Performance Evaluation of Cloud Infrastructure
using Complex Workloads

Athanasios Antoniou

]
TUDelft

Delft University of Technology






Performance Evaluation of Cloud Infrastructure
using Complex Workloads

Master’s Thesis in Computer Science

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Athanasios Antoniou

20th January 2012



Author
Athanasios Antoniou

Title
Performance Evaluation of Cloud Infrastructure using Complex Workload

MSc presentation
February 3rd, 2012

Graduation Committee
Prof.dr.ir. D.H.J. Epema Delft University of Technology

Dr. Ir. Alexandru losup  Delft University of Technology
Dr. Ir. Andy Zaidman Delft University of Technology



Abstract

Infrastructure as a Service (laaS) is a delivery model of cloud conmutrhich
provides the ability to users to acquire and release resources acctodingir
demand and pay according to their usage. Resources are provisronedhie
cloud as Virtual Machines (VMs), many of which can be deployed on aesing
computing node, realizing a multi-tenancy model. While virtualization and multi-
tenancy are two sources of workload-execution overhead that leavedbudied in

the past, we still need a thorough, empirical investigation of the joint impact of
these overheads, on workload execution.

Additionally, commercial and private laaS providers offer mechanismdahat
cilitate the lease and use of single infrastructure resources, but totexaalti-job
workloads laaS users still need to select adequate provisioning andtediopoli-
cies to instantiate resources and map computational jobs to them. Even though
some studies on the policies employed in cloud environments already exist, cur-
rent and potential laaS users need deeper insight on the achiefedrnzerce and
incurred cost of the used policies, derived through empirical investigyatio

In this work, we address these problems with the use of SkyMark, arpeafece
analysis framework for laaS clouds. SkyMark has three key feattirss, it is
designed to analyze laaS deployments through a sequence of automtstetdes
the subsequent automated analysis of results. Second, it can analirnpalce of
individual provisioning and allocation policies to the performance of the&kiwad
execution. Lastly, it is able to generate complex workloads, stressingfahg o
compute, memory and disk components.

With the use of SkyMark, we first study the overheads that the cloud acgtw
stack imposes to the workload execution. Subsequently, we analyze toe per
mance and cost of six provisioning and three allocation policies througériexp
mentation in three laaS environments, including Amazon EC2.
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Chapter 1

Introduction

Current trends in the computing field envision its transformation from a tradition
in-house power generation model, into a model that consists of servicejgd
in a manner similar to utilities such as electricity, gas, and water. A basic characte
istic of this provisioning model is that the users consume resources abhilade
according to their personal demand. The shift to this new computing pandtdig
been accelerated by recent advances [27, 29] in the high-spadoyeost inter-
connection of off-the-shelf computational and storage resourcdashwiade the
construction of massive data-centers possible.

Cloud computing attempts to realize the vision of utility computing, through the
provisioning of virtualized hardware, software platforms and softwppliGations
as services over the Internet. More specifically, Infrastructure-8srvice (laaS)
clouds offer the ability to acquire resources on-demand, usually in time &br
virtual machines (VMs), i.e., software implementations of machines with a pre-
agreed computing power, memory and disk size, operating system, librades a
applications. Platform-as-a-service (PaaS) clouds offer platformicesrsuch as
application development, testing and run-time environments. Lastly, Sofagare-
a-Service (SaaS) clouds deliver specialized software as web-baseckes.

laaS clouds such as Amazon Web Services (AWS) [7], GoGrid [2] Edasti-
cHosts [1], have recently achieved commercial traction. There is, tiretef need
for a deeper understanding of the performance characteristicslddaSaclouds.
The goal of this thesis is to provide insight regarding the performanceabf en-
vironments.

1.1 Problem Statement

Clouds essentially time-share resources between users. In laaShemims, vir-
tualized resources can be deployed by multiple users on the same physibaiena
The VMs that reside on the same physical host time-share the availablieghys
resources. Early work on the performance of resource time-shavhigh shows
performance degradation effects, already exists [9, 10]. Morew@irtmalization



is an additional layer between user and hardware, and consequentlyosesip
an overhead, which has been studied separately for various virtuaiorago-
nents [11,17, 28, 56].

Even though several research projects that studypénmrmance of virtual re-
sourcesalready exist, we still need a more in-depth understanding of the factors
that influence the efficiency of the laaS paradigm, which has adopted thie mu
tenancy and virtualization concepts. An indication that there is still a lot ahroo
for improvement, is that public laaS providers do not currently offer ganfor-
mance quality-of-service (QoS) guarantees, despite the desirabilitychfgaiar-
antees [8].

In laaS clouds, users provision, i.e., acquire and release res@aoasling to
their current needs. They can subsequently employ their own allocatiemsg
to schedule work on the leased resources, based on the requiremteis wbrk-
loads. The selected provisioning and allocation policies have been shdvawdo
a considerable impact on the traditional performance metrics [19]. Chppsiit
cies that are incompatible with the workload could lead to wasted resource time
and excessive charges [23]. Therefore, laaS users needladsteaunderstanding
of theperformance and incurred cost of the selected resource provisi@amndgl-
location policies This problem has been approached with simulations by several
studies [19, 23, 46], however, there is a need for empirical evaluatioe secent
results [38, 40, 45] in cloud performance evaluation show that cloudnpeance
is lower and more variable than considered by simulation models.

The problems at hand give rise to a number of research questions tliatonee
be addressed. The goal of this thesis is to provide an answer to the fajlomn
main questions:

¢ RQ1: What are the performance overheads of executing workloads with the
laaS cloud delivery model?

e RQ2: What s the impact of the selected allocation and provisioning policies
on the performance and cost of laaS services?

1.2 Approach

Our approach to addressing the research questions posed in Secio8KyMark
and the design of a set obmplex workloadsin a nutshell, SkyMark is an exten-
sible and portable framework that provides the ability to generate and sudmhit r
or synthetic workloads to laaS cloud systems, collect performancedeksdalts,
and subsequently perform analysis on multiple result data-sets. Skyddarur-
rently facilitate experimentation with several clouds, provisioning, and ditmta
policies, but it can be easily extended with new clouds and policies.

SkyMark is based on preexisting work of the Parallel and Distributed Bgste
group (PDS), namely, C-meter [91] and GrenchMark [34]. Grenckiisaa work-
load generation and submission framework for grid environments. C-Metsr
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later developed to port core Grenchmark capabilities to the cloud. In this wer
extend the functionality of the previous frameworks with several featunagly

with the ability to generate our set of complex workloads, experiment withraleve
clouds using different provisioning and allocation policies, and perfanalysis

on multiple result data-sets using our collection of metrics and visualization tech-
niques.

We chose to address the posed research questionsmeagyuremenisver sim-
ulation and analytical modeling, because the other methods require simplifying
and, currently, unverifiable assumptions to be made. An laaS cloud isneofioa
distributed system with a complex software stack. Thus, many system aind env
ronment parameters need to be taken into consideration. This makes simplifying
assumptions, and consequently, simulation and modeling less credible. &tpwev
the environment parameters need to be identified even in the case of empirical
studies, otherwise the acquired results will be incomparable.

To identify the performance characteristics of a system, we would ideally make
use of realistic workloads that represent the activity observed onpbaifie sys-
tem or other systems that belong in the same class. In the case of laaS @louds
is not yet possible to define realistic workloads, due to the insufficient atredu
public workload traces and common practice reports for laaS environmé&ats
address this matter, we form several complex, synthetic workloads, vdikeh
into consideration the trends in parallel and grid computing workloads g3l
studied area.

Our complex workloads comprise large amounts of micro-benchmarks ef-diff
ent durations, which stress one or more components of the examined la@S clo
They further exhibit several arrival patterns. Unlike using microehemarks or
applications individually, the use of complex workloads will allow us to observ
cloud performance variations caused by interactions between unrelatedjae-
cuting on the same or different virtual machines.

Our approach for RQ1 requires performing experimentation on both irrtul
and non-virtualized resources. Since we want to examine the overimepdsed
by the cloud software stack, performing the black-box evaluation thatasach
teristic to public, commercial laaS clouds is not adequate. For this reason, th
experiments designed to address RQ1 are performed on a privateléaaShat
we can fully control.

We approach RQ2 by firstly identifying a set of provisioning and allocataii p
cies. Additionally, we create a performance-optimization heuristic that is applic
ble to the set of provisioning policies. We evaluate the impact of the policieg usin
only a subset of the formed complex workloads, and additionally by vasither
the allocation or the provisioning policy, in two separate sets of experimehtes. T
interactions between allocation and provisioning policies is not within the sdope o
this work, but we have conducted elsewhere a preliminary study of tieist¢&1].



1.3 Thesis overview

Here, we present an overview of this thesis: first, an overview of tregloentri-
butions, and second, the outline of the thesis structure.

1.3.1 Thesis Contributions

We identify the following contributions of this thesis:

1. Wedesign SkyMarka framework for performance analysis of laaS systems
(Chapter 4).

2. Weidentify a set of provisioning and allocation policies laaS systems,
and aheuristicthat is applicable to the set of provisioning policies (Chapter
4).

3. We assess the performance of an laaS clolg conducting an empirical
study with the use of SkyMark and a set of complex workloads (Chapter 6)

4. We evaluate empirically the impact of the selected provisioning and allo-
cation policieson the laa$erformance and costising three laaS clouds
(Chapter 6).

1.3.2 Thesis Structure

Firstly, we describe the basic concepts of system performance anatgsiaud
computing in Chapter 2. Chapter 3 presents related work in the field of cyeud s
tems performance evaluation. Chapter 4 describes SkyMark, ouraabpto an-
swering the posed research questions. In Chapter 5, we formalizeptberagntal
setup. We then present the results collected from the experimentation ite€hap
6. Finally, Chapter 7 summarizes the work performed for this thesis, gsesan
conclusions, and proposes a direction for future work.



Chapter 2

Background

This chapter introduces the basic concepts that relate to performateat@mraand
cloud computing. Section 2.1 presents some terminology used in the disciplined
systems performance evaluation. Virtualization, an important conceptdod c
computing, is discussed in Section 2.2. Lastly, a taxonomy of cloud computing
services and some real-world cloud computing implementations are introduced in
Section 2.3.

2.1 Systems Performance Evaluation

In this section, we present the techniques used for systems performaiaation
and some essential terminology used in this field. Performance evaluatiomef ¢
puter systems is a well-defined, structured process, with the goal ofstadéing
and comparing the performance characteristics of the systems that péeticipa
the analysis [44]. The necessity of performance analysis stems frome#teta
find the solution that best meets non-functional requirements, suchfespance,
reliability, and cost.

2.1.1 Techniques

Three different techniques can be used for performance evaludsgstems [44],
namely,measurementver real systemsimulationandanalytical modelling The
appropriateness of these techniques depends on applicability, avadableces,
required accuracy and the amount of time that can be spent on the evaluatio
Measurement results are more widely acknowledged and convincing thdn mo
eling or simulation results, since no simplifications are applied to the evaluation
procedure. Nevertheless, the accuracy of the results can vatjygséze a lot of
parameters must be recognized and controlled, otherwise environnaggeswill
interfere with the results. Moreover, measurement is not always possitde the
evaluated system might not already exist. It also requires equipment thatheigh
expensive and the process of measuring may take a considerable arhitounat
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Simulation is less costly but can be just as time-consuming as measurement and
much more error-prone. The accuracy depends on the simplificatioresanchp-
tions that are used. Simulation results are not acknowledged as much ageneasu
ment results.

Analytical modeling is usually the fastest technique to use, and may provide the
best insight regarding the effects of the experiment parameters andntieeac-
tions. On the other hand, analytical modeling requires sufficient modelillg sk
and a lot of simplifications and assumptions that reduce the accuracy of thed.mo
Most importantly, modeling results are acknowledged less than the other to tec
niques, so confirmation through simulation or measurement usually follovis [44

2.1.2 Terminology
Workload

The requests made by the users of a system and are processed tsteéhe feym
a workload. Atest workloadrefers to any workload used in performance analysis
studies.

Test workloads can beeal or synthetic A workload that is observed during
the normal operation of a system is a real workload. Real workloadbeaised
in evaluation studies usinigaces i.e., representations of workloads that describe
the requested and utilized resources, the timestamps of all major schedéling ev
(e.g., submission time), the used job credentials, and the job execution environ
ment. Synthetic workloads are used in studies and are generated so@esent
real workloads. A workload model is derived from a real workloadpbserving
its key characteristics, a process calearkload characterizationThe workload
model can then be used to generate synthetic workloads.

Benchmark

Benchmarkingefers to the process of performance comparison of several systems
by applying the measurement technique. The workloads used in theserereasu
ments are calletbtenchmarksand a grouping of related benchmarks is called a
benchmark suiteMicro-benchmarksre small programs that exercise one specific
component of a system [50].

Many benchmarking suites for testing various systems are made available for
experimenters, an example of which is the Standard Performance EvalGation
poration (SPEC) benchmarks [76]. SPEC is a non-profit organizatatrdtvel-
ops a standardized set of performance benchmark suites, such @CFRE006
(CPU,memaory and compiler benchmark), SPECweb2009 (web servenrharnk)
and SPECvirtsc2010 (performance evaluation of datacenter servers used in virtu-
alized server consolidation).



System Under Test (SUT)

The system that is evaluated is often referred to as System Under T&B}. (S
Occasionally, the evaluation examines the impact that alternative solutioas for
specific component have, on the performance of the SUT. The comigemamed
Component Under Study (CUS).

In our case, the SUT and CUS coincide for the laaS evaluation paraé&s |
cloud). For the policy evaluation part, the SUT is still an laaS cloud, but th8 C
are the used provisioning and allocation policies.

Response variable

The response variable represents the outcome of an experiment, whadilyyis
the measured system performance.

Parameter

The experiment parameters refers to the system, environment and vebdkiaa
acteristics that affect the SUT performance. All the parameters shoulgtee
mined during the design of the experiments, otherwise unidentified parameters
could make the results useless.

Factor

A factoris a parameter whose adjustment influences the response variablesand ha
several alternatives. The values that a factor can assume are cal®alitss The
primary factorsof a performance evaluation study, are the factors whose impact
needs to be appraised. Likewise, factors whose impact is not studiezhlbze
secondary factors

Performance Metric

A performance metriés a value that describes the performance of the SUT [50].
This value is derived from the values that were measured during the 8da-p
mance analysis. Lilja [50] identifies several characteristics that formroadg
performance metric:

1. Linearity : A change in the value of the metric should designate a propor-
tional change in the actual performance of the system.

2. Reliability : When a system A scores better than a system B with respect to
a reliable metric, then we can deduce that system A outperforms system B.

3. Repeatability: A repeatable metric provides the same value each time the
same experiment takes place.



( VM Instance )/ VMInstance ) ( VMlInstance )
| |
\ Resources / \ Resources / Resources

< Virtualization Layer (VMM) >
Host OS
< Physical Server Hardware >

Figure 2.1: Multiple Virtual Machines hosted on a single server. The ptede
virtualization technologies, require a Host OS layer, except from the-ivetal
virtualization technique.

4. Easy to measure Metrics that are difficult to measure are frequently mea-
sured incorrectly.

5. Consistency The definition of the metric is independent from the system it
is measured on.

Application Profiling

The execution performance characteristics of an application are pdobigets
profile. An application profile might specify, for example, the amount of time
spent in each of the application phases or states [50]. The profile casebeto
identify the most time consuming parts of an application.

2.2 Hardware Virtualization

Hardware virtualization enables a single physical platform to run multipleapper
ing systems and software stacks [84]. Virtualization creates an abstréayien
between user and physical resource, but at the same time it providesaththe
illusion of direct interaction with the physical resource [47].

The virtulization model is depicted in Figure 2.1. The Virtual Machine Monitor
(VMM), also known as the hypervisor, establishes the abstraction lageetitap-
sulates and isolates each Virtual Machine (VM). The VMM runs on the botaa
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chine and maps physical resources (processing power, memorgestastwork)
to VMs. The Operating System (OS) running inside a VM can, therefarly, o
make use of the virtual resources mapped to the confining VM. Consiyjuba
physical resources of a machine can be partitioned between multiple VMsuwith
the VMs being aware of the multi-tenancy.

The virtualization paradigm is a good fit to cloud computing, since it can im-
prove resource utilization [21]. Multiple cloud users can share the resswf a
single host, since their leased virtual resources are multiplexed on the sgsie p
ical machine. Additionally, virtualization provides isolation, because eaaldclo
user receives a separate, confined environment to run his worklnads

2.2.1 Virtualization techniques

A number of different hardware virtualization techniques are used bavhiéable
VMMs:

e Full virtualization : The VMM simulates the functionality of the physical
hardware, allowing for an unmodified OS to be hosted [74]. The guest OS
must support the same instruction set as the hardware.

e Paravirtualization: The VMM provides a special API to the VMs, which
consequently requires guest OS modification, i.e., OS distributions that are
not paravirtualization-aware cannot run on a paravirtualizing VMM. As a
result of the API use, the execution of critical instructions that are more
difficult to run in a virtual environment, takes place on the host OS instead
of on the guest OS [11, 88].

e Hardware-assisted virtualization: An extension of the previous two virtu-
alization techniques. Itis also referred as Hardware Virtual Machivé(H
The VMM receives support from the hardware (primarily the host @sec
sors), which enables it to efficiently deploy fully-virtualized or paravirtua
ized machines. With the hardware-assisted virtualization technique, certain
operations are performed by the hardware instead of the VMM software,
which minimizes the imposed overhead [80].

e Bare-metal virtualization: In this case, there is no host OS [82]. Instead,
the VMM is installed directly on the physical server. The elimination of the
host OS layer from the virtualization stack results in a performance improve-
ment over the hosted VMM techniques.

2.2.2 Virtual Machine Managers (VMMs)

Several Virtual Machine Managers (VMMs) have been developed,aae cur-
rently used in cloud computing environments. Here, we give a shortigtésar
for the most prominent ones, namely KVM, Xen and VMWare.

9



s |Initiate Hypervisor
s  Create disk image(s)

e Schedule to physical 3. Booting
host
e  Contextualize
o  Transfer disk image(s) * Instance accessible
2. Pending 4. Running
49
38
® o
Q
1. Requested 5. Shutting-down
0 LR U e  Save/transfer image

feasibility
6. Terminated

e  Recompute resource
availability

Figure 2.2: The life-cycle of a VM.

TheKernel-based Virtual Machine (KVM38] is part of the Linux kernel, and
implements the hardware-assisted full-virtualization technique. KVM makes use
of modules embedded in the Linux kernel for operations such as memory man-
agement and scheduling. The user-space counterpart is therefalleasd sim-
ple [84].

Xen[11] implements paravirtualization as well as hardware-assisted virtualiza-
tion. It is licenced under the GNU General Public License (GPLv2). Hewaet
is used by other commercial VMMs as their core, such as Citrix XenSe3@gr [

VMware[83] is a company with several virtualization solutions and a pioneer in
the field. It offers both hosted and bare-metal VMMs. VMWare Workstasind
Fusion are examples of hosted VMMs (paravirtualized and full) while VMwar
ESX and ESXi are bare-metal hypervisors.

2.2.3 The VM life-cycle

Figure 2.2 shows the stages that a VM goes through, when it is deployetind
environment. Initially, the VM is requested (State 1 in Figure 2.2) from the cloud
and is then placed inpendingstate (State 2). In the start of the pending state, the
VM awaits until it is scheduled to a physical resource. The schedulingidac
relies on the cloud environment.

After the VM has been assigned to a host, the cloud manager allocates the roo
disk image that includes the operating system of the VM. Additional disk images
can be requested for a VM instance. The cloud subsequently traiséekavi
images to the selected host. A process catledtextualizatiommight take place
before or after the transfer of the disk images. During contextualizatienditk
images are modified so that they work in a specific environment, e.g., the VM

10



host-name and network are set up [51].

As soon as all the required files are located on the selected host, theikgper
boots the VM, i.e., the VM enters thmotingstate (State 3). When the operating
system is up, the VM proceeds to thenning state (State 4). A shutdown request
forces the VM to progress to a correspondstuitting-dowrstate (State 5). De-
pending on the cloud policy and user preference, the disk images might, bt mig
not be saved for future use. The saved data could be stored locaitgnsferred
to a storage server. Lastly, the VM reachesttreninatedstate (State 6).

According to the Amazon EC2 billing scheme [4], the charged VM time begins
when the VM enters the booting state, and stops when it enters the terminéted sta

2.3 Cloud Computing

The “cloud computing” term encapsulates several layers of computingsooyv

ing. Itincludes the hardware resources located at the data-centéosidproviders,

the operating system software on top of that hardware, and lastly the atppic

that are delivered as services over the Internet. Additionally, cloud atngppro-

vides these services as a utility, with the customers being billed based on usage
similar to the billing scheme of traditional public services such as water, electricity
and telephony.

However, there is no absolute consensus on the meaning of the “cloud com-
puting” term. NIST describes cloud computing [55] as‘A pay-per-use model
for enabling available convenient, on-demand network access to acspar# of
configurable computing resources (e.g., networks, servers, spegplications,
services) that can be rapidly provisioned and released with minimal gemant
effort or service provider interaction.”

Driven by the economies of scale, cloud computing enables the use okimexp
sive resources. Cloud providers purchase hardware in largditgsnwhich is
significantly more economic [26]. They can then amortize the cost of owmidg a
operating a large capacity infrastructure by time-multiplexing their resolrees
tween many clients [8]. Moreover, large scale systems require deep dittioma
which results in cost reductions due to need for smaller operational dtafh
well-run enterprise, a typical ratio of administrators to servers is 1:100e\h
a cloud data-center the ratio is at least 1:1000 [26]. Operating at thisatzades
cloud providers to offer services to clients with a lower cost than what-&iouse
computing facility would achieve.

2.3.1 Cloud Features

Although cloud computing incorporates several models of computing prauigjo
several primary features can be identified across the complete doma&4[55,

!National Institute of Standards and Technology.
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e Scalability/Elasticity: Clouds provide the illusion of infinite capacity. Users
are able to quickly request, acquire and later release resources gahotia
on-demand. When the load of a hosted service increases, the clodd shou
be able to offer as many computing power as necessary. Similarly, these
resources can be released back to the cloud upon load decrease.

e Pay-per-use metering and billing In clouds, the user resource consump-
tion is monitored, and categorized based on the resource type. Users are
billed according to their measured consumption. Therefore, users do not
need to make any up-front commitments that require the prediction of their
application’s resource requirements beforehand.

e Self-service based usagdhe user is able to administer the offered comput-
ing capabilities of the cloud services, such as requesting or releasingrketw
storage and paying for used resources, without interacting with hunean op
ators from the provider.

e Quality of Service (QoS) Cloud service providers offer QoS guarantees
with Service Level Agreements (SLAs), which are legally binding contracts
Usually, cloud providers may make guarantees in terms of system uptime,
but do not provide any guarantees regarding the application levelrperfo
mance [60].

e Resource pooling Multiple customers are served in a multi-tenant model,
i.e., software and hardware resources are shared between useiguihg
power is offered from a pooled set of resources, which might residauin
tiple data-centers. The exact location of the resources is abstractedhfeo
users. However, the user might be able to choose the location at a higher
abstraction level, e.g select the preferred country or data-center.

2.3.2 Service Models

Figure 2.3 presents the cloud delivery models and their provided sergtmsds
provide services at three different levels of abstraction: At the higitesttaction
level, Software as a Service (Saa®livers specialized software to the consumers
over the Internet. Saas typically involves a usage-based pricing schremigich

the cost increases in relation to the number of users and the used applfeation
tures. Salesforce [73] SaaS cloud delivers Customer Relationshipgeiansant
(CRM) software services.

Platform as a Service (Paa$ located at a lower abstraction level. PaaS per-
tains to the provisioning of an integrated environment which can be usetidor
development, testing and deployment of applications. The PaaS users ae n
cupied with deploying and managing the underlying hardware and software
example of a PaaS provider is Google AppEngine [25], which provides diad
Python run-time environments with automatic load-based scaling.
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Level Offered Services Provider Examples

Py Salesforce
. Applications ’
[Soﬁware as a Service (SaaS)] Qe_g_ Soc?arl, Networks CRMJ Microsoft Online
' ’ Services

Platform Google AppEngine
Platform as a Service (PaaS) (e.g., Programming Migrosogtp Aere ’
languages, Frameworks)

Infrastructure Amazon Web Services,
Infrastructure as a Service (laaS) (e.g., Compute Servers, GoGrid,

Storage) Rackspace

Figure 2.3: The Cloud Computing Stack.

At the other end of the abstraction level spectruntnisastructure as a Ser-
vice (laaS) laaS refers to the on-demand provisioning of virtualized resources,
i.e., computation, storage and networking. Users can lease VM instanicied, w
encapsulate a provider-specified amount of resources (provighgcalty offer sev-
eral types of VM instances), and can run a user-specified opersgsigns enriched
with required applications and libraries. Clients fully configure and corlail
instances as root via ssh. Amazon Web Services [7] is a typical laa®, eitose
services are outlined later on.

2.3.3 Deployment models

A secondary classification scheme for clouds distinguishes cloud dephty bressed
on how and to whom they are distributed. Using this scheme, clouds carnsse cla
fied aspublic, private, community andhybrid [84].

Public clouds are made available to the general public by third-party pravide
The clients are billed for the offered service in a pay-as-you-go mahmeontrast,
private clouds are deployed within a business or an organization, onftih o
organization’s data center. Private clouds are purposed for intasgahnd the
users might or might not be charged for their resource consumption.

Cloud deployments that are shared by several organizations with thefcgi-
porting a specific community are called community clouds. Lastly, hybrid clouds
provide the ability to combine resources from public and private cloudsolRees
from public clouds are usually leased when the private cloud capacityt suffe
cient to handle the current load.

2.3.4 Atypical laaS: The Amazon Web Services (AWS)

Amazon Web Services (AWS) [7], offered by Amazon.com is one of thetmos
prominent cloud providers, and the first service to employ the laaS mo&gl0k
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Instance Type]  Category | Capacity (ECUs) | Cost (US$/hour)|

tl.micro Micro Up to 2 ECUs for short bursts 0.025
(1 virtual core)
ml.small Standard 1 (1 virtual core with 1 ECU) 0.095
ml.large Standard | 4 (2 virtual cores with 2 ECU) 0.38
m1l.xlarge Standard 8 (4 virtual cores with 2 ECU) 0.76
cl.medium High-CPU | 5 (2 virtual cores with 2.5 ECU) 0.19
cl.xlarge High-CPU | 20 (8 virtual cores with 2.5 ECU) 0.76
m2.xlarge | High-Memory | 6.5 (2 virtual cores with 2.75 ECU 0.57

Table 2.1: Description of the basic EC2 instance types. t1.micro is the latest VM
instance type introduced by Amazon, in June 2011.

There are currently seven data-centers distributed over the worlgrthade com-
puting capacity to AWS users. AWS offers several cloud services, tls¢impor-

tant of which are the Elastic Compute Cloud (EC2) and the Simple Storage &ervic
(S3).

With EC2, computing capacity is provided in the form of virtual machine in-
stances that are based on the XEN hypervisor. EC2 offers a fixed gettance
types, each with different capabilities, operating systems, architectndegrize.

The CPU capacity of the offered instance types is characterized in Elastic C
pute Units (ECUs). One ECU unit is approximately equivalent to a 1.2 GHZ 200
Opteron or 2007 Xeon processor [3]. VM instance usage is chamyed dourly-
basis. Some of the instance types, their computing capacity and their hostly co
are presented in Table 2.1. The Amazon Machine Image (AMI) format i inse
EC2, which allows the users to deploy customized operating systems containing
software and libraries that are fit for purpose.

Amazon S3 offers storage capabilities to AWS users. Data is organized into
buckets, with each bucket being able to store an unlimited amount of data. Each
file can be up to 5GB in size. Users can create, modify and read objectskiatbu

AWS additionally offers services such as CloudWatch (resource guittagpon
monitoring), Simple DB (SDB, structured datastore), Relational Database&e
(RDS) and Elastic Block Store (EBS, persistent disk service). Partiguaerest-
ing for this work, are the Elastic Load Balancing and Auto Scaling servitks.
Elastic Load Balancing service is responsible for scheduling incoming agiplc
traffic across multiple EC2 instances. Auto Scaling allows the number of irestanc
to automatically scale up or down, according to a set of customizable rules.

2.3.5 Virtual Infrastructure Manager (VIM)

A cloud is in need of software that can manage physical and virtual ressu
and present a complete view of the current status of the cloud. It sheuddsb
able to supervise the full life cycle of the VMs that are deployed on top of the
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physical resources. The software that is used for these purposaters a Virtual
Infrastructure Manager (VIM) [75]. In contrast to the VMM or hypesor (see
Section 2.2), which is responsible for the virtual machines deployed org&sin
node, a VIM controls the state of the whole cloud. A VIM therefore coafesy
with one or more VMM types, installed in all the nodes that form the laaS cloud.
A differentiation between “cloud toolkits” and VIMs is proposed by Sotonmayo
et al. [75]. Their argument is that solutions that belong in the toolkit cayegor
should expose a remote “cloud-like” interface for creating, controllindy moni-
toring virtual resources, and should employ user administration and aeseis-
sion management mechanism. On the other hand, VIMs should providecadvan
features such as automatic load balancing, server consolidation, aachidyim-
frastructure resizing and partitioning. Since the current laaS softexdnibits sig-
nificant overlap between these two categories, we address both as VIMs

OpenNebula

The OpenNebula [63] VIM begun as a project in the Complutense Uritiyays
Madrid in 2005, but evolved into an open-source project with the fiksase taking
place in 2008.

The OpenNebula platform is modular and is composed by three main compo-
nents, namely theore the schedulerand thedrivers The core is responsible for
coordinating the physical servers and the hypervisors running orf thpm, pro-
viding virtual networks for the VMs, and preparing disk images for VMdie T
driver component provides an extensible set of drivers to the cameate used
to perform specific network, storage or virtualization operations. Thedrin-
teract with APIs of hypervisors, storage and network technologies, paiblic
clouds [84]. Lastly, the scheduler makes decisions on the placementtwdlvir
resources to physical resources, based on information on the tata¢s of the
cloud. It implements VM placement policies for workload balancing, with a sim-
ple matchmaking policy set as default.

OpenNebula can be used through a Command Line Interface (CLI) oba we
based GUI (Sunstone). Additionally, OpenNebula exposes its functiottaiiygh
several APIs, namely, the Open Cloud Computing Interface (OCCIl)db2Jpen
Grid Forum and a subset of the Amazon’s EC2 Query interface. Addilypriia
provides an XML-RPC [64], a Java, and a Ruby interface.

With OpenNebula, two different disk image allocation methods can be used,
namely,eagerandlazy allocation. With eager allocation, the VM image is allo-
cated on the physical disk when the VM is provisioned. Eager allocation is im-
plemented with the raw image format, which is a plain binary image. With lazy
allocation, the physical areas are allocated as needed, when the peesing
system tries to write data. Lazy allocation is implemented with the Qemu Copy on
write 2 (qcow2) optimization strategy [89].

OpenNebula also supports two image transfer methods NEtwork File Sys-
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tem (NFSmethod uses the underlying shared file system to implicitly transfer the
images. The.ocalDiskmethod performs an explicit copy to the local disk of the
node that is hosting a VM, using the Secure Copy Protocol (SCP). Antarido-
calDisk withcachingis also supported, where images are cached to the host nodes
and can be reused, thus not requiring a network transfer.

Through its virtualization subsystem, OpenNebula can interact with the VMMs
on the host nodes. The current version of OpenNebula can be uiteitheyKVIM,
Xen and some VMware hypervisors.

Eucalyptus

Similarly to OpenNebula, Eucalyptus is an open-source product comingtfre
academia. There is also an enterprise version of Eucalyptus that sdfees addi-
tional features.

One of the identifying features of Eucalyptus is that it is built with the conoérn
providing similar functionality as Amazon Web Services, through the same APIs
Thus, Eucalyptus implements Amazons EC2, S3 and EBS interfaces fagiprov
ing compute, storage and block-level storage services.

Eucalyptus has a modular and hierarchical design. It is comprised blidjkie
level components. Th€loud Controller (CLC)is the user-visible entry point and
global decision-making component of the installation [61]. It is respong$dsle
coordinating the provisioning of virtual resources to the users and mmgttire
system’s components and virtual resources. Chester Controller (CCmanages
a collection of servers that actually provide the virtual resources.Nidue Con-
troller (NC) module is deployed on each one of these servers. NC is responsible
for executing, inspecting, terminating and cleaning-up VM instances ondste h
machine where it is installedWalrusis the data storage service of Eucalyptus,
and is interface-compatible with Amazon’s S3. Lastly, Bleck Storage Service
provides block level storage volumes that can be used by the VM instances

The currently supported hypervisors for Eucalyptus are XEN and KVie
enterprise version of Eucalyptus also supports VMware hypervidarthe cur-
rent version, Eucalyptus only supports eager image allocation and lokatitage
transfer with caching on the host nodes.
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Chapter 3

Related work

This chapter presents the related work. Since the work is divided into two re
search components, namely, the study of the performance characteridtes
environments and the evaluation of several provisioning and allocationgmhee
provide one related work section for each component. Section 3.1 saeserk
studying the performance characteristics of laaS clouds. Corresgy)Bection
3.2 discusses previous work on provisioning and allocation on laaSoenvants.

3.1 Cloud performance analysis

There is already extensive research on the performance analysisid§ @and vir-
tualized systems. The predecessor of this work, C-Meter [91], is usexhtaine
the overhead of acquiring and releasing resources from and to theohnkz22
cloud. This work is the continuation of the work performed by [91]. Heve,
extend the C-Meter framework to study the performance of several $louad-
dition to Amazon’'s EC2 compute cloud, to use varying workloads, and toostpp
experiments with provisioning and allocation policies.

Many moreperformance studiebave taken place on Amazon Web Services
(AWS). Ostermann et al. [65] analyze the performance of EC2 using rbenmchmarks
and kernels and conclude that the performance of virtualized resoaccpiired
from public clouds have a much lower performance when compared to tbe the
retical performance peak, especially for computation and network ineeappli-
cations. In contrast, we compare the observed virtualized performfagerivate
cloud with the non-virtualized performance of the underlying hardwadslitfon-
ally, we make use of complex workloads instead of micro-benchmarks ticapp
tions used as individual benchmarks, which can capture the interactnwedn
seemingly unrelated jobs submitted by different cloud users.

Palankar et al. [67] examine the performance of Amazon S3, includingadn e
uation of file transfers between EC2 and S3. Amazon EC2 is also studiepthein
NPB benchmark suite [86], designed to evaluate the performance of s,
and with an x-ray spectroscopy and electronic structure application [P6gl-
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man et al. [20] study the performance and cost of executing Montageetific
workflow, on EC2. Jackson et al. [42] port the SNfactory pipelineastnonomy
application comprised of pipelined serial processes, to AWS. The exe@its®v-
eral HPC applications on EC2 is compared to the execution on supercosantker
clusters [43].

losup et al. [40], study the performance variability of production clemises,
using year-long traces of Amazon AWS and Google AppEngine. Thesad sler-
vices exhibit periods of stable performance as well as yearly and datigrps.
The performance stability and homogeneity of small Amazon EC2 instances is
studied by [45]. Li et al. [49] carry out a performance and cost camispn between
four major public clouds. The clouds are compared on the common functionality
set, which includes elastic computing, persistent storage, intra-cloud nkedwad
Wide-area network.

Ueda et al. [79] study the performance of OpenNebula and Eucalyptiushe
use of a workload based on Wikipedia software and data. They examiimephet
of Lazy/Eager image allocation methods, and the NFS/localDisk image transfer
methods. Their main finding is that these two configurations have a greattimpac
on the performance of the clouds, regarding provisioning and priocgsmes.
They also address a multi-tenancy scenario that shows a significant iofpaot
visioning on the achieved throughput. An early comparative study of lifptces
with Amazon EC2 is presented in [61].

Performance studies orirtualization cost have shown that the virtualization
performance overhead for the XEN hypervisor is at most 5% for cortipotfl 1,
17] and 17% for networking [11, 56], with the use of general purfmsehmarks.
Grund et al. [28] find that the virtualization cost for memory is around 7@, b
can increase up to 60% when running multiple VMs at the same time and with
the use of CPU architectures that have only one global memory controliest Y
al. [93] find that the virtualization cost for parallel 1/O is below 30%. Twoesth
studies [16, 57], examine the virtualization cost for web server I/O, sigpthat
it is below 10%. Paravirtualization for compute-intensive HPC kernels iadou
to pose no statistically significant overhead [92]. Weng et al. [87] rebehe
performance degradation caused by virtualization to parallel progracugzn.
Our work extends on these previous findings, by examining the ovespeeskd
by the laaS software stack, using several workloads and worklo&dlgratterns.

Regarding virtualizatiorperformance isolationBarham et al. report a small
interference between co-located VMs, when testing the Xen hypervitomeb
server workloads. Nathuji [60] et al. develop Q-Clouds, a frameviloak tunes
resource allocations to deal with the performance degradation causém ly-
terference. Pu et al. [68] study the performance interference ambfsgrirhning
network 1/0 workloads.

Work has also been performed in developahgud benchmarkandbenchmark-
ing methodologies Binnig et al. [13] argue that traditional benchmarks are not
adequate for cloud performance analysis, because they don’t takeaihecloud
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characteristics (see Subsection 2.3.1) into consideration.

There is also related work performed in the industry. CloudHarmony [18] is
startup that has developed a set of benchmarks in order to providemarfce
comparisons between public clouds. Their Cloud SpeedTest servicarbarks
the network latency and throughput between a public cloud and the consLimeg
additionally perform cloud-to-cloud network benchmarking. Lastly, thepsnes
the service availability for a great number of public clouds, and keep taator
up-time data which are accessible through their website.

3.2 Provisioning and Allocation Policies

The study of policies for dynamically provisioned computing environments is a
new research field, but a lot of effort has been put recently. Atanbal part of

the related work examines policy alternatives under the assumption of exgend
the capacity of a private cluster with on-demand resources drawn froloud
environment [12, 15, 19, 46, 54, 66, 72]. In contrast, this work is ttet éimpiri-

cal comprehensive investigation of provisioning and allocation policiedwstird
usingreal laaS cloud environments.

Closest to this work, Genaud et al. [23] perfosimulationsin order to evaluate
several provisioning policies, using workloads constructed from peaduction
grid traces. Their policies assume that the job durations are known, whikh is
case for only one of our proposed provisioning policies. Furtherntioedr, model
neglects VM boot-up and shut-down times, which makes it unclear whether the
simulation results can be regarded as realistic. Lastly, the evaluation cantsider
job wait time and the cost according to Amazon'’s billing scheme, but doesseot u
workload-oriented metrics such as workload makespan and speed-up.

Mao et al. [53] present an automatic cloud provisioning algorithm, which con
siders VM startup times and can also select among multiple instance types. The
jobs have known deadlines and the number of jobs that finished within tlie dea
line is used to measure the mechanism’s performance. The provisioning isolicy
evaluated using simulations and a real scientific application on MicrosofieAzu

Assuncao et al. [19] consider the same scenario, i.e., extending depyriva
owned cluster with virtual resources from an laaS provider. Thelpataby sim-
ulation with real traces, three allocation policies and several redirectiategies,
that specify which job requests are redirected to the cloud. Marshall g4&
propose a model to elastically extend a static-resource site by integratingeremo
cloud resources on-demand. They additionally propose three pravigipalicies
that take decisions based on the job queue status, but their policy conmpamido
evaluation is not in-depth, since the focus is on the proposed elastic fakdw
yet another piece of work that considers extending the resourcesooflclus-
ter with resources from a cloud, Kijsipongse et al. [46] examine two picovisg
policies. The policies are assumed to know the job resource requiremeiiy an
to provision the proper types of instances for the jobs in the queue. Hheation
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however is substantially small-scale and cannot be regarded as coeaclusi

In [58], the authors address the provisioning problem on a virtual cliestel,
each one leased by a different Virtual Organization (VO). The implementatio
is based on the Condor scheduler [77]. Lu et al. [52], identify the Iprotof
load imbalance while executing DNA profiling workloads on Microsoft's Azur
cloud. Candeia et al. [15], propose a greedy allocation policy to managesb
of bags-of-tasks on a hybrid infrastructure (use of local and cleadurces). Os-
termann et al. [66] extend a Grid workflow application environment to lssrne
resources from laaS clouds, when necessary, with a simple provigipoiicy.
Deelman et al. [20] study through simulation the performance-cost tfidévar-
ious static provisioning plans, for a real-life astronomy application. Bdmia
et al. [12] develop EXPERT, a Bag-of-Tasks (BoTs) schedulingénsork that se-
lects the pareto-efficient strategies, i.e., the strategies that deliver theebeks
for makespan and cost, for running BoTs, with replicated tasks, on a migfur
environments with varying reliability, cost, and speed. Amini et al. [72] psap
two market-oriented scheduling policies that consider resource costbudget
and application deadlines by supplementing local resources with resduoce
an laasS provider.

The approach in [14, 30, 69, 78] considers the estimation of applicativitse
times andworkload pattern predictionQuiroz et al. [69] address the VM provi-
sioning problem from the provider’'s perspective, in order to improveeseuti-
lization. They propose an online clustering model, to detect patterns in tlaenstre
of requests. Incoming jobs are analyzed using a model, to provide appiicatio
service-time estimations. These estimations are used to form a set of VMsglasse
that describe the VM resource configuration and the required instaaceity.

Costis another important parameter when provisioning: Henzinger et al. [31]
describe a model where a cloud presents different schedules aisd Qiker re-
lated work [71, 90] uses market approaches to determine when to provieio
resources. Our study complements these approaches with a more realesic inv
gation focusing on simpler policies.

Public laaS providersalso have introduced several related offerings. Amazon
Web Services offer the Auto Scaling [5] and Elastic Load Balancing [6jices to
the EC2 compute cloud users. Auto Scaling provides the capability to thetasers
develop their own provisioning policies, by making use of user-definethala.e.,
objects that monitor metrics. A policy can be defined through a set of command-
line tools supplied by Amazon. The created policies can only be based on the
observed VM load, and not on other kind of knowledge, such as theyelbe
state. The Elastic Load Balancing service distributes incoming applicatiore traffi
across multiple EC2 instances. However, the user has no control owvastiadul-
ing policy that is used to distribute incoming requests. GoGrid offers the b loa
balancer [24], which can use two simple scheduling policies, namely, robid
or least-connect, which selects the instance with the smallest current load.
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Chapter 4

The SkyMark Performance
Evaluation Framework

Our approach to analyzing the performance of laaS environments is &ky/s
configurable, extensible and portable framework that enables theagiemneand
submission of complex workloads to laaS cloud environments, using a j@movis
ing and allocation policy specified by the user, prior to the initiation of the éxper
ment. Through the accumulation of statistical information regarding the watkloa
execution, the framework is able to carry out a performance analysig afither-
lying laaS systems.

This chapter presents the features and architecture of SkyMark, aasbisi-
ated workloads, allocation and provisioning policies. We start with an g ref
the framework in Section 4.1. Section 4.2 presents the steps of the expetiorenta
process that lead to analysed results. We then proceed to defining tkloausy,
in Section 4.3. Section 4.4 presents six provisioning policies and three allocatio
policies that are evaluated using the manufactured workloads and SkyMar

4.1 SkyMark Overview

The SkyMark framework is based on two major pre-existing componentacre
mark and C-Meter, written in Python. These components have been modified a
extended, in order to achieve the goals of this work. The modifications&aten
that form SkyMark are also presented in this section.

The components of the SkyMark framework are presented in Figure ©é&. T
modules that were subjected to modifications are shown in light gray, whilesall th
newly added modules are drawn in dark grey.
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Figure 4.1: The SkyMark architecure. Modified modules are drawn in Gogky,
and newly-added modules in dark grey.

41.1 Grenchmark

Grenchmark [34] is a framework that is able to generate and submit regher
thetic workloads to grid computing environments. Its functionality can thezdfer
split into two main modules: thevorkload generatoand theworkload submitter

The workload generator uses pluggabtet generatorg¢o produce a workload
according to the user requirements, specified in a workload descriptiomhiidd
is given as input. The unit generators can subsequently use a Jofipbesd-ile
(JDF) printer to output the workload. Additional printers can also be plugged-in,
thus providing output in different formats.

When designing the workload, the user can specify the job inter-atiiak
based on well-known statistical distributions. It is also possible to mix several
workloads together, producing a mixture-of-workloads. Lastly, thdiegtpns
can be both unitary or composite, deployed on a single or multiple sites [34]. An
example workload description file is depicted in Figure 4.2. This descriptiecsp
ifies a workload mixture with three components, comprising 200 unitary CPU-
intensive, memory-intensive and 1/O-intensive jobs respectively. The gorive
with a poisson distribution with 10 seconds inter-arrival time.

The workload submitter takes as input the generated workload descrifbtam.
then deploy the workload units, one-by-one, at the designated jolalaimes.
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#File-type: text/wl-spec

#1D
0
1
2

GeneratorType Times UnitType  SiteType Siteinfo  ArrivalTimeDistr

unitary 200 ssecpu single *? Poisson(10s)
unitary 200 ssemem  single *? Poisson(10s)
unitary 200 sseio single *? Poisson(10s)

Othrfer

StartAt=

Figure 4.2: An example of a workload description file, given as input tmGre
mark.

#File-type: text/wl-spec

#1D Times UnitType Otherlinfo

0 200 sselcpu StartAt=0

c Util=0.7, ErrorMargin=0.1, ComputeUnits=4, MaxDuration=20m
1 200 sseicpu -

c Util=0.7, ErrorMargin=0.1, ComputeUnits=8, MaxDuration=20m
2 200 sselcpu -

c Util=0.7, ErrorMargin=0.1, ComputeUnits=16, MaxDuration=20m

Figure 4.3: Workload description with specified CPU-utilization configuration
Each workload unit is accompanied with a utilization description line.

The core functionality of Grenchmark did not need
modifying for the purposes of this work. However, ' *** )
Grenchmark has been extended with the ability to gen- v
erate workloads that satisfy a user-specified VM utiliza- prz;jif:gm:un
tion configuration. The utilization-based workload gen-
eration was needed for the production of workloads tha
correspond to the provisioned capacity. Using this mod
ule, it is possible to specify the load to be exercised &
the acquired virtual resources.

To produce a load-based workload, the profiles of all il
the job types in the workload must be generated first satisfiedg
(see subsection 4.1.2). After the job profile production,
the Grenchmark generator will construct a workload, ] i

. o -
based on the provided description file, an example of | End )
which is given in Figure 4.3. The load configuration
must be included in this workload description file. Far,

each workload unit, the user must specify the preferr'(:a@ure 4.4. The pro-

load and the number of virtual machines that this Spceegdure followed  for

cific load should be applied on. An error margin for thtétilization-ba.sed work-
preferred load should also be supplied; the genera %?jd generation.

load will not deviate more than the error margin from

Generate
workload
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the desired load. In the example, we require a workload with an increasdg lo
starting with 70% for 4 compute units and escalating to 70% for 16 units.

During the workload generation phase, the job profiles are used to estireate th
arrival distribution parameters that will produce a workload satisfyingeqeired
utilization level. Currently, only the Poisson arrival distribution is used. -Sub
sequently, the module examines whether the generated workload satisfies the
quired load, for each individual workload unit. The procedure is aiggmk until a
workload with a verified utilization is produced. A flowchart of the used utilora
based workload generation is presented in Figure 4.4.

4.1.2 C-Meter

C-Meter [91] was designed as an extension to Grenchmark, in ordertadtpo
capabilities to the cloud. As was originally designed and implemented, C-Meter
receives the jobs that comprise the workload, submitted from Grenchrauadk,
subsequently forwards them to a static pool of resources that haveldssed
from an laaS cloud prior to the experiment start.

The original C-Meter design is not adequate to perform the requirestiexents
within the scope of this work. C-Meter was implemented to work with Amazon
EC2 and was lacking a refined resource management module, since esigiset]
to work with a static pool of VM instances. As a result, a large portion of the
tool had to be re-factored. In addition, the framework was extended wittes
additional functionality, namely, the cloud manager, the policy manager, &d th
job profiler, all of which are described below.

The C-Meter modifications targeted towards a configurable and extensitrie{
work that is able to perform fundamental cloud resource management, ndtile
being dependent on a specific underlying cloud implementation. Since ttasclou
we were working with exhibited frequent failures, fault-tolerance wasdaed
concern that had to be considered in the resource management compdaes
over, the need of evaluating allocation and provisioning policies hasrdusédo-
wards providing basic policy management capabilities. By performing simple co
figuration, the SkyMark user should be able to easily plug-in differelitips, in
order to perform an experiment. Lastly, the planned analysis methodologgllas
as the Grenchmark utilization-based workload generator, required themmipie
tation of a profiler module.

In C-Meter, the core functionality is performed by four components, adean
seen in Figure 4.1. These components were already present in the intialnvef
C-Meter, but they have been modified considerably to fit the purpogbssafork:

The request listeneis responsible for waiting for incoming job execution re-
quests from Grenchmark, as well as for job execution reports fromithebre-
source they have been deployed on. Job execution requests ccbgizzMeter
are placed in a queue. Thab scheduleperiodically checks the queue. If there are
available resources, then the job at the head of the queue can be ddsigrfece
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VM instance, according to a scheduling policy that is designated balkbeation
policy manager Given a selected idle VM instance, tfgd submissiormodule

is responsible for making all the preparations for the job execution on thetee
resource, such as copying all the required files to a web server goholyohey a

job execution agent on the selected VM. The agent downloads the filastfr®

web server, executes the job and upon conclusion, reports back tet€-mith

a collection of gathered statistics. Thetistics collectiorunit is responsible for
keeping the job execution statistics, as well as statistics regarding the vigtual r
sources, such as the time an instance has been requested and the timeé& beca
accessible.

In every scheduling period, the job scheduler makes calls t@tiésioning
policy manager Depending on the active provisioning policy, the current queue
size and the number of idle VM instances, new resources might be red fieste
the cloud or released back to it. The provisioning and release requestsage
to thecloud manager For each experiment session, a cloud-specific interface is
dynamically plugged-in by the cloud manager. The preferred interfad@lathe
interface parameters should be provided in the C-Meter configuration file.

Theprofiler component is responsible for identifying all the unique job types in
the workload, and subsequently submitting them to the cloud in a dedicated exe-
cution mode. Each job has a signature, which is a hash value construatsthby
the job’s name, its input parameters and input files. The unique jobs ofldoadr
are the jobs that have different signatures. During the dedicatedtexeouode,
each unique job is submitted multiple times. The dedicated execution profiles are
created after the data are subjected to basic statistical analysis (outligichetec
and averaging). By the end of a profiling session, all the job types wixbén a
workload should be accompanied by a profile.

4.1.3 Additional Extensions

In addition to the modifications and extensions to Grenchmark and C-Meter, de
scribed in the previous subsections, some further work was performedds
implementing the SkyMark framework:

1. SkyMark Controller : The main SkyMark module. Experiments were pre-
viously performed manually, by firstly generating a Grenchmark workload,
setting-up C-Meter and submitting the workload through Grenchmark. This
process has now been automated with the addition of this module. Multiple
experiments can be defined and will be executed in sequence.

2. Post-analysis module The analysis module was initially part of the C-
Meter framework, and could only perform analysis on one dataset at a time
Since the evaluation task of this work requires to make comparisons be-
tween different experiment runs, the performance analysis modulecleas b
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redesigned. The re-factored module can carry out multi-set analy$idean
liver the required graphical output and performance results.

3. Allocation and provisioning policies As was previously described, C-
Meter has been modified so that new provisioning and allocation policies
can be dynamically plugged-in and used. Based on experience, it is rela-
tively simple and non-time consuming to add new provisioning and alloca-
tion policies. For example, adding the most complex policy investigated in
this work,ExecKN, was a matter of one day’s work.

For the policy evaluation purposes of this work, we have implemented six
provisioning and three allocation policies, described extensively in Section
4.4,

4. Complex workloads Several workloads have been formed, that exhibit
various arrival patterns and consist of three types of synthetic apiplica
These workloads are a fundamental part of this work and are deddnbe
Section 4.3.

5. Cloud interfaces C-Meter was designed specifically to work with Amazon
EC2. The need to experiment on privately-owned infrastructure thatis a
cessible at the physical resource level, has driven us to develop datbdu
can dynamically load and plug interfaces in to different clouds. Additionally,
we have implemented an interface to Eucalyptus, a fairly easy task, since Eu-
calyptus implements the Amazon EC2 interface. We have also implemented
an interface to OpenNebula, using the XML-RPC API [64]. Adding more
interfaces is really easy with SkyMark; To be able to instantiate and termi-
nate instances, the corresponding methods for a specific cloud integaee
to be implemented.

Lastly, in order to be able to capture virtualization overheads, we provided
Skymark with an interface that is able to submit jobs to non-virtual resources
We make use of this interface to measure the non-virtualized dedicated job
run-times. By comparing them to the virtualized job run-times, we will be
able to exhibit any overhead introduced by the virtualization layer.

4.2 Experimentation Process

The steps that take place during a typical experiment using Skymark am liste
below and depicted in Figure 4.5:

1. The Skymark user prepares two input files, namely, a workloadig@eor
document (see subsection 4.1.1) and a general configuration file. fidre la
should specify all the cloud-related configuration, such as the clound-fro
end URL, the user credentials to the cloud management platform, and a de-
scription of the type and quantity of the required resources.
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Figure 4.5: The Skymark Experimentation flow.

2. The workload description file is used by the Grenchmark workloadrgene
ation module to produce a workload described in the Job Submission De-
scription Language (JSDL) [22] format. If the workload requires toehav
specified load, then the utilization-based workload generation process sh
in Figure 4.4 is followed.

3. Skymark submits the generated workload by using the Grenchmark work-
load submission unit.

4. C-Meter, which has been already initialized, awaits for new incoming job
submissions, with the listener module. A submitted job is received by C-
Meter, which subsequently parses its corresponding description fild aces
the job in a work queue.

5. Next, C-Meter copies the job’s binary and all other essential stagkesrtdi
an HTTP server, running on the same host as SkyMark.

6. Skymark decides where to schedule each job that is taken out of tike wor
queue, based on the actim#tocation policy If there is a lack of available
resources, Skymark notifies the pluggedsimvisioning policy which will
make a decision on whether it should lease more resources from the cloud.
As soon as a VM is allocated to the job, C-Meter deploys an execution agent
on the provided instance.

7. On the allocated VM, the execution agent downloads the binaries ared stag
in files from the HTTP server.
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8. The job is executed on the virtual resource.

9. A report containing a collection of statistics regarding the job executien pe
formance is sent back to SkyMark.

10. After all the workload units comprising the workload have been exdcute
Skymark stores all the collected statistics to an SQLite database.

11. Skymark performs analysis on the data that have been collectedbrgug
one or more experiments.

12. Lastly, the analysis module generates reports and visualizations feom th
processed data.

4.3 Workload Generation

Defining an appropriate set of workloads is a principal part for thisopeance
evaluation project. Inappropriate workload selection could lead to unfethte
results and eventually to deceptive conclusions. It is therefore impdadaat
down a set of requirements that the designed workloads should cotdorm

4.3.1 Design Requirements

Revisiting our initial hypothesis (Section 1.2), by performing our set oppsed
experiments, we would ideally like to observe non-trivial effects on théoper
mance of laaS systems. Towards achieving this goal, we should make em®-of
plex workloads to trigger this behavior. By using such a workload, we allow the
jobs that comprise it and the underlying software stack to compete with eash oth
for resources, causing performance phenomena that would notphae with
micro-benchmarks or applications used as individual benchmarks.

Furthermore, the designed workloads should be targeted towardsrargpae
particular research question. Different types of workloads shoule $e exhibit-
ing, confirming or contradicting a certain anticipated behavior. Itis, fordason,
significant use two sets of workloads, one for each of our initial hysithe

The workloads should additionally bealistic, representing actual usage sce-
narios of cloud computing systems. On the other hand, there exists nosatiye
acceptable realistic workload definition for clouds, because of theigcafpublic
workload traces or common practice reports. There is a large collectioorsf w
loads from parallel and grid environments [37]; however, it is uncemdiather
the user of such systems will migrate to laaS clouds [38]. In this work, we ha
selected a number of synthetic applications as workload building blocksn Eve
though the realism of these applications can be challenged, we believe ¢hat th
construction of workloads using these units will enable us to see resspecific
effects taking place, that would have been more difficult by using onlypreduc-
tion traces from non-cloud environments.
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workload patterns.

Lastly, the workloads should litverse so that they can drive all of the under-
lying resources into saturation. At the same time, if we were to stress allrogsou
types simultaneously, the results would be difficult to interpret after anallysis
this reason, it is required that we have an adequate set of worklaadssgessing
one or a few resource types individually.

4.3.2 Workload Characterization

The workloads were designed in such a way, so that they put stressear two
types of resources:

¢ WL1: CPU-Intensiveworkload;

o WL2: Memory-Intensive workload;

o WL3: I/O-Intensive workload;

e WL4: Mixture of Memory and I/O-Intensive workload.

The composition of the workloads listed above are presented in Subsectién 4.3

4.3.3 Workload Patterns

We make use of three different workload patterns:

e WP1: Uniform: This pattern maintains a steady stream of jobs throughout
the experiment. It uses a Poisson arrival distribution with an averagensys
load of 70%.

e WP2: Increasing. This pattern provides a stepwise increase of workload
intensity, in three steps. The average system load is around 50%.
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| Workload Unit| CPU | Memory | I/0 | Appears in|

wu1l X wL1
wu2 X WL2,WL4
WuU3 X | WL3,WL4

Table 4.1: Workload unit characteristics and occurrence in workloads

e WP3: Bursty: Features short spikes of intense activity amid long periods of
mild or moderate activity. For a few minutes the load reaches up to 170%,
however, the average system load is around 15%.

These workload patterns are depicted in Figure 4.6.

4.3.4 Workload Units

The workload components are in our case a number of synthetic ancppiaba
tion benchmarks, of variable durations.

Unit Types

The workload unit type can be one of the following:
¢ WU1: CPU-Intensive synthetic application;
e WU2: Memory-Intensive synthetic application;
e WU3: I/O-Intensive synthetic application.

The characteristics of the workload units are presented in Table 4.1, altinthe
test workloads they appear in.

Job Durations

For the formation of the job types that will compose the workloads, we con-
sider two current trends for workloads in grid environments. Firstly, gibadk-
loads include many independent single machine jobs, grouped into Bagaskd
(BoTs) [35]. In contrast, tightly-coupled parallel jobs are less fratjuedddi-
tionally, the job runtimes have decreased over the last two decades to dreobrd
seconds to minutes [35], especially for typical data-mining processin§432

As an example, Facebook uses the MapReduce programming framewek to p
form operations such as business intelligence, spam detection andmikzation
[32]. These workloads consist of short jobs, with a median of 84sh ke is
composed of fine-grainded map and reduce tasks, each of which basme in
the order of tens of seconds (median 23s).
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Job Type Average  Job Standard 25th 75th
Duration (s) Deviation Percentile Percentile

CPU-intensive | 47.0 41.0 195 57.9

Memory-intensive| 46.7 52.7 13.5 65.1

|O-intensive 43.5 45.0 15.1 544

Table 4.2: Job Durations for the three job types.

Although SkyMark supports any job lengths, to satisfy the ‘realistic’ reguir
ment, we have manufactured our synthetic jobs to exhibit durations in theafrde
tens of seconds. The duration characteristics of the jobs that composei
loads are presented in Table 4.2.

4.4 Policies

We describe here the provisioning and allocation policies that have beenimple
mented for the analysis purposes of this work. In total, we have implemented 6
provisioning and 3 allocation policies.

4.4.1 Provisioning

A provisioning policy is responsible for acquiring and releasing ressiirom and
to the cloud. For the purposes of this work, we have defined six provigjgoli-
cies. These policies can be classified as static or dynamic. Static policiederov
a fixed amount of resources, prior to the start of the experiment, whilandign
policies can variate the amount of VMs that are currently leased, acgaaihe
demand and to a policy-specific strategy.

Two key points differentiate the policies from each other:

1. The provision/release trigger The policies employ different triggering
mechanisms that provision or release resources. For example, thagrovis
trigger could be the start of the workload execution, or the moment when
the queue size exceeds a predefined threshold. Similarly, the release trig-
ger could be the completion of the workload execution, or when the queue
becomes empty.

2. The increase/decrease factor This factor represents the amount of in-
stances to provide/release when the corresponding event is triggEned.
simplest case could be to lease/release one virtual resource.

Table 4.3 provides an overview of the implemented provisioning policies with their
characteristics.
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Palicy Class Trigger | Adaptive
Startup Static — —
OnDemand Dynamic | QueueSize  No
ExecTime | Dynamic | Exec.Time Yes
ExecAvg | Dynamic | Exec.Time Yes
ExeckKN | Dynamic| Exec.Time Yes
QueueWait| Dynamic | Wait Time Yes

Table 4.3: Overview of the provisioning policies.

PP1. Startup

The St ar t up policy leases the specified number of VMs and makes sure that
all the requested resources are accessible before initiating the expstiniémre
resources are released only when the workload has finished executingvious
disadvantage of this policy is its inflexibility. The resources remain idle when the
load is low, and under heavy load it is not possible to lease new reso@odbe
other hand, the Startup provisioning policy does not impose any VM instamtiatio
overhead to the workload executioSt ar t up is the only static policy that was
implemented.

PP2. OnDemand

TheOnDenmand policy provisions one new instance whenever a new job execution
request arrives, and there are currently no available resourdesathéake up the
request. Similarly, it shuts-down a VM whenever it remains idle for a spdcifie
amount of time. If the idle-time is set to O, then each VM is released as soon as its
assigned job is finished, if the queue is empty. In gen€@Denmand can lead to
thrashing i.e., frequent leasing and releasing of VM instances.

PP3. ExecTime

This policy assumes known job execution timEgecTi me makes use of this in-
formation to calculate the aggregate execution time of all the jobs that ara@ttyrre
in the queue, awaiting to be scheduled on a VM instance. When the aggesgate
ecution time exceeds a thresholxecTi me proceeds in leasing a number of
instances to meet the demand. Likewise, it releases resources whineesggre-
gate execution time drops below a second threshold.

The provision/release thresholds are adaptive to the cloud, i.e., thetiexecu
time of the queued jobs must exceed the average time needed to provisioroand b
a VM instance by a specified factor. The average boot-up time is calculsted b
using the observed boot-up times of previously leased VMs.
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PP4. ExecAvg

This policy is similar toExecTi nme, but instead of using actual job run-times,

it employs a statistical prediction algorithm to predict them. The job run-time is
estimated as the average execution time of all the jobs that have alreadydinishe
An initial prediction of the average job run-time must be provided by the user.

PP5. ExeckKN

Like ExecAvg, ExecKNalso estimates the job execution times. The run-time pre-
diction is based on [41]. For each job in the qudbeec KN acquires its;-nearest
neighbors (from the already completed jobs), based on the job inpuhptaesize.
The estimated execution time for a job is the average over this g¢eteifyhbors.

PP6. QueueWait

QueueWi t is another threshold-based dynamic policy, that considers the total
queue wait-time of all the jobs currently in the queue. If the total wait-time ex-
ceeds or drops below a specified threshold, then the VM provision/estzast is
triggered respectively. Like thexec family of policies,QueueWi t also makes
use of adaptive thresholds, in order to adjust to the cloud-specific Voi-ino
times.

Adaptive Threshold Heuristic (ATH)

This simple heuristic allows the policies that use it to adjust to the performance
characteristics of the cloud in use. The threshold is modified according tothe b
up times of the already provisioned instances. The weighted averagesefithe
stances is calculated and is given as input to the adaptive mechanism. ighéswe
are constructed in such a way, so that the more recently provided insthace
more influence in the average boot-up time.

With ATH, the policies can adjust to the current cloud behavior. Longer boot-up
times will cause the thresholds to rise, so fewer instances will be leasedeSho
boot-up times will have an adverse effect.

Increase Factor ( F)

The increase factor determines how many resources will be providexteele
when a resource acquisition/release event is triggered. Three diffechemes
have been implemented, namely tBiengl e, Mul ti pl e, andGeonetric | F
schemes.

The Si ngl e scheme provides/releases only one VM instance, when the cor-
responding event takes place. TWa&l t i pl e scheme provides/releases as many
VMs as the number of times that the threshold has been exceeded, in onusgtto
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Policy Queue-based Known job durations
FCFS Yes No
FCFS-NW No No
SJF Yes Yes

Table 4.4: Overview of allocation policies.

the demand. Lastly, th€eonet ri ¢ scheme starts with acquiring one VM in-
stance, and later increases the number of resources to be acquirespéyiféed
factor (in this work, 2). When the load drops, thémonet r i ¢ starts by releasing
one VM, and then increasing in the same fashion the amount of resourbes to
released.

4.4.2 Allocation

Three basic allocation policies are considered in this work. Table 4.4 suna®ariz
their characteristics.

APL. First-Come-First-Served CFS)

A traditional scheduling policy;CFS assigns the job at the head of the work queue
to one of the available VMs. The job remains in the queue until a VM becomes
available (either a job has finished executing on a VM, or a new VM has been
provisioned).FCFS is easy to implement, however, since it does not consider the
job durations, it can cause low throughput at certain cases.

AP2. FCFS-No Wait (FCFS- NW

This policy does not use a waiting queue. Instead it assigns incoming jobtexe
requests to provisioned VMs that might be currently busy, in a rounifrroanner.

This policy eliminates waiting in the queue, but introduces resource contention
between jobs allocated to the same VM instance.

AP3. Shortest Job First SJF)

SJF is another traditional scheduling policy that requires knowing or having an
estimation of the job durationsSJF gives priority to shorter jobs, by allocating
the shortest job in the waiting queue to an idle resource. Although it impr@as u

the FCFS disadvantage, it can lead to long running task starvation, when there are
multiple short tasks.
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Chapter 5

Experimental Setup

Our performance evaluation is based on measurements over real systepreth
vide laaS services. Here, we describe the setup of the experimentsexpae
iments are divided into two groups. The first set of experiments study the pe
formance of laaS systems under various types of workloads. Thedeasd of
experiments compares six provisioning and three allocation policies.

The chapter is structured as follows: Section 5.1 investigates the complexity
of this performance evaluation problem by listing the parameters that can hav
influence on the results of the experiments. Section 5.2 gives a descriptiom o
design of the experiments. Lastly, Section 5.3 presents the chosennpemfog
metrics.

5.1 Parameter identification

Setting up a performance evaluation experiment is usually non-trivial. @s& c
involves a great number of parameters which make the problem complese The
parameters need to be identified during the experimental design phagsajisthe
the interactions between two or more unidentified parameters might causgrunde
able or unexpected effects to the experimental results.

In this section we make a complete list of system, workload and environment
characteristics that can have an effect on the performance result)should
be considered during the experimentation procedure.

Workload parameters:

1. Composition: The selected test workloads (see Section 4.3) havesdiffer
characteristics, with regard to the system component that they primarily
stress. A workload might be CPU-, memory-, or I/O-intensive. A workload
can also be a mixture that stresses two or more system components.

2. Pattern: The workloads might exhibit different arrival patterns bfgrecu-
tion requests. The used arrival patterns were described in Section 4.3.3
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3. Density: The workload density might be defined by manually configuring
the arrival distribution parameters, or by indicating a preferred VM CPU
utilization factor.

System parameters:

4. System: A distributed system together with a VIM, capable of providing
laasS services. In this work we explore three different systems with the sa
VIM, and Amazon’s EC2 compute cloud, in which the distributed system
and the VIM are integrated.

The selected VIM, OpenNebula, exposes two main configurable parameter
(see Subsection 2.3.5):

(a) Image transfer method: How the VM images are transferred from the
image repository node to the VM hosts. Three possible methods exist,
NFS-based, localDisk and localDisk with caching.

(b) Image allocation method: The way that disk images are allocated for
VMs. Two methods can be used, namely, eager or lazy allocation.

5. Hypervisor and virtualization type: The underlying hardware virtutibna
technology. Different systems might be using different hypervisoxg.,(e
KVM, XEN, VMware) as well as different virtualization types (e.g., full
virtualization, paravirtualization, hardware-assisted).

6. Instance type: The defined VM types on different systems might hi&ve d
ferent capabilities, i.e., there is no universal definition of VM types betwee
systems or cloud providers.

7. Provisioning policy: The strategy for leasing resources from thedcldbe
provisioning policy controls the number of virtual resources that are allo-
cated for the execution of a workload. Reducing the number of instances is
a desirable scheduling goal.

8. Allocation policy: The policy for scheduling jobs to virtual resourcedss |
used to manage the already provisioned resources.

9. VM operating system, e.g, Linux distribution, Windows, 32/64-bit architec
ture.

Environment parameters:

10. System background load: Whether the physical resources ofstersare
dedicated to the execution of the workload, or are shared with other users
that deploy workloads of varying characteristics.

11. SkyMark performance: We show in the experiments (Section 6.1) Kyat S
Mark imposes a small performance overhead.

36



Factor Levels

Workload composition WL1-WL4 (Section 4.3.2)
Workload pattern WP1-WP3 (Subsection 4.3.3)
Provisioning Policy PP1-PP6 (Subsection 4.4.1)
Allocation Policy AP1-AP3 (Subsection 4.4.2)
Systems Sys1-Sys4 (Subsection 5.2.3)

Instance number | 1 up to system capacity (Subsection 5.2.3)

Instance type Small (Subsection 5.2.4)

Table 5.1: Factors and their levels.

5.1.1 Interactions between parameters

Some of the factors of this experimental setup interfere with each otheid&he
tified parameter interactions are listed below:

1. System - Instance Type: The capabilities of the VM types depend on the
system they are defined for.

2. System - Hypervisor: Each system is equipped with one hyperviser. D
pending on the hypervisor, different systems employ different virtuidza
types. Lastly, some of the systems use hardware-assisted virtualization and
some do not.

3. System - VIM: Each system is equipped with a different VIM.

Comparisons between different systems and VIMs cannot take placeuivitho
considering these interactions, because any observations made orfthepece
variations between the participating systems might be caused by them.

5.1.2 Selecting factors

In this work, emphasis is given to the impact of Workloads and Provisiorihg/
location policies on the performance of clouds. These are therefongrithary
factorsin the experimentation process.

The systems under test, the number of instances, the VIM, and the instpace ty
aresecondary factorameaning that we will not be quantifying their impact. Table
5.1 presents all the factors of the experiments along with their levels oftapera
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5.2 Experimental Design

We now design the experiments for this thesis, using the parameter investigation
performed in the previous section.

5.2.1 Experiment Specification

Here, we describe the two sets of experiments that will be performed fontiis

laaS evaluation

The intent of the first part of the experiments is to study the cloud perfaenan
under various types of workloads, that were described in Section A\&2Z:har-
acterize the cloud performance by breaking down the job slowdown, into its ma
overhead causes. We have identified the following overheads:

1. Virtualization .The virtualization overhead, refers to the cost added by exe-
cuting jobs inside of VM instances, imposed by the virtualization layer.

2. VM Contention.VM contention is the overhead originating from the re-
source time-sharing between VM instances on a single physical host.

3. Complex Workloads. The Complex Workloads overhead originates from
the execution of multiple jobs on the same VM instance, thus creating virtual-
resource contention between jobs.

4. Other. The remaining overhead is attributed to both SkyMark and network
delays. The SkyMark cost originates from the job submission preparation
and scheduling phases that each job execution request must go through

We are able to isolate the four overheads by performing the following exper
mental process:
Each workload is executed twice, with two allocation polickeSES andFCFS- NW
while keeping the provisioning policy fixed & art up. At the same time, for
each unique job in the workloads, we perform a profiling run, inside ofaiW
stance and additionally on the physical host. Therefore, we collect tves tyh
profiles for each job, one witkirtualized and another one withon-virtualized
execution.

With the use oFFCFS- NW we expect to capture all four overheads. On the other
hand, the Complex Workload overhead will not be present in the worldgadu-
tion with FCFS, since each VM instance can have one job at most allocated to it.
Subtracting thé&=CFS slowdown from thé=CFS- NWslowdown, while comparing
to the virtualized profiles, is expected to provide us with the Complex-Workload
overhead.
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Policy Adaptive | Lease Threshold Release ThresholdIncrease

Factor
Startup — — — —
OnDemand No — — Single
ExecTime Yes 5x boot-up 0.3x boot-up | Multiple
ExecAvg Yes 5% boot-up 0.3x boot-up | Multiple
ExecKN | Yes, No 5x boot-up 0.3x boot-up | Single,
Multiple,
Geometric
QueueWait| Yes 5x boot-up 0.3x boot-up | Multiple

Table 5.2: The provisioning policy parameter configuratiBrRecKN is used for
the evaluation oATH andl| F, therefore these two factors also variate with the use
of this policy.

To isolate the virtualization overhead, we calculate the job slowdown for the
workload execution witfFCFS, against the virtualized and non-virtualized pro-
files. The performance difference between them should give us tithead im-
posed by the virtualization layer.

The VM contention overhead can be found by calculating the job slowdatiin w
FCFS, against the virtualized job profiles. This performance deviation between
workload execution and dedicated job execution (inside a VM) should ixseda
by VM contention, because of resource time sharing. In a dedicatedtexgdhe
VM contention overhead does not exist. Finally, the difference betweztothl
overhead and the sum of the three overheads mentioned above, d¢aibbéea to
the “other” overhead.

Policy Evaluation

The policy analysis compares the performance of the six provisioning mohcie
three allocation policies, described in section 4.4. For the provisioning pmlaly
uation, we keep the allocation policy fixedR€FS and subsequently compare the
policies on several metrics, presented in the next section. For the evalgétio
adaptive threshold heuristic and the increase factor alternatives, evenlys the
ExecKNpolicy. Table 5.2 describes all the used policy configurations. In a similar
manner, we use thst ar t up provisioning policy to test the allocation policies.
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5.2.2 Workload Specification
Workloads for laaS evaluation

For this evaluation section we make use of the full set of workloads that wer
defined in Section 4.3.

Workloads for Policy evaluation

As mentioned earlier, the goal of the second part of this work is to ob$emwe
the performance of laaS is affected under the execution of complexioeoidk
when different scheduling (allocation and provisioning) policies arel.usehe
workloads should therefore be designed to observe the differenbefavior and
performance of the policies.

For the purpose of this work, we require only a subset of the workltedsare
defined for the laaS evaluation section. More specifically, a workloaddtinaes
only one type of resource to saturation is required for this experimentassos.
We have selected WL1, a CPU-Intensive workload.

5.2.3 System Specification

For our performance evaluation purposes, a system is a distributethsytépped
with a certain Virtual Infrastructure Manager (VIM). We have made dseeveral
such systems. Table 5.3 lists the systems that were used in our tests.

The systems specification demonstrates a variety of capabilities across-the pa
ticipating systems. Some are of particularly small capacity, such as Sys3- Add
tionally, the hardware in Sys3 is quite outdated, so it does not providevhezd
assisted virtualization. DAS4 [85] (Sysl and Sys2) has better harcwar&rger
capacity, but only a small fraction of the total resources could be allotattis
work. The physical resource specification of Amazon EC2 is not mab&cpu
known. It is certain, however that different EC2 instance types ugerdift physi-
cal hardware [3]. There is, therefore, no single hardware spaitificfor Amazon
EC2. The capacity of EC2 is very large, but we limit our experiments to 20 VMs
to put a limit on the cost.

Systems Sys1-Sys3 make use of the OpenNebula VIM, but they differeon th
versions of these software platforms. Amazon EC2 makes use of its own VIM
about which information is publicly available.

We performed the first set of experiments on Sys2. Sysl was also osed f
experimentation, however, because of VM failures, we only report@oliserved
problematic behavior. For the policy experiments, systems Sys2-Sys4diseute

5.2.4 Instance Specification

We use in our work one VM type, which is specifically configured for eadiem
as summarized in Table 5.4, but overall, the instance types on the used sgstems
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Code | Description Hardware Spec VIM Hypervisor Max VMs
Sysl | Distributed ASCI| 32Dual OpenNebula 3.0 | KVM (Full, HVM) 512
Supercomputer 4 atquad-core 2.4 GHz LocalDisk-caching
vuU (2 hardware threads) Lazy allocation
(DAS4/VU) 24 GB RAM
2*1 TB storage
Sys2 | Distributed ASCI| 20 Dual OpenNebula 3.0 | KVM (Full, HVM) 256
Supercomputer 4 atquad-core 2.4 GHz LocalDisk-caching
Delft (2 hardware threads) Lazy allocation
(DAS4/Delft) 24 GB RAM
2*1 TB storage
Sys3| Florida  Interna-| 7 Pentium 4 3.0 GHz OpenNebula 2.2 | XEN 7
tional  University| 5 GB Memory NFS Paravirtualization
Cluster 340 GB storage Lazy allocation No HVM
(FIU)
Sys4 | Amazon EC2 Pub{ unknown/varying Amazon EC2 XEN (paravirtual- 20

lic Cloud, eu-west-
1 region

ization, no HVM)

Table 5.3: Description of systems under test

very similar to each other.
We primarily make use of lazy allocation (gcow2 image) throughout the experi-

ments (see Subsection 2.3.5). The staging time for lazy allocation is much shorter
since the image size is smaller. During the staging phase in cloud environments,
the image has to be transferred to the VM instance host machine. Theitbiore
total boot-up time is expected to be much shorter than for eager allocation (RAW
image). There is a price to pay, however, for the lazy allocation. The dik& w
access overhead is much higher than for eager allocation, since anwyrdeskall

has to make a storage allocation request to the host OS. To avoid including this
cost in the virtualization overheadge use eager allocatioior all experiments that
involve I/O-intensive workloads, arldzy allocationfor all other experiments.

5.3 Performance Metrics

Several traditional [36] metrics have been chosen, in order to assegetior-
mance of clouds:
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Instance Specification

System| OS Virt. Mem. Disk Platform
cores
Sysl | CentOS 5.4 x86-64 | 1 1GB 5GB 64-bit
Sys2 | Cent0OS 5.4 x86-64 | 1 1GB 5GB 64-bit
Sys3 | CentOS 5.3i386 1 512MB 3GB 32-bit
Sys4 | RHEL 6.1i386 1 1.7GB 160GB 32-bit

ID:ami-9289baeb (m1.small

Table 5.4: Specification of VM Instances across environments.

Job Wait Time (WT)

The time each job waits in the queue before it is dispatched for execution on an
available virtual resource.

Job Response Time (ReT)

The time between the job arrival at SkyMark, and the receipt of a régort the
virtual resource it was executed on.

Workload Makespan (MS)

The workload makespan is defined as the interval between the time that the firs
job in the workload arrives at SkyMark, and the time that the executioritsesu
the last job in the workload have been received by Skymark:

MSW) =t —tyq (5.2)
wheret ¢, is the arrival time at SkyMark of the first job in the workload, apds
the time SkyMark receives the completion report for the last job in the waidkloa

Job Slowdown ( SD)

JSDfor each job in the workload, is the ratio of the actual runtime in the cloud and
the runtime in a dedicated environment.

Workload Speedup One EU,)

The workload speedup is the ratio between its makespan and the sum of its job
runtimes in a dedicated environment.

MS(W)
Zi ew tR(i)
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whereSU,; (W) is the speedup for workload W, .S(W) is the makespan for work-
load W, and r(7) is the dedicated runtime for job i, that belongs in W. Intuitively,
this metric exhibits the performance gained against the execution on a single-
processor machine. Slas values above 1 and is, theoretically, not bound.

Workload slowdown infinite (SD..)

SD,, represents the slowdown against an infinitely large systeih,, of workload
W is the ratio between its makespan and the maximum of the job runtimes in a
dedicated environment:

MS(W)
max; ¢ w tr(7)
whereSD,, (W) is the infinite slowdown for workload WYS( W is the makespan

for workload W, andt () is the dedicated runtime for job i. Sb has values
above 1.

Actual Cost (C,)

The actual workload execution cost is the aggregated amount of time ttlat ea
instance participating in the workload execution has been running fortiiress
measured from the moment an instance is requested, until the time it is shutdown.
Ca(W) = Z 7551501)(7;) - tstart(i) (54)
i € leased V M s

wheret 4,,+(7) is the time instance i has been leased from the cloudt ang()
is the time SkyMark made the request for instance i to be shut-down.

Charged cost (C..)

The charged cost follows Amazon’s pricing policy for EC2. Amazon gbamper
hour of use of each leased instance.

CC(W) - Z [tstop(i) - tstart(i)-l (55)
i € leased VMs
wheret .,,+(7) is the time instance i has been leased from the clbwd, (i) is
the time SkyMark made the request for instance i to be shut-down] aisdthe
ceiling to the nearest hour. This metric does not reflect special priciliggm
such as premium charges for long-term users, discounts for starting, esc.

Cost Efficiency Ceysy)
Cost efficiency is defined as the ratio of the charged and actual cost:
Ce(W)
e = 5.6
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Utility (U)

Utility is a compound metric that rewards low performance overheads and ktw co

UW) = Sgc 1(%) (5.7)

All the selected metrics can be accepted as good metrics. They all exhibit the
desired characteristics that were described in Subsection 2.1.2.

44



Chapter 6

Experimental Results

In this chapter, we present our findings, from the experimentation nmeefd with
SkyMark. The chapter is divided into two sections: Section 6.1 studies #re ov
heads imposed when executing different types of workloads in cloucbements.
Section 6.2 evaluates the performance of several provisioning andtaitogali-
cies, when executing CPU-intensive workloads on different systems.

6.1 laaS evaluation

As was explained in Subsection 5.2.4, we use eager allocation for tharegpés

that involve 1/O-intensive workloads, and lazy allocation for the rest. Stifjuthis
decision, we exhibit the instance boot-up time/disk access time trade-off ireBigu
6.1 and 6.2, where we request 64 VM instances to be provided at the@fkthet
experiment. The observed boot-up time with lazy allocation is roughly three times
shorter than with eager allocation. However, the captured virtualizatidn\gths

the use of an I/O-intensive workload is twice as much. Therefore, wéohawlitch

to eager allocation, just for these workloads, so that there are no netects of

the lazy allocation strategy with the virtualization performance.

6.1.1 Uniform Workloads

Figures 6.3, 6.4, 6.5 and 6.6, show the breakdown of the JSDnfiof or mwork-
loads, with CPU-intensive, Memory-intensive, 1/O-intensive, and MgridO-
intensive jobs, respectively.

From these graphs, we make several observations. Firstly, the JSBdchy
the virtualization layer remains stable throughout the workload executiom|lfo
job types. However, the slowdown suffered with Memory-Intensive jelik.06)
is slightly larger than with CPU-intensive jobs:1.03), and considerably larger
with 1/0O-intensive-jobs £1.30). The virtualization overhead with the Memory-
I/O mixture is less£1.20) than with 1/O jobs alone.
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Second, there is a largkESD variation caused by the complex workload over-
head. This overhead is about the same for CPU-intensive and Mentensive
workloads &1.3), but grows significantly for I/O-intensivez@.0) and Mem+I/O-
intensive workloads=3.0).

Furthermore, the VM contention has small variations over time, especially for
the CPU and Memory-Intensive workloads. These variations are liartes work-
load mixture and the 1/0O-intensive workload. What is most important, howesver
that the VM contention overhead imposed with the I/O and Memory+1/0-intensiv
workloads are considerable:2.0 and 1.4 respectively), while insignificant for the
CPU and Memory-intensive workloads:1.03 for both).

Lastly, the overhead imposed by SkyMark and additional network deddlyer)
is very small and is relatively stable. Overall, the total slowdown is the gitsfates
the workload mixture£4.0), followed by the 1/O-intensive workloag-@.5). The
largest component of the total slowdown is the complex workload overhead

6.1.2 Increasing Workload

The same job slowdown breakdown is presented for increasing workloaBig-
ures 6.7, 6.8, 6.9 and 6.10 for the four types of jobs.

For the increasing workloads, we observe that the Complex Workloatiese
increases as the load increases. This stands for all types of jobs. Athevitimi-
form workloads, the complex workload overhead is the most significamtemf
job slowdown, and is more substantial for the workloads that include I/O€ivien
jobs. Likewise, the VM contention overhead also increases with the load.isTh
more apparent for the I/O and Memory+I/O-intentensive workloads.

The virtualization overhead remains stable over time for the CPU and Memory-
intensive workloads, but a slight increase is observed for the I/Osivtenvork-
load and the and mixture of workloads. This virtualization cost increasdean
attributed to the non-fixed disk read/write access time. As the 1/O load insrease
with multiple files being read and written to and from the disk, the cost of a single
block read or write increases. This is because the average seektatimhrtimes
increase. Thus, what we capture as virtualization cost growth for tEhsive
workloads,originates in reality from the other two overheadhke contention be-
tween VMs and the complex workloads. The reason why we capture ittaglvir
ization overhead, is because it is an indirect of time-sharing.

6.1.3 Bursty Workload

We finally show the job slowdown breakdown for Bursty workloads anddbe
job types, in Figures 6.11, 6.12, 6.13 and 6.14.

Here, the VM Contention increases during the two short load bursts. Fhe in
crease differs from job type to job type. It is almost negligible for the CPU-
intensive jobs (at most 1.03) and Memory-intensive jobs (at most 1.056)s lan
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important contributor to the total job slowdown for the workloads that incli@e |
intensive jobs (at most 2.0 and 1.3 respectively).

As with the increasing workload, the virtualization cost is stable for CPU and
Memory-intensive jobs, but variates slightly for the other two workloadsypéth
peaks at the moments of intense load.

The overhead imposed by SkyMark and additional network delays jdtlasr
a considerable increase at the moments of intense load of the Memoryimtensi
and Memory+l/O-intensive workloads. One possible explanation for ithihat
the experimentation node was placed inside the tested laaS cloud. Cantgeque
the workload caused some interference with SkyMark, which uses memagy mo
than the other types of resources. Placing SkyMark outside DAS4/Dedfinata
an option, since VM instances could not be made accessible from outsidedhe
network.

6.2 Policy evaluation

In this section we present our findings on the impact of different pravisgpand
allocation policies, on the performance of the workload execution. We toaig-
termine which policies perform better, and which ones offer the beshipesaihce-
cost trade-off.

6.2.1 Provisioning

We first explore the effect of the provisioning policies. To this end, wethe

same allocation policyi-CFS, coupled in turn with each one of the provisioning

policies. We show the results in Figures 6.15-6.25 and in Tables 6.1-6.3.
Figures 6.15-6.18 present the workload makespats), the job slowdown
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(JSD), the workload speedup against a single ndslg, | and the workload slow-
down against an infinetely large syste8iX) respectively. From these figures, it
is apparent thelt ar t up always achieves the best performan@®: S has similar
performance for the uniform workload, but is not as good for the fbgiavork-
loads. From the threshold-based polici€@seueWai t usually performs better
than the rest, because it reacts faster to load variafiec Ti me and its vari-
ants have similar performance, wilixecTi me usually performing better, since
ExecAvg andExecKNdo not have exact job runtime information.

The actual cost@,) and charged cos(C() are presented in Figures 6.19 and
6.20 respectively. Even thouddt ar t up incurs the highest actual cost, since it
acquires the full set of resources from the start until the end of therempnts, it
is OD- S that costs the most according to Amazon'’s billing scheme. \BhS
the VMs are started and stopped reactively to individual job arrivale.grbup of
threshold-based policies and especially Bxeec family of policies significantly
reduce the cost of workload execution. The cost reduction becomgsrhior
the increasing and bursty workload3ueueWai t appears to have similar actual
cost to theExec policies, however the charged cost is higher, especially for the
variable-load workloads.

Figures 6.21 and 6.22 show the cost efficienCy;¢) and utility (U) for the set
of provisioning policies. The dynamic policies hold on to resources fortsho
periods of time tharst ar t up, especially for bursty workloads. This leads to a
worse cost efficiency value. However, they do achieve better utilityes¢ovhich
means that they provide a better performance-cost trade-off. ThgetheostC,),
cost efficiency C.y) and utility (U) values for the three clouds are presented in
Tables 6.1-6.3.

More insight about the provisioning policies can be gained from Figu23 6
6.25. Here, the number of requested and acquired resources is phottetinoe,
for the DAS4 cloud, when under the three different types of workloads- S
requests and releases resources very often, leading to VM thrastanticularly
visible under the increasing and bursty workloads is @2t S often releases re-
sources before they even become accessiQeeueVWai t reacts faster to load
variation, thus leading to higher cost. TEeec group of policies, and especially
the two run-time estimating policies, have slower reaction to load variation. The
discrepancy betweeBxecTi nme and its variants is caused by a bad initial pre-
diction of the job run-time, that is manually configured prior to the start of the
experiments. For the bursty workload, the inaccurate prediction of théimen
leads to better behavior for the two estimation-based policies.

Impact of the Adaptive Threshold Heuristic (ATH)

In this section we evaluate the effectAdfH on the performance of the provisioning
policies. Using theexecKN provisioning policy, we togglé&TH on or off. The
experiments with the adaptive mechanism turned off involve two scenarios. T
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ChargedCost CostEfficiency Utility
Uniform | Increasing| Bursty Uniform | Increasing Bursty Uniform Increasing Bursty
Startup 128 128 127 1.7 1.7 1.8 1.0 1.0 1.0
ExecTime || 77 (-40%)| 52 (-59%) | 52 (-59%) || 1.6 (-3%) | 1.8 (+5%) | 2.8 (+61%) | 1.4 (+37%)| 2.0 (+105%)| 2.3 (+127%)
ExecAvg || 81 (-37%)| 43 (-66%) | 22 (-83%) || 1.7 (+2%) | 1.5 (-12%) | 1.3 (-27%) | 1.2 (+19%)| 2.1 (+114%)| 5.5 (+454%)
ExeckKN || 86 (-33%) | 53 (-59%) | 22 (-83%) || 1.8 (+8%)| 1.8 (+7%) | 1.3 (-27%) | 1.1 (+13%)| 1.9 (+87%) | 5.5 (+453%)
QueueWait|| 81 (-37%)| 77 (-40%) | 126 (-1%)|| 1.6 (-3%) | 2.4 (+42%)| 5.0 (+183%)|| 1.5 (+46%)| 1.6 (+56%) | 0.9 (-6%)
Table 6.1: Charged cost, cost efficiency and utility for policies on DASH{De
ChargedCost CostEfficiency Utility
Uniform | Increasing| Bursty Uniform Increasing Bursty Uniform Increasing Bursty
Startup 14 14 14 1.9 2.0 2.0 1.0 1.0 1.0
ExecTime || 7 (-50%) | 7 (-50%) | 6 (-57%) | 1.4 (-23%) | 2.4 (+22%)| 2.2 (+9%) | 1.9 (+91%)| 1.7 (+66%) | 2.2 (+123%)
ExecAvg || 8(-43%) | 7 (-50%) | 6 (-57%) || 1.6 (-12%) | 2.4 (+23%)| 2.2 (+9%) | 1.6 (+59%)| 1.7 (+74%) | 2.2 (+124%)
ExeckKN || 7 (-50%) | 6 (-57%) | 6 (-57%) || 1.4 (-23%) | 2.1 (+5%) | 2.2 (+8%) || 1.9 (+92%)| 2.0 (+101%)| 2.2 (+124%)
QueueWait|| 12 (-14%)| 11 (-21%) | 13 (-7%) || 2.4 (+28%)| 3.7 (+85%)| 4.3 (+114%)| 1.1 (+8%) | 1.2 (+23%) | 1.1 (+6%)
Table 6.2: Charged cost, cost efficiency and utility for policies on FIU.
Charged Cost Cost Efficiency Utility
Workload Uniform | Increasing| Bursty Uniform Increasing Bursty Uniform Increasing Bursty
Startup 40 40 40 1.9 1.9 1.9 1.0 1.0 1.0
ExecTime || 26 (-35%) | 15 (-62%) | 24 (-40%) || 1.6 (-15%) | 1.7 (-12%)| 4.0 (+111%)|| 1.4 (+41%)| 2.4 (+137%)| 1.5 (+51%)
ExecAvg || 34 (-15%) | 17 (-57%) | 26 (-35%) || 2.2 (+17%)| 1.9 (-1%) | 4.3 (+126%)|| 1.0 (-1%) | 2.2 (+116%)| 1.4 (+40%)
ExecKN || 30 (-25%)| 16 (-60%) | 25 (-38%) | 2.0 (+7%) | 1.8 (-5%) | 4.1 (+115%)|| 1.2 (+20%)| 2.3 (+133%)| 1.5 (+45%)
QueueWait|| 29 (-28%)| 18 (-55%) | 38 (-5%) || 2.0 (+3%) | 2.0 (+4%) | 6.2 (+227%)|| 1.3 (+29%)| 2.1 (+113%)| 1.0 (+2%)

Table 6.3: Charged cost, cost efficiency and utility for policies on EC2.
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first scenario uses an overoptimistic prediction of the VM instance boot-up time
as it is configured to 40 seconds, about two times less than the obseseoedoe
acquisition times for Amazon EC2 [65]. Likewise, the second scenario aises
pessimistic prediction for the boot-up times, set to 6 minutes.

Figures 6.26-6.31 present our findings on the impadhTdf. On the one end,
the 40-second boot-up time configuration is overeager to provide/reksmaces,
while at the other end, the 6-minute configuration is more hesitant. This results in
immensel SD (Figure 6.29), but bette€.  » (Figure 6.30) andJ (Figure 6.31) than
the 40-second configuratioATHachieves the best utility, except in the case of the
bursty workload. However, if we also consider the achie¥8b, we can see that
ATH achieves the best performance-cost trade-off. Ugihb, the provisioning
policy is able to adapt to the cloud’s performance.

Additionally, ATH is expected to improve utility in clouds with considerable re-
source acquisition time variability, even though it has not been tested uncler s
circumstances. The policy should be more sparing when the cloud uaderms,
and more performance-inclined when resource acquisition times are indprove
Overall, for clouds with big resource acquisition time variability, it is expected
that ATH will improve utility.

Impact of the Increase Factor ( F)

Here we evaluate the impactloF, to the performance of the provisioning policies.
As before, the provisioning policy is fixed ExecKN, andl F variates between
theSi ngl e, Mul ti pl e andGeonet ri ¢ schemes.

The acquisition and release of instances over time on EC2, while using tkee thre
increase factors, is presented in Figures 6.32-6.34. From thesesfigiui® ob-
served thaGeonet ri ¢ achieves the shortest makespan, followed/bit i pl e
and with Si ngl e trailing. The reason behind this is becaW@onet ri ¢ and
Mul ti pl e respond faster to load variation. The job slowdown illustrated in Fig-
ure 6.35 shows thaBeonet r i ¢ outperforms the other two schemes. However,
when using variable-load workloadSgonet ri ¢ is the least cost-efficient, and
achieves the worst utility.Geon®et r i ¢ provisions pro-actively, by acquiring a
larger amount of resources than what is currently needed, keepirsystem un-
der lower load. Faster and more intense reaction to load variation leads to bette
performance, but also to resource under-utilization and lower perfarereost
trade-offs.

6.2.2 Allocation

In this experiment we want to study the performance of different allocgtidia
cies and the static provisioning policg$t art up. Resources are acquired at the
beginning of the experiment, and then jobs are sent to the system.

We use the=CFS, the SJF, and theFCFS- NWallocation policies in the three
testbeds. Figure 6.38 lists the results only for the job slowdown metric, since we
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did not observe significant differences in cost or makespan. Theriexpnt shows
that SJIF gives a lower slowdown, since shorter jobs are processed first, which
means jobs in wait less time in the queue. OvelOFS performs similarly to

SJF for the uniform and increasing workloads, however its performdegrades
when under a bursty load. Lastly, tR€FS- NWpolicy, which assigns jobs to VMs
with round-robin, creates resource competition, and thus has wonrgdésrigsall
experiments.

6.3 Impact of Workloads on Cloud Reliability

Large-scale experiments were planned and performed for the psrpiobes work,
on DAS4/VU and DAS4/Delft sites. However, we have experienced eS8l
instantiation failures. This situation effectively made the results unusabiedro
performance-analysis perspective. A large portion of the requedtkdhstances
were unexplainably failing during the pending state.

Further investigation showed that the failures were caused by the CPside
workloads submitted to the cloud. As can be observed in Figures 6.39 abhd 6.4
when the VM instances were requested prior to the workload submissiog usin
the St ar t up provisioning policy, no instantiation failures took place. However,
when using a dynamic policy, such BsecAvg, few of the requested instances
reached the “running” state. This can be observed from the inabilityqufested
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CPU-i ntensi ve, Increasing workload. The failures Figure 6.40: Observed failures on DAS4/Delft, while using a
only take place with dynamic policies, suchE&secTi ne. CPU-i ntensive, | ncreasi ng workload.

instances to become accessible instances. For example, in FigurEx6e@d;i e
starts requesting more instances at minute 30. At about minutBxa%; Ti me
has already requested almost 400 new instances. Two minutes later,enoaev
massive amount of instantiation failures take place, indicated by the sudolen d
in requested instances. What we eventually manage to acquire betweensrBibiute
and 40, is around 100 instances, only 25% of what was actually requeste

The difference between the static and dynamic provisioning scenariothaias
for the dynamic case, there were already several VMs running onpadical
node, each of which with scheduled CPU-intensive jobs.

While we were able to pinpoint the CPU-intensive workloads as the origin of
the failures, we could not identify why they have this influence on clouduiéitia
We were only able to trace the failures down to the virtualization layer, where th
seems to be some mis-configuration of the current DAS4 hypervisor (KVM)

6.4 Success Stories

Apart from the issue described in the previous section, several atblelems re-
garding the OpenNebula VIM installation on the DAS4 supercomputer wenne ide
tified with the use of SkyMark and were addressed afterwards. In etheds,
SkyMark has already proved its usefulness in testing laaS cloud dephbynee
goal for which it was not designed, but for which no other public tooistex

Firstly, we noticed that OpenNebula required a considerable amount of time to
respond to acquire/release requests and VM status updates, espehitiythe
cloud was under heavy load. A migration from an Sqlite backend to a MySQL
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backend, helped in alleviating this performance issue.

Another issue we encountered was with the OpenNebula default imagietrans
configuration, which was based on the use of the underlying Network e
(NFS) (See Subsection 2.3.5). When we tried to deploy large scale expésiore
DASA4/Delft, the load exercised on the supercomputer network was sq taage
DAS4 collapsed and had to be hardware-rebooted. This issue did pedraip the
study of Ueda et al. [79], where they examined the impact of this configara
to the cloud performance. We then had to use the localDisk transfer method with
caching, in which the VM images are explicitly transferred to the local file syste
of the nodes. All subsequent instantiation requests on a specific ravdlee cerved
using the cached image. A shared filesystem is currently needed foriperg live
migration of instances, but it comes with a great network performance penalty

An additional performance issue was the considerable staging time fordastan
using eager allocation, especially when tens of instances are provisindeare
currently in the staging phase. The boot-up time grew significantly with the rumbe
of instances requested, something that would have a severe effeet alfottation
and provisioning policy results. For this reason, we adopted the useydftage
allocation, that would reduce the time needed to prepare an instance.

Finally, through the use of SkyMark, we discovered a bug in the XML-RPC
interface of OpenNebula. More specifically, the interface did not infSkyMark
on the event of an instance failure. The bug has been reported [&9yebhad
to switch to an “internal-state” attribute, that successfully informed us ofnosta
failure events.

To conclude, we acknowledge that setting-up a reliable, scalable artit elas
cloud on private infrastructure might be more of a challenge than initially dega
Moreover, we emphasize on the necessity of using performance evaliratioe-
works, such as SkyMark, to certify an laaS deployment.
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Chapter 7

Conclusions and Future Work

To bring this thesis to a close, we present our conclusions in Section 7 doand
tential future work in Section 7.2.

7.1 Conclusions

We provide our conclusions for each of the two thesis research comizoineli-

vidually: first, the study on the performance of laaS clouds, and subsély the

study on the provisioning and allocation policies. Lastly, we discuss oungjsd
regarding cloud reliability.

7.1.1 laaS performance evaluation

The performance characteristics of laaS clouds need to be undelsttied To-
wards providing insight for this problem, we have developed SkyMaperéor-
mance analysis framework for laaS environments. We used SkyMarkstty fir
generate a set of complex, synthetic workloads that stress one or tw@nentp
of the cloud, and exhibit three different arrival patterns. Using ahaette, but
mostly automated experimental methodology, we were able to isolate the over-
heads imposed by the software stack and the resource time sharing.

Our main findings for this section are listed below:

1. The virtualization cost is small for CPU-intensive workloags3%) and
Memory-intensive workloads~ 5%), but is significantly more for 1/O-
intensive workloads<£ 40%) and Memory+ I/O workload mixtures:(20%).
These results are in accordance with the virtualization overheads when the
were studied individually in a virtualized, but non-cloud environment [11,
16,17,28,56,93].

2. The contention between VMs imposes a small overhead for CPU and Memor
intensive workloads (up ter 4% and~ 7% respectively). The performance
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isolation across VMs is considerably worse in the case of the I/O and Mem-
ory+l/O intensive workloads¥ 100% andx 40% respectively). These find-
ings suggest that it is paramount to focus on providing VM performance
isolation for disk access.

. The performance variation in response to the imposed load is significant,
especially for I/O-intensive workloads. This variation in performanagdo
make it especially hard to provide any performance QoS guarantees tb clou
users. Currently, public laaS providers only make availability guarantees

. SkyMark imposed negligible overhead to the workload execution. Hexyvev
the decision to place the experimentation node within the cloud caused some
performance interference in the case of Memory-Intensive Burstiloamls.
Although we could have used different configurations, they would baea

less considerate of other DAS4 users.

. Even though we conducted the experiments using one cloud configuratio
we previously considered several configurations. The performeariates
considerably with the current cloud platform configuration, a conclusliem
drawn by [79].

7.1.2 Policy evaluation

Current and potential laaS users need to be provided with deepertmigthe
achieved performance and charged cost that their workloads would inith a
selected set of provisioning and allocation policies. Without a deeperstadd-
ing of the performance and cost that the used policies can achievetiablaaS
users, and the industry in general, would hesitate to migrate to the cloud.

In this work we have conducted a comprehensive, empirical study ofrgis-p
sioning and three allocation policies, using SkyMark, and a subset afoooplex
workloads. We performed experimentation on three laaS clouds, two ichwh
were set up on private infrastructure using open-source cloud reamaglemen-
tations, and the other was Amazon’s EC2 public cloud.

Here, we list our main findings regarding the policy investigation:

1. OO ExecTi ne and its two variants (especiali§D- ExecKN), are a good
performance-cost trade-off among the investigated provisioning pqlidres

like the OD- ExecTi ne policy, OD- ExecKN does not assume known job
run-times.

. St ar t up, the only static policy we used, delivers stable performance, but
incurs up to 5 times higher cost. The efficiency of this static policy is lower
for workloads

. Our Adaptive Threshold Heuristi&TH) is able to automatically adjust the
provisioning policy’s behaviour to the cloud’s current provisioningfger
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mance, thus improving the policy’s performance-cost trade-off. Ar-add
tional benefit of usingA\TH is that configuring the policy does not require to
know the cloud’s current acquisition times.

4. Regarding F, faster reaction to load variation leads to better performance,
but also to a worse performance-cost trade-off. Overall, we findttieat
Mul t i pl e increase factorl(F) achieves the best performance-cost trade-
off.

5. TheSJF allocation policy achieves the best performance among the exam-
ined policies, however, it makes the assumption that the job run-times are
known.

7.1.3 Cloud reliability

We found that it is difficult to set-up a reliable and well-performing privdoeid on

our local infrastructure, even though DAS4 is equipped with state-e&theom-
mercial hardware. When we configured OpenNebula to use its NFS imagéetra
method during our large-scale experiments, the supercomputer crastedsb of
network overload. When using the eager image allocation method, the extremely
long provisioning times when tens of VMs were provisioned, were consitlier

be obtrusive to performing our experiments. An issue whose cause weenge
able to identify, was the high VM instantiation failure ratio under the localDisk
configuration with caching, when the physical nodes were already gogtifs
with our workloads. SkyMark was vital in discovering these reliability issofes
the used laaS environments, even though it was not originally designehigo
purpose.

Virtual Machine instantiation failures were not exactly rare even for theZema
EC2 cloud, as previously reported in [42]. This was usually the case wiee
requested tens of VMs simultaneously. Occasionally, one or a couple mof the
would fail to boot.

7.2 Future Work

The SkyMark framework is currently going through the certification pseoaf
the Standards Performance Evaluation Corporation (SPEC) [76].t Apar the
certification process, we plan to extend this work to consider new prowuigjon
and allocation policies that adapt to changing workload, evolving reesuend
complex Service Level Agreements. We will work on creating a taxonomy of
provisioning and allocation policies, and examine classes of policies thaawvee h
not previously explored.

Another research direction is to consider more diverse and realistid vaoid
such as synthetic Bag-of-Tasks (BoT) based workloads generétethesmodel in
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[39], mixtures of synthetic parallel workloads and synthetic BoT-basa#tieads,
or real traces from grid workloads [37].

In this work, we have used mainly traditional metrics to evaluate and compare
the performance of clouds and policies. In the future, we plan to investigate
cloud-oriented metrics that can quantify some of the major cloud charactgristic

such as elasticity and scalability.
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