
University of Massachusetts, Technical Report TR31-07 1

Modellus: Automated Modeling of Complex Data Center Applications

Peter Desnoyers, Timothy Wood, Prashant Shenoy,
Department of Computer Science

University of Massachusetts

Sangameshwar Patil and Harrick Vin
Tata Research Development and Design

Centre (TRDDC)

Abstract

The rising complexity of distributed server applications in
enterprise data centers has made the tasks of modeling and
analyzing their behavior increasingly difficult. This paper
presents Modellus, a novel system for automated modeling
of complex data center applications using statistical methods
from data mining and machine learning. Modellus can auto-
matically derive models to predict the resource usage of an
application and the workload it triggers; these models can be
composed to capture multiple dependencies between interact-
ing applications.

Model accuracy is maintained by fast, distributed testing,
automated relearning of models when they change, and meth-
ods to bound prediction errors in composite models. We have
implemented a prototype of Modellus, deployed it on a data
center testbed, and evaluated its efficacy for modeling and
analysis of several distributed server applications. Our re-
sults show that this feature-based modeling technique is able
to make predictions across several data center tiers, and main-
tain predictive accuracy (typically 95% or better) in the face
of significant shifts in workload composition; we also demon-
strate practical applications of the Modellus system to predic-
tion and provisioning of real-world applications.

1 Introduction

Distributed server applications have become commonplace in
today’s Internet and business environments. The data cen-
ters hosting these applications—large clusters of networked
servers and storage—have in turn become increasingly com-
plex. Some of this is due to complexity of the applica-
tions themselves, which may have multiple tiers and share
resources across applications. Another factor contributing to
data center complexity, however, is evolution and change as
hardware and software components are added or replaced, of-
ten resulting in unknown or unforeseen system interactions.

These systems, which must be managed to meet service
level agreements (SLAs) and to minimize operating and cap-
ital costs, have become too complex to be comprehended by
a single human. This paper proposes a new approach for con-
quering this complexity, using statistical methods from data
mining and machine learning. These methods create predic-
tive models which capture interactions within a system, al-
lowing the user to relate input (i.e. user) behavior to interac-
tions and resource usage. Data from existing sources (log

files, resource utilization) is collected and used for model
training, so that models can be created “on the fly” on a run-
ning system. From this training data we then infer models
which relate events or input at different tiers of a data center
application to resource usage at that tier, and to corresponding
requests sent to tiers further within the data center. By com-
posing these models, we are able to examine relationships
across multiple tiers of an application, and to isolate these re-
lationships from the effects of other applications which may
share the same components.

The nature of data center applications, however, makes
this analysis and modeling difficult. To create models of in-
puts and responses, we must classify them; yet they are typi-
cally unique to each application. Classifying inputs by hand
will not scale in practice, due to the huge number of unique
applications and their rate of change. Instead, if we are to
use modeling as a tool in data center management, we must
automatically learn not only system responses but input clas-
sifications themselves.

The benefits of an automated modeling method are sev-
eral. It relieves humans from the tedious task of tracking
and modeling complex application dependencies in large sys-
tems. The models created may be used for the higher-level
task of analyzing and optimizing data center behavior itself.
Finally, automated modeling can keep these models up-to-
date as the system changes, by periodic testing and repetition
of the learning process.

We have designed and implemented Modellus1, a system
that implements our automated modeling approach. Model-
lus incorporates novel techniques that “mine” the incoming
workload for features that best predict the observed resource
usage or workload at a downstream component. Specifi-
cally, model inference in Modellus is based on step-wise
regression—a technique used in statistical data mining—for
determining features that best correlate with empirical obser-
vations taken from monitoring of application request logs and
OS-level resource usage measurements. Derived models can
then be composed to capture dependencies between interact-
ing applications. Modellus also implements automated model
testing to verify that derived models remain valid, and triggers
relearning of a new model upon model failure.

We implement a host of optimizations to ensure that these
statistical methods are practical in large distributed systems.
A fast, distributed model testing algorithm performs frequent

1Latin. Root of ’model’

University of Massachusetts, Technical Report TR31-07 2

coarse-grain testing at local nodes, triggering full model test-
ing only when these tests fail. This improves scalability,
while reducing the latency of detecting model failures. Tech-
niques for estimating prediction errors are used to prevent ex-
cessive errors due to the composition of a large number of
models. Finally, Modellus implements back-off heuristics to
avoid scenarios where transient phase changes in the work-
load or inherently “noisy” workloads cause frequent model
failures, triggering wasteful relearning.

We have implemented a prototype of Modellus, consist-
ing of both a nucleus running at the monitored systems and
a control plane for model generation and testing. We con-
duct detailed experiments on a prototype data center running
a mix of realistic applications. Our results show that in many
cases we predict server utilization within 5% or less based on
measurements of the input to either that server or upstream
servers. In addition, we demonstrate the utility of our model-
ing techniques in predicting responses to future traffic loads
and patterns for use in capacity planning.

The remainder of this paper is structured as follows. We
present background and formulate the modeling problem in
Section 2, and describe our automated modeling approach in
Sections 3–5. Section 6 presents the Modellus implementa-
tion, while Sections 7 and 8 present our experimental results.
Finally, we survey related work in Section 9, and conclude in
Section 10.

2 Background and Problem Formulation

Consider a data center consisting of a large collection of
computers, running a variety of applications and accessed
remotely via the Internet or an enterprise network. The
data center will have resources for computation (i.e. the
servers themselves), storage, local communication (typically
a high-speed LAN), and remote communication with end-
users. Software and hardware components within the data
center will interact with each other to implement useful ser-
vices or applications.

As an example, a web-based student course registration
system might be implemented on a J2EE server, passing
requests to a legacy client-server backend and then to an
enterprise database. Some of these steps or tiers may be
shared between applications; for instance our example back-
end database is likely to be shared with other applications
(e.g. tuition billing) which need access to course registration
data. In addition, in many cases physical resources may be
shared between different components and applications, by ei-
ther direct co-location or through the use of virtual machines.

For our analysis we can characterize these applications at
various tiers in the data center by their requests and the re-
sponses to them.2 In addition, we are interested in both the
computational and I/O load incurred by an application when
it handles a request, as well as any additional requests it may
make to other-tier components in processing the request. (e.g.

2This restricts us to request/response applications, which encompasses
many but not all data center applications.

Server

requests

responses

Utilization

CPU Disk I/O
Workload

Model

User

(a) Workload-to-Utilization

requests

responses

Workload

Model

requests

responses

Workload

Server I Server J

User

(b) Workload-to-Workload

Figure 1: Application models

database queries issued while responding to a request for a
dynamic web page) We note that a single component may
receive inter-component requests from multiple sources, and
may generate requests to several components in turn. Thus
the example database server receives queries from multiple
applications, while a single application in turn may make re-
quests to multiple databases or other components.

In order to construct models of the operation of these data
center applications, we require data on the operations per-
formed as well as their impact. We obtain request or event
information from application logs, which typically provide
event timestamps, client identity, and information identifying
the specific request. Resource usage measurements are gath-
ered from the server OS, and primarily consist of CPU usage
and disk operations over some uniform sampling interval.

Problem Formulation: The automated modeling prob-
lem may formulated as so. In a system as described, given
the request and resource information provided, we wish to
automatically derive the following models:3

(1) A workload-to-utilization model, which models the re-
source usage of an application as a function of its incoming
workload. For instance, the CPU utilization and disk I/O op-
erations due to an application µcpu, µiop can be captured as a
function of its workload λ:

µcpu = fcpu(λ), µiop = fiop(λ)
(2) A workload-to-workload model, which models the out-

going workload of an application as a function of its incom-
ing workload. Since the outgoing workload of an application
becomes the incoming workload of one or more downstream
components, our model derives the workload at one compo-
nent as a function of another: λj = g(λi)

We also seek techniques to compose these basic models to
represent complex system systems. Such model composition
should capture transitive behavior, where pair-wise models
between applications i and j and j and k are composed to

3Workload-to-response time models are an area for further research.

University of Massachusetts, Technical Report TR31-07 3

model the relationship between i and k. Further, model com-
position should allow pair-wise dependence to be extended
to n-way dependence, where an application’s workload is de-
rived as a function of the workloads seen by all its n upstream
applications.

3 Data Center Modeling: Basics

In this section, we present the intuition behind our basic mod-
els, followed by a discussion on constructing composite mod-
els of complex data center applications.

3.1 Workload-to-utilization Model

Consider an application component that sees an incoming re-
quest rate of λ over some interval τ . We may model the CPU
utilization as a function of the aggregate arrival rate and mean
service time per request:

µ = λ · s (1)
where λ is the total arrival rate, s is the mean service time
per request, and µ is the CPU usage4 per unit time, or uti-
lization. By measuring arrival rates and CPU use over time,
we may estimate ŝ for the service time, allowing us to predict
utilization as arrival rate changes.

If each request takes the same amount of time and re-
sources, then the accuracy of this model will be unaffected
by changes in either the rate or request type of incoming traf-
fic. However, in practice this is often far from true. Requests
typically fall into classes with very different service times:
e.g. a web server might receive requests for small static files
and computationally-intensive scripts. Equation 1 can only
model the average service time across all request types, and
if the mix of types changes, it will produce errors.

Let us suppose, that the input stream consists of k distinct
classes of requests, where requests in each class have similar
service times—in the example above: static files and cgi-bin
scripts. Let λ1, λ2, . . . λk denote the observed rates for each
request class, and let s1, s2, . . . sk denote the corresponding
mean service time. Then the aggregate CPU utilization over
the interval τ is a linear sum of the usage due to each request
type:

µ = λ1 · s1 + λ2 · s2 + . . . + λk · sk + ε (2)
where ε is a error term assumed random and independent.

If the request classes are well-chosen, then we can sam-
ple the arrival rate of each class empirically, derive the above
linear model from these measurements, and use it to yield an
estimate µ̂ of the CPU utilization due to the incoming work-
load λ. Thus in our example above, λ1 and λ2 might represent
requests for small static files and scripts; s2 would be greater
than s1, representing the increased cost of script processing.
The value of this model is that it retains its accuracy when the
request mix changes. Thus if the overall arrival rate in our
example remained constant, but the proportion of script re-
quests increased, the model would account for the workload
change and predict an increase in CPU load.

4Or alternately, number of disk operations.

Web Server Database Server

request

W1

W2

query

S1

S2

p=1

p=1/2

p=1/3

Figure 2: Example 2-tier request flow

3.2 Workload-to-workload Model

We next consider two interacting components as shown in
Figure 1(b), where incoming requests at i trigger requests to
component j. For simplicity we assume that i is the source
of all requests to j; the extension to multiple upstream com-
ponents is straightforward. Let there be k request classes at
components i and m classes in the workload seen by j. Let
λI = {λi1, λi2, . . .} and λJ = {λj1, λj2, . . .} denote the
class-specific arrival rates at the two components.

To illustrate, suppose that i is a front-end web server and j
is a back-end database, and web requests at i may be grouped
in classes W1 and W2 Similarly, SQL queries at the database
are grouped in classes S1 and S2, as shown in Figure 2. Each
W1 web request triggers an S1 database query, followed by
an S2 query with probability 0.5. (e.g. the second query
may be issued when certain responses to the first query are
received) In addition, each web request in class W2 triggers
a type S2 query with probability 0.3.

We can thus completely describe the workload seen at the
database in terms of the web server workload:

λS1 = λW1; λS2 = 0.5λW1 + 0.3λW2 (3)

More generally, each request type at component j can be
represented as a weighted sum of request types at component
i, where the weights denote the number of requests of this
type triggered by each request class at component i:

λj1 = w11λi1 + w12λi2 + . . . + w1kλik + ε1

λj2 = w21λi1 + w22λi2 + . . . + w2kλik + ε2 (4)
λjm = wm1λi1 + wm2λi2 + . . . + wmkλik + εm

where εi denotes an error term. Thus, Equation 4 yields the
workload at system j, λJ = {λj1, λj2, . . .} as a function of
the workload at system i, λI = {λi1, λi2, . . .}.

3.3 Model Composition

The workload-to-utilization (W2U) model yields the uti-
lization due to an application j as a function of its work-
load: µj = f(λJ); the workload-to-workload (W2W) model
yields the workload at application j as a function of the work-
load at application i: λJ = g(λI). Substituting allows us
to determine the utilization at j directly as a function of the
workload at i: µj = f(g(λI)). Since f and g are both linear
equations, the composite function, obtained by substituting
Equation 4 into 2, is also a linear equation. This composition

University of Massachusetts, Technical Report TR31-07 4

i j

(a) Transitivity

i

j

h

(b) Splitting

i

j

h

(c) Joining

Figure 3: Composition of the basic models.

process is transitive: given cascaded components i, j, and
k, it can yield the workload and the utilization of the down-
stream application k as a function of the workload at i. In a
three-tier application, for instance, this lets us predict behav-
ior at the database back-end as a function of user requests at
the front-end web server.

Our discussion has implicitly assumed a linear chain topol-
ogy, where each application sees requests from only one up-
stream component, illustrated schematically in Figure 3(a).
This is a simplification; in a complex data center, applica-
tions may both receive requests from multiple upstream com-
ponents, and in turn issues requests to more than one down-
stream system. Thus an employee database may see requests
from multiple applications (e.g., payroll, directory), while
an online retail store may make requests to both a catalog
database and a payment processing system. We must there-
fore be able to model both: (i) “splitting” – triggering of re-
quests to multiple downstream applications, and (ii) “merg-
ing”, where one application receives request streams from
multiple others. (see Figure 3(b) and (c))

To model splits, consider an application i which makes
requests of downstream applications j and h. Given the in-
coming request stream at i, λI , we consider the subset of the
outgoing workload from i that is sent to j, namely λJ . We
can derive a model of the inputs at i that trigger this subset of
outgoing requests using Equation 4: λJ = g1(λI). Similarly
by considering only the subset of the outgoing requests that
are sent to h, we can derive a second model relating λH to
λI : λH = g2(λI).

For joins, consider an application j that receives requests
from upstream applications i and h. We first split the in-
coming request stream by source: λJ = {λJ |src = i} +
{λJ |src = h}. The workload contributions at j of i and h
are then related to the input workloads at the respective ap-
plications using Equation 4: {λJ |src = i} = f1(λI) and
{λJ |src = h} = f2(λH), and the total workload at j is de-
scribed in terms of inputs at i and h: λJ = f1(λI) + f2(λH).
Since f1 and f2 are linear equations, the composite function,
which is the summation of the two—f1 + f2—is also linear.

By modeling these three basic interactions—cascading,
splitting, and joining— we are able to compose single step
workload-to-workload and workload-to-utilization models to
model any arbitrary application graph. Such a composite
model allows workload or utilization at each node to be cal-

culated as a linear function of data from other points in the
system.

4 Automated Model Generation

We next present techniques for automatically learning mod-
els of the form described above. In particular, these models
require specification of the following parameters: (i) request
classes for each component, (ii) arrival rates in each class,
λi, (iii) mean service times si for each class i, and (iv) rates
wij at which type i requests trigger type j requests. In order
to apply the model we must measure λi, and estimate si and
wij .

If the set of classes and mapping from requests to classes
was given, then measurement of λi would be straightforward.
In general, however, request classes for a component are not
known a priori. Manual determination of classes is imprac-
tical, as it would require detailed knowledge of application
behavior, which may change with every modification or ex-
tension. Thus, our techniques must automatically determine
an appropriate classification of requests for each component,
as part of the model generation process.

Once the request classes have been determined, we esti-
mate the coefficients si and wij . Given measured arrival rates
λi in each class i and the utilization µ within a measurement
interval, Equations 2 and 4 yield a set of linear equations with
unknown coefficients si and wij . Measurements in subse-
quent intervals yield additional sets of such equations; these
equations can be solved using linear regression to yield the
unknown coefficients si and wij that minimize the error term
ε.

A key contribution of our automated model generation is
to combine determination of request classes with parameter
estimation, in a single step. We do this by mechanically enu-
merating possible request classes, and then using statistical
techniques to select the classes which are predictive of uti-
lization or downstream workload. In essence, the process
may be viewed as “mining” the observed request stream to
determine features (classes) that are the best predictors of the
resource usage and triggered workloads; we rely on step-wise
regression—a technique also used in data mining—for our
automated model generation.

In particular, for each request we first enumerate a set of
possible features, primarily drawn from the captured request

University of Massachusetts, Technical Report TR31-07 5

string itself. Each of these features implies a classification of
requests, into those which have this feature and those which
do not. By repeating this over all requests observed in an in-
terval, we obtain a list of candidate classes. We also measure
arrival rates within each candidate class, and resource usage
over time. Step-wise regression of feature rates against uti-
lization is then used to select only those features that are sig-
nificant predictors of utilization and to estimate their weights,
giving us the workload-to-utilization model.

Derivation of W2W models is an extension of this. First
we create a W2U model at application j, in order to determine
the significant workload features. Then we model the arrival
rate of these features, again by using stepwise regression. We
model each feature as a function of the input features at i;
when we are done we have a model which takes input features
at i and predicts a vector of features λ̂J at j.

4.1 Feature Selection

For this approach to be effective, classes with stable behav-
ior (mean resource requirements and request generation) must
exist. In addition, information in the request log must be suf-
ficient to determine this classification. We present an intuitive
argument for the existence of such classes and features, and
a description of the feature enumeration techniques used in
Modellus.

We first assert that this classification is possible, within
certain limits: in particular, that in most cases, system re-
sponses to identical requests are similar, across a broad range
of operating conditions. Consider, for example, two identical
requests to a web server for the same simple dynamic page—
regardless of other factors, identical requests will typically
trigger the same queries to the back-end database. In trigger-
ing these queries, the requests are likely to invoke the same
code paths and operations, resulting in (on average) similar
resource demands.5

Assuming these request classes, we need an automated
technique to derive them from application logs—to find re-
quests which perform similar or identical operations, on sim-
ilar or identical data, and group them into a class. The larger
and more general the groups produced by our classification,
the more useful they will be for actual model generation. At
the same time, we cannot blindly try all possible groupings,
as each unrelated classification tested adds a small increment
of noise to our estimates and predictions.

In the cases we are interested in, e.g. HTTP, SQL,
or XML-encoded requests, much or all of the information
needed to determine request similarity is encoded convention
or by syntax in the request itself. Thus we would expect the
query ’SELECT * from cust WHERE cust.id=105’ to behave sim-
ilarly to the same query with ’cust.id=210’, while an HTTP
request for a URL ending in ’images/map.gif’ is unlikely to

5Caching will violate this linearity assumption; however, we argue that
in this case behavior will fall into two domains—one dominated by caching,
and the other not—and that a linear approximation is appropriate within each
domain.

1: the entire URL:
/test/PHP/AboutMe.php?name=user5&pw=joe

2: each URL prefix plus extension:
/test/.php, /test/PHP/.php
/test/PHP/AboutMe.php

3: each URL suffix plus extension:
AboutMe.php, PHP/AboutMe.php

4: each query variable and argument:
/test/PHP/AboutMe.php?name=user5

/test/PHP/AboutMe.php?pw=joe

5: all query variables, without arguments:
/test/PHP/AboutMe.php?name=&pw=

Figure 4: HTTP feature enumeration algorithm.
1: database: TPCW

2: database and table(s): TPCW:item,author

3: query “skeleton”:
SELECT * FROM item,author WHERE item.i a id=

author.a id AND i id=?

4: the entire query:
SELECT * FROM item,author WHERE item.i a id=

author.a id AND i id=1217

5: query phrase:
WHERE item.i a id=author.a id AND i id=1217

6: query phrase skeleton:
WHERE item.i a id=author.a id AND i id=?

Figure 5: SQL Feature Enumeration

be similar to one ending in ’browse.php?category=5’.
Our enumeration strategy consists of extracting and listing

features from request strings, where each feature identifies a
potential candidate request class. Each enumeration strategy
is based on the formal or informal6 syntax of the request and
it enumerates the portions of the request which identify the
class of operation, the data being operated on, and the opera-
tion itself, which are later tested for significance. We note that
the feature enumeration algorithm must be manually specified
for each application type, but that there are a relatively small
number of such types, and once algorithm is specified it is
applicable to any application sharing that request syntax.

The Modellus feature enumeration algorithm for HTTP re-
quests is shown in Figure 4, with features generated from an
example URL. The aim of the algorithm is to identify request
elements which may identify common processing paths; thus
features include file extensions and URL prefixes, and query
skeletons (i.e. a query with arguments removed), each of
which may identify common processing paths. In Figure 5
we see the feature enumeration algorithm for SQL database
queries, which uses table names, database names, query
skeletons, and SQL phrases (which may be entire queries in
themselves) to generate a list of features. Feature enumera-
tion is performed on all requests present in an application’s
log file over a measurement window, one request at a time, to
generate a list of candidate features.

4.2 Stepwise Linear Regression

Once the enumeration algorithm generates a list of candidate
features, the next step is to use training data to learn a model
by choosing only those features whose coefficients si and wij

6E.g. HTTP, where hierarchy, suffixes, and query arguments are defined
by convention rather than standard.

University of Massachusetts, Technical Report TR31-07 6

1: Let Λmodel = {}, Λremaining = {λ1, λ1, . . .}, e = µ
2: while Λremaining 6= φ do
3: for λi in Λmodel do
4: e(λi)← error (Λmodel − λi)
5: end for
6: λi ← minie(λi)
7: if F-TEST(e(λi)) = not significant then
8: Λmodel ← Λmodel − λi

9: end if
10: for λi in Λremaining do
11: e(λi)← error (Λmodel + λi)
12: end for
13: λi ← minie(λi)
14: if F-TEST(e(λi)) = significant then
15: Λmodel ← Λmodel ∪ λi

16: else
17: return Λmodel

18: end if
19: end while

Figure 6: Stepwise Linear Regression Algorithm

minimize the error terms in Equations 2 and 4. In a theoretical
investigation, we might be able to compose benchmarks con-
sisting only of particular requests, and thus measure the exact
system response to these particular requests. In practical sys-
tems, however, we can only observe aggregate resource usage
given an input stream of requests which we do not control.
Consequently, the model coefficients si and wij must also be
determined as part of the model generation process.

One naı̈ve approach is to use all candidate classes enumer-
ated in the previous step, and to employ least squares regres-
sion on the inputs (here, arrival rates within each candidate
class) and outputs (utilization or downstream request rates)
to determine a set of coefficients that best fit the training data.
However, this will generate spurious features with no rela-
tionship to the behavior being modeled; if included in the
model they will degrade its accuracy, in a phenomena known
as over-fitting in the machine learning literature. In particu-
lar, some will be chosen due to random correlation with the
measured data, and will contribute noise to future predictions.

This results in a data mining problem: out of a large num-
ber of candidate classes and measurements of arrival rates
within each class, determining those which are predictive of
the output of interest, and discarding the remainder. In statis-
tics this is termed a variable selection problem [11], and may
be solved by various techniques which in effect determine
the odds of whether each input variable influences the output
or not. Of these methods we use Stepwise Linear Regres-
sion, [16] due in part to its scalability, along with a mod-
ern extension—the Foster and George’s risk inflation crite-
ria [12].

A simplified version of this algorithm is shown in Figure 6,
with input variables λi and output variable µ. We begin with
an empty model; as this predicts nothing, its error is exactly
µ. In the first step, the variable which explains the largest
fraction of µ is added to the model. At each successive step
the variable explaining the largest fraction of the remaining
error is chosen; in addition, a check is made to see if any
variables in the model have been made redundant by ones
added at a later step. The process completes when no remain-
ing variable explains a statistically significant fraction of the
response.

5 Accuracy, Efficiency and Stability

We have presented techniques for automatic inference of our
basic models and their composition. However, several prac-
tical issues arise when implementing these techniques into a
system:

• Workload changes: Although our goal is to derive mod-
els which are resilient to shifts in workload composition as
well as volume, some workload changes will cause model
accuracy to decrease — for instance, the workload may be-
come dominated by requests not seen in the training data.
When this occurs, prediction errors will persist until the
relevant models are re-trained.

• Effective model validation and re-training: In order to
quickly detect shifts in system behavior which may inval-
idate an existing model, without un-necessarily retraining
other models which remain accurate, it is desirable to pe-
riodically test each model for validity. The lower the over-
head of this testing, the more frequently it may be done and
thus the quicker the models may adjust to shifts in behav-
ior.

• Cascading errors: Models may be composed to make pre-
dictions across multiple tiers in a system; however, uncer-
tainty in the prediction increases in doing so. Methods are
needed to estimate this uncertainty, so as to avoid making
unreliable predictions.

• Stability: Some systems will be difficult to predict with sig-
nificant accuracy. Rather than spending resources repeat-
edly deriving models of limited utility, we should detect
these systems and limit the resources expended on them.

In the following section we discuss these issues and the mech-
anisms in Modellus which address them.

5.1 Model Validation and Adaptation

A trained model makes predictions by extrapolating from its
training data, and the accuracy of these predictions will de-
grade in the face of behavior not found in the training data.
Another source of errors can occur if the system response
changes from that recorded during the training window; for
instance, a server might become slower or faster due to fail-
ures or upgrades.

In order to maintain model accuracy, we must retrain mod-
els when this degradation occurs. Rather than always re-
learning models, we instead test predictions against actual
measured data; if accuracy declines below a threshold, then
new data is used to re-learn the model.

In particular, we sample arrival rates in each class (λ̂i) and
measure resource utilization µ̂. Given the model coefficients
si and wij , we substitute λ̂i and µ̂ into Equations 2 and 4,
yielding the prediction error ε. If this exceeds a threshold
εT in k out of n consecutive tests, the model is flagged for
re-learning.

A simple approach is to test all models at a central node;
data from each system is collected over a testing window and

University of Massachusetts, Technical Report TR31-07 7

verified. Such continuous testing of tens or hundreds of mod-
els could be computationally expensive. We instead propose
a fast, distributing model testing algorithm based on the ob-
servation that although model derivation is expensive in both
computation and memory, model checking is cheap. Hence
model validation can be distributed to the systems being mon-
itored themselves, allowing nearly continuous checking.

In this approach, the model—the request classes and
coefficients—is provided to each server or node and can be
tested locally. To test workload-to-usage models, a node sam-
ples arrival rates and usages over a short window, and com-
pares the usage predictions against observations. Workload-
to-workload models are tested similarly, except that commu-
nication with the downstream node is required to obtain ob-
served data. If the local tests fail in k out of n consecutive
instances, then a full test is triggered at the central node; full
testing involves a larger test window and computation of con-
fidence intervals of the prediction error. Distributed testing
over short windows is fast and imposes minimal overheads
on server applications; due to this low overhead, tests can be
frequent to detect failures quickly.

5.2 Limiting Cascading Errors

In the absence of errors, we could monitor only the external
inputs to a system, and then predict all internal behavior from
models. In practice, models have uncertainties and errors,
which grow as multiple models are composed.

Since our models are linear, errors also grow linearly with
model composition. This may be seen by substituting Equa-
tion 4 into Equation 2, yielding a composite model with error
term

∑
si · εi + ε, a linear combination of individual errors.

Similarly, a “join” again yields an error term summing indi-
vidual errors.

Given this linear error growth, there is a limit on the num-
ber of models that may be composed before the total error
exceeds any particular threshold. Hence, we can no longer
predict all internal workloads and resource usages solely by
measuring external inputs. In order to scale our techniques to
arbitrary system sizes, we must to measure additional inputs
inside the system, and use these measurement to drive further
downstream predictions.

To illustrate how this may be done, consider a linear cas-
cade of dependencies, and suppose εmax is the maximum tol-
erable prediction error. The first node in this chain sees an ex-
ternal workload that is known and measured; we can compute
the expected prediction error at successive nodes in the chain
until the error exceeds εmax. Since further predictions will
exceed this threshold, a new measurement point must inserted
here to measure, rather than predict, its workload; these mea-
surements drive predictions at subsequent downstream nodes.

This process may be repeated for the remaining nodes in
the chain, yielding a set of measurement points which are suf-
ficient to predict responses at all other nodes in the chain.
This technique easily extends to an arbitrary graph; we be-
gin by measuring all external inputs and traverse the graph in

Monitoring &
Scheduling Engine

Server

application OS

plugin

testing

pluginNucleus

reporting

Control Plane

(MSE)

MVE MVE MVE. . .

Model generation
&

validation tasks

Figure 7: Modellus components

a breadth-first manner, computing the expected error at each
node. A measurement point is inserted if a node’s error ex-
ceeds εmax, and these measurements are then used to drive
downstream predictions.

5.3 Stability Considerations

Under certain conditions, however, it will not be possible to
derive a useful model for predicting future behavior. If the
system behavior is dominated by truly random factors, for in-
stance, model-based predictions will be inaccurate. A similar
effect will be seen in cases where there is insufficient infor-
mation available. Even if the system response is determin-
istically related to some attribute of the input, as described
below, the log data may not provide that that attribute. In this
case, models learned from random data will result in random
predictions.

In order to avoid spending a large fraction of system re-
sources on the creation of useless models, Modellus incor-
porates backoff heuristics to detect applications which fail
model validation more than k times within a period T . (e.g.
2 times within the last hour) These “mis-behaving” applica-
tions are not modeled, and are only occasionally examined to
see whether their behavior has changed and modeling should
be attempted again.

6 Modellus Design

Our Modellus system implements the statistical and learn-
ing methods described in the previous sections. Figure 7
depicts the Modellus architecture. As shown, Modellus im-
plements a nucleus on each node to monitor the workload
and resource usage, and to perform distributed testing. The
Modellus control plane resides on one or more dedicated
nodes and comprises (i) a Monitoring and Scheduling En-
gine (MSE) which coordinates the gathering of monitoring
data and scheduling of model generation and validation tasks
when needed, and (ii) one or more Modeling and Validation
Engines (MVE) which implements the core numerical compu-
tations for model derivation and testing. The Modellus con-
trol plane exposes a front-end allowing derived models to be

University of Massachusetts, Technical Report TR31-07 8

applied to data center analysis tasks; the current front-end ex-
ports models and sampled statistics to a Matlab engine for
interactive analysis.

The Modellus nucleus and control plane are implemented
in a combination of C++, Python, and Numerical Python [3],
providing an efficient yet dynamically extensible system. The
remainder of this section discusses our implementation of
these components in detail.

6.1 Modellus Nucleus

The nucleus is deployed on each target system, and is respon-
sible for both data collection and simple processing tasks. It
monitors resource usage, tracks application events, and trans-
lates events into rates. The nucleus reports these usages and
rates to the control plane, and can also test a control plane-
provided model against this data. A simple HTTP-based
interface is provided to the control plane, with commands
falling into the following groups: (i) monitoring configura-
tion, (ii) data retrieval, and (iii) local model validation.

Monitoring: The nucleus performs adaptive monitor-
ing under the direction of the control plane—it is instructed
which variables to sample and at what rate. It implements
a uniform naming model for data sources, and an extensible
plugin architecture allowing support for new applications to
be easily implemented.

Resource usage is monitored via standard OS interfaces,
and collected as counts or utilizations over fixed measure-
ment intervals. Event monitoring is performed by plugins
which process event streams (i.e. logs) received from applica-
tions. These plugins process logs in real time and generate a
stream of request arrivals; class-specific arrival rates are then
measured by mapping each event using application-specific
feature enumeration rules and model-specified classes.

The Modellus nucleus is designed to be deployed on pro-
duction servers, and thus must require minimal resources.
By representing feature strings by hash values, we are able
to implement feature enumeration and rate monitoring with
minimal overhead, as shown experimentally in Section 7.5.
We have implemented plugins for HTTP and SQL, with par-
ticular adaptations for Apache, MySQL, Tomcat, and XML-
based web services.

Data retrieval: A monitoring agent such as the Model-
lus nucleus may either report data asynchronously (push), or
buffer it for the receiver to retrieve (pull). In Modellus data
is buffered for retrieval, with appropriate limits on buffer size
if data is not retrieved in a timely fashion. Data is serialized
using Python’s pickle framework, and then compressed to re-
duce demand on both bandwidth and buffering at the moni-
tored system.

Validation and reporting: The nucleus receives model
validation requests from the control plane, specifying in-
put classes, model coefficients, output parameter, and error
thresholds. It periodically measures inputs, predicts outputs,
and calculates the error; if out of bounds k out of n times, the
control plane is notified. Testing of workload-to-workload

waiting ready trained

revalid-
ating

unstable

prerequisites
ready

collecting done /
compute model

done /
recompute model

model validation
fails

timeout

too many failures

(collect data)

(collect data)

(validate model)

Figure 8: Model training states

models is similar, except that data from two systems (up-
stream and downstream) is required; the systems share this
information without control plane involvement.

6.2 Monitoring and Scheduling Engine

The main goal of the Modellus control plane is to to generate
up-to-date models and maintain confidence in them by test-
ing. Towards this end, the monitoring and scheduling engine
(MSE) is responsible for (i) initiating data collection from
the nuclei for model testing or generation, and (ii) schedul-
ing testing or model re-generation tasks on the modeling and
validation engines (MVEs).

The monitoring engine issues data collection requests to
remote nuclei, requesting sampled rates for each request class
when testing models, and the entire event stream for model
generation. For workload-to-workload models, multiple nu-
clei are involved in order to gather upstream and downstream
information. Once data collection is initiated, the monitor-
ing engine periodically polls for monitored data, and disables
data collection when a full training or testing window has
been received.

The control plane has access to a list of workload-to-
utilization and workload-to-workload models to be inferred
and maintained; this list may be provided by configuration or
discovery. These models pass through a number of states,
which may be seen in Figure 8: waiting for prerequisites,
ready to train, trained, re-validating, and unstable. Each
W2W model begins in the waiting state, with the downstream
W2U model as a prerequisite, as the feature list from this
W2U model is needed to infer the W2W model. Each W2U
model begins directly in the ready state. The scheduler selects
models from the ready pool and schedules training data col-
lection; when this is complete, the model parameters may be
calculated. Once parameters have been calculated, the model
enters the trained state; if the model is a prerequisite for an-
other, the waiting model is notified and enters the ready state.

Model validation as described above is performed in the
trained state, and if at any point the model fails, it enters
revalidating state, and training data collection begins. Too
many validation failures within an interval cause a model to
enter the unstable state, and training ceases, while from time
to time the scheduler selects a model in the unstable state and
attempts to model it again. Finally, the scheduler is respon-
sible for distributing computation load within the MVE, by

University of Massachusetts, Technical Report TR31-07 9

assigning computation tasks to appropriate systems.

6.3 Modeling and Validation Engine

The modeling and validation engine (MVE) is responsible for
the numeric computations at the core of the Modellus sys-
tem. Since this task is computationally demanding, a ded-
icated system or cluster is used, avoiding overhead on the
data center servers themselves. By implementing the MVE
on multiple systems and testing and/or generating multiple
models in parallel, Modellus will scale to large data centers,
which may experience multiple concurrent model failures or
high testing load.

The following functions are implemented in the MVE:
Model generation: W2U models are derived directly;

W2W models are derived using request classes computed for
the downstream node’s W2U model. In each case step-wise
regression is used to derive coefficients relating input vari-
ables (feature rates) to output resource utilization (W2U mod-
els) or feature rates (W2W models).

Model validation: Full testing of the model at the con-
trol plane is similar but more sophisticated than the fast test-
ing implemented at the nucleus. To test an W2U model, the
sampled arrival rates within each class and measured utiliza-
tion are substituted into Equation 2 to compute the predic-
tion error. Given a series of prediction errors over successive
measurement intervals in a test window, we compute the 95%
one-sided confidence interval for the mean error. If the con-
fidence bound exceeds the tolerance threshold, the model is
discarded.

The procedure for testing an W2W model is similar. The
output feature rates are estimated and compared with mea-
sured rates to determine prediction error and a confidence
bound; if the bound exceeds a threshold, again the model
is invalidated. Since absolute values of the different output
rates in a W2W model may vary widely, we normalize the
error values before performing this test, by using the down-
stream model coefficients as weights, allowing us to calculate
a scaled error magnitude.

7 Experimental Results

In this section we present experiments examining various per-
formance aspects of the proposed methods and system. To
test feature-based regression modeling, we perform modeling
and prediction on multiple test scenarios, and compare mea-
sured results with predictions to determine accuracy. Addi-
tional experiments examine errors under shifting load condi-
tions and for multiple stages of prediction. Finally, we present
measurements and benchmarks of the system implementa-
tion, in order to determine the overhead which may be placed
on monitoring systems and the scaling limits of the rest of the
system.

CPU 1 x Pentium 4, 2.4 GHz, 512KB cache
Disk ATA 100, 2MB cache, 7200 RPM

Memory 1, 1.2, or 2GB
OS CentOS 4.4 (Linux kernel 2.6.9-42)

Servers Apache 2.0.52
MySQL 5.1.11 (cluster), 4.1.20 (single)
Tomcat 5.0.30, Sun Java 1.5.0

Applications RUBiS, TPC-W, OFBiz

Table 1: Data Center Testbed and Applications

Apache

Tomcat

MySQL

Tomcat

MySQL

 0% 5% 10% 15% 20% 25% 30%

T
P

C
-W

 O

F
B

iz

Error - Percent CPU Utilization

90
th

 percentile error
RMS Error

Data std. dev.

Figure 9: Workload-to-Utilization prediction errors

7.1 Experimental Setup

The purpose of the Modellus system is to model and predict
performance of real-world applications, and it was thus tested
on results from a realistic data center testbed and applica-
tions. A brief synopsis of the hardware and software spec-
ifications of this testbed is given in Table 1 Three web appli-
cations were implemented: TPC-W [20, 5], an e-commerce
benchmark, RUBiS [6], a simulated auction site, and Apache
Open For Business (OFBiz) [17], an ERP (Enterprise Re-
source Planning) system in commercial use. TPC-W and OF-
Biz are implemented as 3-tier Java servlet-based applications,
consisting of a front-end server (Apache) handling static con-
tent, a servlet container (Tomcat), and a back-end database
(MySQL). RUBiS (as tested) is a 2-tier LAMP7 application;
application logic written in PHP runs in an Apache front-end
server, while data is stored in a MySQL database.

Both RUBiS and TPC-W have associated workload gen-
erators which simulate varying numbers of clients; the num-
ber of clients as well as their activity mix and think times
were varied over time to generate non-stationary workloads.
A load generator for OFBiz was created using JWebUnit [14],
which simulated multiple users performing shopping tasks
from browsing through checkout and payment information
entry.

Apache, Tomcat, and MySQL were configured to gener-
ate request logs, and system resource usage was sampled us-
ing the sadc(8) utility with a 1-second collection interval.
Traces were collected and prediction was performed off-line,
in order to allow re-use of the same data for validation. Cross-
validation was used to measure prediction error: each trace
was divided into training windows of a particular length (e.g.
30 minutes), and a model was constructed for each window.
Each model was then used to predict all data points outside

7Linux/Apache/MySQL/PHP

University of Massachusetts, Technical Report TR31-07 10

 0%

 20%

 40%

 60%

 80%

 100%

 0 5 10 15 20

C
u
m

u
la

ti
v
e

P
er

ce
n
t

Absolute Error (in percent CPU)

HTTP feature-based
HTTP rate only

Figure 10: Error CDF : OFBiz

of the window on which it was trained; deviations between
predicted and actual values were then measured.

7.2 Model Generation Accuracy

To test W2U model accuracy, we tested OFBiz, TPC-W, and
RUBiS configurations both alone and concurrently sharing
the backend database. Using traces from these tests we com-
pute models over 30-minute training windows, and then use
these models to predict utilization µ̂ for 30-second intervals,
using cross-validation as described above. We report the root
mean square (RMS) error of prediction, and the 90th per-
centile absolute error (|µ− µ̂|). For comparison we also show
the standard deviation of the measured data itself, σ(y).

In Figure 9 we see results from these tests. Both RMS
and 90th percentile prediction error are shown for each server
except the OFBiz Apache front end, which was too lightly
loaded (< 3%) for accurate prediction. In addition we plot
the standard deviation of the variable being predicted (CPU
utilization), in order to indicate the degree of error reduction
provided by the model. In each case we are able to predict
CPU utilization to a high degree of accuracy—less than 5%
except for the TPC-W Tomcat server, and in all cases a sig-
nificant reduction relative to the variance of the data being
predicted.

We examine the distribution of prediction errors more
closely in Figures 10 and 11, using the OFBiz application.
For each data point predicted by each model we calculate the
prediction error (|ŷ− y|), and display a cumulative histogram
or CDF of these errors. From these graphs we see that about
90% of the Apache data points are predicted within 2.5%, and
90% of the MySQL data points within 5%.

In addition, in this figure we compare the performance of
modeling and predicting based on workload features vs. pre-
dictions made from the aggregate request rate alone. Here
we see that CPU on the OFBiz Tomcat server was pre-
dicted about twice as accurately using feature-based predic-
tion, while the difference between naı̈ve and feature-based
prediction on the MySQL server was even greater.

 0%

 20%

 40%

 60%

 80%

 100%

 0 5 10 15 20

C
u
m

u
la

ti
v
e

P
er

ce
n
t

Absolute Error (in percent CPU)

SQL feature-based
SQL rate-based

Figure 11: Error CDF: MySQL

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

R
M

S
 p

re
d
ic

ti
o
n
 e

rr
o
r

(p
er

ce
n
t

C
P

U
)

Training Window (minutes)

HTTP -> DB CPU
HTTP -> SQL -> DB CPU
SQL
HTTP

Figure 12: Composed vs. and direct prediction: learning
curves for error of MySQL CPU from RUBiS HTTP

7.3 Model Composition

The results presented above examine performance of sin-
gle workload-to-utilization (W2U) models. We next ex-
amine prediction performance when composing workload-
to-workload (W2W) and W2U models. We show results
from the multi-tier experiments described above, but focus
on cross-tier modeling and prediction.

As described earlier, the composition of two models is
done in two steps. First, we train a W2U model for the down-
stream system (e.g. the database server) and its inputs. Next,
we take the list of significant features identified in this model,
and for each feature we train a separate upstream model to
predict it. For prediction, the W2W model is used to predict
input features to the W2U model, yielding the final result.
Prediction when multiple systems share a single back-end re-
source is similar, except that the outputs of the two W2W
models must be summed before input to the W2U model.

In Figure 12 we compare learning curves for W2U mod-
els of the RUBiS-only experiment with the composed model
for the RUBiS and MySQL servers, given HTTP input fea-
tures; we note that the learning time necessary is comparable.
In addition we validate our model composition approach by
comparing its results to those of a model trained on HTTP in-
puts to the RUBiS server vs. CPU utilization on the MySQL
server.

University of Massachusetts, Technical Report TR31-07 11

i j h k

k

j

h

i +

i

j

h

k

Prediction target
I J H K

I 0.47% 4.28% 3.45% 4.12%
J 0.82% 0.97% 1.21%
H 0.50% 0.70%
K 0.64%

Prediction target
I J H K

I 0.35% 0.47% 0.43% 0.57%
J 0.47% 0.43% 0.57%
H 0.39%
K 0.53%

Prediction target
I H J K

I 0.55%
H 0.48%

I+H (*n/a) 0.59%
J 0.59%
K 0.82%

Figure 13: Cascade errors. Entry
(x,y) gives RMS error predicting at y
given inputs to x.

Figure 14: Split errors - composition
with multiple downstream servers.

Figure 15: Join error: composition
by summing multiple upstream mod-
els.

CPU/event Equiv. overhead Output data
HTTP (TPC-W) 16.5µs 2.7% 9.00 bytes/s

HTTP (World Cup) 11.8µs n/a 9.05 bytes/s
SQL 23.8µs 2.6%

Table 2: Overhead for Modellus log processing on trace
workloads.

7.4 Cascading Errors

We measured prediction performance of an emulated web ser-
vices application in order to investigate the relationship be-
tween model composition and errors. Three separate topolo-
gies were measured, corresponding to the model operations
in Figure 3—cascade, split, and join— and prediction errors
were measured between each pair of upstream and down-
stream nodes. In Figure 13 we see results for the cas-
cade topology, giving prediction errors for model composi-
tion across multiple tiers; errors grow modestly, reaching at
most about 4%.

In Figure 14 we see results for the split topology, and the
join case in Figure 15. In each case prediction errors are
negligible. Note that in the join case, downstream predic-
tions must be made using both of the upstream sources. This
does not appear to affect accuracy; although the final predic-
tion contains errors from two upstream models, they are each
weighted proportionally. We note that results are currently
missing in the join scenario for estimating utilization of the
second tier node, j, given the two first tier traffic streams.

7.5 System Overheads

We have benchmarked both the Modellus nucleus and the
computationally intensive portions of the control plane. The
nucleus was benchmarked on the testbed machines to de-
termine both CPU utilization and volume of data produced.
HTTP and SQL processing overheads were measured on log
data from the TPC-W benchmark; in addition, HTTP mea-
surements were performed for logfiles from the 1998 World
Cup web site [2].

Based on the request rate in the trace logs and the CPU
utilization while they were being generated, we report the
estimated overhead due to Modellus event processing if the
server were running at 100% CPU utilization. Figures in-

W2U model features considered
Training window 500 1000 2000

short (8 min) 0.06s 0.12 0.24
medium (15 min) 0.10 0.20 0.42

long (30 min) 0.16 0.33 0.72

Table 3: Training times for Workload-to-Utilization models.
W2W model features considered

Training window 500 1000 2000
short (8 min) 0.4s 0.3 0.3

medium (15 min) 0.8 0.7 0.8
long (30 min) 1.1 1.0 1.1

Table 4: Training times for Workload-to-Workload models.

clude overhead for compressing the data; in addition, we re-
port the rate at which compressed data is generated, as it must
be buffered and then transmitted over the network. Results
may be seen in Table 2.

We measure the computationally intensive tasks of the
Modeling and Validation Engine, to determine the scalability
of the system. Tests were run using two systems: a 2.8GHz
Pentium 4 with 512K cache, and a 2.3GHz Xeon 5140 with
4M cache. Results are reported below for only the Xeon sys-
tem, which was approximately 3 times faster on this task than
the Pentium 4. Each test measured the time to train a model;
the length of the training window and the number of features
considered was varied, and multiple replications across dif-
ferent data sets were performed for each combination.

Results for training W2U models are seen in Table 3. For
30 minute training windows and 1000 features considered, a
single CPU core was able to compute 3 models per second.
Assuming that at most we would want to recompute models
every 15 minutes—i.e. overlapping half of the previous train-
ing window— a single CPU would handle model computa-
tion for over 2500 monitored systems. W2W model training
is computationally more complex; results for the same range
of model sizes are shown in Table 4. These measurements
showed a very high data-dependent variation in computation
time, as complexity of computing the first-tier model is di-
rectly affected by the number of significant features identified
at the second tier. We see that computation time was primar-
ily determined by the training window length. For 30 minute
windows our system took about a second per model computa-
tion; calculating as above, it could handle training data from

University of Massachusetts, Technical Report TR31-07 12

 0%

 2%

 4%

 6%

 8%

 10%

 0 0.5 1 1.5 2

E
rr

o
r

(%
 u

ti
li

za
ti

o
n
)

Relative service time variability

Figure 16: Prediction error vs. scaled data variability

nearly 1000 monitored systems.
Unlike model generation, model testing is computation-

ally simple. Validation of a W2U model across a window of
30 minutes of data, for example, required between 3 and 6
milliseconds on the system used above.

7.6 Limitations of our Approach

Our approach to modeling system performance based on in-
put features has a number of limitations, which we explore
in this section. As with any statistical process, the larger the
random component of a given amount of measured data, the
higher the resulting error will be. In Modellus, such errors
may be due to almost purely random factors (e.g. scheduling
and queuing delays) or to “hidden variables” - factors which
may deterministically affect system response, but which we
are unable to measure. In this section we demonstrate the
effects of such errors using by modification of testbed traces.

Simulated CPU traces were created from actual TPC-W
data traces, by assigning weights to each of the TPC-W
operations and then adding a lognormal-distributed random
component to each processing time. Workload-to-utilization
models were then trained on the original input stream and the
resulting utilization data, and prediction results are reported.
These may be seen in Figure 16, where prediction error for
a fixed training window size may be seen to grow roughly
linearly with the variability of the data. From this we see
that increases in variability will result in either longer training
windows, lower accuracy, or some combination of the two.

8 Data Center Analysis

In this section we apply the Modellus methodology to actual
and simulated real-world scenarios.

8.1 Online Retail Scenario

First we demonstrate the utility of our models for “what-if”
analysis of data center performance.

Consider an online retailer who is preparing for the busy
annual holiday shopping season. We assume that the retail
application is represented by TPC-W, which is a full-fledged
implementation of an 3-tier online store and a workload gen-
erator that has three traffic mixes: browsing, shopping and
ordering, each differing in the relative fractions of requests

Application Mix Web reqs/sec Predicted Measured Error
Apache Browsing 90 32.00% 20.00% +12.00%

Browsing 114 40.53% 31.40% +9.13%
Ordering 90 43.00% 41.00% +2.00%

Tomcat Browsing 90 37.00% 32.00% +5.00%
Browsing 114 46.87% 45.00% +1.87%
Ordering 90 56.00% 51.00% +5.00%

MySQL Browsing 90 25.00% 17.30% +7.70%
Browsing 114 31.67% 26.00% +5.67%
Ordering 90 66.00% 69.00% -3.00%

Table 5: Case study: Predicted impact of workload changes

related to browsing and buying activities. We assume that
the shopping mix represents the typical workload seen by the
application. Suppose that the retailer wishes to analyze the
impact of changes in the workload mix and request volume in
order to plan to future capacity increases. For instance, during
the holiday season it is expected that the rate of buying will
increase and so will the overall traffic volume. We employ
Modellus to learn models based on the typical shopping mix
and use it to predict system performance for various what-
if scenarios where the workload mix as well as the volume
change.

We simulate this scenario on our data center testbed, as
described in Section 7.1. Model training was performed over
a 2 hour interval with varying TPC-W and RUBiS load, us-
ing the TPC-W “shopping” mixture. We then used this model
to express utilization of each system in terms of the different
TPC-W requests, allowing us to derive utilization as a func-
tion of requests per second for each of the TPC-W transaction
mixes. The system was then measured with several work-
loads consisting of either TPC-W “browsing” or “ordering”
mixtures.

Predictions are shown in Table 5 for the three traffic mixes,
on the three servers in the system: Apache, which only
forwards traffic; Tomcat, which implements the logic, and
MySQL. Measurements are shown as well for two test runs
with the browsing mixture and one with ordering. Measured
results correspond fairly accurately to predictions, capturing
both the significant increase in database utilization with in-
creased buying traffic as well as the relative independence of
the front-end Apache server to request mix.

8.2 Financial Application Analysis

The second case study examines the utility of our methods
on a large stock trading application at a real financial firm,
using traces of stock trading transactions executed at a fi-
nancial exchange. Resource usage logs were captured over
two 72-hour periods in early May, 2006; in the 2-day period
between these intervals a hardware upgrade was performed.
We learn a model of the application before the upgrade and
demonstrate its utility to predict application performance on
the new upgraded server. Event logs were captured during
two shorter intervals, of 240,000 pre-upgrade and 100,000
post-upgrade events. In contrast to the other measurements
in this paper, only a limited amount of information is avail-

University of Massachusetts, Technical Report TR31-07 13

cpu preads reads (·1000)
Pre- Naive 38.95 6748 1151
upgrade Feature-based 47.46 10654 1794

Measured 47.20 8733 1448
Post- Naive 17.472 4086 1170
upgrade Feature-based 24.338 4819 1471

Measured 31.03 6856 2061
From pre-upgrade 71.18 4392 1369

Table 6: Trading system traces - feature-based and naı̈ve
rate-based estimation vs. measured values

able in these traces. CPU utilization and disk traffic were av-
eraged over 60s intervals, and, for privacy reasons, the trans-
action log contained only a database table name and status
(success/failure) for each event.

In Table 6 we see predicted values for three variables—
CPU utilization, physical reads, and logical reads—compared
to measured values. Pre-upgrade and post-upgrade estimates
are in all cases closer to the true values than estimates using
the naı̈ve rate-based model, and in some cases are quite ac-
curate despite the paucity of data. In addition, in the final
line we use the pre-upgrade model to predict post-upgrade
performance from its input request stream. We see that I/O
is predicted within about 30% across the upgrade Predicted
CPU utilization, however, has not been adjusted for the in-
creased speed of the upgraded CPU. Hypothetically, if the
new CPU was twice as fast, the predicted value would be ac-
curate within about 15%.

9 Related Work

Application modeling: Server application models can be
classified as either black-box or white-box models. Black-
box models describe externally visible performance charac-
teristics of a system, with minimal assumptions about the in-
ternal operations; white-box models, in contrast, are based on
knowledge of these internals. Black-box models are used in
a number of approaches to data center control via feedback
mechanisms. MUSE [7] uses a market bidding mechanism to
optimize utility, while Model-Driven Resource Provisioning
(MDRP) [10] uses dynamic resource allocation to optimize
SLA satisfaction. Several control theory-based systems use
admission control, instead, reducing the input to fit the re-
sources available [15, 18].

While black-box models concern themselves only with
the inputs (requests) and outputs (measured response and re-
source usage), white-box models are based on causal links be-
tween actions. Magpie [4] and Project5 [1] use temporal cor-
relation on OS and packet traces, respectively, to find event
relationships. In a variant of these methods, Jiang et al. [13]
use an alternate approach; viewing events of a certain type as
a flow, sampled over time, they find invariant ratios between
event flow rates, which are typically indicative of causal links.

Queuing models: Given knowledge of a system’s internal
structure, a queuing model may be created, which can then
be calibrated against measured data, and then used for anal-
ysis and prediction. Stewart [21] uses this approach to ana-

lyze multi-component web applications with a simple queu-
ing model. Urgaonkar [22] uses more sophisticated product-
form queuing network models to predict application perfor-
mance for dynamic provisioning and capacity planning.

Learning-based approaches: Other systems are predic-
tive: NIMO [19] uses statistical learning with active sam-
pling to model resource usage and predict completion time for
varying resource assignments. NIMO focuses on the comple-
tion time of long-running applications, and does not address
model composition such as done by Modellus.

The work of Zhang et al. [23] is closely related to ours;
they use regression to derive service times for queuing mod-
els of web applications, but require manual classification of
events and do not compose models over multiple systems.
Other work learns classifiers from monitored data: in Co-
hen [9] tree-augmented Bayesian Networks are used to pre-
dict SLA violations, and similarly in Chen [8] a K-nearest-
neighbor algorithm is used to for provisioning to meet SLAs.

10 Conclusions

This paper argued that the rising complexity of data centers
has made manual modeling of application behavior difficult
and proposed Modellus, a system to automatically model the
resource usage and workload dependencies between data cen-
ter applications using statistical methods from data mining
and machine learning. We proposed a number of enhance-
ments to ensure that these statistical methods are practical
in large distributed systems. We implemented a prototype
of Modellus and deployed on a Linux data center testbed.
Our experimental results show the ability of this system to
learn models and make predictions across multiple systems
in a data center application, with accuracies in prediction of
CPU utilization on the order of 95% in many cases; in addi-
tion, benchmarks show the overhead of our monitoring sys-
tem to be low enough to allow deployment on heavily loaded
servers. As future work, we are designing techniques to au-
tomatically model workload to response time relationships
for server applications using a combination of queuing the-
ory and machine learning.

References

[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P.,
AND MUTHITACHAROEN, A. Performance debugging for distributed
systems of black boxes. In SOSP (2003).

[2] ARLITT, M., AND JIN, T. Workload Characterization, 1998 World
Cup Web Site. Tech. Rep. HPL-1999-35R1, HP Labs, 1999.

[3] ASCHER, D., DUBOIS, P., HINSEN, K., HUGUNIN, J., OLIPHANT,
T., ET AL. Numerical Python. Available via the World Wide Web at
http://www.numpy.org (2001).

[4] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. Using
Magpie for request extraction and workload modeling. In OSDI (2004),
pp. 259–272.

[5] CAIN, H. W., RAJWAR, R., MARDEN, M., AND LIPASTI, M. H. An
Architectural Evaluation of Java TPC-W. In HPCA (2001).

University of Massachusetts, Technical Report TR31-07 14

[6] CECCHET, E., CHANDA, A., ELNIKETY, S., MARGUERITE, J., AND
ZWAENEPOEL, W. Performance Comparison of Middleware Architec-
tures for Generating Dynamic Web Content. In Intl. Middleware Conf.
(June 2003).

[7] CHASE, J., ANDERSON, D., THAKAR, P., VAHDAT, A., AND
DOYLE, R. Managing energy and server resources in hosting centers.
Operating Systems Review 35, 5 (2001), 103–116.

[8] CHEN, J., SOUNDARARAJAN, G., AND AMZA, C. Autonomic Pro-
visioning of Backend Databases in Dynamic Content Web Servers. In
ICAC (June 2006), pp. 231–242.

[9] COHEN, I., CHASE, J. S., GOLDSZMIDT, M., KELLY, T., AND
SYMONS, J. Correlating Instrumentation Data to System States: A
Building Block for Automated Diagnosis and Control. In OSDI (Dec.
2004), pp. 231–244.

[10] DOYLE, R. P., CHASE, J. S., ASAD, O. M., JIN, W., AND VAHDAT,
A. M. Model-Based Resource Provisioning in a Web Service Utility.
In USITS (Mar. 2003).

[11] DRAPER, N. R., AND SMITH, H. Applied Regression Analysis. John
Wiley & Sons, 1998.

[12] FOSTER, D. P., AND GEORGE, E. I. The Risk Inflation Criterion for
Multiple Regression. The Annals of Statistics 22, 4 (1994), 1947–1975.

[13] JIANG, G., CHEN, H., AND YOSHIHIRA, K. Discovering Likely
Invariants of Distributed Transaction Systems for Autonomic System
Management. In ICAC (June 2006), pp. 199–208.

[14] JWebUnit. http://jwebunit.sourceforge.net, 2007.

[15] KAMRA, A., MISRA, V., AND NAHUM, E. Yaksha: A Controller for
Managing the Performance of 3-Tiered Websites. In Proceedings of the
12th IWQoS (2004).

[16] M. A. EFROYMSON, M. Multiple regression analysis. Mathematical
Methods for Digital Computers 1 (1960), 191–203.

[17] The Apache “Open For Business” project. http://ofbiz.
apache.org, 2007.

[18] PAREKH, S., GANDHI, N., HELLERSTEIN, J., TILBURY, D.,
JAYRAM, T. S., AND BIGUS, J. Using Control Theory to Achieve
Service Level Objectives In Performance Management. Real-Time Sys-
tems 23, 1 (2002), 127–141.

[19] SHIVAM, P., BABU, S., AND CHASE, J. Learning Application Models
for Utility Resource Planning. In ICAC (June 2006), pp. 255–264.

[20] SMITH, W. TPC-W: Benchmarking An Ecommerce Solu-
tion. http://www.tpc.org/information/other/
techarticles.asp.

[21] STEWART, C., AND SHEN, K. Performance Modeling and System
Management for Multi-component Online Services. In NSDI (May
2005).

[22] URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M., AND
TANTAWI, A. An Analytical Model for Multi-tier Internet Services
and Its Applications. In SIGMETRICS (June 2005).

[23] ZHANG, Q., CHERKASOVA, L., AND SMIRNI, E. A Regression-
Based Analytic Model for Dynamic Resource Provisioning of Multi-
Tier Applications. In ICAC (2007).

