORPHISMS WITH ESSENTIAL KERNEL OR

SUPERFLUOUS IMAGE

Adel Alahmadi and Alberto Facchini∗

Abstract. For an ideal I of a preadditive category A, we study when
the canonical functor C : A → A/I is local. We prove that there ex-
ists a largest full subcategory C of A for which the canonical functor
C : C → C/I is local. Under this condition, the functor C turns out to be
a weak equivalence between C and C/I. If A is additive (with splitting
idempotents), then C is additive (with splitting idempotents). The cate-
gory C is ample in several cases, such as the case when A = Mod-R and
I is the ideal ∆ of all morphisms with essential kernel. In this case, the
category C contains, for instance, the full subcategory F of Mod-R whose
objects are all the continuous modules. The advantage in passing from
the category F to the category F/I lies in the fact that, although the
two categories F and F/I are weakly equivalent, every endomorphism
has a kernel and a cokernel in F/∆, which is not true in F . In the final
section, we extend our theory from the case of one ideal I to the case of
n ideals I1, . . . , In.

1. Introduction

We say that an additive functor F : A → B between preadditive categories
A and B is a local functor if, for every morphism f : A → B in the category A,
F (f) isomorphism in B implies f isomorphism in A [4]. A functor F : A → B
is isomorphism reflecting if, for every A,B objects of A, F (A) ∼= F (B) implies
A ∼= B. Let A be a preadditive category and let I be an ideal of A. The aim
of this paper is to study the case when the canonical functor C : A → A/I
is a local functor. The canonical functor C : A → A/I is local if and only
if I is contained in the Jacobson radical J of A, if and only if (when the
endomorphism rings of all non-zero objects of the preadditive category A are
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semilocal rings) every maximal ideal of A contains I (Proposition 2.3). The
case in which the canonical functor A → A/I1 × A/I2 is local, where I1 and
I2 are two ideals of the preadditive category A, was studied in [6].

It turns out that when the functor C : A → A/I is local, then C must be
necessarily isomorphism reflecting [4, Lemma 3.6(b)]. More precisely, in this
case the functor C is a weak equivalence in the sense that it is isomorphism
reflecting and dense. For the definitions, see Section 2. Thus when the category
A is additive, the commutative monoids V (A) and V (A/I), defined on the
skeletons of A and A/I, respectively, are isomorphic monoids (see Remark 2.2).

In this paper, we prove that given any ideal I of a preadditive category B,
there is a largest full subcategory C of B for which the canonical functor C : C →
C/I is local (Theorem 2.4). Our main application is to the ideal ∆ of Mod-R
of all morphisms with essential kernel, where R is any fixed ring (Section 3).
In this case, the largest subcategory E of Mod-R for which the functor E →
E/∆ is local turns out to be very ample because it contains all semisimple
modules, all modules with a local endomorphism ring, all non-singular modules,
all indecomposable almost self-injective modules and all continuous modules (In
this paper, we use three times the term “ample subcategory”. Here, “ample”
does not have the meaning it has in algebraic geometry, but the meaning it has
in the common language). It is well-known that for every continuous module
AR, in particular, for every injective R-module, one has that ∆(AR, AR) =
J(End(AR)) and that End(AR)/J(End(AR)) is von Neumann regular. Here we
study the category E whose objects are all R-modules AR with ∆(AR, AR) ⊆
J(End(AR)).

Let F be the full subcategory of Mod-R whose objects are all continuous
right R-modules. The case of continuous modules is the most important for us
because, via the weak equivalence C between the categories F and F/∆, we
give a categorical perspective to the results on continuous modules presented
in [11]. We will show that every endomorphism has a kernel and a cokernel in
F/∆, while this is not true in the categoryF (Theorem 3.13 and Example 3.14).
These properties hold not only in F but also in other categories, namely, in
any full subcategory of Mod-R on which ∆ is contained in the Jacobson radical
and whose objects are modules satisfying Condition (C1) [11, p. 18].

In Section 4, we dualize our previous results, considering the ideal Σ of
Mod-R of all morphisms with a superfluous image (Section 4). Note that in
[7], it was proved that the canonical functor Mod-R → Mod-R/∆×Mod-R/Σ
is always a local functor.

Finally in the last section, we introduce some non-commutative polynomials
that allow us to give an explicit description of the inverse of an isomorphism f in
A/I1 ∩ · · · ∩ In from the inverses of f in the factor categories A/I1, . . . ,A/In.
Here, I1, . . . , In denote ideals of the preadditive category A with Jacobson
radical J . One obtains that the canonical functor A → A/I1 × · · · × A/In is
local if and only if the functor A → A/I1 ∩ · · · ∩ In is local, if and only if I1 ∩
· · · ∩ In ⊆ J . This has various applications, one of which is the fact that there
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is a largest full subcategory C for which the functor C : C → C/I1 × · · · ×A/In
is local.

This paper is heavily based on the techniques of [6] and [7]. It is largely an
application and a continuation of those articles.

In this paper, the symbol R denotes an associative ring with identity 1 6= 0
and J(R) the Jacobson radical of R. For any category A, Ob(A) denotes the
class of all objects of A.

2. Generalities

Let A and B be preadditive categories and F : A → B be an additive functor.
We say that the functor F is [4, 5]:

(1) a local functor if, for every morphism f : A → B in A, F (f) isomorphism
in B implies f isomorphism in A;

(2) an isomorphism reflecting functor if, for every A,B objects of A, F (A) ∼=
F (B) implies A ∼= B;

(3) a dense functor if every object of B is isomorphic to F (A) for some object
A of A;

(4) a weak equivalence if it is isomorphism reflecting and dense.

In particular, every category equivalence F : A → B is a weak equivalence.

The kernel of any local functor F : A → B is contained in the Jacobson
radical J of the category A [7, Example 2.1(c)]. Here, the Jacobson radical
J of A is the ideal defined, for every A,B ∈ Ob(A), by J (A,B) := {f ∈
HomA(A,B) | 1A − gf has a left inverse (equivalently, a two-sided inverse) for
every morphism g : B → A}. Conversely, a full functor F : A → B is a local
functor if and only if its kernel is contained in the Jacobson radical J of A [7,
Example 2.1(d)].

Given an ideal I of a preadditive category A, we can construct the factor
category A/I. The objects of A/I are the same objects as A. In the factor
categoryA/I, the group of all morphisms between two objects A,B ∈ Ob(A) =
Ob(A/I) is HomA/I(A,B) := HomA(A,B)/I(A,B). The composition in A/I
is that induced by the composition in A. There is a canonical functor C : A →
A/I.

It is easily seen [4, Example 3.4 and Lemma 3.6(b)] that local functors need
not to be isomorphism reflecting, but that local full functors are isomorphism
reflecting. In the next example, we show that there exist canonical functors
C : A → A/I that are isomorphism reflecting full functors, but not local func-
tors.

Example 2.1. LetA be the full subcategory of Ab whose objects are all finitely
generated free abelian groups and let p be a prime number. Let I be the ideal of
A defined, for every G,H ∈ Ob(A), by I(G,H) := pHom(G,H). From J(Z) =
0, it follows easily that the Jacobson radical J of A is the zero radical. Thus
I * J so that the canonical full functor C : A → A/I is not local. In order to
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show that this functor C is isomorphism reflecting, let G ∼= Zn and H ∼= Zm

be objects of A isomorphic in A/I. Then there exist morphisms f : G → H
and g : H → G with gf − 1G ∈ pHom(G,H), and similarly for fg. Applying
the functor −⊗ZZ/pZ, we find that (g⊗Z/pZ)(f ⊗Z/pZ)− 1G⊗Z/pZ = 0, and
similarly for fg. Thus G⊗Z/pZ ∼= Z/pZn is isomorphic to H⊗Z/pZ ∼= Z/pZm.
It follows that n = m and G ∼= H .

We want to determine, for a full subcategory A of a preadditive category B
and an ideal I of B, when the canonical functor C : A → A/I is local, that

is, when a morphism f in A with C(f) = f isomorphism in A/I is necessarily
an isomorphism in A. As we have already remarked, every local full functor
is isomorphism reflecting so that when the canonical functor C : A → A/I is
local, it is a weak equivalence. This means that the image via C of a skeleton
V (A) of A is a skeleton V (A/I) of A/I, and that C induces a bijection between
the two skeletons V (A) and V (A/I). These facts are our main motivation for
the study of when the canonical functor C : A → A/I is local because if C
is local, then the two categories are weakly equivalent, hence with isomorphic
skeletons, but working in A/I can sometimes be easier than working in the
category A. In the next remark, we describe the situation in a more precise
way.

Remark 2.2. The setting can be presented in the language of commutative
monoids. Let I be an ideal of an additive category A. Assume that the
canonical functor C : A → A/I is local and that idempotents split in both
categories A and A/I. If A is an object of A, then we can construct the
full subcategory addA(A) of A whose objects are all direct summands of An

for some n ≥ 0. Similarly, we can construct the full subcategory addA/I(A) of
A/I. For instance, if R is a ring and A is the category Mod-R, the subcategory
addMod-R(RR) is the category, usually denoted by proj-R, whose objects are
all finitely generated projective right R-modules. The full categories addA(A)
and addA/I(A) are additive categories in which idempotents split. For any
additive category C, it is possible to define a commutative monoid structure
on any skeleton V (C) of C. If A 7→ 〈A〉 is the mapping Ob(C) → V (C) that
associates to any object A of C the unique object 〈A〉 of V (C) isomorphic to A,
then the operation on V (C) is defined by 〈A〉+〈B〉 = 〈A⊕B〉 for any pair A,B
of objects. Thus V (C) becomes an additive commutative monoid, possibly
large when C is not skeletally small. The monoid V (proj-R) for a ring R is
usually indicated as V (R). Every additive functor F : C → C′ between additive
categories C and C′ induces a monoid homomorphism V (F ) : V (C) → V (C′),
which assigns to each element 〈A〉 of V (C) the element 〈F (A)〉 of V (C′).

In our case, the fact that C : A → A/I is local, hence a weak equivalence,
has as a consequence that the monoid homomorphism V (C) : V (A) → V (A/I)
is a monoid isomorphism. Thus if A is an object of C, then the monoids
V (addA(A)) and V (addA/I(A)) are isomorphic monoids (More precisely, the
mapping V (addA(A)) → V (addA/I(A)) is onto because if B is isomorphic to a
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direct summand of An in A/I, then there exists D ∈ Ob(A/I) = Ob(A) such
that B ⊕D ∼= A in A/I due to the fact that idempotents split in A/I. But A
is additive and C is an isomorphism reflecting functor so that B ⊕D exists in
A and is isomorphic to An in A. This proves that the mapping V (addA(A)) →
V (addA/I(A)) is onto). If R denotes the endomorphism ring EndA(A) of A in
A and I := I(A,A) so that R/I is the endomorphism ring of A in A/I, then the
functor HomC/I(A,−) : C/I → Mod-R/I induces an equivalence addA/I(A) →
proj-R/I [6, Lemma 3.1]. Thus the three monoids V (addA(A)), V (addA/I(A))
and V (R/I) are isomorphic when the functor C : A → A/I is local.

Recall that a maximal ideal [6] of a preadditive category A is an ideal of
A that is properly contained only in the improper ideal HomA of A. A ring
S is semilocal if S/J(S) is semisimple Artinian. A preadditive category A is
null if all its objects are zero objects. We say that a preadditive category is
semilocal if it is non-null and the endomorphism ring of every non-zero object
is a semilocal ring [6, Definition 4.2]. We trivially get the following result from
[7, Proposition 3.1] for the case in which the two ideals in the statement of the
proposition coincide.

Proposition 2.3. Let I be an ideal of a preadditive category A.

(a) If the canonical functor A → A/I is a local functor, then every maximal

ideal of A contains I.
(b) If the category A is semilocal and every maximal ideal of A contains I,

then the canonical functor A → A/I is local.

Notice that Proposition 2.3(b) does not hold without the hypothesis of A
being semilocal. For instance, let A be the category Mod-k, where k is any
division ring, and let I be the ideal of Mod-k consisting of all linear trans-
formations of finite rank. Then Mod-k does not have maximal ideals and the
canonical functor A → A/I is not local.

As we have already mentioned, we want to determine, for a full subcategory
A of a preadditive category B and an ideal I of B, when the canonical functor
C : A → A/I is local. As C is a full functor, this is equivalent to requiring that
the kernel I of C be contained in the Jacobson radical J of A. In particular,
we must have I(A,A) ⊆ J(EndB(A)) for every object A of A. In the next
theorem, we show that the full subcategory C of B whose objects are all the
objects A of B with I(A,A) ⊆ J(EndB(A)) is the largest full subcategory of B
for which the functor C : C → C/I is local.

Theorem 2.4. Let I be an ideal of a preadditive category B. Let C be the

full subcategory of B whose objects are the objects A of B with I(A,A) ⊆
J(EndB(A)). Then, on the category C, the ideal I is contained in the Jacobson

radical J , so that the canonical functor C : C → C/I is local. Moreover, the

category C is the largest full subcategory of B with this property. Finally, if B
is an additive category, then C is an additive category, and if B is additive and

idempotents split in B, then idempotents split also in C.
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Proof. In order to show that, in the category C, the ideal I is contained in
the Jacobson radical J , we must prove that I(A,B) ⊆ J (A,B) for every pair
of objects A,B of C. Now, if f ∈ I(A,B) and g : B → A is any morphism,
then gf ∈ I(A,A) ⊆ J(End(A)) so that 1A − gf is an automorphism of A.
Thus f ∈ J (A,B) and I ⊆ J on C. It is now clear that C is the largest full
subcategory of Mod-R with this property.

Assume B is additive. To prove that the full subcategory C of Mod-R is ad-
ditive, we must show the class of all objects A of B with I(A,A) ⊆ J(EndB(A))
is closed under finite coproducts. Now

EndB(A⊕B) =

(

EndB(A) HomB(B,A)
HomB(A,B) EndB(B)

)

and

K(A ⊕B,A⊕B) =

(

K(A,A) K(B,A)
K(A,B) K(B,B)

)

for every ideal K of C. Thus if A and B are such that I(A,A) ⊆ J(EndB(A))
and I(B,B) ⊆ J(EndB(B)), then we can conclude that I(A ⊕ B,A ⊕ B) ⊆
J(EndB(A⊕B)) by what we have seen in the previous paragraph.

Finally, assume that B is additive and idempotents split in B. Let f : C → C
be an idempotent endomorphism in C. Then C ∈ Ob(C) and there exist an
object B ∈ Ob(B) and morphisms g : C → B and h : B → C such that f = hg.
Then C = B ⊕ K for a suitable object K of B [4, Lemma 2.1]. By similar
arguments as in the previous paragraph, we get that I(B ⊕ K,B ⊕ K) ⊆
J(EndB(B ⊕K)) implies I(B,B) ⊆ J(EndB(B)). �

Remark 2.5. Let A be an object of B and assume that the endomorphism ring
EndB(A) of A is local so that, in particular, A 6= 0. Let I be any ideal of B and
C be the category considered in Theorem 2.4. Then two cases can occur: either
I(A,A) is a proper ideal of EndB(A) or it is the improper ideal. If I(A,A)
is a proper ideal of EndB(A), then I(A,A) ⊆ J(EndB(A)) so that A is an
object of C. If I(A,A) = EndB(A), that is, I(A,A) is the improper ideal, then
I(A,A) * J(EndB(A)) so that A is not an object of C. Thus an object A of B
is an object of C if and only if the ideal I(A,A) is a proper ideal of EndB(A).

3. The ideal of morphisms with essential kernel

Let R be a ring and Mod-R be the category of all right R-modules. Setting
∆(AR, BR) := {f : AR → BR | ker f essential in AR} for every pair of right
modules AR, BR, we get an ideal ∆ of Mod-R and, correspondingly, the factor
category Mod-R/∆ and the canonical functor C : Mod-R → Mod-R/∆.

In [7, Proposition 4.5], it is shown that if two modules AR, BR are isomorphic
objects in the category Mod-R/∆, then they have the same monogeny class,
that is, there are a monomorphism of AR into BR and a monomorphism of BR

into AR. Recall that a module is uniform if it has Goldie dimension one.
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Lemma 3.1. If AR is a uniform right R-module, then ∆(AR, AR) is a com-

pletely prime two-sided ideal of End(AR) so that the endomorphism ring of AR

in the category Mod-R/∆ is a (non-necessarily commutative) integral domain.

Proof. If the module AR is uniform, then the ideal ∆(AR, AR) consists of all
endomorphisms of AR that are not monomorphisms. Thus ∆(AR, AR) is a com-
pletely prime ideal by [3, Lemma 6.26(a)]. In particular, EndMod-R/∆(AR) =

End(AR)/∆(AR, AR) is a domain. �

Lemma 3.1 does not hold when the module AR is not uniform. To see this,
it suffices to take a division ring R, a two-dimensional vector space AR and
two non-zero endomorphisms of AR whose composition is zero. In this case,
∆(AR, BR) is the zero ideal of End(AR), which is not completely prime, and
End(AR) is not a domain.

As we have already stated, we want to determine when, for a full subcategory
A of Mod-R, the canonical functor C : A → A/∆ is local. As C is a full
functor, this is equivalent to requiring that the kernel ∆ of C be contained
in the Jacobson radical J of A. In particular, we must have ∆(AR, AR) ⊆
J(End(AR)) for every object AR of A. In the next proposition, we characterize
the R-modules AR with this property.

Proposition 3.2. Let AR be a right module over a ring R and let E(AR) be

the injective envelope of AR. The following conditions are equivalent:

(a) ∆(AR, AR) ⊆ J(End(AR)).
(b) If g is an endomorphism of AR and there exists an essential submodule

BR of AR for which g(b) = b for all b ∈ BR, then g is an automorphism

of AR.

(c) If h is an automorphism of E(AR) with h(AR) ⊆ AR and there exists

an essential submodule BR of AR for which h(b) = b for all b ∈ BR,

then h(AR) = AR.

Proof. (a) =⇒ (b) Assume that (a) holds. Let g be an endomorphism of AR

and let BR be an essential submodule of AR with g(b) = b for all b ∈ BR.
Then g − 1 has essential kernel, and hence belongs to ∆(AR, AR) so that g is
an automorphism of AR by (a).

(b) =⇒ (c) Suppose that (b) holds. Let h be an automorphism of E(AR)
with h(AR) ⊆ AR. Assume that there exists an essential submodule BR of
AR for which h(b) = b for all b ∈ BR. Then it is possible to apply (b) to
the restriction g of h to AR. By (b), g is an automorphism of AR so that
h(AR) = g(AR) = AR.

(c) =⇒ (a) Let f be a morphism in ∆(AR, AR) and f ′ be any other endomor-
phism of AR. Let h ∈ End(E(AR)) be an extension to E(AR) of 1−f ′f : AR →
AR. Then h is an endomorphism of E(AR) with h(AR) = (1− f ′f)(AR) ⊆ AR

and h is the identity on the essential submodule ker f of AR. In particular,
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h : E(AR) → E(AR) is a monomorphism. The image of h is therefore an in-
jective submodule of E(AR) isomorphic to E(AR) and contains BR. Thus
h(E(AR)) = E(AR). We can now apply (c) to the automorphism h of E(AR),
which yields that h(AR) = AR. So the restriction 1 − f ′f of h to AR is an
automorphism of AR. It follows that f is in the Jacobson radical of the ring
End(AR). �

From Theorem 2.4, we have:

Theorem 3.3. Let E be the full subcategory of Mod-R whose objects are all

right R-modules satisfying the equivalent conditions of Proposition 3.2. Then

in the category E, the ideal ∆ is contained in the Jacobson radical J so that

the canonical functor C : E → E/∆ is local. The category E is the largest full

subcategory of Mod-R with this property. Moreover, E is an additive category

in which idempotents split.

Now we will show that the category E described in Theorem 3.3 is rather
ample. Let us begin by proving that all modules with a local endomorphism
ring satisfy the equivalent conditions of Proposition 3.2.

Proposition 3.4. The following conditions are equivalent for a right R-module

AR :

(a) AR has a local endomorphism ring End(AR) in Mod-R.

(b) AR satisfies the equivalent conditions of Proposition 3.2 and has a local

endomorphism ring in Mod-R/∆.

Proof. (a) =⇒ (b) Let AR be a module with End(AR) local so that, in particu-
lar, AR 6= 0. Thus 1R /∈ ∆(AR, AR). It follows that the proper ideal ∆(AR, AR)
of End(AR) is contained in the maximal ideal J(End(AR)) of End(AR). Hence
AR satisfies the conditions of Proposition 3.2. The rest of the proof of the
implication (a) =⇒ (b) is trivial because if AR has a local endomorphism ring
End(AR) in Mod-R, then EndMod-R/∆(AR) = End(AR)/∆(AR, AR) is also

local.
(b) =⇒ (a) Assume End(AR)/∆(AR, AR) is local and that AR satisfies the

equivalent conditions of Proposition 3.2. Then ∆(AR, AR) ⊆ J(End(AR)) so
that J(End(AR)/∆(AR, AR)) = J(End(AR))/∆(AR, AR). It follows that

End(AR)/J(End(AR)) ∼= (End(AR)/∆(AR, AR))/J(End(AR)/∆(AR, AR)).

Hence End(AR)/J(End(AR)) is a division ring and End(AR) is local. �

Proposition 3.5. Every non-singular R-module satisfies the equivalent condi-

tions of Proposition 3.2.

Proof. Let AR be a non-singular module. Let g be an endomorphism of AR

such that there exists an essential submodule BR of AR with g(b) = b for all
b ∈ BR. Then ker(1 − g) is an essential submodule of AR, and 1 − g induces
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a morphism 1− g : AR/ ker(1 − g) → AR. Now AR/ ker(1 − g) is a singular
module because ker(1− g) is essential in AR, and AR is non-singular. Thus

Hom(AR/ ker(1− g), AR) = 0

so that 1− g = 0. It follows that (1 − g)(AR) = 0, and therefore, g = 1 is an
automorphism. �

Proposition 3.6. Let AR be an R-module and let soc(AR) be its socle. If

Hom(AR/soc(AR), AR) = 0, then AR satisfies the equivalent conditions of

Proposition 3.2.

Proof. Assume that Hom(AR/soc(AR), AR) = 0. We will prove that ∆(AR,
AR) = 0. If f ∈ ∆(AR, AR), then ker f is an essential submodule. As the socle
is the intersection of all essential submodules, we have that ker f ⊇ soc(AR).
Thus f induces a morphism f : AR/soc(AR) → AR. From Hom(AR/soc(AR),
AR) = 0, it follows that f , hence f , is zero. This proves that ∆(AR, AR) = 0
so that ∆(AR, AR) ⊆ J(End(AR)). �

As an immediate corollary, we get that:

Corollary 3.7. Every semisimple R-module satisfies the equivalent conditions

of Proposition 3.2.

We say that an R-module is uniform if it has Goldie dimension one, couni-
form (or hollow) if it has dual Goldie dimension one, and biuniform if it is
uniform and couniform [3]. In particular, every biuniform module is non-zero
and indecomposable. For instance, non-zero uniserial modules are biuniform
and if R is a local ring, then every cyclic submodule of an indecomposable
injective R-module is biuniform.

We begin with couniform modules.

Proposition 3.8. Let AR be a couniform module, End(AR) its endomorphism

ring, ∆(AR, AR) the ideal of End(AR) consisting of all endomorphisms with

an essential kernel and Σ(AR, AR) the ideal of End(AR) consisting of all endo-

morphisms with a superfluous image. The following conditions are equivalent:

(a) AR satisfies the equivalent conditions of Proposition 3.2.
(b) ∆(AR, AR) + Σ(AR, AR) is a proper ideal of End(AR).

Proof. (a) =⇒ (b) If ∆(AR, AR) +Σ(AR, AR) is not a proper ideal, then there
exist f ∈ ∆(AR, AR) and g ∈ Σ(AR, AR) with f + g = 1A. The morphism
g does not satisfy Condition (b) of Proposition 3.2 because ker f is an essen-
tial submodule of AR for which g(x) = x for all x ∈ ker f , but g is not an
automorphism of AR.

(b) =⇒ (a) Assume that Condition (b) of Proposition 3.2 does not hold.
Then there exist an endomorphism g of AR and an essential submodule BR of
AR for which g(b) = b for all b ∈ BR, but g is not an automorphism of AR.
Then ker(1−g) is an essential submodule of AR and g is a monomorphism, but
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not an epimorphism. As AR is couniform, it follows that g ∈ Σ(AR, AR) and
1− g ∈ ∆(AR, AR). Thus ∆(AR, AR) + Σ(AR, AR) is the improper ideal. �

Proposition 3.9. Let AR be a couniform module, let Max(AR) be the set of all
maximal (two-sided) ideals of the endomorphism ring End(AR), D := {M ∈
Max(AR) | ∆(AR, AR) ⊆ M } and S := {M ∈ Max(AR) | Σ(AR, AR) ⊆ M }.
Then

(a) Max(AR) = D ∪ S.
(b) D∩S 6= ∅ if and only if AR satisfies the equivalent conditions of Propo-

sition 3.2.

The same properties hold if one substitutes Max(AR) with r-Max(AR), the
set of all maximal right ideals of End(AR), or l-Max(AR), the set of all maximal

left ideals of End(AR).

Proof. Every simple ring is primitive so that every maximal ideal is both left
and right primitive. Thus every maximal ideal contains the Jacobson radical.
By [7, Corollary 4.4], ∆(AR, AR) ∩ Σ(AR, AR) ⊆ J(End(AR)). Every sim-
ple ring is a prime ring so that every maximal ideal is a prime ideal. Thus
if M ∈ Max(AR), then ∆(AR, AR)Σ(AR, AR) ⊆ ∆(AR, AR) ∩ Σ(AR, AR) ⊆
J(End(AR)) ⊆ M implies that either ∆(AR, AR) ⊆ M or Σ(AR, AR) ⊆ M .
This proves (a).

For (b), we have that D ∩ S = ∅ if and only if there is no maximal ideal
of End(AR) containing both ∆(AR, AR) and Σ(AR, AR), that is, if and only
if ∆(AR, AR) + Σ(AR, AR) is the improper ideal of End(AR). Proposition 3.8
allows us to conclude for Max(AR).

As far as r-Max(AR) is concerned, let MR be a maximal right ideal of
End(AR). For (a), we must prove that either ∆(AR, AR) ⊆ MR or Σ(AR, AR) ⊆
MR. Now RR/MR is a simple right R-module so that its annihilator P is a right
primitive ideal contained in MR. Thus P is a prime ideal [10, Proposition 3.15]
and P ⊇ J(End(AR)) ⊇ ∆(AR, AR) ∩ Σ(AR, AR) ⊇ ∆(AR, AR)Σ(AR, AR), so
we can conclude the proof of (a) as before. The proof of (b) is similar to that
for maximal two-sided ideals in the previous paragraph. �

Let AR be a biuniform right R-module and let E := End(AR) be its endo-
morphism ring. Let I be the subset of E whose elements are all the endomor-
phisms of AR that are not monomorphisms, and K be the subset of E whose
elements are all the endomorphisms of AR that are not epimorphisms. Then I
and K are two two-sided completely prime ideals of E, and every proper right
ideal of E and every proper left ideal of E is contained either in I or in K
[3, Theorem 9.1]. Notice that I = ∆(AR, AR) and K = Σ(AR, AR). For any
biuniform module AR, exactly one of the following two conditions hold: either
I and K are comparable, that is, I ⊆ K or K ⊆ I, and in this case, E is a local
ring and I ∪K = I +K is its maximal ideal; or I and K are not comparable,
J(E) = I ∩K, and E/J(E) is canonically isomorphic to the direct product of
the two division rings E/I and E/K.
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Proposition 3.10. A biuniform R-module AR satisfies the equivalent condi-

tions of Proposition 3.2 if and only if its endomorphism ring End(AR) is a local

ring.

Proof. Let AR be a biuniform module. Then End(AR) is local if and only if
I and K are comparable ideals, that is, if and only if I +K is a proper ideal
of End(AR). By Proposition 3.8, this occurs if and only if AR satisfies the
equivalent conditions of Proposition 3.2. �

As far as the almost self-injective modules studied in [1] are concerned, we
have the following proposition. Recall that a ring S is said to be a left chain

ring if the left S-module SS is uniserial.

Proposition 3.11. Let AR be an indecomposable almost self-injective R-mod-

ule. Then AR satisfies the equivalent conditions of Proposition 3.2, ∆(AR, AR)
is a completely prime ideal of End(AR), and End(AR)/∆(AR, AR) is a left

chain domain.

Proof. The module AR is uniform by [1, Lemma 1] so that ∆(AR, AR) is com-
pletely prime and End(AR)/∆(AR, AR) is a domain by Lemma 3.1. Moreover,
S := End(AR) is a local ring [1, Theorem 5] so that, by Proposition 3.4, AR

satisfies the equivalent conditions of Proposition 3.2.
To conclude the proof, it remains to show that if g, h ∈ S, then either

Sg + ∆(AR, AR) ⊆ Sh +∆(AR, AR) or Sh +∆(AR, AR) ⊆ Sg +∆(AR, AR).
Now if g and h are monomorphisms, then ker g = kerh so that either Sg ⊆
Sh or Sh ⊆ Sg [1, Lemma 6(ii)], and we are done. If one of g and h is a
monomorphism and the other is not, then we conclude by [1, Lemma 6(ii)]. If
both g and h are not monomorphisms, then g, h ∈ ∆(AR, AR) so that Sg +
∆(AR, AR) = Sh+∆(AR, AR) = ∆(AR, AR). �

Clearly, any cohopfian module, that is, any module for which every injective
endomorphism is an automorphism, satisfies Condition (b) of Proposition 3.2.
In particular, every Artinian R-module belongs to the category E of the state-
ment of Theorem 3.3.

As far as the regular module RR is concerned, notice that ∆(RR, RR) corre-
sponds to the right singular ideal Z(RR) of the ringR. Thus the module RR sat-
isfies the equivalent conditions of Proposition 3.2 if and only if Z(RR) ⊆ J(R).
In particular, if either R is local or R is any right nonsingular ring, then R
belongs to the category E (Theorem 3.3).

Recall that a module AR is continuous if: (C1) every submodule of AR is
essential in a direct summand of AR; and (C2) if a submodule B of AR is
isomorphic to a direct summand of AR, then B is a direct summand of AR.
Every direct summand of a continuous module is a continuous module, but AR

continuous does not imply AR ⊕AR continuous in general [11, Proposition 2.7
and Corollary 2.11]. It is well-known that for any continuous module AR, one
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has ∆(AR, AR) = J(End(AR)), End(AR)/∆(AR, AR) is a von Neumann regu-
lar ring and idempotents modulo ∆(AR, AR) can be lifted [11, Proposition 3.5
and Lemma 3.7]. Thus:

Proposition 3.12. Every continuous R-module AR satisfies the equivalent

conditions of Proposition 3.2, and the endomorphism ring of the object AR in

the factor category Mod-R/∆ is von Neumann regular.

As a corollary, we have that every injective R-module satisfies the equivalent
conditions of Proposition 3.2. A quasi-continuous module is a module AR

satisfying Condition (C1) above and Condition (C3): If B1 and B2 are direct
summands of AR such that B1 ∩B2 = 0, then B1 ⊕B2 is a direct summand of
AR. There exist quasi-continuous modules that do not satisfy the equivalent
conditions of Proposition 3.2. For instance, we have seen in Proposition 3.10
that every biuniform module whose endomorphism ring is not local does not
satisfy the equivalent conditions of Proposition 3.2, but a biuniform module is
uniform, hence quasi-continuous [11, Proposition 2.5].

For modules that satisfy Condition (C1), we have:

Theorem 3.13. Let R be any ring and A be a full subcategory of Mod-R.

Assume that idempotent splits in A and that all the objects of A are modules

AR that satisfy Condition (C1). Then every morphism has kernel and cokernel

in A/∆. In particular, idempotents split in A/∆.

Proof. Let f : AR → BR be a morphism in A and f : AR → BR be its image
in A/∆. We must prove that f has a kernel and a cokernel in A/∆. Now
the kernel ker f of f in Mod-R is essential in a direct summand A1 of AR

by Condition (C1). Let A2 be a complement of A1 so that AR = A1 ⊕ A2.
Thus f : AR = A1 ⊕ A2 → BR can be written in the form f = (f1, f2) with

each fi : Ai → BR being a module morphism. Clearly, f = (0, f2) because the
difference f − (0, f2) = (f1, 0) has essential kernel ker f ⊕A2 in AR. We leave
to the reader to show that if ε1 : A1 → AR is the inclusion, then ε1 is the kernel
of f = (0, f2) in the category A/∆.

Now f2(A2) is essential in a direct summand B1 of BR so that BR = B1⊕B2

for some submodule B2 of BR. Let q : BR = B1 ⊕ B2 → B2 be the canonical
projection of BR onto B2 with kernel B1. We will now show that q : BR → B2

is the cokernel of f = (0, f2) in A/∆. Clearly, q(0, f2) = 0 so that qf = 0.

Let g : BR → CR be any other morphism in A with gf = 0. Then g can be
written in the form g = (g1, g2) with each gi : Bi → CR being a morphism

in A, the morphism q becomes in matrix form (0, 1B2
), and (0, f2) : AR =

A1 ⊕ A2 → BR = B1 ⊕ B2 can be written in matrix form as (0, f2) =
(

0 f ′

2

0 0

)

with f ′
2 : A2 → B1 being an R-module monomorphism since f2 : A2 → BR is an

injective mapping (Notice that A2 has zero intersection with the kernel ker f of

f in Mod-R). Then 0 = gf = (g1, g2)
(

0 f ′

2

0 0

)

= (0, g1f ′
2). Thus g1f

′
2 : A2 → CR

has essential kernel. Equivalently, ker g1 ∩ f ′
2(A2) is an essential submodule
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of f ′
2(A2). But f ′

2(A2) = f2(A2) is essential in B1 so that ker g1 is essential

in B1, that is, g1 = 0. Thus g = (g1, g2) = (0, g2) factors uniquely through

q = (0, 1B2
).

Finally, if e : AR → AR is an idempotent in A/∆ and k, with k : KR → AR,

is a kernel of the idempotent 1AR
− e in A/∆, then (1AR

− e)e = 0 implies
that there exists a unique morphism g : AR → KR such that e = kg. As

(1AR
− e)k = 0, it follows that k = ek = kgk. But kernels are monomorphisms,

whence 1KR
= gk. �

Theorem 3.13 applies to the full subcategory F of Mod-R whose objects are
all continuous right R-modules. The rest of this section is devoted to some
remarks about this category F . First of all, notice that the weak equivalence
C : F → F/∆ does not preserve kernels nor cokernels, in general. For in-
stance, the Prüfer group Z(p∞) is a continuous Z-module, and the kernel both
in Mod-R and in F of the morphism λp : Z(p∞) → Z(p∞) given by left multi-
plication by p is the embedding ε : Z/pZ →֒ Z(p∞). Modulo ∆, we find that

λp is the zero endomorphism of Z(p∞) so that its kernel in F/∆ is the iden-
tity mapping Z(p∞) → Z(p∞). But Z(p∞) and Z/pZ are not isomorphic in
F/∆. Hence C does not preserve kernels. As far as cokernels are concerned,
the group Z/p2Z is a continuous Z-module, and the cokernel both in Mod-R
and in F of the morphism λp : Z/p2Z → Z/p2Z given by left multiplication by

p is the canonical projection π : Z/p2Z → Z/pZ. Modulo ∆, the morphism λp

is the zero endomorphism of Z/p2Z so that its cokernel in F/∆ is the identity
mapping Z/p2Z → Z/p2Z. But Z/pZ and Z/p2Z are not isomorphic in F/∆.
Hence C does not preserve cokernels.

Example 3.14. By Theorem 3.13, kernels and cokernels always exist in the
category F/∆. On the contrary, there are morphisms in the category F that do
not have kernels nor cokernels in F . For instance, consider the endomorphism

f of Z(p∞)2 given by the left multiplication by
(

p 0

0 p2

)

. We will prove that f

does not have a kernel in F .
Assume the contrary. Let k : K → Z(p∞)2 be a kernel of f in F , where K

is a suitable continuous Z-module. Then fk = 0 so that the image k(K) of
k is contained in the subgroup Z/pZ ⊕ Z/p2Z of Z(p∞)2. Therefore, there is
a factorization k = εk′ in the category Ab of abelian groups, where k′ : K →
Z/pZ⊕ Z/p2Z is a suitable group morphism and ε : Z/pZ⊕ Z/p2Z → Z(p∞)2

is the embedding.
Let ε1 : Z/pZ → Z/pZ⊕ Z/p2Z be the inclusion into the first component so

that εε1 : Z/pZ → Z(p∞)2 is a morphism in F with fεε1 = 0. As k is a kernel
of f , there exists a unique morphism g1 : Z/pZ → K with kg1 = εε1. Then
εk′g1 = εε1, and so k′g1 = ε1. Compose this equality with the first canonical
projection π1 : Z/pZ ⊕ Z/p2Z → Z/pZ, yielding π1k

′g1 = π1ε1 = 1Z/pZ. Thus
g1 : Z/pZ → K is a splitting monomorphism so that K has a direct summand
K1 isomorphic to Z/pZ.
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Similarly for the second component. Let ε2 : Z/p2Z → Z/pZ ⊕ Z/p2Z be
the inclusion into the second component, whence fεε2 = 0. There exists a
unique morphism g2 : Z/p2Z → K with kg2 = εε2. Then k′g2 = ε2 so that
π2k

′g2 = π2ε2 = 1Z/p2Z. Thus K has a direct summand K2 isomorphic to

Z/p2Z.
The intersectionK1∩K2 is a subgroup of the simple groupK1, and therefore

either K1 ⊆ K2 or K1 ∩ K2 = 0. Now K1 and K2 are direct summands of
K so that K1 ⊆ K2 implies that K1 is a direct summand of K2, which is
a contradiction because Z/p2Z does not have direct summands isomorphic to
Z/pZ. ThusK1∩K2 = 0. By [11, Proposition 2.2],K1⊕K2 is a direct summand
of K (Condition (C3)). But K is continuous so that K1 ⊕K2

∼= Z/pZ⊕Z/p2Z
is a continuous abelian group, which is a contradiction. This proves that f
does not have a kernel in F .

Similarly, it is possible to prove that the embedding e1 : Z/pZ → (Z/p2Z)2

into the first component is a morphism in F that does not have a cokernel in
F .

4. The ideal of morphisms with superfluous image

Now we will dualize most of the previous results. Let R be a ring. Set

Σ(AR, BR) := { f : AR → BR | f(AR) is superfluous in BR }

for every pair AR, BR of right modules. Then Σ is an ideal of Mod-R. There
is a canonical functor C of Mod-R onto the factor category Mod-R/Σ.

If two modules AR, BR are isomorphic objects in Mod-R/Σ, then they have
the same epigeny class, that is, there are an epimorphism of AR onto BR and
an epimorphism of BR onto AR [7, Proposition 4.6].

Lemma 4.1. If AR is a couniform right R-module, then Σ(AR, AR) is a com-

pletely prime two-sided ideal of End(AR) so that the endomorphism ring of AR

in the category Mod-R/Σ is an integral domain.

Proof. If the module AR is couniform, then the ideal Σ(AR, AR) consists of all
endomorphisms of AR that are not epimorphisms. Thus Σ(AR, AR) is com-
pletely prime by [3, Lemma 6.26(b)]. Thus

EndMod-R/Σ(AR) = End(AR)/Σ(AR, AR)

is a domain. �

We want to determine when, for a full subcategory A of Mod-R, the canon-
ical functor C : A → A/Σ is local. As C is a full functor, this is equiva-
lent to requiring that the kernel Σ of C be contained in the Jacobson radical
J of A. In the next proposition, we characterize the R-modules AR with
Σ(AR, AR) ⊆ J(End(AR)).

Proposition 4.2. The following conditions are equivalent for a right module

AR over a ring R :
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(a) Σ(AR, AR) ⊆ J(End(AR)).
(b) If g is an endomorphism of AR with a superfluous image and g(a) = a

for some a ∈ AR, then a = 0.

Proof. (a) =⇒ (b) Assume (a) holds. Let g be an endomorphism of AR with a
superfluous image and a an element of AR with g(a) = a. Then g ∈ Σ(AR, AR),
so g ∈ J(End(AR)) by (a), and hence 1 − g is an automorphism of AR. Thus
a, which is an element in the kernel of 1− g, must be zero.

(b) =⇒ (a) Let f be a morphism in Σ(AR, AR) and f ′ any other endo-
morphism of AR. Assume that (b) holds. We must prove that 1 − f ′f is an
automorphism of AR. Now f ′f ∈ Σ(AR, AR) so that f ′f(AR) is superfluous
in AR. Thus AR ⊆ f ′f(AR) + (1 − f ′f)(AR) implies AR = (1 − f ′f)(AR),
that is, 1 − f ′f is an epimorphism. By (b), f ′f(a) = a implies a = 0, that is,
(1 − f ′f)(a) = 0 implies a = 0. Thus 1 − f ′f is also a monomorphism so that
it is an automorphism of AR. It follows that f belongs to the Jacobson radical
of the ring End(AR). �

The next result follows immediately from Theorem 2.4.

Theorem 4.3. Let D be the full subcategory of Mod-R whose objects are all

right R-modules satisfying the equivalent conditions of Proposition 4.2. Then

in the category D, the ideal Σ is contained in the Jacobson radical J so that

the canonical functor C : D → D/Σ is local. The category D is the largest full

subcategory of Mod-R with this property. Moreover, D is an additive category

in which idempotents split.

We want to show also that in this case, the category D as described in
Theorem 4.3 is broad.

Proposition 4.4. The following conditions are equivalent for a right R-module

AR :

(a) AR has a local endomorphism ring End(AR) in Mod-R.

(b) AR satisfies the equivalent conditions of Proposition 4.2 and has a local

endomorphism ring in Mod-R/Σ.

Proof. (a) =⇒ (b) Let AR be a module with End(AR) local so that, in particu-
lar, AR 6= 0. Then either Σ(AR, AR) ⊆ J(End(AR)) for which case AR satisfies
the equivalent conditions of Proposition 4.2, or Σ(AR, AR) is the improper ideal
of End(AR). In the latter case, 1A ∈ Σ(AR, AR) so that AR is superfluous in
AR, that is, AR = 0, a contradiction. The rest is trivial because End(AR) local
implies that its homomorphic image EndMod-R/Σ(AR) = End(AR)/Σ(AR, AR)

is also local.
The proof of (b) =⇒ (a) is similar to the proof of (b) =⇒ (a) in Proposi-

tion 3.4. �

Recall that a module AR is quasi-projective if, for every module BR, every
epimorphism h : AR → BR and every homomorphism ℓ : AR → BR, there exists
an endomorphism g : AR → AR with ℓ = hg.
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Proposition 4.5. Every quasi-projective R-module satisfies the equivalent con-

ditions of Proposition 4.2.

Proof. Let AR be a quasi-projective R-module. We want to show that

Σ(AR, AR) ⊆ J(End(AR)).

Since J(End(AR)) is the largest superfluous right ideal of End(AR), it suffices
to show that if f ∈ Σ(AR, AR), then fEnd(AR) is a superfluous right ideal of
End(AR). Hence let I be a right ideal of End(AR) and suppose fEnd(AR)+I =
End(AR). Then there exist g ∈ End(AR) and h ∈ I with fg+h = 1A. It follows
that a = fg(a)+h(a) for every a ∈ A so that AR ⊆ fg(AR)+h(AR). Now fg ∈
Σ(AR, AR), and thus fg(AR) is superfluous in AR. Therefore, AR = h(AR),
i.e., h : AR → AR is an epimorphism. As AR is quasi-projective, there exists
an endomorphism g : AR → AR with 1A = hg. Then 1A ∈ hEnd(AR) ⊆ I. It
follows that I = End(AR), and we can conclude that fEnd(AR) is a superfluous
right ideal. �

In particular, projective R-modules satisfy the equivalent conditions of Pro-
position 4.2. For the ring R, one has Σ(RR, RR) = J(R).

Let us return to arbitrary modules. Recall that the radical rad(AR) of a
module AR is the intersection of all maximal submodules of AR and that it
coincides with the sum of all superfluous submodules of AR.

Proposition 4.6. Every R-module AR with Hom(AR, rad(AR)) = 0 satisfies

the equivalent conditions of Proposition 4.2.

Proof. Let AR be an R-module with Hom(AR, rad(AR)) = 0, g be an en-
domorphism of AR with a superfluous image, and a an element of AR with
g(a) = a. Since rad(AR) is equal to the sum of all superfluous submodules
of AR, we have that g(AR) ⊆ rad(AR). Thus Hom(AR, rad(AR)) = 0 implies
Hom(AR, g(AR)) = 0 so that g = 0. Thus 0 = g(a) = a, as desired. �

As the radical of a semisimple module is zero, we immediately get as a
corollary that:

Proposition 4.7. Every semisimple R-module satisfies the equivalent condi-

tions of Proposition 4.2.

The proofs of Propositions 3.8, 3.9 and 3.10 can be easily dualized, which
yields:

Proposition 4.8. Let AR be a uniform module and End(AR) be its endomor-

phism ring. The following conditions are equivalent:

(a) AR satisfies the equivalent conditions of Proposition 4.2.
(b) ∆(AR, AR) + Σ(AR, AR) is a proper ideal of End(AR).

Proposition 4.9. Let AR be a uniform module, let Max(AR) be the set of all

maximal (two-sided) ideals of the endomorphism ring End(AR), D := {M ∈
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Max(AR) | ∆(AR, AR) ⊆ M} and S := {M ∈ Max(AR) | Σ(AR, AR) ⊆ M}.
Then

(a) Max(AR) = D ∪ S.
(b) D∩S 6= ∅ if and only if AR satisfies the equivalent conditions of Propo-

sition 4.2.

Proposition 4.10. A biuniform R-module AR satisfies the equivalent condi-

tions of Proposition 4.2 if and only if its endomorphism ring End(AR) is a local

ring.

Every hopfian module, that is, every module for which all surjective endo-
morphisms are automorphisms, satisfies Condition (b) of Proposition 4.2. For
instance, every Noetherian R-module is in the category D of the statement of
Theorem 4.3.

Recall that a module AR is discrete if: (D1) for every submodule B of AR,
there is a decomposition AR = A1 ⊕ A2 in which A1 is contained in B and
B ∩ A2 is a superfluous submodule of AR; and (D2) if B is a submodule of
AR and AR/B is isomorphic to a direct summand of AR, then B is a direct
summand of AR. Every direct summand of a discrete module is a discrete
module [11, Lemma 4.7]. It is well-known that for every discrete module AR,
one has Σ(AR, AR) = J(End(AR)), End(AR)/Σ(AR, AR) is a von Neumann
regular ring and idempotents modulo Σ(AR, AR) can be lifted [11, Lemma 5.3
and Theorem 5.4]. Thus:

Proposition 4.11. Every discrete R-module AR satisfies the equivalent con-

ditions of Proposition 4.2, and the endomorphism ring of the object AR in the

factor category Mod-R/Σ is von Neumann regular.

As a corollary, we have that every direct sum of couniform projective mod-
ules satisfies the equivalent conditions of Proposition 4.2 [11, Corollary 4.54].

Remark 4.12. There exists a number of classes of modules whose endomorphism
rings have only one or two maximal right ideals [8]. This is the case, for
instance, of the class of biuniform modules, which we have already considered
in this paper, and the class of cyclically presented modules over local rings,
that is, the modules isomorphic to R/aR for some a ∈ R. If AR is a module
and End(AR) has at most two maximal right ideals M1 and M2 (possibly,
M1 = M2), then for both i = 1, 2, either Mi ⊇ ∆(AR, AR) or Mi ⊇ Σ(AR, AR)
[7, Proposition 3.1 and Theorem 4.3].

For instance, it is well-known that if AR is a biuniform module, then AR

has at most two maximal ideals, namely, I := {f ∈ End(AR) | f is not a
monomorphism} and K := {f ∈ End(AR) | f is not an epimorphism} [3,
Theorem 9.1]. In this case, one precisely has that I = ∆(AR, AR) and K =
Σ(AR, AR).

But this does not hold for all modules whose endomorphism ring has at
most two maximal right ideals. Let a be a non-zero non-invertible element of
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a local ring R and set AR := R/aR. Let E := {r ∈ R | ra ∈ aR} be the
idealizer of aR so that EndR(R/aR) ∼= E/aR. Then End(AR) has at most two
maximal right ideals, which can be either I/aR or K/aR, where I := {r ∈
R | ra ∈ aJ(R)} and K := J(R) ∩ E [2]. Thus by [7, Proposition 3.1 and
Theorem 4.3], we must have one of the two possible cases I/aR ⊇ ∆(AR, AR)
or I/aR ⊇ Σ(AR, AR), and one of the two possible cases K/aR ⊇ ∆(AR, AR)
or K/aR ⊇ Σ(AR, AR). We will now give an example in which the two ideals
∆(AR, AR) and Σ(AR, AR) are not the two ideals I/aR and K/aR, different
from what happens for biuniform modules.

Example 4.13. Let R be a local commutative integral domain and a a prime
element of R that does not generate the maximal ideal of R. For instance, R
could be the ring of polynomials k[x, y] with k a field and x, y commutative
indeterminates localized at the maximal ideal (x, y) of k[x, y], and a could be
the element x. We will prove that, in this case, one has I/aR = K/aR =
Σ(AR, AR) and ∆(AR, AR) = 0.

As R is commutative, we have that E = R in the notation above so that
EndR(R/aR) = R/aR is a local ring with maximal ideal J(R)/aR = K/aR.
In particular, K/aR ⊇ I/aR and K/aR ⊇ Σ(AR, AR). But if r ∈ K, then
ra ∈ aJ(R) so that r ∈ I. Thus I/aR = K/aR. Now if r ∈ K = I = J(R),
then multiplication by r maps R/aR into J(R)/aR. Thus the image of the
endomorphism of R/aR given by multiplication by r is superfluous. This proves
that r + aR ∈ Σ(R/aR,R/aR) so that K/aR = Σ(AR, AR). Finally, the
endomorphism ring R/aR of R/aR is a commutative domain because a is a
prime element of the domain R. It follows that every non-zero endomorphism
of R/aR is injective. Thus ∆(AR, AR) = 0.

5. From one ideal to n ideals

We will now show how it is possible to pass in Theorem 2.4 from the case of
one ideal I to the case of n ≥ 2 ideals I1, . . . , In. The case of two ideals was
the object of study in [7]. We are grateful to Manuel Reyes, who suggested us
Proposition 5.2 and Theorem 5.3 for the case when n = 2.

We begin this section with an explicit presentation of some non-commutative
polynomials with coefficients in the ring Z of integers. Let x, y1, y2, y3, . . . be
infinitely many non-commutative indeterminates over the ring Z so that there
is a strictly ascending chain

Z〈x, y1〉 ⊂ Z〈x, y1, y2〉 ⊂ Z〈x, y1, y2, y3〉 ⊂ · · ·

of non-commutative integral domains. Here, Z〈x, y1, . . . , yn〉 denotes the ring
of polynomials in the non-commutative indeterminates x, y1, . . . , yn with coef-
ficients in Z.

Proposition 5.1. Let x, y1, y2, . . . be non-commutative indeterminates over

the ring Z of integers and let Z〈x, y1, . . . , yn〉 be the ring of non-commutative

polynomials in the indeterminates x, y1, . . . , yn with coefficients in Z for every
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n ≥ 1. Then for every n ≥ 1, there is a unique polynomial pn = pn(x, y1, . . . ,
yn) ∈ Z〈x, y1, . . . , yn〉 such that

(1) 1− pnx = (1− y1x)(1 − y2x) · · · (1− ynx).

Moreover, these polynomials pn, n ≥ 1, have the following properties:
(a) 1− xpn = (1 − xy1)(1 − xy2) · · · (1− xyn) for every n ≥ 1.
(b) p1 = y1 and pn+1 = yn+1 + pn(1− xyn+1) for every n ≥ 1.
(c)

pn =
∑

1≤i≤n

yi −
∑

1≤i1<i2≤n

yi1xyi2

+
∑

1≤i1<i2<i3≤n

yi1xyi2xyi3 − · · ·+ (−1)n−1y1xy2x · · ·xyn

for every n ≥ 1.

Proof. Such a polynomial pn ∈ Z〈x, y1, . . . , yn〉 exists because the product on
the right in equation (1) is of the form “1+ monomials that terminate with x”.
It is unique because Z〈x, y1, . . . , yn〉 is an integral domain.

(a) If we multiply equation (1) by x on the left, then we get that

x(1 − pnx) = x(1 − y1x)(1 − y2x) · · · (1 − ynx)

= (x − xy1x)(1 − y2x) · · · (1− ynx)

= (1 − xy1)x(1 − y2x) · · · (1 − ynx)

= (1 − xy1)(1 − xy2)x · · · (1 − ynx)

= · · ·

= (1 − xy1)(1 − xy2) · · · (1− xyn)x.

But x(1 − pnx) = x − xpnx = (1 − xpn)x so that the identity in (a) holds
because x is a non-zero element of the integral domain Z〈x, y1, . . . , yn〉.

(b) From the definition of p1, we have that 1 − p1x = 1 − y1x, so that
p1 = yi. From the definition of pn+1, we have that 1−pn+1x = (1−y1x) · · · (1−
yn+1x) = (1 − pnx)(1 − yn+1x) = 1 − pnx − yn+1x + pnxyn+1x from which
pn+1 = pn + yn+1 − pnxyn+1 = yn+1 + pn(1− xyn+1).

(c) follows from equation (1). �

The polynomials pn = pn(x, y1, . . . , yn) can also be viewed as elements of
the path algebra of the quiver with two vertices A and B, one arrow from A
to B indexed by x and n arrows from B to A indexed by y1, y2, . . . , yn.

Proposition 5.2. Let A be a preadditive category, I1, . . . , In be ideals of A
and f : A → B be a morphism in A. Assume that the image f : A → B of f
in the factor category A/Ii is an isomorphism for every i = 1, 2, . . . , n, and

let gi : B → A be a morphism in A whose image in A/Ii is the inverse of f ,
i = 1, 2, . . . , n. Then the image of f in A/I1∩· · ·∩In is an isomorphism and its
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inverse in A/I1∩· · · ∩In is the image of the morphism pn(f, g1, . . . , gn) : B →
A.

Proof. We must prove that 1A− pn(f, g1, . . . , gn)f ∈ Ii(A,A) and 1B − fpn(f ,
g1, . . . , gn) ∈ Ii(B,B) for all i = 1, 2, . . . , n. Now 1A − pn(f, g1, . . . , gn)f =
(1A−g1f)(1A−g2f) · · · (1A−gnf) by equation (1), and 1A−gif ∈ Ii(A,A) so
that 1A−pn(f, g1, . . . , gn)f ∈ Ii(A,A) for all i. Similarly for 1B−fpn(f, g1, . . .,
gn) making use of the identity in Proposition 5.1(a). �

Theorem 5.3. Let I1, . . . , In be ideals of a preadditive category A with Jacob-

son radical J . The following conditions are equivalent:
(a) The canonical functor A → A/I1 × · · · × A/In is local.

(b) The canonical functor A → A/I1 ∩ · · · ∩ In is local.

(c) I1 ∩ · · · ∩ In ⊆ J .

Proof. (a) ⇒ (b) The canonical functor A → A/I1×· · ·×A/In can be factored
as the composite functor of the canonical functor A → A/I1 ∩ · · · ∩ In and the
canonical functor A/I1 ∩ · · · ∩ In → A/I1 × · · · × A/In.

(b) ⇒ (c) The kernel of every local functor is contained in the Jacobson
radical.

(c) ⇒ (a) Assume I1 ∩ · · · ∩ In ⊆ J . Let f : A → B be a morphism in A
whose image in A/I1 × · · · × A/In is an isomorphism so that all its images in
the factor categories A/Ii are isomorphisms. By Proposition 5.2, the image of
f in A/I1 ∩ · · · ∩ In is an isomorphism. As I1 ∩ · · · ∩ In ⊆ J , the image of
f in A/J is an isomorphism. But isomorphisms modulo the Jacobson radical
are isomorphisms so that f is an isomorphism of A. �

From Theorems 2.4 and 5.3, we obtain that:

Corollary 5.4. Let I1, . . . , In be ideals of a preadditive category B. Let C be

the full subcategory of B whose objects are the objects A of B with I1(A,A) ∩
· · ·∩In(A,A) ⊆ J(EndB(A)). Then on the category C, the ideal I1∩· · ·∩In is

contained in the Jacobson radical J so that the canonical functor C : C → C/I1×
· · ·×A/In is local. Moreover, the category C is the largest full subcategory of B
with this property. Finally, if B is an additive category, then C is an additive

category, and if B is additive and idempotents split in B, then idempotents split

also in C.

Remark 5.5. From Theorem 5.3, it is also possible to obtain a very quick proof
of [7, Proposition 3.1(b)] as follows. The statement of the proposition says that
if A is a preadditive semilocal category, (I1, I2) is a pair of ideals of A and
every maximal ideal of A contains either I1 or I2, then the canonical functor
A → A/I1 ×A/I2 is local.

To prove this making use of Theorem 5.3, recall that the Jacobson radical of a
semilocal category is the intersection of all maximal ideals [6, Theorem 4.8(1)].
If every maximal ideal of A contains either I1 or I2, then I1 ∩ I2 is contained
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in the Jacobson radical of A, and therefore, the canonical functor A → A/I1×
A/I2 is local by Theorem 5.3.

Let C be a semilocal category and Max(C) be the collection of all its maxi-
mal ideals. For every object A in C, there exist finitely many maximal ideals
M1, . . . ,Mn (n ≥ 0) of C such that, for every maximal ideal M in C, A is a
non-zero object in C/M if and only if M = Mi for some i ∈ {1, . . . , n}. It fol-
lows that there is a functor F : C → ⊕M∈Max(C)C/M induced by the collection
of canonical functors C → C/M, M ∈ Max(C). This functor F is isomorphism
reflecting [6, Theorem 4.8]. From Proposition 5.2, we get that:

Proposition 5.6. Let C be a semilocal category. Then the canonical functor

F : C → ⊕M∈Max(C)C/M is a local functor.

Proof. Let f : A → B be an isomorphism in C that becomes an isomorphism
in C/M for every maximal ideal M of C. There exist finitely many maximal
ideals M1, . . . ,Mn such that A = B = 0 in C/M for every maximal ideal
M ∈ Max(C) \ {M1, . . . ,Mn}. For each i = 1, 2, . . . , n, let gi : B → A be a
morphism in C that becomes the inverse of f in C/Mi. By Proposition 5.2,
the image of f is an isomorphism in A/M1 ∩ · · · ∩ Mn and its inverse in
A/M1 ∩ · · · ∩ Mn is the image of the morphism pn(f, g1, . . . , gn) : B → A.
Thus 1A − pn(f, g1, . . . , gn)f ∈ Mi(A,A) for every i = 1, 2, . . . , n. Also,
1A − pn(f, g1, . . . , gn)f ∈ M(A,A) for M ∈ Max(C) \ {M1, . . . ,Mn} be-
cause M(A,A) = EndC(A). Thus 1A − pn(f, g1, . . . , gn)f is in the intersec-
tion of all M(A,A)’s, which is the Jacobson radical of EndC(A). Therefore,
pn(f, g1, . . . , gn)f is an automorphism of A and f is left invertible in C. Simi-
larly, from 1B − fpn(f, g1, . . . , gn), we get that f is right invertible. Hence f is
an automorphism of A in C. �
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