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2 Abstract. A Bayesian method is described for reconstruction of high resolution 3D imagesfrom the microPET small animal scanner. Resolution recovery is achieved by explicitlymodeling the depth dependent geometric sensitivity for each voxel in combination with anaccurate detector response model that includes factors due to photon pair non-colinearityand inter-crystal scatter and penetration. To reduce storage and computational costs we usea factored matrix in which the detector response is modeled using a sinogram blurring kernel.Maximuma posteriori (MAP) images are reconstructed using this model in combinationwitha Poisson likelihood function and a Gibbs prior on the image. Reconstructions obtained frompoint source data using the accurate system model demonstrate a potential for near isotropicFWHM resolution of approximately 1.2mm at the center of the �eld of view compared toapproximately 2mm when using an analytic 3D reprojection (3DRP) method with a ramp�lter. These results also show the ability of the accurate system model to compensate forresolution loss due to crystal penetration producing nearly constant radial FWHM resolutionof 1mm out to a 4mm radius. Studies with a point source in a uniform cylinder indicatethat as the resolution of the image is reduced to control noise propagation, the resolutionobtained using the accurate system model is superior to that obtained using 3DRP atmatched background noise levels. Additional studies using pie phantoms with hot andcold cylinders of diameter 1 - 2.5mm and 18FDG animal studies appear to con�rm thisobservation.1. IntroductionMicroPET is a high resolution PET scanner designed for imaging small laboratory animals[Cherry et al, 1997]. It consists of a ring of 30 position-sensitive scintillation detectors, eachwith an 8�8 array of 2mm x 2mm x 10mm lutetium oxyorthosilicate (LSO) crystals coupledvia optical �bers to a multi-channel photomultiplier tube. The detector ring diameterof microPET is 172mm with an imaging �eld of view of 112mm transaxially by 18mmaxially. The measured intrinsic detector pair resolution is 1.68mm FWHM (full width at halfmaximum) and the reconstructed image resolution, as measured using the 3D reprojectionmethod of [Kinahan and Rogers, 1989], is approximately 2.0mm FWHM isotropically at thecenter of the �eld of view. The scanner has no septa and operates exclusively in 3D mode.Here we report on the development of a Bayesian reconstruction method for the scanner.The majority of fully 3D PET studies are reconstructed using algorithms based onthe analytic relationship between the source distribution and its sinograms [Colsher, 1980,Kinahan and Rogers, 1989, Defrise et al, 1995]. The resolution of these methods is limitedby the implicit assumption that the data correspond to true line integrals through theunknown source distribution. In contrast, iterative reconstruction algorithms that are basedon a statistical model are able to maximize resolution recovery by accurate modeling ofthe system response. Furthermore, these methods can optimize performance in low count



3situations through explicit modeling of the statistical variability inherent in photon limitedcoincidence detection.Iterative 3D reconstruction represents a daunting computational challenge due to thelarge of number of lines of response (LORs) collected for each data set. [Kinahan et al, 1996]reduce the dimension of the data by pre-processing using Fourier rebinning before applyingthe OSEM algorithm. While this leads to substantial cost savings, Fourier rebinningagain assumes that the data are measurements of line integrals so that the potentialfor resolution recovery is lost with this approach. Several other investigators haveapproached the problem using a combination of sparse matrix structures and in-planeand axial symmetries to reduce computation and storage requirements [Chen et al, 1991,Johnson et al, 1995, Johnson et al, 1997, Ollinger and Goggin, 1996, Terstegge et al, 1996].These methods model the detection process using geometrical computations based eitheron the intersection of detection \tubes" with each voxel [Ollinger and Goggin, 1996] or ondepth dependent geometric sensitivity calculations based on the solid angles subtended atthe detectors by each voxel [Chen et al, 1991, Terstegge et al, 1996]. [Johnson et al, 1995]also use a detection tube intersection model but include a shift-variant weighting to modeldetector response. Here we build on this work by using a depth dependent solid anglecalculation in combination with a spatially variant detector response model. Using a factoredmatrix form, similar to that described for the 2D case in [Mumcuoglu et al, 1996b], we areable to include this more accurate model at little additional computational cost comparedto models that do not include detector response.Many of the statistically based 3D reconstruction methods are based on the EM[Chen et al, 1991, Johnson et al, 1995] or OSEM [Johnson et al, 1997] algorithms. Bothapproaches can exhibit high variance behavior at high iteration numbers and are regularizedthrough early termination of the algorithm or by subsequent smoothing of the reconstructedimages. Here we use a MAP formulation in which the variance and resolution of thereconstruction are controlled through the regularizing inuence of a prior. The MAPmethods do not typically exhibit the instabilities at higher iterations encountered usingEM and OSEM and hence the choice of stopping point is not critical once e�ectiveconvergence has been reached. To compute the MAP solution, we use a 3D extension ofthe pre-conditioned conjugate gradient algorithm described in [Mumcuoglu et al, 1996b] and[Mumcuoglu et al, 1996a].2. Factored System Model2.1. The detection probability matrixThe theory of 3D MAP image reconstruction is essentially the same as for the 2Dproblem, di�ering primarily in the speci�cs of the detection probability matrix, P . Even



4for microPET, which is small compared to the latest generation of clinical 3D PETsystems, the P matrix is huge as shown in Table 1. Sparseness and sinogram symmetryproperties can be used to reduce this size to more reasonable proportions as previouslydescribed by [Johnson et al, 1995, Chen et al, 1991]. Here we combine the use of thesesymmetries with the factored system matrix approach that we previously applied to 2DPET [Mumcuoglu et al, 1996b] to develop an accurate system model for which forward andbackward projection can be performed e�ciently.ring diameter, mm 172 object size, mm 100� 100� 18detectors per ring 240 object size, voxels 128� 128� 24number of rings 8 voxel size, mm 0:753angles per sinogram 120 full size of P 280 Gbytesrays per angle 100 storage size of PGeom 16 Mbytesnumber of sinograms 64 storage size of PBlur 0.02 Mbytesprojections per sinogram 12,000 storage size of PAttn and PEff 1.4 Mbytestotal projection rays 768,000 total storage size of P 18 MbytesTable 1. 3D Problem Dimensions for the MicroPET system. The projection matrixsizes are based on using 8 bits to store each element of Pgeom as described in Section2.2.The elements, pij , of the detection probability matrix P 2 IRM�N denote the probabilityof detecting an emission from pixel site j, j = 1 : : : N at detector pair i, i = 1; : : :M . Inorder to reduce the stored size of the P matrix, we factor it as follows:P = P det:sensP det:blurP attnP geomP positron (1)Here P attn 2 IRM�M is a diagonal matrix containing the attenuation factors. Since thereis currently no transmission source for the microPET system, we calculate these factorsby re-projecting an estimate of the attenuation image obtained using the region of supportestimated from a preliminary emission image and assuming a constant attenuation coe�cientof 0.095 cm�1. The diagonal detector normalization matrix P det:sens 2 IRM�M is measuredusing a uniform cylindrical source. The data presented here are all for 18F studies in whichpositron range is sub-millimeter. We therefore ignore these e�ects and set P positron 2 IRN�Nequal to the identity matrix. In future studies we will investigate the use of positron rangeblurring model for isotopes other than 18F. Here we concentrate on the two novel aspects ofour model, i.e. modeling of geometrical sensitivity in P geom and sinogram blurring factorsin P det:blur.



52.2. The Geometric Projection MatrixPGeom 2 IRM�N is the geometric projection matrix with each element (i; j) equal to theprobability that a photon pair produced in voxel j reaches the front faces of the detectorpair i in the absence of attenuation and assuming perfect photon-pair colinearity. It iscalculated from the solid angle spanned by the voxel j to the faces of the detector pair i.After rotating the coordinates, we approximate the 3D solid angle as a product of two anglesas illustrated in Fig. 1. The two angles for each voxel are computed, with reference to theregions in Fig. 1, as follows:� = 8>>>><>>>>: 6 d21V d22 voxel in region I� � 6 d11V d21 voxel in region II6 d11V d12 voxel in region III� � 6 d12V d22 voxel in region IV (2)where V denotes the position of the center of each voxel. To improve the accuracy of thismodel, each voxel is divided into 64 subvoxels and the angle from the center of each subvoxelis computed. The �nal pgeom(i; j) is then computed as the averagepgeom(i; j) = 164�2 64Xk=1 �x0�y0(k)�x0�z0(k): (3)In Fig. 2, we show the variation in pgeom(i; j) for voxels lying along the center of a projectiontube for a single detector pair. This �gure shows signi�cant depth dependent sensitivity forthis particular LOR, however we note that these pixels contribute to adjacent LORs in sucha way that the overall sensitivity to each voxel for each sinogram is approximately uniform.PGeom is very sparse and has redundancies of which we can take advantage. By choosingthe voxel size in the z direction to be an integer fraction of the ring distance, there arethe following symmetries in the PGeom matrix [Johnson et al, 1995] [Chen et al, 1991]: in-plane rotation symmetries, resulting from rotating the projection rays by � = 90�; 180�and 270�, and a � = 45� reection symmetry. This provides a total factor of 8 reduction.Axial reection symmetry provides an additional factor of 2 reduction for ring di�erencesother than zero. The parallel symmetry of sinograms with a common ring di�erence Rdprovides a reduction by a factor of (Nr � Rd) where Nr is the number of rings in thesystem. Combining these, the total reduction factor from the symmetry operations isapproximately 64 for microPET. Therefore, we need only store the non-zero componentsof the base-symmetry LORs, which amount to 12440 LORs for microPET. Further savingsin storage and computation can be realized by using an automated indexing scheme. Thisis achieved by storing a base pixel index and run length in the y direction for each valueof x and z. By choosing the base symmetry lines of response so that they tend to run atsmall angles to the y direction, this scheme produces close to an additional factor of twosaving in storage. Each element of the matrix is stored as a single 8-bit integer which is
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7computed as 255 � pgeom(i; j)=pmax. The constant pmax is the maximum solid angle in thesystem computed at the point midway along the line joining the centers of the two detectorsforming the shortest transaxial LOR.2.3. The Sinogram Blurring MatrixPBlur is the sinogram blurring matrix used to model photon pair non-colinearity, inter-crystalscatter and penetration. In principal, uncertainties in the angular separation of the photonpair should be included in PGeom, however, this will reduce its sparseness. We therefore lumpthis factor with the detector blurring e�ects by assuming that it is approximately depthindependent. Similarly, we assume that the e�ects of inter-crystal scatter and detectorpenetration are independent of the distance of the positron annihilation point from thedetectors.In principle, a 3D sinogram blurring model should be used to model the radial,angular and inter-sinogram blurring. In our current implementation we have assumed thatthese blurring e�ects can be con�ned to a single sinogram and use a 2D blurring model.Furthermore, because the axial acceptance angle of microPET is small (� 7:5�), we assumethat the blurring kernels are identical for sinograms for all ring di�erences. We treat eachcrystal as a separate detector and therefore ignore e�ects associated with the location ofeach detector within the 8 � 8 blocks used in the microPET system. We then have arotational symmetry in the blurring kernels due to rotational invariance of the detectorgeometry [Mumcuoglu et al, 1996b]. We note that although this model cannot account forvariations in the blurring kernels that may occur due to block e�ects (e.g. photons scatteredbetween a pair of adjacent detectors in two adjacent blocks will be modeled in the same wayas scatter between adjacent pairs in the same block), the spatially variant sensitivity dueto block structure is included in P det:sens. As a result of the rotational symmetry, we needonly compute and store the blurring kernels for the projection rays for a single projectionangle, which saves both computational time and storage size; the computational cost ofperforming the sinogram blurring is only a few percent of that for computing the geometricprojection. The blurring factors were computed using the Monte Carlo code described in[Mumcuoglu et al, 1996b]. Statistical modeling of non-colinearity, crystal penetration andinter-crystal scatter in the LSO detectors was used to produce the blurring of the sinogramelement under consideration into the neighboring elements. Fig. 3 shows the blurring kernelsfor two di�erent LORs; note the signi�cant crystal penetration for o�-center detector pairsdue to the small crystal size.To illustrate the size saving from factoring out the detector blur as compared toincorporating it in the the geometric matrix, as is the case in [Johnson et al, 1995], wecounted the number of nonzero elements in PGeom and in PBlurPGeom. To make thecomparison fair, the resulting elements of PBlurPGeom were quantized to the same number



8of levels as we use in PGeom. Because of rotation symmetry, only the columns correspondingto the voxels in the plane y = 0 need to be counted. The number of nonzero elementscorresponding to voxels with the same radial o�set were averaged together in the z-directionand the result is shown in Fig. 4. This shows a savings factor of approximately three fromusing the factored matrix. Further relative savings would be realized if a full 3D blurringmodel were used. ray-1 0 ray+1 ray+2 ray+3 ray+4 ray+50 0 0 0 0 0.0016 00 0.0103 0.0028 0.0432 0.0056 0.0077 0.00190.0062 0.1169 0.1686 0.2459 0.0600 0.0140 0.00190.0063 0.0099 0.1711 0.0449 0.0604 0.0079 0.00180 0 0.0025 0 0.0052 0.0014 0.0022(a)ray-3 ray-2 ray-1 0 ray+1 ray+2 ray+30 0 0 0 0 0 00.0014 0.0092 0 0.0058 0 0.0081 0.00170 0.0055 0.0651 0.6778 0.0618 0.0060 00 0.0100 0.0658 0.0054 0.0630 0.0093 00.0018 0 0 0 0 0 0.0022(b)Figure 3. Sinogram blurring kernels for the sinogram components indicated by thebold characters corresponding to (a) the 20th and (b) the 50th out of 100 projectionrays. These kernels are shown for the sinogram stored in interleaved format.3. Image ReconstructionThe factored system model described above was used in a statistical image reconstructionframework. The standard Poisson likelihood function was used for the data and a Gibbsprior with a Huber potential used to model the 3D image. The image was reconstructed bymaximizing the log posterior density:x̂(Y ) = argmaxx L(Y jx)� ��(x) (4)= argmaxXi [�Ŷi + Yi log(Ŷi)]� �Xj Xk2Njk>j �jkV (xj � xk); (5)where Y are the measurements, � is the hyperparameter of the Gibbs prior, and Ŷ is thedata associated with image x, i.e. Ŷ = Px. We have not included scatter or randoms in this
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Figure 4. The average number of nonzero elements of di�erent columns in PGeom andPBlurPGeom corresponding to voxels at di�erent radial o�sets. The total numbers ofnonzero elements in the two matrices were calculated using a radially weighted sumof the two curves to give an average ratio of 3:1 between PBlurPGeom and PGeom.model. In small animals the total activity is small compared to that for human studies sothat scatter and randoms fractions are much lower in the microPET system and are currentlyignored in our work.The Huber potential function V (xj � xk) isV (xj � xk) = ( 12�h (xj � xk)2; if jxj � xkj � �hjxj � xkj � �h2 ; otherwise (6)where �h is a small constant. In the results presented below, �h was chosen to be very small,ie. 1% or less of the maximum reconstructed image intensity. The neighborhood Nj weused here is the second order (26-voxel) neighborhood with �jk equal to the reciprocal of thedistance between the two voxels.Using the factored matrix approach we gain substantial savings in storage andcomputational requirements. To fully realize this saving we must consider all dataand all pixels at each iteration. Therefore the preconditioned conjugate gradient(PCG) approach [Mumcuoglu et al, 1996a] and EM algorithms are more suitable for3D reconstruction, when using the factored matrix, than either coordinate-wisemethods [Bouman and Sauer, 1996, Fessler, 1994, Sauer and Bouman, 1993] or orderedsubset methods [Browne and De Pierro, 1996, Hudson and Larkin, 1994]. In the case ofcoordinate-wise ascent, one complete iteration through the image will require the re-application of the blurring kernels each time a di�erent pixel forward projects to a particularsinogram element; this results in substantial increases in computation cost. In the case



10of the ordered subset methods, e�ciency is lost because computation of the sinogramsubset associated with the current image estimate requires forward projection into sinogramelements neighboring the current subset. This is because the sinogram subsets are coupledthrough the blurring kernels. However, by approximating the blurring kernels as a 1D radial-only blurring function, we can use OSEM with the factored system model without loss incomputational e�ciency.In all of the results shown below we used 20 iterations of the PCG method since theimages were observed to change very slowly beyond this point. The procedure was initializedusing a constant image scaled so that the total counts resulting from forward projection of thisimage equaled the total observed counts. For comparative purposes, we have shown imagesreconstructed using the reprojection (3DRP) method of [Kinahan and Rogers, 1989]. Whileit may also be possible to improve the performance of the 3DRP method by pre-�ltering thedata to compensate for the detector response [Huesman et al, 1989] [Liang, 1994] or usinga Wiener �lter based approach [Shao et al, 1994][Fessler, 1994], these methods have not yetbeen widely studied in the 3D literature. In contrast, the standard 3DRP method used hereserves as something of a gold standard in fully 3D reconstruction .The computational cost of one iteration of the PCG algorithm is about 3 mins on a167MHz Ultrasparc processor. Therefore, a 24�128�128 voxel image requiring 20 iterationscan be reconstructed within 60 minutes and a 24�64�64 voxel image within 25 mins. Forcomparison, the 3DRP method we used takes 15 minutes to reconstruct a 15�128�128 voxelimage (although we note that this program has not been optimized to minimize computationtime).4. Experimental results4.1. Point Source MeasurementsOur factored systemmodel was tested using experimental measurements of a point source. A0.5 mm diameter, 0.5 mCi 22Na point source was scanned at di�erent positions in the �eld ofview. Each data set contained approximately 3,000 events per sinogram. We �rst comparedthe sinogram pro�le measured with that predicted using the factored system model. Theresults are shown in Fig. 5, with and without the inclusion of PBlur. The �gure shows thatby using the blurring kernels, the asymmetry and peak shift due to crystal penetration aresuccessfully followed. However, as we show below, errors in these blurring factors appear tobe at least partially responsible for artifacts in the pie phantom studies. We are currentlyimproving the Monte Carlo model of the detectors to correct this problem.The point source data were reconstructed to investigate the potential for resolutionrecovery using our factored system model. The Poisson likelihood with positivity constraintcan create arti�cially high resolution for a point source in zero background; resolution was
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Figure 5. Pro�les of the measured and calculated sinograms for the point source atdi�erent positions in the �eld of view.therefore measured instead using a quadratically penalized weighted least squares (PWLS)method [Fessler, 1994] without a positivity constraint. Pro�les were taken through the pointsource images and the resolution determined by measuring the FWHM. Fig. 6 shows plotsof the radial and tangential components of the transaxial resolution, and also the axialresolution, compared to results obtained using the 3D reprojection method with a ramp �lterwith a cut o� at the Nyquist frequency, i.e. half of the spatial sampling frequency for theinterleaved sinogram. These clearly show that improvements in resolution can be achievedby using the accurate system model when compared to reconstruction obtained using eithera simpli�ed systemmodel (no detector response modeling) or the 3DRP method with a ramp�lter. The most dramatic improvement in resolution from the use of the blurring kernelsoccurs in the radial direction where we see a resolution of approximately 1mm FWHM outto a 4cm radius. The axial resolution is not improved by the 2D blurring kernels because wedo not currently model axial blur. Some caution is necessary in interpreting these results.The FWHM resolution does not reect the behavior of the point spread functions (PSFs)below the half-maximum level and in fact in some locations we noted some lengthening ofthe tails of the PSF. Furthermore the estimators that we are using are non-linear in the dataso that resolution of point sources does not extrapolate directly to more distributed sources.These point studies illustrate the potential gain that can be realized by accuratelymodeling the data. However, this gain is only useful if it can be achieved without largelevels of noise ampli�cation. We therefore also studied the trade-o� between backgroundnoise levels and resolution using a point source in a uniform background. It is not possibleto collect data for the point source in a uniform background because the point source isencased in a plastic sphere. Instead, we collected data from a uniform cylinder and added



12to this a separately acquired point source data set. By positioning the point source and theuniform cylinder at the center of the �eld of view, the attenuation that would have occurredif the point source was actually inside the uniform cylinder would be constant along eachLOR passing through the point source. Consequently, the combined data set should bevirtually identical to that which would have been collected from a point source in a uniformbackground. We reconstructed images from the combined data set using the MAP methodwith di�erent values of the hyperparameter � and the 3DRP method with a ramp �lter withdi�erent cut-o� frequencies. Fig. 7 shows the resulting contrast recovery vs. backgroundvariance plots for the two methods. These plots show that at matched noise levels we canachieve superior contrast using the MAP method with the factored system model than whenusing 3DRP.
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(a) (b) (c)Figure 6. FWHM resolution of the point source image using 3DRP and PWLS, withand without modeling of the sinogram blur: (a) radial resolution, (b) tangentialresolution, (c) axial resolution.4.2. Hot and Cold Phantom StudiesSpecially constructed hot and cold pie phantoms were also scanned and reconstructed asshown in Fig. 8. These images show overall improvements in contrast in the MAP imagescompared to 3DRP and again we see little degradation in performance as the phantom ismoved towards the edge of the �eld of view when using the factored matrix model. Thereare some di�erences in the MAP results between the centered and o�-centered phantomsdue to the small voxels (0.4mm x 0.4mm) used for the centered phantom compared to thelarger voxel size (0.85mm x 0.85mm) for the o� centered phantom. The di�erent sizes wereused because the projection matrix for the small voxels becomes huge for the large �eld
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Figure 7. Contrast recovery for the point source vs. spatial variance of the cylinderfor di�erent smoothing parameters for the MAP and 3DRP methods.of view required for the o� centered phantom - note that the symmetries that are used toe�ciently store the matrix preclude computing and storing the projection matrix for a smallo�-centered source region. The dark area at the top of the centered cold spot phantom isdue to an accumulation of air bubbles.There is a noticeable ring artifact at the edge of the cold phantom. The amplitude of thisartifact is reduced when the MAP method is applied to simulated data, indicating that itis, in part, due to errors in the blurring kernels. However, the fact that the artifact remainswhen applied to simulated data and when using di�erent iterative reconstruction methods(OSEM, least squares and penalized weighted least squares) is an indication that artifactsalso arise from ill-conditioning in the accurate system model. The ill-conditioning givesrise to a Gibbs-like oscillation in the vicinity of sharp boundaries which are particularlyprominent for near circularly symmetric objects such as the cold spot phantom. Similare�ects have been reported elsewhere, e.g. [Snyder et al, 1987]. The artifact can be reducedor eliminated by increasing the degree of smoothing, but this will be at the expense of anoverall loss in resolution.4.3. Animal Studies18FDG data were collected from a 3 month old baby vervet monkey scanned using themicroPET scanner after injection of 2.2mCi of FDG. The total counts were about 1 millionper sinogram for a collection time of 40 mins. Fig. 9 shows the image reconstructed by the3D MAP method in comparison to the 3D reprojection method. The reconstructed �eld of



14 hot centered hot o�-centered cold centered cold o�-centered
Figure 8. Reconstructions of hot and cold resolution phantoms at the center andedge of the �eld of view with cylindrical regions of sizes 1.0, 1.25, 1.5, 2.0, 2.5 mmdiameter. Top row: MAP reconstructions; Bottom row: 3DRP reconstructions. Hotphantom: �32M total counts; cold phantom: �100M total counts. The phantomoccupied the entire axial �eld of view.view in these �gures is a circle of diameter 8cm with the maximum diameter of the brainapproximately 6cm. These images appear to con�rm the resolution enhancement observed inthe point source and pie phantom studies. The oblique stripes in the 3DRP reconstructionsare probably due to imperfect detector normalization caused by time varying sensitivities.However, these artifacts are not seen in MAP reconstruction indicating a potential robustnessof MAP to small errors in normalization factors.5. ConclusionsWe have described a fully 3D MAP reconstruction method for the high resolution microPETanimal scanner. We have shown that we can model and deconvolve the system responsewithin this framework to achieve uniform transaxial resolution of 1mm FWHM for objectsup to a 4cm diameter, and a resolution of about 1.2mm up to an 8cm diameter. These valuesreect the maximum achievable resolution; when using noisy data, some loss in resolutionis produced by increasing the hyperparameter � to control noise propagation. However,uniform cylinder plus point source studies show that the MAP method can achieve higherresolution than the 3D reprojection method at matched noise levels. These observations arealso con�rmed by the hot and cold spot phantom studies. The appearance of ring artifacts inthe cylindrical cold spot phantom indicates that the improvement in resolution is gained at
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(a) (b)Figure 9. Baby monkey brain images reconstructed using (a) the 3D MAP methodwith full system model (� = 2 � 106); (b) the 3D reprojection method with ramp�lter (cut-o� frequency =0.8 Nyquist frequency).the expense of increased ill-conditioning in the system which results in increased sensitivity tomodeling and numerical errors as well as noise. These artifacts can be reduced or supressedby increasing the hyerparameter � but at the expense of reduced resolution.Through optimization or storage and computational costs, reasonable reconstructiontimes can be achieved which should allow the routine use of this method in research studies.The methodology described here is also directly extendible to 3D human PET scanners.AcknowledgmentsThis work was supported by the National Cancer Institute under Grants No. RO1 CA579794and R01 CA69370.References[Bouman and Sauer, 1996] Bouman C and Sauer K, (1996). A uni�ed approach to statisticaltomography using coordinate descent optimization. IEEE Transactionson Image processing, 5(3):480{492.[Browne and De Pierro, 1996] Browne J and De Pierro AR, (1996). A row-action alternative to the EMalgorithm for maximizing likelihoods in emission tomography. IEEETransactions on Medical Imaging, 15:687{699.[Chen et al, 1991] Chen C, Lee S, and Cho Z, (1991). Parallelization of the EM algorithm for3D PET image reconstruction. IEEE Transactions on Medical Imaging,110:513{522.[Cherry et al, 1997] Cherry SR, Shao Y, Siegel S, Silverman RW, Meadors K, Young J,Jones WF, Newport D, Moyers C, Mumcuoglu E, Andreaco M,Paulus M, Binkley D, Nutt R, and Phelps ME, (1997). MicroPET:
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