
Performance Evaluation of Cloud Infrastructure
using Complex Workloads

Athanasios Antoniou

Performance Evaluation of Cloud Infrastructure
using Complex Workloads

Master’s Thesis in Computer Science

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Athanasios Antoniou

20th January 2012

Author
Athanasios Antoniou

Title
Performance Evaluation of Cloud Infrastructure using Complex Workloads

MSc presentation
February 3rd, 2012

Graduation Committee
Prof.dr.ir. D.H.J. Epema Delft University of Technology
Dr. Ir. Alexandru Iosup Delft University of Technology
Dr. Ir. Andy Zaidman Delft University of Technology

Abstract

Infrastructure as a Service (IaaS) is a delivery model of cloud computing, which
provides the ability to users to acquire and release resources accordingto their
demand and pay according to their usage. Resources are provisioned from the
cloud as Virtual Machines (VMs), many of which can be deployed on a single
computing node, realizing a multi-tenancy model. While virtualization and multi-
tenancy are two sources of workload-execution overhead that have been studied in
the past, we still need a thorough, empirical investigation of the joint impact of
these overheads, on workload execution.

Additionally, commercial and private IaaS providers offer mechanisms thatfa-
cilitate the lease and use of single infrastructure resources, but to execute multi-job
workloads IaaS users still need to select adequate provisioning and allocation poli-
cies to instantiate resources and map computational jobs to them. Even though
some studies on the policies employed in cloud environments already exist, cur-
rent and potential IaaS users need deeper insight on the achieved performance and
incurred cost of the used policies, derived through empirical investigation.

In this work, we address these problems with the use of SkyMark, a performance
analysis framework for IaaS clouds. SkyMark has three key features: first, it is
designed to analyze IaaS deployments through a sequence of automated tests and
the subsequent automated analysis of results. Second, it can analyze theimpact of
individual provisioning and allocation policies to the performance of the workload
execution. Lastly, it is able to generate complex workloads, stressing any of the
compute, memory and disk components.

With the use of SkyMark, we first study the overheads that the cloud software
stack imposes to the workload execution. Subsequently, we analyze the perfor-
mance and cost of six provisioning and three allocation policies through experi-
mentation in three IaaS environments, including Amazon EC2.

iv

Preface

I developed a passion for video games during my early teen years. Everyyear or
so, a new, more resource-demanding game would come out, so I had to save-up to
buy a new, more capable “gaming rig”. When I first heard about cloud computing,
I envisioned a world in which no kid would ever have to suffer again with unnerv-
ingly low frame rates or pixelated graphics. Since this has yet to happen, I decided
that I offer a helping hand to the distributed systems community. For the sake of
the kids!

I would first like to thank my supervisor, Dr. Alexandru Iosup, for his continu-
ous support and encouragement. There were moments throughout this work that I
would be full of frustration or disappointment, but he was always there to guide me
to the right track and provide the motivation I needed. I would also like to thank
prof. Epema for the trust that he has shown to me, for giving me the opportunities
that he has, and for being understanding and supportive. Both supervisors have
been my mentors over the last year, and I hope I absorbed a bit of their knowledge,
work methodology, and wisdom. I would additionally like to express my gratitude
to David Villegas, he has been an excellent co-worker and a good friend. I would
additionally like to thank Kees Verstoep, Paulo Anita, and Munire van der Kruyk
for their immediate help when DAS4 was too much to handle. My thanks also goes
to the whole PDS group, for all the help that I have received.

I would also like to thank my friends, Dimitris, Vitto, Momchil, Stanislava and
Siem for their help and advice, and for putting up with me during the tough mo-
ments. Last but not least, I would like to thank my parents, Savvas and Yiannoulla
for their endless support, without it I would have managed nothing.

Athanasios Antoniou

Delft, The Netherlands
20th January 2012

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem Statement . 1
1.2 Approach . 2
1.3 Thesis overview . 4

1.3.1 Thesis Contributions . 4
1.3.2 Thesis Structure . 4

2 Background 5
2.1 Systems Performance Evaluation 5

2.1.1 Techniques . 5
2.1.2 Terminology . 6

2.2 Hardware Virtualization . 8
2.2.1 Virtualization techniques 9
2.2.2 Virtual Machine Managers (VMMs) 9
2.2.3 The VM life-cycle . 10

2.3 Cloud Computing . 11
2.3.1 Cloud Features . 11
2.3.2 Service Models . 12
2.3.3 Deployment models . 13
2.3.4 A typical IaaS: The Amazon Web Services (AWS) 13
2.3.5 Virtual Infrastructure Manager (VIM) 14

3 Related work 17
3.1 Cloud performance analysis . 17
3.2 Provisioning and Allocation Policies 19

4 The SkyMark Performance Evaluation Framework 21
4.1 SkyMark Overview . 21

4.1.1 Grenchmark . 22
4.1.2 C-Meter . 24

vii

4.1.3 Additional Extensions 25
4.2 Experimentation Process . 26
4.3 Workload Generation . 28

4.3.1 Design Requirements . 28
4.3.2 Workload Characterization 29
4.3.3 Workload Patterns . 29
4.3.4 Workload Units . 30

4.4 Policies . 31
4.4.1 Provisioning . 31
4.4.2 Allocation . 34

5 Experimental Setup 35
5.1 Parameter identification . 35

5.1.1 Interactions between parameters 37
5.1.2 Selecting factors . 37

5.2 Experimental Design . 38
5.2.1 Experiment Specification 38
5.2.2 Workload Specification 40
5.2.3 System Specification . 40
5.2.4 Instance Specification 40

5.3 Performance Metrics . 41

6 Experimental Results 45
6.1 IaaS evaluation . 45

6.1.1 Uniform Workloads . 45
6.1.2 Increasing Workload . 47
6.1.3 Bursty Workload . 47

6.2 Policy evaluation . 49
6.2.1 Provisioning . 49
6.2.2 Allocation . 56

6.3 Impact of Workloads on Cloud Reliability 58
6.4 Success Stories . 59

7 Conclusions and Future Work 61
7.1 Conclusions . 61

7.1.1 IaaS performance evaluation 61
7.1.2 Policy evaluation . 62
7.1.3 Cloud reliability . 63

7.2 Future Work . 63

viii

Chapter 1

Introduction

Current trends in the computing field envision its transformation from a traditional
in-house power generation model, into a model that consists of services, provided
in a manner similar to utilities such as electricity, gas, and water. A basic character-
istic of this provisioning model is that the users consume resources and arebilled
according to their personal demand. The shift to this new computing paradigm has
been accelerated by recent advances [27, 29] in the high-speed, yet low-cost inter-
connection of off-the-shelf computational and storage resources, which made the
construction of massive data-centers possible.

Cloud computing attempts to realize the vision of utility computing, through the
provisioning of virtualized hardware, software platforms and software applications
as services over the Internet. More specifically, Infrastructure-as-a-Service (IaaS)
clouds offer the ability to acquire resources on-demand, usually in the form of
virtual machines (VMs), i.e., software implementations of machines with a pre-
agreed computing power, memory and disk size, operating system, libraries and
applications. Platform-as-a-service (PaaS) clouds offer platform services such as
application development, testing and run-time environments. Lastly, Software-as-
a-Service (SaaS) clouds deliver specialized software as web-basedservices.

IaaS clouds such as Amazon Web Services (AWS) [7], GoGrid [2], andElasti-
cHosts [1], have recently achieved commercial traction. There is, therefore, a need
for a deeper understanding of the performance characteristics of real IaaS clouds.
The goal of this thesis is to provide insight regarding the performance of such en-
vironments.

1.1 Problem Statement

Clouds essentially time-share resources between users. In IaaS environments, vir-
tualized resources can be deployed by multiple users on the same physical machine.
The VMs that reside on the same physical host time-share the available physical
resources. Early work on the performance of resource time-sharing,which shows
performance degradation effects, already exists [9, 10]. Moreover, virtualization

1

is an additional layer between user and hardware, and consequently it imposes
an overhead, which has been studied separately for various virtualizedcompo-
nents [11,17,28,56].

Even though several research projects that study theperformance of virtual re-
sourcesalready exist, we still need a more in-depth understanding of the factors
that influence the efficiency of the IaaS paradigm, which has adopted the multi-
tenancy and virtualization concepts. An indication that there is still a lot of room
for improvement, is that public IaaS providers do not currently offer anyperfor-
mance quality-of-service (QoS) guarantees, despite the desirability of such guar-
antees [8].

In IaaS clouds, users provision, i.e., acquire and release resourcesaccording to
their current needs. They can subsequently employ their own allocation scheme,
to schedule work on the leased resources, based on the requirements oftheir work-
loads. The selected provisioning and allocation policies have been shown tohave
a considerable impact on the traditional performance metrics [19]. Choosing poli-
cies that are incompatible with the workload could lead to wasted resource time
and excessive charges [23]. Therefore, IaaS users need also abetter understanding
of theperformance and incurred cost of the selected resource provisioningand al-
location policies. This problem has been approached with simulations by several
studies [19, 23, 46], however, there is a need for empirical evaluation since recent
results [38, 40, 45] in cloud performance evaluation show that cloud performance
is lower and more variable than considered by simulation models.

The problems at hand give rise to a number of research questions that need to
be addressed. The goal of this thesis is to provide an answer to the following two
main questions:

• RQ1: What are the performance overheads of executing workloads with the
IaaS cloud delivery model?

• RQ2: What is the impact of the selected allocation and provisioning policies
on the performance and cost of IaaS services?

1.2 Approach

Our approach to addressing the research questions posed in Section 1.1is SkyMark
and the design of a set ofcomplex workloads. In a nutshell, SkyMark is an exten-
sible and portable framework that provides the ability to generate and submit real
or synthetic workloads to IaaS cloud systems, collect performance-related results,
and subsequently perform analysis on multiple result data-sets. SkyMarkcan cur-
rently facilitate experimentation with several clouds, provisioning, and allocation
policies, but it can be easily extended with new clouds and policies.

SkyMark is based on preexisting work of the Parallel and Distributed Systems
group (PDS), namely, C-meter [91] and GrenchMark [34]. Grenchmark is a work-
load generation and submission framework for grid environments. C-Meterwas

2

later developed to port core Grenchmark capabilities to the cloud. In this work, we
extend the functionality of the previous frameworks with several features, mainly
with the ability to generate our set of complex workloads, experiment with several
clouds using different provisioning and allocation policies, and performanalysis
on multiple result data-sets using our collection of metrics and visualization tech-
niques.

We chose to address the posed research questions usingmeasurementsover sim-
ulation and analytical modeling, because the other methods require simplifying
and, currently, unverifiable assumptions to be made. An IaaS cloud is a form of a
distributed system with a complex software stack. Thus, many system and envi-
ronment parameters need to be taken into consideration. This makes simplifying
assumptions, and consequently, simulation and modeling less credible. However,
the environment parameters need to be identified even in the case of empirical
studies, otherwise the acquired results will be incomparable.

To identify the performance characteristics of a system, we would ideally make
use of realistic workloads that represent the activity observed on that specific sys-
tem or other systems that belong in the same class. In the case of IaaS clouds, it
is not yet possible to define realistic workloads, due to the insufficient amount of
public workload traces and common practice reports for IaaS environments. To
address this matter, we form several complex, synthetic workloads, whichtake
into consideration the trends in parallel and grid computing workloads [37],a well
studied area.

Our complex workloads comprise large amounts of micro-benchmarks of differ-
ent durations, which stress one or more components of the examined IaaS cloud.
They further exhibit several arrival patterns. Unlike using micro-benchmarks or
applications individually, the use of complex workloads will allow us to observe
cloud performance variations caused by interactions between unrelated jobs, exe-
cuting on the same or different virtual machines.

Our approach for RQ1 requires performing experimentation on both virtualized
and non-virtualized resources. Since we want to examine the overheadsimposed
by the cloud software stack, performing the black-box evaluation that is charac-
teristic to public, commercial IaaS clouds is not adequate. For this reason, the
experiments designed to address RQ1 are performed on a private IaaS cloud that
we can fully control.

We approach RQ2 by firstly identifying a set of provisioning and allocation poli-
cies. Additionally, we create a performance-optimization heuristic that is applica-
ble to the set of provisioning policies. We evaluate the impact of the policies using
only a subset of the formed complex workloads, and additionally by varyingeither
the allocation or the provisioning policy, in two separate sets of experiments. The
interactions between allocation and provisioning policies is not within the scope of
this work, but we have conducted elsewhere a preliminary study of this effect [81].

3

1.3 Thesis overview

Here, we present an overview of this thesis: first, an overview of the thesis contri-
butions, and second, the outline of the thesis structure.

1.3.1 Thesis Contributions

We identify the following contributions of this thesis:

1. Wedesign SkyMark, a framework for performance analysis of IaaS systems
(Chapter 4).

2. We identify a set of provisioning and allocation policiesfor IaaS systems,
and aheuristicthat is applicable to the set of provisioning policies (Chapter
4).

3. We assess the performance of an IaaS cloud, by conducting an empirical
study with the use of SkyMark and a set of complex workloads (Chapter 6).

4. We evaluate empirically the impact of the selected provisioning and allo-
cation policieson the IaaSperformance and cost, using three IaaS clouds
(Chapter 6).

1.3.2 Thesis Structure

Firstly, we describe the basic concepts of system performance analysis and cloud
computing in Chapter 2. Chapter 3 presents related work in the field of cloud sys-
tems performance evaluation. Chapter 4 describes SkyMark, our approach to an-
swering the posed research questions. In Chapter 5, we formalize the experimental
setup. We then present the results collected from the experimentation in Chapter
6. Finally, Chapter 7 summarizes the work performed for this thesis, presents our
conclusions, and proposes a direction for future work.

4

Chapter 2

Background

This chapter introduces the basic concepts that relate to performance evaluation and
cloud computing. Section 2.1 presents some terminology used in the disciplined
systems performance evaluation. Virtualization, an important concept for cloud
computing, is discussed in Section 2.2. Lastly, a taxonomy of cloud computing
services and some real-world cloud computing implementations are introduced in
Section 2.3.

2.1 Systems Performance Evaluation

In this section, we present the techniques used for systems performanceevaluation
and some essential terminology used in this field. Performance evaluation of com-
puter systems is a well-defined, structured process, with the goal of understanding
and comparing the performance characteristics of the systems that participate in
the analysis [44]. The necessity of performance analysis stems from the need to
find the solution that best meets non-functional requirements, such as performance,
reliability, and cost.

2.1.1 Techniques

Three different techniques can be used for performance evaluation of systems [44],
namely,measurementover real systems,simulationandanalytical modelling. The
appropriateness of these techniques depends on applicability, available resources,
required accuracy and the amount of time that can be spent on the evaluation.

Measurement results are more widely acknowledged and convincing than mod-
eling or simulation results, since no simplifications are applied to the evaluation
procedure. Nevertheless, the accuracy of the results can vary greatly, since a lot of
parameters must be recognized and controlled, otherwise environment changes will
interfere with the results. Moreover, measurement is not always possible, since the
evaluated system might not already exist. It also requires equipment that might be
expensive and the process of measuring may take a considerable amountof time.

5

Simulation is less costly but can be just as time-consuming as measurement and
much more error-prone. The accuracy depends on the simplifications andassump-
tions that are used. Simulation results are not acknowledged as much as measure-
ment results.

Analytical modeling is usually the fastest technique to use, and may provide the
best insight regarding the effects of the experiment parameters and theirinterac-
tions. On the other hand, analytical modeling requires sufficient modeling skills
and a lot of simplifications and assumptions that reduce the accuracy of the model.
Most importantly, modeling results are acknowledged less than the other two tech-
niques, so confirmation through simulation or measurement usually follows [44].

2.1.2 Terminology

Workload

The requests made by the users of a system and are processed by the system form
a workload. Atest workloadrefers to any workload used in performance analysis
studies.

Test workloads can bereal or synthetic. A workload that is observed during
the normal operation of a system is a real workload. Real workloads canbe used
in evaluation studies usingtraces, i.e., representations of workloads that describe
the requested and utilized resources, the timestamps of all major scheduling events
(e.g., submission time), the used job credentials, and the job execution environ-
ment. Synthetic workloads are used in studies and are generated so as to represent
real workloads. A workload model is derived from a real workload, by observing
its key characteristics, a process calledworkload characterization. The workload
model can then be used to generate synthetic workloads.

Benchmark

Benchmarkingrefers to the process of performance comparison of several systems
by applying the measurement technique. The workloads used in these measure-
ments are calledbenchmarks, and a grouping of related benchmarks is called a
benchmark suite. Micro-benchmarksare small programs that exercise one specific
component of a system [50].

Many benchmarking suites for testing various systems are made available for
experimenters, an example of which is the Standard Performance EvaluationCor-
poration (SPEC) benchmarks [76]. SPEC is a non-profit organization that devel-
ops a standardized set of performance benchmark suites, such as SPEC CPU2006
(CPU,memory and compiler benchmark), SPECweb2009 (web server benchmark)
and SPECvirtsc2010 (performance evaluation of datacenter servers used in virtu-
alized server consolidation).

6

System Under Test (SUT)

The system that is evaluated is often referred to as System Under Test (SUT).
Occasionally, the evaluation examines the impact that alternative solutions fora
specific component have, on the performance of the SUT. The component is named
Component Under Study (CUS).

In our case, the SUT and CUS coincide for the IaaS evaluation part (an IaaS
cloud). For the policy evaluation part, the SUT is still an IaaS cloud, but the CUS
are the used provisioning and allocation policies.

Response variable

The response variable represents the outcome of an experiment, which typically is
the measured system performance.

Parameter

The experiment parameters refers to the system, environment and workload char-
acteristics that affect the SUT performance. All the parameters should bedeter-
mined during the design of the experiments, otherwise unidentified parameters
could make the results useless.

Factor

A factor is a parameter whose adjustment influences the response variable, and has
several alternatives. The values that a factor can assume are called itslevels. The
primary factorsof a performance evaluation study, are the factors whose impact
needs to be appraised. Likewise, factors whose impact is not studied arecalled
secondary factors.

Performance Metric

A performance metricis a value that describes the performance of the SUT [50].
This value is derived from the values that were measured during the SUT perfo-
mance analysis. Lilja [50] identifies several characteristics that form a ‘good’
performance metric:

1. Linearity : A change in the value of the metric should designate a propor-
tional change in the actual performance of the system.

2. Reliability : When a system A scores better than a system B with respect to
a reliable metric, then we can deduce that system A outperforms system B.

3. Repeatability: A repeatable metric provides the same value each time the
same experiment takes place.

7

Virtualization Layer (VMM)

VM Instance

Guest OS

Virtual

Resources

Applications

VM Instance

Guest OS

Virtual

Resources

Applications

VM Instance

Guest OS

Virtual

Resources

Applications

«

Physical Server Hardware

Host OS

Figure 2.1: Multiple Virtual Machines hosted on a single server. The presented
virtualization technologies, require a Host OS layer, except from the bare-metal
virtualization technique.

4. Easy to measure: Metrics that are difficult to measure are frequently mea-
sured incorrectly.

5. Consistency: The definition of the metric is independent from the system it
is measured on.

Application Profiling

The execution performance characteristics of an application are provided by its
profile. An application profile might specify, for example, the amount of time
spent in each of the application phases or states [50]. The profile can beused to
identify the most time consuming parts of an application.

2.2 Hardware Virtualization

Hardware virtualization enables a single physical platform to run multiple operat-
ing systems and software stacks [84]. Virtualization creates an abstractionlayer
between user and physical resource, but at the same time it provides the user the
illusion of direct interaction with the physical resource [47].

The virtulization model is depicted in Figure 2.1. The Virtual Machine Monitor
(VMM), also known as the hypervisor, establishes the abstraction layer that encap-
sulates and isolates each Virtual Machine (VM). The VMM runs on the actual ma-

8

chine and maps physical resources (processing power, memory, storage, network)
to VMs. The Operating System (OS) running inside a VM can, therefore, only
make use of the virtual resources mapped to the confining VM. Consequently, the
physical resources of a machine can be partitioned between multiple VMs, without
the VMs being aware of the multi-tenancy.

The virtualization paradigm is a good fit to cloud computing, since it can im-
prove resource utilization [21]. Multiple cloud users can share the resources of a
single host, since their leased virtual resources are multiplexed on the same phys-
ical machine. Additionally, virtualization provides isolation, because each cloud
user receives a separate, confined environment to run his workloadsin.

2.2.1 Virtualization techniques

A number of different hardware virtualization techniques are used by theavailable
VMMs:

• Full virtualization : The VMM simulates the functionality of the physical
hardware, allowing for an unmodified OS to be hosted [74]. The guest OS
must support the same instruction set as the hardware.

• Paravirtualization : The VMM provides a special API to the VMs, which
consequently requires guest OS modification, i.e., OS distributions that are
not paravirtualization-aware cannot run on a paravirtualizing VMM. As a
result of the API use, the execution of critical instructions that are more
difficult to run in a virtual environment, takes place on the host OS instead
of on the guest OS [11,88].

• Hardware-assisted virtualization: An extension of the previous two virtu-
alization techniques. It is also referred as Hardware Virtual Machine (HVM).
The VMM receives support from the hardware (primarily the host proces-
sors), which enables it to efficiently deploy fully-virtualized or paravirtual-
ized machines. With the hardware-assisted virtualization technique, certain
operations are performed by the hardware instead of the VMM software,
which minimizes the imposed overhead [80].

• Bare-metal virtualization : In this case, there is no host OS [82]. Instead,
the VMM is installed directly on the physical server. The elimination of the
host OS layer from the virtualization stack results in a performance improve-
ment over the hosted VMM techniques.

2.2.2 Virtual Machine Managers (VMMs)

Several Virtual Machine Managers (VMMs) have been developed, and are cur-
rently used in cloud computing environments. Here, we give a short description
for the most prominent ones, namely KVM, Xen and VMWare.

9

1. Requested

2. Pending

3. Booting

4. Running

5. Shutting-down

6. Terminated

Create disk image(s)

Schedule to physical

host

Contextualize

Transfer disk image(s)

Save/transfer image

Initiate Hypervisor

Recompute resource

availability

Assess request

feasibility

Instance accessible

C
h
a
rg
e
d

T
im
e

Figure 2.2: The life-cycle of a VM.

TheKernel-based Virtual Machine (KVM)[48] is part of the Linux kernel, and
implements the hardware-assisted full-virtualization technique. KVM makes use
of modules embedded in the Linux kernel for operations such as memory man-
agement and scheduling. The user-space counterpart is therefore small and sim-
ple [84].

Xen[11] implements paravirtualization as well as hardware-assisted virtualiza-
tion. It is licenced under the GNU General Public License (GPLv2). However, it
is used by other commercial VMMs as their core, such as Citrix XenServer [33].

VMware[83] is a company with several virtualization solutions and a pioneer in
the field. It offers both hosted and bare-metal VMMs. VMWare Workstation and
Fusion are examples of hosted VMMs (paravirtualized and full) while VMware
ESX and ESXi are bare-metal hypervisors.

2.2.3 The VM life-cycle

Figure 2.2 shows the stages that a VM goes through, when it is deployed in acloud
environment. Initially, the VM is requested (State 1 in Figure 2.2) from the cloud
and is then placed in apendingstate (State 2). In the start of the pending state, the
VM awaits until it is scheduled to a physical resource. The scheduling decision
relies on the cloud environment.

After the VM has been assigned to a host, the cloud manager allocates the root
disk image that includes the operating system of the VM. Additional disk images
can be requested for a VM instance. The cloud subsequently transfersthe VM
images to the selected host. A process calledcontextualizationmight take place
before or after the transfer of the disk images. During contextualization, the disk
images are modified so that they work in a specific environment, e.g., the VM

10

host-name and network are set up [51].
As soon as all the required files are located on the selected host, the hypervisor

boots the VM, i.e., the VM enters thebootingstate (State 3). When the operating
system is up, the VM proceeds to therunningstate (State 4). A shutdown request
forces the VM to progress to a correspondingshutting-downstate (State 5). De-
pending on the cloud policy and user preference, the disk images might, or might
not be saved for future use. The saved data could be stored locally, ortransferred
to a storage server. Lastly, the VM reaches theterminatedstate (State 6).

According to the Amazon EC2 billing scheme [4], the charged VM time begins
when the VM enters the booting state, and stops when it enters the terminated state.

2.3 Cloud Computing

The “cloud computing” term encapsulates several layers of computing provision-
ing. It includes the hardware resources located at the data-centers ofcloud providers,
the operating system software on top of that hardware, and lastly the applications
that are delivered as services over the Internet. Additionally, cloud computing pro-
vides these services as a utility, with the customers being billed based on usage,
similar to the billing scheme of traditional public services such as water, electricity
and telephony.

However, there is no absolute consensus on the meaning of the “cloud com-
puting” term. NIST1 describes cloud computing [55] as a“A pay-per-use model
for enabling available convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications,
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction.”

Driven by the economies of scale, cloud computing enables the use of inexpen-
sive resources. Cloud providers purchase hardware in large quantities, which is
significantly more economic [26]. They can then amortize the cost of owning and
operating a large capacity infrastructure by time-multiplexing their resourcesbe-
tween many clients [8]. Moreover, large scale systems require deep automation,
which results in cost reductions due to need for smaller operational staff.In a
well-run enterprise, a typical ratio of administrators to servers is 1:100, while in
a cloud data-center the ratio is at least 1:1000 [26]. Operating at this scaleallows
cloud providers to offer services to clients with a lower cost than what an in-house
computing facility would achieve.

2.3.1 Cloud Features

Although cloud computing incorporates several models of computing provisioning,
several primary features can be identified across the complete domain [55,84]:

1National Institute of Standards and Technology.

11

• Scalability/Elasticity: Clouds provide the illusion of infinite capacity. Users
are able to quickly request, acquire and later release resources from the cloud
on-demand. When the load of a hosted service increases, the cloud should
be able to offer as many computing power as necessary. Similarly, these
resources can be released back to the cloud upon load decrease.

• Pay-per-use metering and billing: In clouds, the user resource consump-
tion is monitored, and categorized based on the resource type. Users are
billed according to their measured consumption. Therefore, users do not
need to make any up-front commitments that require the prediction of their
application’s resource requirements beforehand.

• Self-service based usage: The user is able to administer the offered comput-
ing capabilities of the cloud services, such as requesting or releasing network
storage and paying for used resources, without interacting with human oper-
ators from the provider.

• Quality of Service (QoS): Cloud service providers offer QoS guarantees
with Service Level Agreements (SLAs), which are legally binding contracts.
Usually, cloud providers may make guarantees in terms of system uptime,
but do not provide any guarantees regarding the application level perfor-
mance [60].

• Resource pooling: Multiple customers are served in a multi-tenant model,
i.e., software and hardware resources are shared between users. Computing
power is offered from a pooled set of resources, which might reside inmul-
tiple data-centers. The exact location of the resources is abstracted from the
users. However, the user might be able to choose the location at a higher
abstraction level, e.g select the preferred country or data-center.

2.3.2 Service Models

Figure 2.3 presents the cloud delivery models and their provided services. Clouds
provide services at three different levels of abstraction: At the highestabstraction
level,Software as a Service (SaaS)delivers specialized software to the consumers
over the Internet. SaaS typically involves a usage-based pricing scheme,in which
the cost increases in relation to the number of users and the used applicationfea-
tures. Salesforce [73] SaaS cloud delivers Customer Relationship Management
(CRM) software services.

Platform as a Service (PaaS)is located at a lower abstraction level. PaaS per-
tains to the provisioning of an integrated environment which can be used forthe
development, testing and deployment of applications. The PaaS users are not oc-
cupied with deploying and managing the underlying hardware and software. An
example of a PaaS provider is Google AppEngine [25], which provides Java and
Python run-time environments with automatic load-based scaling.

12

Infrastructure as a Service (IaaS)

Platform as a Service (PaaS)

Software as a Service (SaaS)
Applications

(e.g., Social Networks, CRM)

Level Offered Services

Platform

(e.g., Programming

languages, Frameworks)

Infrastructure

(e.g., Compute Servers,

Storage)

Provider Examples

Salesforce,

Microsoft Online

Services

Google AppEngine,

Microsoft Azure

Amazon Web Services,

GoGrid,

Rackspace

Figure 2.3: The Cloud Computing Stack.

At the other end of the abstraction level spectrum isInfrastructure as a Ser-
vice (IaaS). IaaS refers to the on-demand provisioning of virtualized resources,
i.e., computation, storage and networking. Users can lease VM instances, which
encapsulate a provider-specified amount of resources (providers typically offer sev-
eral types of VM instances), and can run a user-specified operating system enriched
with required applications and libraries. Clients fully configure and controltheir
instances as root via ssh. Amazon Web Services [7] is a typical IaaS cloud, whose
services are outlined later on.

2.3.3 Deployment models

A secondary classification scheme for clouds distinguishes cloud deployments based
on how and to whom they are distributed. Using this scheme, clouds can be classi-
fied aspublic, private, community, andhybrid [84].

Public clouds are made available to the general public by third-party providers.
The clients are billed for the offered service in a pay-as-you-go manner. In contrast,
private clouds are deployed within a business or an organization, on top of the
organization’s data center. Private clouds are purposed for internaluse and the
users might or might not be charged for their resource consumption.

Cloud deployments that are shared by several organizations with the goalof sup-
porting a specific community are called community clouds. Lastly, hybrid clouds
provide the ability to combine resources from public and private clouds. Resources
from public clouds are usually leased when the private cloud capacity is not suffi-
cient to handle the current load.

2.3.4 A typical IaaS: The Amazon Web Services (AWS)

Amazon Web Services (AWS) [7], offered by Amazon.com is one of the most
prominent cloud providers, and the first service to employ the IaaS model, in2006.

13

Instance Type Category Capacity (ECUs) Cost (US$/hour)

t1.micro Micro Up to 2 ECUs for short bursts
(1 virtual core)

0.025

m1.small Standard 1 (1 virtual core with 1 ECU) 0.095
m1.large Standard 4 (2 virtual cores with 2 ECU) 0.38
m1.xlarge Standard 8 (4 virtual cores with 2 ECU) 0.76
c1.medium High-CPU 5 (2 virtual cores with 2.5 ECU) 0.19
c1.xlarge High-CPU 20 (8 virtual cores with 2.5 ECU) 0.76
m2.xlarge High-Memory 6.5 (2 virtual cores with 2.75 ECU) 0.57

Table 2.1: Description of the basic EC2 instance types. t1.micro is the latest VM
instance type introduced by Amazon, in June 2011.

There are currently seven data-centers distributed over the world, thatprovide com-
puting capacity to AWS users. AWS offers several cloud services, the most impor-
tant of which are the Elastic Compute Cloud (EC2) and the Simple Storage Service
(S3).

With EC2, computing capacity is provided in the form of virtual machine in-
stances that are based on the XEN hypervisor. EC2 offers a fixed setof instance
types, each with different capabilities, operating systems, architectures and price.
The CPU capacity of the offered instance types is characterized in Elastic Com-
pute Units (ECUs). One ECU unit is approximately equivalent to a 1.2 GHz 2007
Opteron or 2007 Xeon processor [3]. VM instance usage is charged on an hourly-
basis. Some of the instance types, their computing capacity and their hourly cost
are presented in Table 2.1. The Amazon Machine Image (AMI) format is used in
EC2, which allows the users to deploy customized operating systems containing
software and libraries that are fit for purpose.

Amazon S3 offers storage capabilities to AWS users. Data is organized into
buckets, with each bucket being able to store an unlimited amount of data. Each
file can be up to 5GB in size. Users can create, modify and read objects in buckets.

AWS additionally offers services such as CloudWatch (resource and application
monitoring), Simple DB (SDB, structured datastore), Relational Database Service
(RDS) and Elastic Block Store (EBS, persistent disk service). Particularly interest-
ing for this work, are the Elastic Load Balancing and Auto Scaling services.The
Elastic Load Balancing service is responsible for scheduling incoming application
traffic across multiple EC2 instances. Auto Scaling allows the number of instances
to automatically scale up or down, according to a set of customizable rules.

2.3.5 Virtual Infrastructure Manager (VIM)

A cloud is in need of software that can manage physical and virtual resources
and present a complete view of the current status of the cloud. It should be also
able to supervise the full life cycle of the VMs that are deployed on top of the

14

physical resources. The software that is used for these purposes iscalled a Virtual
Infrastructure Manager (VIM) [75]. In contrast to the VMM or hypervisor (see
Section 2.2), which is responsible for the virtual machines deployed on a single
node, a VIM controls the state of the whole cloud. A VIM therefore cooperates
with one or more VMM types, installed in all the nodes that form the IaaS cloud.

A differentiation between “cloud toolkits” and VIMs is proposed by Sotomayor
et al. [75]. Their argument is that solutions that belong in the toolkit category
should expose a remote “cloud-like” interface for creating, controlling and moni-
toring virtual resources, and should employ user administration and a userpermis-
sion management mechanism. On the other hand, VIMs should provide advanced
features such as automatic load balancing, server consolidation, and dynamic in-
frastructure resizing and partitioning. Since the current IaaS softwareexhibits sig-
nificant overlap between these two categories, we address both as VIMs.

OpenNebula

The OpenNebula [63] VIM begun as a project in the Complutense University of
Madrid in 2005, but evolved into an open-source project with the first release taking
place in 2008.

The OpenNebula platform is modular and is composed by three main compo-
nents, namely thecore, theschedulerand thedrivers. The core is responsible for
coordinating the physical servers and the hypervisors running on top of them, pro-
viding virtual networks for the VMs, and preparing disk images for VMs. The
driver component provides an extensible set of drivers to the core, that are used
to perform specific network, storage or virtualization operations. The drivers in-
teract with APIs of hypervisors, storage and network technologies, and public
clouds [84]. Lastly, the scheduler makes decisions on the placement of virtual
resources to physical resources, based on information on the current state of the
cloud. It implements VM placement policies for workload balancing, with a sim-
ple matchmaking policy set as default.

OpenNebula can be used through a Command Line Interface (CLI) or a web-
based GUI (Sunstone). Additionally, OpenNebula exposes its functionalitythrough
several APIs, namely, the Open Cloud Computing Interface (OCCI) [62]of Open
Grid Forum and a subset of the Amazon’s EC2 Query interface. Additionally, it
provides an XML-RPC [64], a Java, and a Ruby interface.

With OpenNebula, two different disk image allocation methods can be used,
namely,eagerand lazy allocation. With eager allocation, the VM image is allo-
cated on the physical disk when the VM is provisioned. Eager allocation is im-
plemented with the raw image format, which is a plain binary image. With lazy
allocation, the physical areas are allocated as needed, when the guest operating
system tries to write data. Lazy allocation is implemented with the Qemu Copy on
write 2 (qcow2) optimization strategy [89].

OpenNebula also supports two image transfer methods. TheNetwork File Sys-

15

tem (NFS)method uses the underlying shared file system to implicitly transfer the
images. TheLocalDiskmethod performs an explicit copy to the local disk of the
node that is hosting a VM, using the Secure Copy Protocol (SCP). A variant of lo-
calDisk withcachingis also supported, where images are cached to the host nodes
and can be reused, thus not requiring a network transfer.

Through its virtualization subsystem, OpenNebula can interact with the VMMs
on the host nodes. The current version of OpenNebula can be used with the KVM,
Xen and some VMware hypervisors.

Eucalyptus

Similarly to OpenNebula, Eucalyptus is an open-source product coming from the
academia. There is also an enterprise version of Eucalyptus that offerssome addi-
tional features.

One of the identifying features of Eucalyptus is that it is built with the concernof
providing similar functionality as Amazon Web Services, through the same APIs.
Thus, Eucalyptus implements Amazons EC2, S3 and EBS interfaces for provision-
ing compute, storage and block-level storage services.

Eucalyptus has a modular and hierarchical design. It is comprised by fivehigh-
level components. TheCloud Controller (CLC)is the user-visible entry point and
global decision-making component of the installation [61]. It is responsiblefor
coordinating the provisioning of virtual resources to the users and monitoring the
system’s components and virtual resources. TheCluster Controller (CC)manages
a collection of servers that actually provide the virtual resources. TheNode Con-
troller (NC) module is deployed on each one of these servers. NC is responsible
for executing, inspecting, terminating and cleaning-up VM instances on the host
machine where it is installed.Walrus is the data storage service of Eucalyptus,
and is interface-compatible with Amazon’s S3. Lastly, theBlock Storage Service
provides block level storage volumes that can be used by the VM instances.

The currently supported hypervisors for Eucalyptus are XEN and KVM. The
enterprise version of Eucalyptus also supports VMware hypervisors.In the cur-
rent version, Eucalyptus only supports eager image allocation and localDisk image
transfer with caching on the host nodes.

16

Chapter 3

Related work

This chapter presents the related work. Since the work is divided into two re-
search components, namely, the study of the performance characteristicsof IaaS
environments and the evaluation of several provisioning and allocation policies, we
provide one related work section for each component. Section 3.1 presents work
studying the performance characteristics of IaaS clouds. Correspondingly, Section
3.2 discusses previous work on provisioning and allocation on IaaS environments.

3.1 Cloud performance analysis

There is already extensive research on the performance analysis of clouds and vir-
tualized systems. The predecessor of this work, C-Meter [91], is used toexamine
the overhead of acquiring and releasing resources from and to the Amazon EC2
cloud. This work is the continuation of the work performed by [91]. Here,we
extend the C-Meter framework to study the performance of several clouds, in ad-
dition to Amazon’s EC2 compute cloud, to use varying workloads, and to support
experiments with provisioning and allocation policies.

Many moreperformance studieshave taken place on Amazon Web Services
(AWS). Ostermann et al. [65] analyze the performance of EC2 using micro-benchmarks
and kernels and conclude that the performance of virtualized resources acquired
from public clouds have a much lower performance when compared to the theo-
retical performance peak, especially for computation and network intensive appli-
cations. In contrast, we compare the observed virtualized performance of a private
cloud with the non-virtualized performance of the underlying hardware. Addition-
ally, we make use of complex workloads instead of micro-benchmarks or applica-
tions used as individual benchmarks, which can capture the interactions between
seemingly unrelated jobs submitted by different cloud users.

Palankar et al. [67] examine the performance of Amazon S3, including an eval-
uation of file transfers between EC2 and S3. Amazon EC2 is also studied using the
NPB benchmark suite [86], designed to evaluate the performance of HPC systems,
and with an x-ray spectroscopy and electronic structure application [70]. Deel-

17

man et al. [20] study the performance and cost of executing Montage, a scientific
workflow, on EC2. Jackson et al. [42] port the SNfactory pipeline, anastronomy
application comprised of pipelined serial processes, to AWS. The execution of sev-
eral HPC applications on EC2 is compared to the execution on supercomputers and
clusters [43].

Iosup et al. [40], study the performance variability of production cloud services,
using year-long traces of Amazon AWS and Google AppEngine. These cloud ser-
vices exhibit periods of stable performance as well as yearly and daily patterns.
The performance stability and homogeneity of small Amazon EC2 instances is
studied by [45]. Li et al. [49] carry out a performance and cost comparison between
four major public clouds. The clouds are compared on the common functionality
set, which includes elastic computing, persistent storage, intra-cloud network and
Wide-area network.

Ueda et al. [79] study the performance of OpenNebula and Eucalyptus with the
use of a workload based on Wikipedia software and data. They examine theimpact
of Lazy/Eager image allocation methods, and the NFS/localDisk image transfer
methods. Their main finding is that these two configurations have a great impact
on the performance of the clouds, regarding provisioning and processing times.
They also address a multi-tenancy scenario that shows a significant impactof pro-
visioning on the achieved throughput. An early comparative study of Eucalyptus
with Amazon EC2 is presented in [61].

Performance studies onvirtualization cost have shown that the virtualization
performance overhead for the XEN hypervisor is at most 5% for computation [11,
17] and 17% for networking [11,56], with the use of general purposebenchmarks.
Grund et al. [28] find that the virtualization cost for memory is around 7%, but
can increase up to 60% when running multiple VMs at the same time and with
the use of CPU architectures that have only one global memory controller. Yu et
al. [93] find that the virtualization cost for parallel I/O is below 30%. Two other
studies [16, 57], examine the virtualization cost for web server I/O, showing that
it is below 10%. Paravirtualization for compute-intensive HPC kernels is found
to pose no statistically significant overhead [92]. Weng et al. [87] research the
performance degradation caused by virtualization to parallel program execution.
Our work extends on these previous findings, by examining the overheads posed
by the IaaS software stack, using several workloads and workload arrival patterns.

Regarding virtualizationperformance isolation, Barham et al. report a small
interference between co-located VMs, when testing the Xen hypervisor with web
server workloads. Nathuji [60] et al. develop Q-Clouds, a frameworkthat tunes
resource allocations to deal with the performance degradation caused byVM in-
terference. Pu et al. [68] study the performance interference among VMs running
network I/O workloads.

Work has also been performed in developingcloud benchmarksandbenchmark-
ing methodologies. Binnig et al. [13] argue that traditional benchmarks are not
adequate for cloud performance analysis, because they don’t take themain cloud

18

characteristics (see Subsection 2.3.1) into consideration.
There is also related work performed in the industry. CloudHarmony [18] isa

startup that has developed a set of benchmarks in order to provide performance
comparisons between public clouds. Their Cloud SpeedTest service benchmarks
the network latency and throughput between a public cloud and the consumer. They
additionally perform cloud-to-cloud network benchmarking. Lastly, they measure
the service availability for a great number of public clouds, and keep historical
up-time data which are accessible through their website.

3.2 Provisioning and Allocation Policies

The study of policies for dynamically provisioned computing environments is a
new research field, but a lot of effort has been put recently. A substantial part of
the related work examines policy alternatives under the assumption of extending
the capacity of a private cluster with on-demand resources drawn from acloud
environment [12, 15, 19, 46, 54, 66, 72]. In contrast, this work is the first empiri-
cal comprehensive investigation of provisioning and allocation policies conducted
usingreal IaaS cloud environments.

Closest to this work, Genaud et al. [23] performsimulationsin order to evaluate
several provisioning policies, using workloads constructed from realproduction
grid traces. Their policies assume that the job durations are known, which isthe
case for only one of our proposed provisioning policies. Furthermore,their model
neglects VM boot-up and shut-down times, which makes it unclear whether their
simulation results can be regarded as realistic. Lastly, the evaluation considers the
job wait time and the cost according to Amazon’s billing scheme, but does not use
workload-oriented metrics such as workload makespan and speed-up.

Mao et al. [53] present an automatic cloud provisioning algorithm, which con-
siders VM startup times and can also select among multiple instance types. The
jobs have known deadlines and the number of jobs that finished within the dead-
line is used to measure the mechanism’s performance. The provisioning policyis
evaluated using simulations and a real scientific application on Microsoft Azure.

Assuncao et al. [19] consider the same scenario, i.e., extending a privately-
owned cluster with virtual resources from an IaaS provider. They evaluate by sim-
ulation with real traces, three allocation policies and several redirection strategies,
that specify which job requests are redirected to the cloud. Marshall et al. [54]
propose a model to elastically extend a static-resource site by integrating remote
cloud resources on-demand. They additionally propose three provisioning policies
that take decisions based on the job queue status, but their policy comparison and
evaluation is not in-depth, since the focus is on the proposed elastic framework. In
yet another piece of work that considers extending the resources of alocal clus-
ter with resources from a cloud, Kijsipongse et al. [46] examine two provisioning
policies. The policies are assumed to know the job resource requirements and try
to provision the proper types of instances for the jobs in the queue. The evaluation

19

however is substantially small-scale and cannot be regarded as conclusive.
In [58], the authors address the provisioning problem on a virtual cluster level,

each one leased by a different Virtual Organization (VO). The implementation
is based on the Condor scheduler [77]. Lu et al. [52], identify the problem of
load imbalance while executing DNA profiling workloads on Microsoft’s Azure
cloud. Candeia et al. [15], propose a greedy allocation policy to manage bursts
of bags-of-tasks on a hybrid infrastructure (use of local and cloud resources). Os-
termann et al. [66] extend a Grid workflow application environment to harness
resources from IaaS clouds, when necessary, with a simple provisioning policy.
Deelman et al. [20] study through simulation the performance-cost trade-off of var-
ious static provisioning plans, for a real-life astronomy application. Ben-Yehuda
et al. [12] develop ExPERT, a Bag-of-Tasks (BoTs) scheduling framework that se-
lects the pareto-efficient strategies, i.e., the strategies that deliver the best results
for makespan and cost, for running BoTs, with replicated tasks, on a mixture of
environments with varying reliability, cost, and speed. Amini et al. [72] propose
two market-oriented scheduling policies that consider resource cost, user budget
and application deadlines by supplementing local resources with resources from
an IaaS provider.

The approach in [14, 30, 69, 78] considers the estimation of application service
times andworkload pattern prediction. Quiroz et al. [69] address the VM provi-
sioning problem from the provider’s perspective, in order to improve server uti-
lization. They propose an online clustering model, to detect patterns in the stream
of requests. Incoming jobs are analyzed using a model, to provide application
service-time estimations. These estimations are used to form a set of VM classes,
that describe the VM resource configuration and the required instance quantity.

Cost is another important parameter when provisioning: Henzinger et al. [31]
describe a model where a cloud presents different schedules and costs. Other re-
lated work [71, 90] uses market approaches to determine when to provision new
resources. Our study complements these approaches with a more realistic investi-
gation focusing on simpler policies.

Public IaaS providersalso have introduced several related offerings. Amazon
Web Services offer the Auto Scaling [5] and Elastic Load Balancing [6] services to
the EC2 compute cloud users. Auto Scaling provides the capability to the usersto
develop their own provisioning policies, by making use of user-defined alarms, i.e.,
objects that monitor metrics. A policy can be defined through a set of command-
line tools supplied by Amazon. The created policies can only be based on the
observed VM load, and not on other kind of knowledge, such as the job queue
state. The Elastic Load Balancing service distributes incoming application traffic
across multiple EC2 instances. However, the user has no control over theschedul-
ing policy that is used to distribute incoming requests. GoGrid offers the f5 load
balancer [24], which can use two simple scheduling policies, namely, round-robin
or least-connect, which selects the instance with the smallest current load.

20

Chapter 4

The SkyMark Performance
Evaluation Framework

Our approach to analyzing the performance of IaaS environments is SkyMark, a
configurable, extensible and portable framework that enables the generation and
submission of complex workloads to IaaS cloud environments, using a provision-
ing and allocation policy specified by the user, prior to the initiation of the experi-
ment. Through the accumulation of statistical information regarding the workload
execution, the framework is able to carry out a performance analysis of the under-
lying IaaS systems.

This chapter presents the features and architecture of SkyMark, and itsassoci-
ated workloads, allocation and provisioning policies. We start with an overview of
the framework in Section 4.1. Section 4.2 presents the steps of the experimentation
process that lead to analysed results. We then proceed to defining the workloads,
in Section 4.3. Section 4.4 presents six provisioning policies and three allocation
policies that are evaluated using the manufactured workloads and SkyMark.

4.1 SkyMark Overview

The SkyMark framework is based on two major pre-existing components, Grench-
mark and C-Meter, written in Python. These components have been modified and
extended, in order to achieve the goals of this work. The modifications/extensions
that form SkyMark are also presented in this section.

The components of the SkyMark framework are presented in Figure 4.1. The
modules that were subjected to modifications are shown in light gray, while all the
newly added modules are drawn in dark grey.

21

SkyMark

C-Meter

Core

Request Listener

Job Scheduler

Job Submission

Analysis

Data Analysis

Presentation

Cloud Manager

Policy Manager

Statistics Collection

Profiler

Policies

Provisioning Allocation

Cloud Interfaces

Open

Nebula
... EC2

No

VIM

GrenchMark

Workload Generation

Workload Submission

Utilization-based

workload generation

SkyMark Controller

Figure 4.1: The SkyMark architecure. Modified modules are drawn in lightgrey,
and newly-added modules in dark grey.

4.1.1 Grenchmark

Grenchmark [34] is a framework that is able to generate and submit real orsyn-
thetic workloads to grid computing environments. Its functionality can therefore be
split into two main modules: theworkload generatorand theworkload submitter.

The workload generator uses pluggableunit generatorsto produce a workload
according to the user requirements, specified in a workload description filewhich
is given as input. The unit generators can subsequently use a Job Description File
(JDF)printer to output the workload. Additional printers can also be plugged-in,
thus providing output in different formats.

When designing the workload, the user can specify the job inter-arrivaltimes
based on well-known statistical distributions. It is also possible to mix several
workloads together, producing a mixture-of-workloads. Lastly, the applications
can be both unitary or composite, deployed on a single or multiple sites [34]. An
example workload description file is depicted in Figure 4.2. This description spec-
ifies a workload mixture with three components, comprising 200 unitary CPU-
intensive, memory-intensive and I/O-intensive jobs respectively. The jobs arrive
with a poisson distribution with 10 seconds inter-arrival time.

The workload submitter takes as input the generated workload description.It can
then deploy the workload units, one-by-one, at the designated job arrival times.

22

#File-type: text/wl-spec
ID GeneratorType Times UnitType SiteType SiteInfo ArrivalTimeDistr OtherInfo
0 unitary 200 ssercpu single *:? Poisson(10s) StartAt=0
1 unitary 200 ssermem single *:? Poisson(10s) -
2 unitary 200 sserio single *:? Poisson(10s) -

Figure 4.2: An example of a workload description file, given as input to Grench-
mark.

#File-type: text/wl-spec
ID Times UnitType OtherInfo
0 200 ssercpu StartAt=0
c Util=0.7, ErrorMargin=0.1, ComputeUnits=4, MaxDuration=20m
1 200 ssercpu -
c Util=0.7, ErrorMargin=0.1, ComputeUnits=8, MaxDuration=20m
2 200 ssercpu -
c Util=0.7, ErrorMargin=0.1, ComputeUnits=16, MaxDuration=20m

Figure 4.3: Workload description with specified CPU-utilization configuration.
Each workload unit is accompanied with a utilization description line.

Utilization

satisfied?

Generate

workload

No

Perform

profiling run

Start

End

Yes

Figure 4.4: The pro-
cedure followed for
utilization-based work-
load generation.

The core functionality of Grenchmark did not need
modifying for the purposes of this work. However,
Grenchmark has been extended with the ability to gen-
erate workloads that satisfy a user-specified VM utiliza-
tion configuration. The utilization-based workload gen-
eration was needed for the production of workloads that
correspond to the provisioned capacity. Using this mod-
ule, it is possible to specify the load to be exercised on
the acquired virtual resources.

To produce a load-based workload, the profiles of all
the job types in the workload must be generated first
(see subsection 4.1.2). After the job profile production,
the Grenchmark generator will construct a workload,
based on the provided description file, an example of
which is given in Figure 4.3. The load configuration
must be included in this workload description file. For
each workload unit, the user must specify the preferred
load and the number of virtual machines that this spe-
cific load should be applied on. An error margin for the
preferred load should also be supplied; the generated
load will not deviate more than the error margin from

23

the desired load. In the example, we require a workload with an increasing load,
starting with 70% for 4 compute units and escalating to 70% for 16 units.

During the workload generation phase, the job profiles are used to estimate the
arrival distribution parameters that will produce a workload satisfying therequired
utilization level. Currently, only the Poisson arrival distribution is used. Sub-
sequently, the module examines whether the generated workload satisfies there-
quired load, for each individual workload unit. The procedure is repeated until a
workload with a verified utilization is produced. A flowchart of the used utilization-
based workload generation is presented in Figure 4.4.

4.1.2 C-Meter

C-Meter [91] was designed as an extension to Grenchmark, in order to port its
capabilities to the cloud. As was originally designed and implemented, C-Meter
receives the jobs that comprise the workload, submitted from Grenchmark,and
subsequently forwards them to a static pool of resources that have been leased
from an IaaS cloud prior to the experiment start.

The original C-Meter design is not adequate to perform the required experiments
within the scope of this work. C-Meter was implemented to work with Amazon
EC2 and was lacking a refined resource management module, since it was designed
to work with a static pool of VM instances. As a result, a large portion of the
tool had to be re-factored. In addition, the framework was extended with some
additional functionality, namely, the cloud manager, the policy manager, and the
job profiler, all of which are described below.

The C-Meter modifications targeted towards a configurable and extensible frame-
work that is able to perform fundamental cloud resource management, whilenot
being dependent on a specific underlying cloud implementation. Since the clouds
we were working with exhibited frequent failures, fault-tolerance was anadded
concern that had to be considered in the resource management component. More-
over, the need of evaluating allocation and provisioning policies has driven us to-
wards providing basic policy management capabilities. By performing simple con-
figuration, the SkyMark user should be able to easily plug-in different policies, in
order to perform an experiment. Lastly, the planned analysis methodology aswell
as the Grenchmark utilization-based workload generator, required the implemen-
tation of a profiler module.

In C-Meter, the core functionality is performed by four components, as canbe
seen in Figure 4.1. These components were already present in the initial version of
C-Meter, but they have been modified considerably to fit the purposes ofthis work:

The request listeneris responsible for waiting for incoming job execution re-
quests from Grenchmark, as well as for job execution reports from the virtual re-
source they have been deployed on. Job execution requests received by C-Meter
are placed in a queue. Thejob schedulerperiodically checks the queue. If there are
available resources, then the job at the head of the queue can be assigned to a free

24

VM instance, according to a scheduling policy that is designated by theallocation
policy manager. Given a selected idle VM instance, thejob submissionmodule
is responsible for making all the preparations for the job execution on the remote
resource, such as copying all the required files to a web server and deploying a
job execution agent on the selected VM. The agent downloads the files from the
web server, executes the job and upon conclusion, reports back to C-Meter with
a collection of gathered statistics. Thestatistics collectionunit is responsible for
keeping the job execution statistics, as well as statistics regarding the virtual re-
sources, such as the time an instance has been requested and the time it became
accessible.

In every scheduling period, the job scheduler makes calls to theprovisioning
policy manager. Depending on the active provisioning policy, the current queue
size and the number of idle VM instances, new resources might be requested from
the cloud or released back to it. The provisioning and release requests are made
to thecloud manager. For each experiment session, a cloud-specific interface is
dynamically plugged-in by the cloud manager. The preferred interface and all the
interface parameters should be provided in the C-Meter configuration file.

Theprofiler component is responsible for identifying all the unique job types in
the workload, and subsequently submitting them to the cloud in a dedicated exe-
cution mode. Each job has a signature, which is a hash value constructed byusing
the job’s name, its input parameters and input files. The unique jobs of a workload
are the jobs that have different signatures. During the dedicated execution mode,
each unique job is submitted multiple times. The dedicated execution profiles are
created after the data are subjected to basic statistical analysis (outlier detection
and averaging). By the end of a profiling session, all the job types observed in a
workload should be accompanied by a profile.

4.1.3 Additional Extensions

In addition to the modifications and extensions to Grenchmark and C-Meter, de-
scribed in the previous subsections, some further work was performed towards
implementing the SkyMark framework:

1. SkyMark Controller : The main SkyMark module. Experiments were pre-
viously performed manually, by firstly generating a Grenchmark workload,
setting-up C-Meter and submitting the workload through Grenchmark. This
process has now been automated with the addition of this module. Multiple
experiments can be defined and will be executed in sequence.

2. Post-analysis module: The analysis module was initially part of the C-
Meter framework, and could only perform analysis on one dataset at a time.
Since the evaluation task of this work requires to make comparisons be-
tween different experiment runs, the performance analysis module has been

25

redesigned. The re-factored module can carry out multi-set analysis and de-
liver the required graphical output and performance results.

3. Allocation and provisioning policies: As was previously described, C-
Meter has been modified so that new provisioning and allocation policies
can be dynamically plugged-in and used. Based on experience, it is rela-
tively simple and non-time consuming to add new provisioning and alloca-
tion policies. For example, adding the most complex policy investigated in
this work,ExecKN, was a matter of one day’s work.

For the policy evaluation purposes of this work, we have implemented six
provisioning and three allocation policies, described extensively in Section
4.4.

4. Complex workloads: Several workloads have been formed, that exhibit
various arrival patterns and consist of three types of synthetic applications.
These workloads are a fundamental part of this work and are described in
Section 4.3.

5. Cloud interfaces: C-Meter was designed specifically to work with Amazon
EC2. The need to experiment on privately-owned infrastructure that is ac-
cessible at the physical resource level, has driven us to develop a module that
can dynamically load and plug interfaces in to different clouds. Additionally,
we have implemented an interface to Eucalyptus, a fairly easy task, since Eu-
calyptus implements the Amazon EC2 interface. We have also implemented
an interface to OpenNebula, using the XML-RPC API [64]. Adding more
interfaces is really easy with SkyMark; To be able to instantiate and termi-
nate instances, the corresponding methods for a specific cloud interfacehave
to be implemented.

Lastly, in order to be able to capture virtualization overheads, we provided
Skymark with an interface that is able to submit jobs to non-virtual resources.
We make use of this interface to measure the non-virtualized dedicated job
run-times. By comparing them to the virtualized job run-times, we will be
able to exhibit any overhead introduced by the virtualization layer.

4.2 Experimentation Process

The steps that take place during a typical experiment using Skymark are listed
below and depicted in Figure 4.5:

1. The Skymark user prepares two input files, namely, a workload description
document (see subsection 4.1.1) and a general configuration file. The latter
should specify all the cloud-related configuration, such as the cloud front-
end URL, the user credentials to the cloud management platform, and a de-
scription of the type and quantity of the required resources.

26

SkyMark

Job 1 Job 2 Job N...

GrenchMark

Workload

Generation

Workload

Submission

x

Workload

Description

x
Experiment

Configuration

Virtual Machine

Virtual Machine

DB

C-Meter

Analysis

HTTP Server

DB ... DB

1

1

2

3

4

8

76

5

9

10

1111

12

Figure 4.5: The Skymark Experimentation flow.

2. The workload description file is used by the Grenchmark workload gener-
ation module to produce a workload described in the Job Submission De-
scription Language (JSDL) [22] format. If the workload requires to have a
specified load, then the utilization-based workload generation process shown
in Figure 4.4 is followed.

3. Skymark submits the generated workload by using the Grenchmark work-
load submission unit.

4. C-Meter, which has been already initialized, awaits for new incoming job
submissions, with the listener module. A submitted job is received by C-
Meter, which subsequently parses its corresponding description file andplaces
the job in a work queue.

5. Next, C-Meter copies the job’s binary and all other essential stage-in files to
an HTTP server, running on the same host as SkyMark.

6. Skymark decides where to schedule each job that is taken out of the work
queue, based on the activeallocation policy. If there is a lack of available
resources, Skymark notifies the plugged-inprovisioning policy, which will
make a decision on whether it should lease more resources from the cloud.
As soon as a VM is allocated to the job, C-Meter deploys an execution agent
on the provided instance.

7. On the allocated VM, the execution agent downloads the binaries and stage-
in files from the HTTP server.

27

8. The job is executed on the virtual resource.

9. A report containing a collection of statistics regarding the job execution per-
formance is sent back to SkyMark.

10. After all the workload units comprising the workload have been executed,
Skymark stores all the collected statistics to an SQLite database.

11. Skymark performs analysis on the data that have been collected throughout
one or more experiments.

12. Lastly, the analysis module generates reports and visualizations from the
processed data.

4.3 Workload Generation

Defining an appropriate set of workloads is a principal part for this performance
evaluation project. Inappropriate workload selection could lead to unfathomable
results and eventually to deceptive conclusions. It is therefore importantto lay
down a set of requirements that the designed workloads should conformto.

4.3.1 Design Requirements

Revisiting our initial hypothesis (Section 1.2), by performing our set of proposed
experiments, we would ideally like to observe non-trivial effects on the perfor-
mance of IaaS systems. Towards achieving this goal, we should make use ofcom-
plex workloads to trigger this behavior. By using such a workload, we allow the
jobs that comprise it and the underlying software stack to compete with each other
for resources, causing performance phenomena that would not be captured with
micro-benchmarks or applications used as individual benchmarks.

Furthermore, the designed workloads should be targeted towards answering a
particular research question. Different types of workloads should serve in exhibit-
ing, confirming or contradicting a certain anticipated behavior. It is, for thisreason,
significant use two sets of workloads, one for each of our initial hypothesis.

The workloads should additionally berealistic, representing actual usage sce-
narios of cloud computing systems. On the other hand, there exists no universally
acceptable realistic workload definition for clouds, because of the scarcity of public
workload traces or common practice reports. There is a large collection of work-
loads from parallel and grid environments [37]; however, it is uncertainwhether
the user of such systems will migrate to IaaS clouds [38]. In this work, we have
selected a number of synthetic applications as workload building blocks. Even
though the realism of these applications can be challenged, we believe that the
construction of workloads using these units will enable us to see resource-specific
effects taking place, that would have been more difficult by using only real produc-
tion traces from non-cloud environments.

28

0.0

0.5

1.0

1.5

2.0

 0 20 40 60

C
P

U
 L

oa
d

(%
)

Time (min)

0.0

0.5

1.0

1.5

2.0

 0 20 40 60

Time (min)

0.0

0.5

1.0

1.5

2.0

 0 20 40 60

Time (min)

Figure 4.6: TheUniform (Left), Increasing (Center) andBursty (Right)
workload patterns.

Lastly, the workloads should bediverse, so that they can drive all of the under-
lying resources into saturation. At the same time, if we were to stress all resource
types simultaneously, the results would be difficult to interpret after analysis. For
this reason, it is required that we have an adequate set of workloads, each stressing
one or a few resource types individually.

4.3.2 Workload Characterization

The workloads were designed in such a way, so that they put stress on one or two
types of resources:

• WL1: CPU-Intensiveworkload;

• WL2: Memory-Intensive workload;

• WL3: I/O-Intensive workload;

• WL4: Mixture of Memory and I/O-Intensive workload.

The composition of the workloads listed above are presented in Subsection 4.3.4.

4.3.3 Workload Patterns

We make use of three different workload patterns:

• WP1: Uniform : This pattern maintains a steady stream of jobs throughout
the experiment. It uses a Poisson arrival distribution with an average system
load of 70%.

• WP2: Increasing: This pattern provides a stepwise increase of workload
intensity, in three steps. The average system load is around 50%.

29

Workload Unit CPU Memory I/O Appears in

WU1 X WL1
WU2 X WL2,WL4
WU3 X WL3,WL4

Table 4.1: Workload unit characteristics and occurrence in workloads

• WP3: Bursty: Features short spikes of intense activity amid long periods of
mild or moderate activity. For a few minutes the load reaches up to 170%,
however, the average system load is around 15%.

These workload patterns are depicted in Figure 4.6.

4.3.4 Workload Units

The workload components are in our case a number of synthetic and real applica-
tion benchmarks, of variable durations.

Unit Types

The workload unit type can be one of the following:

• WU1: CPU-Intensivesynthetic application;

• WU2: Memory-Intensive synthetic application;

• WU3: I/O-Intensive synthetic application.

The characteristics of the workload units are presented in Table 4.1, alongwith the
test workloads they appear in.

Job Durations

For the formation of the job types that will compose the workloads, we con-
sider two current trends for workloads in grid environments. Firstly, gridwork-
loads include many independent single machine jobs, grouped into Bags-Of-Tasks
(BoTs) [35]. In contrast, tightly-coupled parallel jobs are less frequent. Addi-
tionally, the job runtimes have decreased over the last two decades to the order of
seconds to minutes [35], especially for typical data-mining processing [32,94].

As an example, Facebook uses the MapReduce programming framework to per-
form operations such as business intelligence, spam detection and ad-optimization
[32]. These workloads consist of short jobs, with a median of 84s. Each job is
composed of fine-grainded map and reduce tasks, each of which has a runtime in
the order of tens of seconds (median 23s).

30

Job Type Average Job
Duration (s)

Standard
Deviation

25th
Percentile

75th
Percentile

CPU-intensive 47.0 41.0 19.5 57.9
Memory-intensive 46.7 52.7 13.5 65.1

IO-intensive 43.5 45.0 15.1 54.4

Table 4.2: Job Durations for the three job types.

Although SkyMark supports any job lengths, to satisfy the ‘realistic’ require-
ment, we have manufactured our synthetic jobs to exhibit durations in the order of
tens of seconds. The duration characteristics of the jobs that compose our work-
loads are presented in Table 4.2.

4.4 Policies

We describe here the provisioning and allocation policies that have been imple-
mented for the analysis purposes of this work. In total, we have implemented 6
provisioning and 3 allocation policies.

4.4.1 Provisioning

A provisioning policy is responsible for acquiring and releasing resources from and
to the cloud. For the purposes of this work, we have defined six provisioning poli-
cies. These policies can be classified as static or dynamic. Static policies provide
a fixed amount of resources, prior to the start of the experiment, while dynamic
policies can variate the amount of VMs that are currently leased, according to the
demand and to a policy-specific strategy.

Two key points differentiate the policies from each other:

1. The provision/release trigger: The policies employ different triggering
mechanisms that provision or release resources. For example, the provision
trigger could be the start of the workload execution, or the moment when
the queue size exceeds a predefined threshold. Similarly, the release trig-
ger could be the completion of the workload execution, or when the queue
becomes empty.

2. The increase/decrease factor: This factor represents the amount of in-
stances to provide/release when the corresponding event is triggered.The
simplest case could be to lease/release one virtual resource.

Table 4.3 provides an overview of the implemented provisioning policies with their
characteristics.

31

Policy Class Trigger Adaptive
Startup Static − −

OnDemand Dynamic QueueSize No
ExecTime Dynamic Exec.Time Yes
ExecAvg Dynamic Exec.Time Yes
ExecKN Dynamic Exec.Time Yes

QueueWait Dynamic Wait Time Yes

Table 4.3: Overview of the provisioning policies.

PP1. Startup

The Startup policy leases the specified number of VMs and makes sure that
all the requested resources are accessible before initiating the experiments. The
resources are released only when the workload has finished executing. An obvious
disadvantage of this policy is its inflexibility. The resources remain idle when the
load is low, and under heavy load it is not possible to lease new resources. On the
other hand, the Startup provisioning policy does not impose any VM instantiation
overhead to the workload execution.Startup is the only static policy that was
implemented.

PP2. OnDemand

TheOnDemand policy provisions one new instance whenever a new job execution
request arrives, and there are currently no available resources that can take up the
request. Similarly, it shuts-down a VM whenever it remains idle for a specified
amount of time. If the idle-time is set to 0, then each VM is released as soon as its
assigned job is finished, if the queue is empty. In general,OnDemand can lead to
thrashing, i.e., frequent leasing and releasing of VM instances.

PP3. ExecTime

This policy assumes known job execution times.ExecTime makes use of this in-
formation to calculate the aggregate execution time of all the jobs that are currently
in the queue, awaiting to be scheduled on a VM instance. When the aggregateex-
ecution time exceeds a threshold,ExecTime proceeds in leasing a number of
instances to meet the demand. Likewise, it releases resources wheneverthe aggre-
gate execution time drops below a second threshold.

The provision/release thresholds are adaptive to the cloud, i.e., the execution
time of the queued jobs must exceed the average time needed to provision and boot
a VM instance by a specified factor. The average boot-up time is calculated by
using the observed boot-up times of previously leased VMs.

32

PP4. ExecAvg

This policy is similar toExecTime, but instead of using actual job run-times,
it employs a statistical prediction algorithm to predict them. The job run-time is
estimated as the average execution time of all the jobs that have already finished.
An initial prediction of the average job run-time must be provided by the user.

PP5. ExecKN

Like ExecAvg, ExecKN also estimates the job execution times. The run-time pre-
diction is based on [41]. For each job in the queue,ExecKN acquires itsk-nearest
neighbors (from the already completed jobs), based on the job input parameter size.
The estimated execution time for a job is the average over this set ofk neighbors.

PP6. QueueWait

QueueWait is another threshold-based dynamic policy, that considers the total
queue wait-time of all the jobs currently in the queue. If the total wait-time ex-
ceeds or drops below a specified threshold, then the VM provision/release event is
triggered respectively. Like theExec family of policies,QueueWait also makes
use of adaptive thresholds, in order to adjust to the cloud-specific VM boot-up
times.

Adaptive Threshold Heuristic (ATH)

This simple heuristic allows the policies that use it to adjust to the performance
characteristics of the cloud in use. The threshold is modified according to the boot-
up times of the already provisioned instances. The weighted average of these in-
stances is calculated and is given as input to the adaptive mechanism. The weights
are constructed in such a way, so that the more recently provided instances have
more influence in the average boot-up time.

With ATH, the policies can adjust to the current cloud behavior. Longer boot-up
times will cause the thresholds to rise, so fewer instances will be leased. Shorter
boot-up times will have an adverse effect.

Increase Factor (IF)

The increase factor determines how many resources will be provided/released,
when a resource acquisition/release event is triggered. Three different schemes
have been implemented, namely theSingle, Multiple, andGeometric IF
schemes.

The Single scheme provides/releases only one VM instance, when the cor-
responding event takes place. TheMultiple scheme provides/releases as many
VMs as the number of times that the threshold has been exceeded, in order tomeet

33

Policy Queue-based Known job durations
FCFS Yes No

FCFS-NW No No
SJF Yes Yes

Table 4.4: Overview of allocation policies.

the demand. Lastly, theGeometric scheme starts with acquiring one VM in-
stance, and later increases the number of resources to be acquired by aspecified
factor (in this work, 2). When the load drops, thenGeometric starts by releasing
one VM, and then increasing in the same fashion the amount of resources tobe
released.

4.4.2 Allocation

Three basic allocation policies are considered in this work. Table 4.4 summarizes
their characteristics.

AP1. First-Come-First-Served (FCFS)

A traditional scheduling policy,FCFS assigns the job at the head of the work queue
to one of the available VMs. The job remains in the queue until a VM becomes
available (either a job has finished executing on a VM, or a new VM has been
provisioned).FCFS is easy to implement, however, since it does not consider the
job durations, it can cause low throughput at certain cases.

AP2. FCFS-No Wait (FCFS-NW)

This policy does not use a waiting queue. Instead it assigns incoming job execution
requests to provisioned VMs that might be currently busy, in a round-robin manner.
This policy eliminates waiting in the queue, but introduces resource contention
between jobs allocated to the same VM instance.

AP3. Shortest Job First (SJF)

SJF is another traditional scheduling policy that requires knowing or having an
estimation of the job durations.SJF gives priority to shorter jobs, by allocating
the shortest job in the waiting queue to an idle resource. Although it improves upon
theFCFS disadvantage, it can lead to long running task starvation, when there are
multiple short tasks.

34

Chapter 5

Experimental Setup

Our performance evaluation is based on measurements over real systems that pro-
vide IaaS services. Here, we describe the setup of the experiments. Theexper-
iments are divided into two groups. The first set of experiments study the per-
formance of IaaS systems under various types of workloads. The second set of
experiments compares six provisioning and three allocation policies.

The chapter is structured as follows: Section 5.1 investigates the complexity
of this performance evaluation problem by listing the parameters that can have
influence on the results of the experiments. Section 5.2 gives a description of the
design of the experiments. Lastly, Section 5.3 presents the chosen performance
metrics.

5.1 Parameter identification

Setting up a performance evaluation experiment is usually non-trivial. Our case
involves a great number of parameters which make the problem complex. These
parameters need to be identified during the experimental design phase; otherwise,
the interactions between two or more unidentified parameters might cause undesir-
able or unexpected effects to the experimental results.

In this section we make a complete list of system, workload and environment
characteristics that can have an effect on the performance results, and thus should
be considered during the experimentation procedure.

Workload parameters:

1. Composition: The selected test workloads (see Section 4.3) have different
characteristics, with regard to the system component that they primarily
stress. A workload might be CPU-, memory-, or I/O-intensive. A workload
can also be a mixture that stresses two or more system components.

2. Pattern: The workloads might exhibit different arrival patterns of job execu-
tion requests. The used arrival patterns were described in Section 4.3.3.

35

3. Density: The workload density might be defined by manually configuring
the arrival distribution parameters, or by indicating a preferred VM CPU
utilization factor.

System parameters:

4. System: A distributed system together with a VIM, capable of providing
IaaS services. In this work we explore three different systems with the same
VIM, and Amazon’s EC2 compute cloud, in which the distributed system
and the VIM are integrated.

The selected VIM, OpenNebula, exposes two main configurable parameters
(see Subsection 2.3.5):

(a) Image transfer method: How the VM images are transferred from the
image repository node to the VM hosts. Three possible methods exist,
NFS-based, localDisk and localDisk with caching.

(b) Image allocation method: The way that disk images are allocated for
VMs. Two methods can be used, namely, eager or lazy allocation.

5. Hypervisor and virtualization type: The underlying hardware virtualization
technology. Different systems might be using different hypervisors (e.g.,
KVM, XEN, VMware) as well as different virtualization types (e.g., full
virtualization, paravirtualization, hardware-assisted).

6. Instance type: The defined VM types on different systems might have dif-
ferent capabilities, i.e., there is no universal definition of VM types between
systems or cloud providers.

7. Provisioning policy: The strategy for leasing resources from the cloud. The
provisioning policy controls the number of virtual resources that are allo-
cated for the execution of a workload. Reducing the number of instances is
a desirable scheduling goal.

8. Allocation policy: The policy for scheduling jobs to virtual resources. It is
used to manage the already provisioned resources.

9. VM operating system, e.g, Linux distribution, Windows, 32/64-bit architec-
ture.

Environment parameters:

10. System background load: Whether the physical resources of the system are
dedicated to the execution of the workload, or are shared with other users
that deploy workloads of varying characteristics.

11. SkyMark performance: We show in the experiments (Section 6.1) that Sky-
Mark imposes a small performance overhead.

36

Factor Levels

Workload composition WL1-WL4 (Section 4.3.2)

Workload pattern WP1-WP3 (Subsection 4.3.3)

Provisioning Policy PP1-PP6 (Subsection 4.4.1)

Allocation Policy AP1-AP3 (Subsection 4.4.2)

Systems Sys1-Sys4 (Subsection 5.2.3)

Instance number 1 up to system capacity (Subsection 5.2.3)

Instance type Small (Subsection 5.2.4)

Table 5.1: Factors and their levels.

5.1.1 Interactions between parameters

Some of the factors of this experimental setup interfere with each other. Theiden-
tified parameter interactions are listed below:

1. System - Instance Type: The capabilities of the VM types depend on the
system they are defined for.

2. System - Hypervisor: Each system is equipped with one hypervisor. De-
pending on the hypervisor, different systems employ different virtualization
types. Lastly, some of the systems use hardware-assisted virtualization and
some do not.

3. System - VIM: Each system is equipped with a different VIM.

Comparisons between different systems and VIMs cannot take place without
considering these interactions, because any observations made on the performance
variations between the participating systems might be caused by them.

5.1.2 Selecting factors

In this work, emphasis is given to the impact of Workloads and Provisioning/Al-
location policies on the performance of clouds. These are therefore theprimary
factorsin the experimentation process.

The systems under test, the number of instances, the VIM, and the instance type
aresecondary factors, meaning that we will not be quantifying their impact. Table
5.1 presents all the factors of the experiments along with their levels of operation.

37

5.2 Experimental Design

We now design the experiments for this thesis, using the parameter investigation
performed in the previous section.

5.2.1 Experiment Specification

Here, we describe the two sets of experiments that will be performed for thiswork.

IaaS evaluation

The intent of the first part of the experiments is to study the cloud performance
under various types of workloads, that were described in Section 4.3.2.We char-
acterize the cloud performance by breaking down the job slowdown, into its main
overhead causes. We have identified the following overheads:

1. Virtualization .The virtualization overhead, refers to the cost added by exe-
cuting jobs inside of VM instances, imposed by the virtualization layer.

2. VM Contention .VM contention is the overhead originating from the re-
source time-sharing between VM instances on a single physical host.

3. Complex Workloads. The Complex Workloads overhead originates from
the execution of multiple jobs on the same VM instance, thus creating virtual-
resource contention between jobs.

4. Other. The remaining overhead is attributed to both SkyMark and network
delays. The SkyMark cost originates from the job submission preparation
and scheduling phases that each job execution request must go through.

We are able to isolate the four overheads by performing the following experi-
mental process:
Each workload is executed twice, with two allocation policies,FCFS andFCFS-NW,
while keeping the provisioning policy fixed atStartup. At the same time, for
each unique job in the workloads, we perform a profiling run, inside of a VM in-
stance and additionally on the physical host. Therefore, we collect two types of
profiles for each job, one withvirtualized and another one withnon-virtualized
execution.

With the use ofFCFS-NW, we expect to capture all four overheads. On the other
hand, the Complex Workload overhead will not be present in the workloadexecu-
tion with FCFS, since each VM instance can have one job at most allocated to it.
Subtracting theFCFS slowdown from theFCFS-NW slowdown, while comparing
to the virtualized profiles, is expected to provide us with the Complex-Workload
overhead.

38

Policy Adaptive Lease Threshold Release ThresholdIncrease
Factor

Startup − − − −

OnDemand No − − Single

ExecTime Yes 5× boot−up 0.3× boot−up Multiple

ExecAvg Yes 5× boot−up 0.3× boot−up Multiple

ExecKN Yes, No 5× boot−up 0.3× boot−up Single,
Multiple,
Geometric

QueueWait Yes 5× boot−up 0.3× boot−up Multiple

Table 5.2: The provisioning policy parameter configuration.ExecKN is used for
the evaluation ofATH andIF, therefore these two factors also variate with the use
of this policy.

To isolate the virtualization overhead, we calculate the job slowdown for the
workload execution withFCFS, against the virtualized and non-virtualized pro-
files. The performance difference between them should give us the overhead im-
posed by the virtualization layer.

The VM contention overhead can be found by calculating the job slowdown with
FCFS, against the virtualized job profiles. This performance deviation between
workload execution and dedicated job execution (inside a VM) should be caused
by VM contention, because of resource time sharing. In a dedicated execution, the
VM contention overhead does not exist. Finally, the difference between the total
overhead and the sum of the three overheads mentioned above, can be attributed to
the “other” overhead.

Policy Evaluation

The policy analysis compares the performance of the six provisioning policies and
three allocation policies, described in section 4.4. For the provisioning policyeval-
uation, we keep the allocation policy fixed toFCFS and subsequently compare the
policies on several metrics, presented in the next section. For the evaluation of
adaptive threshold heuristic and the increase factor alternatives, we use only the
ExecKN policy. Table 5.2 describes all the used policy configurations. In a similar
manner, we use theStartup provisioning policy to test the allocation policies.

39

5.2.2 Workload Specification

Workloads for IaaS evaluation

For this evaluation section we make use of the full set of workloads that were
defined in Section 4.3.

Workloads for Policy evaluation

As mentioned earlier, the goal of the second part of this work is to observehow
the performance of IaaS is affected under the execution of complex workloads,
when different scheduling (allocation and provisioning) policies are used. The
workloads should therefore be designed to observe the differences inbehavior and
performance of the policies.

For the purpose of this work, we require only a subset of the workloadsthat are
defined for the IaaS evaluation section. More specifically, a workload that drives
only one type of resource to saturation is required for this experimentation session.
We have selected WL1, a CPU-Intensive workload.

5.2.3 System Specification

For our performance evaluation purposes, a system is a distributed system equipped
with a certain Virtual Infrastructure Manager (VIM). We have made use of several
such systems. Table 5.3 lists the systems that were used in our tests.

The systems specification demonstrates a variety of capabilities across the par-
ticipating systems. Some are of particularly small capacity, such as Sys3. Addi-
tionally, the hardware in Sys3 is quite outdated, so it does not provide hardware
assisted virtualization. DAS4 [85] (Sys1 and Sys2) has better hardwareand larger
capacity, but only a small fraction of the total resources could be allocatedto this
work. The physical resource specification of Amazon EC2 is not made publicly
known. It is certain, however that different EC2 instance types use different physi-
cal hardware [3]. There is, therefore, no single hardware specification for Amazon
EC2. The capacity of EC2 is very large, but we limit our experiments to 20 VMs
to put a limit on the cost.

Systems Sys1-Sys3 make use of the OpenNebula VIM, but they differ on the
versions of these software platforms. Amazon EC2 makes use of its own VIM
about which information is publicly available.

We performed the first set of experiments on Sys2. Sys1 was also used for
experimentation, however, because of VM failures, we only report on the observed
problematic behavior. For the policy experiments, systems Sys2-Sys4 wereused.

5.2.4 Instance Specification

We use in our work one VM type, which is specifically configured for eachsystem
as summarized in Table 5.4, but overall, the instance types on the used systemsare

40

Code Description Hardware Spec VIM Hypervisor Max VMs

Sys1 Distributed ASCI
Supercomputer 4 at
VU
(DAS4/VU)

32Dual
quad-core 2.4 GHz
(2 hardware threads)
24 GB RAM
2*1 TB storage

OpenNebula 3.0
LocalDisk-caching
Lazy allocation

KVM (Full, HVM) 512

Sys2 Distributed ASCI
Supercomputer 4 at
Delft
(DAS4/Delft)

20Dual
quad-core 2.4 GHz
(2 hardware threads)
24 GB RAM
2*1 TB storage

OpenNebula 3.0
LocalDisk-caching
Lazy allocation

KVM (Full, HVM) 256

Sys3 Florida Interna-
tional University
Cluster
(FIU)

7 Pentium 4 3.0 GHz
5 GB Memory
340 GB storage

OpenNebula 2.2
NFS
Lazy allocation

XEN
Paravirtualization
No HVM

7

Sys4 Amazon EC2 Pub-
lic Cloud, eu-west-
1 region

unknown/varying Amazon EC2 XEN (paravirtual-
ization, no HVM)

20

Table 5.3: Description of systems under test

very similar to each other.
We primarily make use of lazy allocation (qcow2 image) throughout the experi-

ments (see Subsection 2.3.5). The staging time for lazy allocation is much shorter,
since the image size is smaller. During the staging phase in cloud environments,
the image has to be transferred to the VM instance host machine. Therefore, the
total boot-up time is expected to be much shorter than for eager allocation (RAW
image). There is a price to pay, however, for the lazy allocation. The disk write
access overhead is much higher than for eager allocation, since any diskwrite call
has to make a storage allocation request to the host OS. To avoid including this
cost in the virtualization overhead,we use eager allocationfor all experiments that
involve I/O-intensive workloads, andlazy allocationfor all other experiments.

5.3 Performance Metrics

Several traditional [36] metrics have been chosen, in order to assess the perfor-
mance of clouds:

41

Instance Specification

System OS Virt.
cores

Mem. Disk Platform

Sys1 CentOS 5.4 x86-64 1 1GB 5GB 64-bit

Sys2 CentOS 5.4 x86-64 1 1GB 5GB 64-bit

Sys3 CentOS 5.3 i386 1 512MB 3GB 32-bit

Sys4 RHEL 6.1 i386
ID:ami-9289bae6

1
(m1.small)

1.7GB 160GB 32-bit

Table 5.4: Specification of VM Instances across environments.

Job Wait Time (WT)

The time each job waits in the queue before it is dispatched for execution on an
available virtual resource.

Job Response Time (ReT)

The time between the job arrival at SkyMark, and the receipt of a reportfrom the
virtual resource it was executed on.

Workload Makespan (MS)

The workload makespan is defined as the interval between the time that the first
job in the workload arrives at SkyMark, and the time that the execution results of
the last job in the workload have been received by Skymark:

MS(W) = tlc − tfa (5.1)

wheretfa is the arrival time at SkyMark of the first job in the workload, andtlc is
the time SkyMark receives the completion report for the last job in the workload.

Job Slowdown (JSD)

JSD for each job in the workload, is the ratio of the actual runtime in the cloud and
the runtime in a dedicated environment.

Workload Speedup One (SU1)

The workload speedup is the ratio between its makespan and the sum of its job
runtimes in a dedicated environment.

SU1(W) =
MS(W)

∑
i ∈ W tR(i)

(5.2)

42

whereSU1(W) is the speedup for workload W,MS(W) is the makespan for work-
load W, andtR(i) is the dedicated runtime for job i, that belongs in W. Intuitively,
this metric exhibits the performance gained against the execution on a single-
processor machine. SU1 has values above 1 and is, theoretically, not bound.

Workload slowdown infinite (SD∞)

SD∞ represents the slowdown against an infinitely large system.SD∞ of workload
W is the ratio between its makespan and the maximum of the job runtimes in a
dedicated environment:

SD∞(W) =
MS(W)

maxi ∈ W tR(i)
(5.3)

whereSD∞(W) is the infinite slowdown for workload W,MS(W) is the makespan
for workload W, andtR(i) is the dedicated runtime for job i. SD∞ has values
above 1.

Actual Cost (Ca)

The actual workload execution cost is the aggregated amount of time that each
instance participating in the workload execution has been running for. Thistime is
measured from the moment an instance is requested, until the time it is shutdown.

Ca(W) =
∑

i ∈ leased V Ms

tstop(i) − tstart(i) (5.4)

wheretstart(i) is the time instance i has been leased from the cloud, andtstop(i)
is the time SkyMark made the request for instance i to be shut-down.

Charged cost (Cc)

The charged cost follows Amazon’s pricing policy for EC2. Amazon charges per
hour of use of each leased instance.

Cc(W) =
∑

i ∈ leased V Ms

⌈tstop(i) − tstart(i)⌉ (5.5)

wheretstart(i) is the time instance i has been leased from the cloud,tstop(i) is
the time SkyMark made the request for instance i to be shut-down, and⌈⌉ is the
ceiling to the nearest hour. This metric does not reflect special pricing policies,
such as premium charges for long-term users, discounts for starting users, etc.

Cost Efficiency (Ceff)

Cost efficiency is defined as the ratio of the charged and actual cost:

Ceff (W) =
Cc(W)

Ca(W)
(5.6)

43

Utility (U)

Utility is a compound metric that rewards low performance overheads and low cost:

U(W) =
SU1(W)

Cc(W)
(5.7)

All the selected metrics can be accepted as good metrics. They all exhibit the
desired characteristics that were described in Subsection 2.1.2.

44

Chapter 6

Experimental Results

In this chapter, we present our findings, from the experimentation performed with
SkyMark. The chapter is divided into two sections: Section 6.1 studies the over-
heads imposed when executing different types of workloads in cloud environments.
Section 6.2 evaluates the performance of several provisioning and allocation poli-
cies, when executing CPU-intensive workloads on different systems.

6.1 IaaS evaluation

As was explained in Subsection 5.2.4, we use eager allocation for the experiments
that involve I/O-intensive workloads, and lazy allocation for the rest. To justify this
decision, we exhibit the instance boot-up time/disk access time trade-off in Figures
6.1 and 6.2, where we request 64 VM instances to be provided at the startof the
experiment. The observed boot-up time with lazy allocation is roughly three times
shorter than with eager allocation. However, the captured virtualization cost with
the use of an I/O-intensive workload is twice as much. Therefore, we hadto switch
to eager allocation, just for these workloads, so that there are no interferences of
the lazy allocation strategy with the virtualization performance.

6.1.1 Uniform Workloads

Figures 6.3, 6.4, 6.5 and 6.6, show the breakdown of the JSD forUniform work-
loads, with CPU-intensive, Memory-intensive, I/O-intensive, and Memory+I/O-
intensive jobs, respectively.

From these graphs, we make several observations. Firstly, the JSD caused by
the virtualization layer remains stable throughout the workload execution, for all
job types. However, the slowdown suffered with Memory-Intensive jobs(≈1.06)
is slightly larger than with CPU-intensive jobs (≈1.03), and considerably larger
with I/O-intensive-jobs (≈1.30). The virtualization overhead with the Memory-
I/O mixture is less (≈1.20) than with I/O jobs alone.

45

 0

 10

 20

 30

 40

 50

 60

 70

VM

s

Lazy allocation

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90

VM

s

Eager allocation

Requested Instances Accessible Instances

Figure 6.1: Comparison of boot-up times between lazy and ea-
ger allocation, for experiments with 64 VMs, on DAS4/Delft.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

Eager allocation
Lazy allocation

Figure 6.2: Comparison of virtualization cost for
I/O-intensive, Uniform workload, between lazy and
eager allocation, on DAS4/Delft.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.3: Job Slowdown Breakdown for
CPU-Intensive, Uniform workload, on DAS4/Delft.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.4: Job Slowdown Breakdown for
Mem-Intensive, Uniform workload, on DAS4/Delft.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.5: Job Slowdown Breakdown for
I/O-Intensive, Uniform workload, with eager
allocation, on DAS4/Delft.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.6: Job Slowdown Breakdown forMem+
I/O-Intensive, Uniform workload, with eager
allocation, on DAS4/Delft.

46

Second, there is a largeJSD variation caused by the complex workload over-
head. This overhead is about the same for CPU-intensive and Memory-intensive
workloads (≈1.3), but grows significantly for I/O-intensive (≈2.0) and Mem+I/O-
intensive workloads (≈3.0).

Furthermore, the VM contention has small variations over time, especially for
the CPU and Memory-Intensive workloads. These variations are largerin the work-
load mixture and the I/O-intensive workload. What is most important, however, is
that the VM contention overhead imposed with the I/O and Memory+I/0-intensive
workloads are considerable (≈2.0 and 1.4 respectively), while insignificant for the
CPU and Memory-intensive workloads (≈1.03 for both).

Lastly, the overhead imposed by SkyMark and additional network delays (other)
is very small and is relatively stable. Overall, the total slowdown is the greatest for
the workload mixture (≈4.0), followed by the I/O-intensive workload (≈3.5). The
largest component of the total slowdown is the complex workload overhead.

6.1.2 Increasing Workload

The same job slowdown breakdown is presented for increasing workloads, in Fig-
ures 6.7, 6.8, 6.9 and 6.10 for the four types of jobs.

For the increasing workloads, we observe that the Complex Workload overhead
increases as the load increases. This stands for all types of jobs. As withthe uni-
form workloads, the complex workload overhead is the most significant source of
job slowdown, and is more substantial for the workloads that include I/O-intensive
jobs. Likewise, the VM contention overhead also increases with the load. This is
more apparent for the I/O and Memory+I/O-intentensive workloads.

The virtualization overhead remains stable over time for the CPU and Memory-
intensive workloads, but a slight increase is observed for the I/O-intensive work-
load and the and mixture of workloads. This virtualization cost increase canbe
attributed to the non-fixed disk read/write access time. As the I/O load increases,
with multiple files being read and written to and from the disk, the cost of a single
block read or write increases. This is because the average seek and rotation times
increase. Thus, what we capture as virtualization cost growth for I/O-intensive
workloads,originates in reality from the other two overheads: the contention be-
tween VMs and the complex workloads. The reason why we capture it as virtual-
ization overhead, is because it is an indirect of time-sharing.

6.1.3 Bursty Workload

We finally show the job slowdown breakdown for Bursty workloads and thefour
job types, in Figures 6.11, 6.12, 6.13 and 6.14.

Here, the VM Contention increases during the two short load bursts. The in-
crease differs from job type to job type. It is almost negligible for the CPU-
intensive jobs (at most 1.03) and Memory-intensive jobs (at most 1.05), but is an

47

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.7: Job Slowdown Breakdown for
CPU-Intensive, Increasing workload, on
DAS4/Delft.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.8: Job Slowdown Breakdown for
Mem-Intensive, Increasing workload, on
DAS4/Delft.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0 10 20 30 40 50 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.9: Job Slowdown Breakdown for
I/O-Intensive, Increasing workload, with ea-
ger allocation, on DAS4/Delft.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.10: Job Slowdown Breakdown for
Mem+I/O-Intensive, Increasing workload,
with eager allocation, on DAS4/Delft.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.11: Job Slowdown Breakdown for
CPU-Intensive, Bursty workload, on DAS4/Delft.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.12: Job Slowdown Breakdown for
Mem-Intensive, Bursty workload, on DAS4/Delft.

48

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.13: Job Slowdown Breakdown for
I/O-Intensive, Bursty workload, with eager al-
location, on DAS4/Delft.

1.0

1.5

2.0

2.5

3.0

3.5

 0 5 10 15 20 25 30 35 40 45 50 55 60

Jo
b

Sl
ow

do
wn

Time (min)

VM_Contention
Virtualization

Complex_Workload
Other
Total

Figure 6.14: Job Slowdown Breakdown for
Mem+I/O-Intensive, Bursty workload, with ea-
ger allocation, on DAS4/Delft.

important contributor to the total job slowdown for the workloads that include I/O-
intensive jobs (at most 2.0 and 1.3 respectively).

As with the increasing workload, the virtualization cost is stable for CPU and
Memory-intensive jobs, but variates slightly for the other two workload types, with
peaks at the moments of intense load.

The overhead imposed by SkyMark and additional network delays (other) has
a considerable increase at the moments of intense load of the Memory-intensive
and Memory+I/O-intensive workloads. One possible explanation for this,is that
the experimentation node was placed inside the tested IaaS cloud. Consequently,
the workload caused some interference with SkyMark, which uses memory more
than the other types of resources. Placing SkyMark outside DAS4/Delft was not
an option, since VM instances could not be made accessible from outside thelocal
network.

6.2 Policy evaluation

In this section we present our findings on the impact of different provisioning and
allocation policies, on the performance of the workload execution. We wantto de-
termine which policies perform better, and which ones offer the best performance-
cost trade-off.

6.2.1 Provisioning

We first explore the effect of the provisioning policies. To this end, we use the
same allocation policy,FCFS, coupled in turn with each one of the provisioning
policies. We show the results in Figures 6.15-6.25 and in Tables 6.1-6.3.

Figures 6.15-6.18 present the workload makespan (WMS), the job slowdown

49

(JSD), the workload speedup against a single node (SU1) and the workload slow-
down against an infinetely large system (SD∞) respectively. From these figures, it
is apparent thatStartup always achieves the best performance.OD-S has similar
performance for the uniform workload, but is not as good for the variable work-
loads. From the threshold-based policies,QueueWait usually performs better
than the rest, because it reacts faster to load variation.ExecTime and its vari-
ants have similar performance, withExecTime usually performing better, since
ExecAvg andExecKN do not have exact job runtime information.

The actual cost (Ca) and charged cost (Cc) are presented in Figures 6.19 and
6.20 respectively. Even thoughStartup incurs the highest actual cost, since it
acquires the full set of resources from the start until the end of the experiments, it
is OD-S that costs the most according to Amazon’s billing scheme. WithOD-S
the VMs are started and stopped reactively to individual job arrivals. The group of
threshold-based policies and especially theExec family of policies significantly
reduce the cost of workload execution. The cost reduction becomes bigger for
the increasing and bursty workloads.QueueWait appears to have similar actual
cost to theExec policies, however the charged cost is higher, especially for the
variable-load workloads.

Figures 6.21 and 6.22 show the cost efficiency (Ceff) and utility (U) for the set
of provisioning policies. The dynamic policies hold on to resources for shorter
periods of time thanStartup, especially for bursty workloads. This leads to a
worse cost efficiency value. However, they do achieve better utility scores, which
means that they provide a better performance-cost trade-off. The charged cost(Cc),
cost efficiency (Ceff) and utility (U) values for the three clouds are presented in
Tables 6.1-6.3.

More insight about the provisioning policies can be gained from Figures 6.23-
6.25. Here, the number of requested and acquired resources is plotted over time,
for the DAS4 cloud, when under the three different types of workloads. OD-S
requests and releases resources very often, leading to VM thrashing.Particularly
visible under the increasing and bursty workloads is thatOD-S often releases re-
sources before they even become accessible.QueueWait reacts faster to load
variation, thus leading to higher cost. TheExec group of policies, and especially
the two run-time estimating policies, have slower reaction to load variation. The
discrepancy betweenExecTime and its variants is caused by a bad initial pre-
diction of the job run-time, that is manually configured prior to the start of the
experiments. For the bursty workload, the inaccurate prediction of the run-time
leads to better behavior for the two estimation-based policies.

Impact of the Adaptive Threshold Heuristic (ATH)

In this section we evaluate the effect ofATH on the performance of the provisioning
policies. Using theExecKN provisioning policy, we toggleATH on or off. The
experiments with the adaptive mechanism turned off involve two scenarios. The

50

 0

 20

 40

 60

 80

Ti
m

e
(M

in
)

DAS4

 0

 20

 40

 60

 80

Ti
m

e
(M

in
)

FIU

 0
 20
 40
 60
 80

Uniform Increasing Bursty

Ti
m

e
(M

in
)

Workload

EC2

Startup
OnDemand

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.15: Workload Makespan (WMS).

 0
 5

 10
 15
 20
 25
 30
 35
 40

Jo
b

S
lo

w
do

w
n

DAS4

 0
 5

 10
 15
 20
 25
 30

Jo
b

S
lo

w
do

w
n

FIU

 0

 5

 10

Uniform Increasing Bursty

Jo
b

S
lo

w
do

w
n

Workload

EC2

Startup
OnDemand

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.16: Job Slowdown (JSD).

 0

 10

 20

 30

 40

 50

S
pe

ed
up

DAS4

 0
 1
 2
 3
 4
 5

S
pe

ed
up

FIU

 0

 5

 10

 15

Uniform Increasing Bursty

S
pe

ed
up

Workload

EC2

Startup
OnDemand

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.17: Workload speedup (SU1).

 0

 10

 20

 30

 40

 50

S
lo

w
do

w
n

In
f.

DAS4

 0
 10
 20
 30
 40
 50

S
lo

w
do

w
n

In
f.

FIU

 0
 10
 20
 30
 40
 50

Uniform Increasing Bursty

S
lo

w
do

w
n

In
f.

Workload

EC2

Startup
OnDemand

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.18: Workload Slowdown Inf. (SD∞).

 0

 20

 40

 60

 80

 100

H
ou

rs

DAS4

 0
 2
 4
 6
 8

 10

H
ou

rs

FIU

 0
 5

 10
 15
 20
 25

Uniform Increasing Bursty

H
ou

rs

Workload

EC2

Startup
OnDemand

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.19: Actual cost (Ca).

 0
 50

 100
 150
 200
 250
 300

H
ou

rs

DAS4

 0
 5

 10
 15
 20
 25
 30

H
ou

rs

FIU

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Uniform Increasing Bursty

H
ou

rs

Workload

EC2

Startup
OnDemand

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.20: Charged cost (Cc).

51

 0

 2

 4

 6

 8

 10

C
os

t E
ffi

ci
en

cy

DAS4

 0
 2
 4
 6
 8

 10

C
os

t E
ffi

ci
en

cy

FIU

 0

 5

 10

Uniform Increasing Bursty

C
os

t E
ffi

ci
en

cy

Workload

EC2

Startup
OnDemand

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.21: Cost efficiency (Ceff).

 0
 1
 2
 3
 4
 5
 6
 7
 8

U
til

ity

DAS4

 0
 1
 2
 3
 4
 5

U
til

ity

FIU

 0
 1
 2
 3
 4
 5

Uniform Increasing Bursty

U
til

ity

Workload

EC2

Startup
OnDemand

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.22: Utility (U).

 0
 20
 40
 60

V

M
s Startup

 0
 20
 40
 60

V

M
s OnDemand

 0
 20
 40
 60

V

M
s ExecTime

 0
 20
 40
 60

V

M
s ExecAvg

 0
 20
 40
 60

V

M
s ExecKN

 0
 20
 40
 60

 0 10 20 30 40 50 60 70 80 90

V

M
s

Time (min)

QueueWait

Requested Instances Accessible Instances

Figure 6.23: Instances over time for the provisioning policies with theUniform
workload on DAS4.

52

 0
 20
 40
 60

V

M
s Startup

 0
 20
 40
 60

V

M
s OnDemand

 0
 20
 40
 60

V

M
s ExecTime

 0
 20
 40
 60

V

M
s ExecAvg

 0
 20
 40
 60

V

M
s ExecKN

 0
 20
 40
 60

 0 10 20 30 40 50 60 70 80 90

V

M
s

Time (min)

QueueWait

Requested Instances Accessible Instances

Figure 6.24: Instances over time for the provisioning policies with theIncreasing
workload on DAS4.

 0
 20
 40
 60

V

M
s Startup

 0
 20
 40
 60

V

M
s OnDemand

 0
 20
 40
 60

V

M
s ExecTime

 0
 20
 40
 60

V

M
s ExecAvg

 0
 20
 40
 60

V

M
s ExecKN

 0
 20
 40
 60

 0 10 20 30 40 50 60 70

V

M
s

Time (min)

QueueWait

Requested Instances Accessible Instances

Figure 6.25: Instances over time for the provisioning policies with theBurstywork-
load on DAS4.

53

ChargedCost CostEfficiency Utility

Uniform Increasing Bursty Uniform Increasing Bursty Uniform Increasing Bursty

Startup 128 128 127 1.7 1.7 1.8 1.0 1.0 1.0

ExecTime 77 (-40%) 52 (-59%) 52 (-59%) 1.6 (-3%) 1.8 (+5%) 2.8 (+61%) 1.4 (+37%) 2.0 (+105%) 2.3 (+127%)

ExecAvg 81 (-37%) 43 (-66%) 22 (-83%) 1.7 (+2%) 1.5 (-12%) 1.3 (-27%) 1.2 (+19%) 2.1 (+114%) 5.5 (+454%)

ExecKN 86 (-33%) 53 (-59%) 22 (-83%) 1.8 (+8%) 1.8 (+7%) 1.3 (-27%) 1.1 (+13%) 1.9 (+87%) 5.5 (+453%)

QueueWait 81 (-37%) 77 (-40%) 126 (-1%) 1.6 (-3%) 2.4 (+42%) 5.0 (+183%) 1.5 (+46%) 1.6 (+56%) 0.9 (-6%)

Table 6.1: Charged cost, cost efficiency and utility for policies on DAS4/Delft.

ChargedCost CostEfficiency Utility

Uniform Increasing Bursty Uniform Increasing Bursty Uniform Increasing Bursty

Startup 14 14 14 1.9 2.0 2.0 1.0 1.0 1.0

ExecTime 7 (-50%) 7 (-50%) 6 (-57%) 1.4 (-23%) 2.4 (+22%) 2.2 (+9%) 1.9 (+91%) 1.7 (+66%) 2.2 (+123%)

ExecAvg 8 (-43%) 7 (-50%) 6 (-57%) 1.6 (-12%) 2.4 (+23%) 2.2 (+9%) 1.6 (+59%) 1.7 (+74%) 2.2 (+124%)

ExecKN 7 (-50%) 6 (-57%) 6 (-57%) 1.4 (-23%) 2.1 (+5%) 2.2 (+8%) 1.9 (+92%) 2.0 (+101%) 2.2 (+124%)

QueueWait 12 (-14%) 11 (-21%) 13 (-7%) 2.4 (+28%) 3.7 (+85%) 4.3 (+114%) 1.1 (+8%) 1.2 (+23%) 1.1 (+6%)

Table 6.2: Charged cost, cost efficiency and utility for policies on FIU.

Charged Cost Cost Efficiency Utility

Workload Uniform Increasing Bursty Uniform Increasing Bursty Uniform Increasing Bursty

Startup 40 40 40 1.9 1.9 1.9 1.0 1.0 1.0

ExecTime 26 (-35%) 15 (-62%) 24 (-40%) 1.6 (-15%) 1.7 (-12%) 4.0 (+111%) 1.4 (+41%) 2.4 (+137%) 1.5 (+51%)

ExecAvg 34 (-15%) 17 (-57%) 26 (-35%) 2.2 (+17%) 1.9 (-1%) 4.3 (+126%) 1.0 (-1%) 2.2 (+116%) 1.4 (+40%)

ExecKN 30 (-25%) 16 (-60%) 25 (-38%) 2.0 (+7%) 1.8 (-5%) 4.1 (+115%) 1.2 (+20%) 2.3 (+133%) 1.5 (+45%)

QueueWait 29 (-28%) 18 (-55%) 38 (-5%) 2.0 (+3%) 2.0 (+4%) 6.2 (+227%) 1.3 (+29%) 2.1 (+113%) 1.0 (+2%)

Table 6.3: Charged cost, cost efficiency and utility for policies on EC2.

54

 0

 5

 10

 15

 20

VM

s ATH

 0

 5

 10

 15

 20

VM

s No ATH, 40 seconds

 0

 5

 10

 15

 20

 0 20 40 60 80 100

VM

s

Time (min)

No ATH, 6 minutes

Requested Instances Accessible Instances

Figure 6.26: Instances over time for theExecKN policy with
and without the use ofATH, using theUniform workload, on
EC2.

 0

 5

 10

 15

 20

VM

s ATH

 0

 5

 10

 15

 20

VM

s No ATH, 40 seconds

 0

 5

 10

 15

 20

 0 20 40 60 80 100

VM

s

Time (min)

No ATH, 6 minutes

Requested Instances Accessible Instances

Figure 6.27: Instances over time for theExecKN policy with
and without the use ofATH, using theIncreasingworkload,
on EC2 .

 0

 5

 10

 15

 20

VM

s ATH

 0

 5

 10

 15

 20

VM

s No ATH, 40 seconds

 0

 5

 10

 15

 20

 0 20 40 60 80 100

VM

s

Time (min)

No ATH, 6 minutes

Requested Instances Accessible Instances

Figure 6.28: Instances over time for theExecKN policy with
and without the use ofATH, using theBursty workload, on
EC2 .

 0

 5

 10

 15

 20

Uniform Increasing Bursty

Jo
b

Sl
ow

do
wn

Workload

ATH NoATH-40s NoATH-6min

Figure 6.29: Job Slowdown (JSD) achieved with and without
ATH, usingExecTime as the provisioning policy.

 0

 1

 2

 3

 4

 5

 6

Uniform Increasing Bursty

Co
st

 e
ffi

cie
nc

y

Policy

ATH NoATH-40s NoATH-6min

Figure 6.30: Cost efficiency (Ceff) achieved with and without
ATH, usingExecTime as the provisioning policy.

 0

 0.2

 0.4

 0.6

 0.8

 1

Uniform Increasing Bursty

Ut
ilit

y

Policy

ATH NoATH-40s NoATH-6min

Figure 6.31: Utility (U) achieved with and withoutATH, using
ExecTime as the provisioning policy.

55

first scenario uses an overoptimistic prediction of the VM instance boot-up time,
as it is configured to 40 seconds, about two times less than the observed resource
acquisition times for Amazon EC2 [65]. Likewise, the second scenario usesa
pessimistic prediction for the boot-up times, set to 6 minutes.

Figures 6.26-6.31 present our findings on the impact ofATH. On the one end,
the 40-second boot-up time configuration is overeager to provide/releaseresources,
while at the other end, the 6-minute configuration is more hesitant. This results in
immenseJSD (Figure 6.29), but betterCeff (Figure 6.30) andU (Figure 6.31) than
the 40-second configuration.ATH achieves the best utility, except in the case of the
bursty workload. However, if we also consider the achievedJSD, we can see that
ATH achieves the best performance-cost trade-off. UsingATH, the provisioning
policy is able to adapt to the cloud’s performance.

Additionally,ATH is expected to improve utility in clouds with considerable re-
source acquisition time variability, even though it has not been tested under such
circumstances. The policy should be more sparing when the cloud under-performs,
and more performance-inclined when resource acquisition times are improved.
Overall, for clouds with big resource acquisition time variability, it is expected
thatATH will improve utility.

Impact of the Increase Factor (IF)

Here we evaluate the impact ofIF, to the performance of the provisioning policies.
As before, the provisioning policy is fixed toExecKN, andIF variates between
theSingle, Multiple andGeometric schemes.

The acquisition and release of instances over time on EC2, while using the three
increase factors, is presented in Figures 6.32-6.34. From these figures, it is ob-
served thatGeometric achieves the shortest makespan, followed byMultiple
and withSingle trailing. The reason behind this is becauseGeometric and
Multiple respond faster to load variation. The job slowdown illustrated in Fig-
ure 6.35 shows thatGeometric outperforms the other two schemes. However,
when using variable-load workloads,Geometric is the least cost-efficient, and
achieves the worst utility.Geometric provisions pro-actively, by acquiring a
larger amount of resources than what is currently needed, keeping thesystem un-
der lower load. Faster and more intense reaction to load variation leads to better
performance, but also to resource under-utilization and lower performance-cost
trade-offs.

6.2.2 Allocation

In this experiment we want to study the performance of different allocationpoli-
cies and the static provisioning policy,Startup. Resources are acquired at the
beginning of the experiment, and then jobs are sent to the system.

We use theFCFS, theSJF, and theFCFS-NW allocation policies in the three
testbeds. Figure 6.38 lists the results only for the job slowdown metric, since we

56

 0

 5

 10

 15

 20

VM

s

Single

 0

 5

 10

 15

 20

VM

s

Multiple

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

VM

s

Time (min)

Geometric

Requested Instances Accessible Instances

Figure 6.32: Instances over time for theExecKN policy with
variableIF with Uniformworkload, on EC2.

 0

 5

 10

 15

 20

VM

s

Single

 0

 5

 10

 15

 20

VM

s

Multiple

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

VM

s

Time (min)

Geometric

Requested Instances Accessible Instances

Figure 6.33: Instances over time for theExecKN policy with
variableIF with Increasingworkload, on EC2.

 0

 5

 10

 15

 20

VM

s

Single

 0

 5

 10

 15

 20

VM

s

Multiple

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

VM

s

Time (min)

Geometric

Requested Instances Accessible Instances

Figure 6.34: Instances over time for theExecKN policy with
variableIF with Burstyworkload, on EC2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Uniform Increasing Bursty

Jo
b

Sl
ow

do
wn

Workload

Single Multiple Geometric

Figure 6.35: Job Slowdown (JSD) achieved with the threeIF
factors, usingExecTime as the provisioning policy.

 0

 1

 2

 3

 4

 5

 6

Uniform Increasing Bursty

Co
st

 e
ffi

cie
nc

y

Policy

Single Multiple Geometric

Figure 6.36: Cost efficiency (Ceff) achieved with the threeIF
factors, usingExecTime as the provisioning policy.

 0

 0.2

 0.4

 0.6

 0.8

 1

Uniform Increasing Bursty

Ut
ilit

y

Policy

Single Multiple Geometric

Figure 6.37: Utility (U) achieved with the threeIF factors,
usingExecTime as the provisioning policy.

57

0.0

1.0

2.0

3.0

4.0

Jo
b

S
lo

w
do

w
n

DAS4

0.0

1.0

2.0

3.0

Jo
b

S
lo

w
do

w
n

FIU

0.0

0.5

1.0

1.5

2.0

Uniform Increasing Bursty

Jo
b

S
lo

w
do

w
n

Workload

EC2

FCFS SJF FCFS-NW

Figure 6.38: Average Job Slowdown for Allocation policies.

did not observe significant differences in cost or makespan. The experiment shows
that SJF gives a lower slowdown, since shorter jobs are processed first, which
means jobs in wait less time in the queue. Overall,FCFS performs similarly to
SJF for the uniform and increasing workloads, however its performance degrades
when under a bursty load. Lastly, theFCFS-NW policy, which assigns jobs to VMs
with round-robin, creates resource competition, and thus has worse results in all
experiments.

6.3 Impact of Workloads on Cloud Reliability

Large-scale experiments were planned and performed for the purposes of this work,
on DAS4/VU and DAS4/Delft sites. However, we have experienced massive VM
instantiation failures. This situation effectively made the results unusable from a
performance-analysis perspective. A large portion of the requested VM instances
were unexplainably failing during the pending state.

Further investigation showed that the failures were caused by the CPU-intensive
workloads submitted to the cloud. As can be observed in Figures 6.39 and 6.40,
when the VM instances were requested prior to the workload submission using
theStartup provisioning policy, no instantiation failures took place. However,
when using a dynamic policy, such asExecAvg, few of the requested instances
reached the “running” state. This can be observed from the inability of requested

58

 0

 100

 200

 300

 400

 500

V

M
s

Startup

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80

V

M
s

Time (min)

ExecTime

Requested Instances Accessible Instances

Figure 6.39: Observed failures on DAS4/VU, while using a
CPU-intensive, Increasing workload. The failures
only take place with dynamic policies, such asExecTime.

 0

 50

 100

 150

 200

 250

V

M
s

Startup

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80

V

M
s

Time (min)

ExecTime

Requested Instances Accessible Instances

Figure 6.40: Observed failures on DAS4/Delft, while using a
CPU-intensive, Increasing workload.

instances to become accessible instances. For example, in Figure 6.39,ExecTime
starts requesting more instances at minute 30. At about minute 35,ExecTime
has already requested almost 400 new instances. Two minutes later, however, a
massive amount of instantiation failures take place, indicated by the sudden drop
in requested instances. What we eventually manage to acquire between minutes 30
and 40, is around 100 instances, only 25% of what was actually requested.

The difference between the static and dynamic provisioning scenarios wasthat
for the dynamic case, there were already several VMs running on eachphysical
node, each of which with scheduled CPU-intensive jobs.

While we were able to pinpoint the CPU-intensive workloads as the origin of
the failures, we could not identify why they have this influence on cloud reliability.
We were only able to trace the failures down to the virtualization layer, where there
seems to be some mis-configuration of the current DAS4 hypervisor (KVM).

6.4 Success Stories

Apart from the issue described in the previous section, several other problems re-
garding the OpenNebula VIM installation on the DAS4 supercomputer were iden-
tified with the use of SkyMark and were addressed afterwards. In otherwords,
SkyMark has already proved its usefulness in testing IaaS cloud deployments, a
goal for which it was not designed, but for which no other public tools exist.

Firstly, we noticed that OpenNebula required a considerable amount of time to
respond to acquire/release requests and VM status updates, especially when the
cloud was under heavy load. A migration from an Sqlite backend to a MySQL

59

backend, helped in alleviating this performance issue.
Another issue we encountered was with the OpenNebula default image transfer

configuration, which was based on the use of the underlying Network File System
(NFS) (See Subsection 2.3.5). When we tried to deploy large scale experiments on
DAS4/Delft, the load exercised on the supercomputer network was so large, that
DAS4 collapsed and had to be hardware-rebooted. This issue did not appear in the
study of Ueda et al. [79], where they examined the impact of this configuration
to the cloud performance. We then had to use the localDisk transfer method with
caching, in which the VM images are explicitly transferred to the local file systems
of the nodes. All subsequent instantiation requests on a specific node, can be served
using the cached image. A shared filesystem is currently needed for performing live
migration of instances, but it comes with a great network performance penalty.

An additional performance issue was the considerable staging time for instances
using eager allocation, especially when tens of instances are provisionedand are
currently in the staging phase. The boot-up time grew significantly with the number
of instances requested, something that would have a severe effect on the allocation
and provisioning policy results. For this reason, we adopted the use of lazy image
allocation, that would reduce the time needed to prepare an instance.

Finally, through the use of SkyMark, we discovered a bug in the XML-RPC
interface of OpenNebula. More specifically, the interface did not informSkyMark
on the event of an instance failure. The bug has been reported [59], but we had
to switch to an “internal-state” attribute, that successfully informed us of instance
failure events.

To conclude, we acknowledge that setting-up a reliable, scalable and elastic
cloud on private infrastructure might be more of a challenge than initially regarded.
Moreover, we emphasize on the necessity of using performance evaluation frame-
works, such as SkyMark, to certify an IaaS deployment.

60

Chapter 7

Conclusions and Future Work

To bring this thesis to a close, we present our conclusions in Section 7.1 andpo-
tential future work in Section 7.2.

7.1 Conclusions

We provide our conclusions for each of the two thesis research components indi-
vidually: first, the study on the performance of IaaS clouds, and subsequently the
study on the provisioning and allocation policies. Lastly, we discuss our findings
regarding cloud reliability.

7.1.1 IaaS performance evaluation

The performance characteristics of IaaS clouds need to be understoodbetter. To-
wards providing insight for this problem, we have developed SkyMark, aperfor-
mance analysis framework for IaaS environments. We used SkyMark to firstly
generate a set of complex, synthetic workloads that stress one or two components
of the cloud, and exhibit three different arrival patterns. Using an elaborate, but
mostly automated experimental methodology, we were able to isolate the over-
heads imposed by the software stack and the resource time sharing.

Our main findings for this section are listed below:

1. The virtualization cost is small for CPU-intensive workloads (≈ 3%) and
Memory-intensive workloads (≈ 5%), but is significantly more for I/O-
intensive workloads (≈ 40%) and Memory+ I/O workload mixtures (≈ 20%).
These results are in accordance with the virtualization overheads when they
were studied individually in a virtualized, but non-cloud environment [11,
16,17,28,56,93].

2. The contention between VMs imposes a small overhead for CPU and Memory-
intensive workloads (up to≈ 4% and≈ 7% respectively). The performance

61

isolation across VMs is considerably worse in the case of the I/O and Mem-
ory+I/O intensive workloads (≈ 100% and≈ 40% respectively). These find-
ings suggest that it is paramount to focus on providing VM performance
isolation for disk access.

3. The performance variation in response to the imposed load is significant,
especially for I/O-intensive workloads. This variation in performance could
make it especially hard to provide any performance QoS guarantees to cloud
users. Currently, public IaaS providers only make availability guarantees.

4. SkyMark imposed negligible overhead to the workload execution. However,
the decision to place the experimentation node within the cloud caused some
performance interference in the case of Memory-Intensive Bursty workloads.
Although we could have used different configurations, they would havebeen
less considerate of other DAS4 users.

5. Even though we conducted the experiments using one cloud configuration,
we previously considered several configurations. The performancevariates
considerably with the current cloud platform configuration, a conclusionalso
drawn by [79].

7.1.2 Policy evaluation

Current and potential IaaS users need to be provided with deeper insights for the
achieved performance and charged cost that their workloads would incur, with a
selected set of provisioning and allocation policies. Without a deeper understand-
ing of the performance and cost that the used policies can achieve, potential IaaS
users, and the industry in general, would hesitate to migrate to the cloud.

In this work we have conducted a comprehensive, empirical study of six provi-
sioning and three allocation policies, using SkyMark, and a subset of ourcomplex
workloads. We performed experimentation on three IaaS clouds, two of which
were set up on private infrastructure using open-source cloud manager implemen-
tations, and the other was Amazon’s EC2 public cloud.

Here, we list our main findings regarding the policy investigation:

1. OD-ExecTime and its two variants (especiallyOD-ExecKN), are a good
performance-cost trade-off among the investigated provisioning policies; Un-
like theOD-ExecTime policy, OD-ExecKN does not assume known job
run-times.

2. Startup, the only static policy we used, delivers stable performance, but
incurs up to 5 times higher cost. The efficiency of this static policy is lower
for workloads

3. Our Adaptive Threshold Heuristic (ATH) is able to automatically adjust the
provisioning policy’s behaviour to the cloud’s current provisioning perfor-

62

mance, thus improving the policy’s performance-cost trade-off. An addi-
tional benefit of usingATH is that configuring the policy does not require to
know the cloud’s current acquisition times.

4. RegardingIF, faster reaction to load variation leads to better performance,
but also to a worse performance-cost trade-off. Overall, we find thatthe
Multiple increase factor (IF) achieves the best performance-cost trade-
off.

5. TheSJF allocation policy achieves the best performance among the exam-
ined policies, however, it makes the assumption that the job run-times are
known.

7.1.3 Cloud reliability

We found that it is difficult to set-up a reliable and well-performing private cloud on
our local infrastructure, even though DAS4 is equipped with state-of-the-art com-
mercial hardware. When we configured OpenNebula to use its NFS image transfer
method during our large-scale experiments, the supercomputer crashed because of
network overload. When using the eager image allocation method, the extremely
long provisioning times when tens of VMs were provisioned, were considered to
be obtrusive to performing our experiments. An issue whose cause we were not
able to identify, was the high VM instantiation failure ratio under the localDisk
configuration with caching, when the physical nodes were already hosting VMs
with our workloads. SkyMark was vital in discovering these reliability issuesof
the used IaaS environments, even though it was not originally designed for this
purpose.

Virtual Machine instantiation failures were not exactly rare even for the Amazon
EC2 cloud, as previously reported in [42]. This was usually the case when we
requested tens of VMs simultaneously. Occasionally, one or a couple of them
would fail to boot.

7.2 Future Work

The SkyMark framework is currently going through the certification process of
the Standards Performance Evaluation Corporation (SPEC) [76]. Apart from the
certification process, we plan to extend this work to consider new provisioning
and allocation policies that adapt to changing workload, evolving resources, and
complex Service Level Agreements. We will work on creating a taxonomy of
provisioning and allocation policies, and examine classes of policies that we have
not previously explored.

Another research direction is to consider more diverse and realistic workloads,
such as synthetic Bag-of-Tasks (BoT) based workloads generated with the model in

63

[39], mixtures of synthetic parallel workloads and synthetic BoT-based workloads,
or real traces from grid workloads [37].

In this work, we have used mainly traditional metrics to evaluate and compare
the performance of clouds and policies. In the future, we plan to investigatenew
cloud-oriented metrics that can quantify some of the major cloud characteristics,
such as elasticity and scalability.

64

Bibliography

[1] ElasticHosts. Online, 2011. http://www.elastichosts.com.
[2] GoGrid. Online, 2011. http://www.gogrid.com/.
[3] Amazon. Amazon EC2 Instance Types. Online, 2011.

http://aws.amazon.com/ec2/instance-types.
[4] Amazon. Amazon EC2 Pricing. Online, 2011. http://aws.amazon.com/ec2/pricing/.
[5] Amazon Web Services. Auto Scaling. Online, 2011.

http://aws.amazon.com/autoscaling/.
[6] Amazon Web Services. Elastic Load Balancing. Online, 2011.

http://aws.amazon.com/elasticloadbalancing/.
[7] Amazon Web Services LLC. Amazon Web Services Scaling. Online, 2011.

http://aws.amazon.com.
[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.Joseph, Randy H. Katz,

Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, and Matei Za-
haria. Above the clouds: A berkeley view of cloud computing.Technical report, UC
Berkeley Reliable Adaptive Distributed Systems Laboratory, 2009.

[9] Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, Amin Vahdat, Lok T. Liu,
Thomas E. Anderson, and David A. Patterson. The interactionof parallel and se-
quential workloads on a network of workstations. InSIGMETRICS, pages 267–278,
1995.

[10] Immaneni Ashok and John Zahorjan. Scheduling a Mixed Interactive and Batch
Workload on a Parallel, Shared Memory Supercomputer. InSC, pages 616–625,
1992.

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,Timothy L. Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In SOSP, pages 164–177, 2003.

[12] Orna Agmon Ben-Yehuda, Assaf Schuster, Artyom Sharov,Mark Silberstein, and
Alexandru Iosup. ExPERT: Pareto-efficient task replication on grids and clouds.
Technical Report CS-2011-03, Technion CS Dept., Apr 2011.

[13] Carsten Binnig, Donald Kossmann, Tim Kraska, and SimonLoesing. How is the
weather tomorrow?: towards a benchmark for the cloud. InDBTest, 2009.

[14] Eun-Kyu Byun, Yang-Suk Kee, Jin-Soo Kim, and Seungryoul Maeng. Cost opti-
mized provisioning of elastic resources for application workflows. Future Gener.
Comput. Syst., 27:1011–1026, October 2011.

[15] David Candeia, Ricardo Araujo, Raquel Vigolvino Lopes, and Francisco Vilar
Brasileiro. Investigating business-driven cloudburst schedulers for e-science bag-
of-tasks applications. InCloudCom, pages 343–350, 2010.

[16] Ludmila Cherkasova and Rob Gardner. Measuring cpu overhead for i/o processing in
the xen virtual machine monitor. InUSENIX Annual Technical Conference, General
Track, pages 387–390, 2005.

65

[17] Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik, Matthew Finlayson, Jason
Herne, and Jeanna Neefe Matthews. Xen and the art of repeatedresearch. InUSENIX
Annual Technical Conference, FREENIX Track, pages 135–144, 2004.

[18] CloudHarmony.comTM . Cloudharmony services. Online, January 2011.
http://cloudharmony.com/services/.

[19] Marcos Dias de Assunção, Alexandre di Costanzo, and Rajkumar Buyya. Evaluat-
ing the cost-benefit of using cloud computing to extend the capacity of clusters. In
HPDC, pages 141–150, 2009.

[20] Ewa Deelman, Gurmeet Singh, Miron Livny, G. Bruce Berriman, and John Good.
The cost of doing science on the cloud: the montage example. In SC, page 50, 2008.

[21] Mohamed El-Refaey.Virtual Machines Provisioning and Migration Services, pages
121–156. John Wiley & Sons, Inc., 2011.

[22] Open Grid Forum. Job Submission Description Language (JSDL) specification, Ver-
sion 1.0. Online, 2005. http://www.gridforum.org/documents/GFD.56.pdf.

[23] St́ephane Genaud and Julien Gossa. Cost-wait trade-offs in client-side resource pro-
visioning with elastic clouds. InIEEE CLOUD, pages 1–8, 2011.

[24] GoGrid. F5 Hardware Load Balancers. Online, 2011. http://www.gogrid.com/cloud-
hosting/load-balancers.php.

[25] Google. Google AppEngine. Online, 2011. http://code.google.com/appengine/.
[26] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The cost of

a cloud: research problems in data center networks.SIGCOMM Comput. Commun.
Rev., 39:68–73, Dec. 2008.

[27] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sen-
gupta. Vl2: a scalable and flexible data center network. InSIGCOMM, pages 51–62,
2009.

[28] Martin Grund, Jan Schaffner, Jens Krüger, Jan Brunnert, and Alexander Zeier. The
effects of virtualization on main memory systems. InDaMoN, pages 41–46, 2010.

[29] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu Lu.
Dcell: a scalable and fault-tolerant network structure fordata centers. InSIGCOMM,
pages 75–86, 2008.

[30] Thomas J. Hacker and Kanak Mahadik. Flexible resource allocation for reliable
virtual cluster computing systems. InSC, page 48, 2011.

[31] Thomas A. Henzinger, Anmol V. Singh, Vasu Singh, ThomasWies, and Damien
Zufferey. Flexprice: Flexible provisioning of resources in a cloud environment. In
IEEE CLOUD, pages 83–90, 2010.

[32] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: a platform for fine-
grained resource sharing in the data center. InNSDI, pages 22–22, Berkeley, CA,
USA, 2011. USENIX Association.

[33] Citrix Systems Inc. Citrix XenServer. Online, 2011.
http://www.citrix.com/English/ps2/products/product.asp?contentID=683148.

[34] Alexandru Iosup and Dick H. J. Epema. Grenchmark: A framework for analyzing,
testing, and comparing grids. InCCGRID, 2006.

[35] Alexandru Iosup and Dick H. J. Epema. Grid computing workloads. IEEE Internet
Computing, 15(2):19–26, 2011.

[36] Alexandru Iosup, Dick H. J. Epema, Carsten Franke, Alexander Papaspyrou, Lars
Schley, Baiyi Song, and Ramin Yahyapour. On grid performance evaluation using
synthetic workloads. InJSSPP, pages 232–255, 2006.

66

[37] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Dumitrescu, Lex
Wolters, and Dick H. J. Epema. The grid workloads archive.Future Gener. Comput.
Syst., 24:672–686, July 2008.

[38] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick H. J. Epema. Performance analysis of cloud computing services
for many-tasks scientific computing.IEEE Trans. Parallel Distrib. Syst., 22(6):931–
945, 2011.

[39] Alexandru Iosup, Omer Ozan Sonmez, Shanny Anoep, and Dick H. J. Epema. The
performance of bags-of-tasks in large-scale distributed systems. InHPDC, pages
97–108, 2008.

[40] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On the performance variability
of production cloud services. InCCGrid, pages 104 –113, may 2011.

[41] Michael A. Iverson, F̈usunÖzg̈uner, and Gregory J. Follen. Run-time statistical esti-
mation of task execution times for heterogeneous distributed computing. InHPDC,
pages 263–, 1996.

[42] Keith R. Jackson, Krishna Muriki, Lavanya Ramakrishnan, Karl J. Runge, and
Rollin C. Thomas. Performance and cost analysis of the supernova factory on the
amazon aws cloud.Scientific Programming, 19(2-3):107–119, 2011.

[43] Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas
Cholia, John Shalf, Harvey J. Wasserman, and Nicholas J. Wright. Performance
analysis of high performance computing applications on theamazon web services
cloud. InCloudCom, pages 159–168, 2010.

[44] Raj Jain.The Art of Computer Systems Performance Analysis: techniques for exper-
imental design, measurement, simulation, and modeling. Wiley, 1991.

[45] Dejun Jiang, Guillaume Pierre, and Chi-Hung Chi. Ec2 performance analysis for re-
source provisioning of service-oriented applications. InICSOC/ServiceWave Work-
shops, pages 197–207, 2009.

[46] Ekasit Kijsipongse and Sornthep Vannarat. Autonomic resource provisioning in
rocks clusters using eucalyptus cloud computing. InMEDES, pages 61–66, 2010.

[47] Tom Killalea. Meet the virts.Queue, 6:14–18, January 2008.
[48] Avi Kivity. kvm: the Linux virtual machine monitor. InOLS ’07: The 2007 Ottawa

Linux Symposium, pages 225–230, July 2007.
[49] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang.Cloudcmp: comparing

public cloud providers. InInternet Measurement Conference, pages 1–14, 2010.
[50] David J. Lilja. Measuring Computer Performance: A Practitioner’s Guide. Cam-

bridge University Press, 2005.
[51] Ignacio M. Llorente, Rubn S. Montero, Borja Sotomayor,David Breitgand, Alessan-

dro Maraschini, Eliezer Levy, and Benny Rochwerger.On the Management of Virtual
Machines for Cloud Infrastructures, pages 157–191. John Wiley & Sons, Inc., 2011.

[52] Wei Lu, Jared Jackson, Jaliya Ekanayake, Roger S. Barga, and Nelson Araujo. Per-
forming large science experiments on azure: Pitfalls and solutions. InCloudCom,
pages 209–217, 2010.

[53] Ming Mao, Jie Li, and Marty Humphrey. Cloud auto-scaling with deadline and
budget constraints. InGRID, pages 41–48, 2010.

[54] Paul Marshall, Kate Keahey, and Timothy Freeman. Elastic site: Using clouds to
elastically extend site resources. InCCGRID, pages 43–52, 2010.

[55] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing (Draft).
National Institute of Standards and Technology, page 7, Jan. 2011.

[56] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. John Janakiraman, and Willy
Zwaenepoel. Diagnosing performance overheads in the xen virtual machine environ-
ment. InVEE, pages 13–23, 2005.

67

[57] Umar Farooq Minhas, Jitendra Yadav, Ashraf Aboulnaga,and Kenneth Salem.
Database systems on virtual machines: How much do you lose? In ICDE Work-
shops, pages 35–41, 2008.

[58] Michael A. Murphy, Brandon Kagey, Michael Fenn, and Sebastien Goasguen. Dy-
namic provisioning of virtual organization clusters. InCCGRID, pages 364–371,
2009.

[59] Nassos Antoniou. Opennebula bug 1072. Online, 2011.
http://dev.opennebula.org/issues/1072.

[60] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: managing perfor-
mance interference effects for qos-aware clouds. InEuroSys, pages 237–250, 2010.

[61] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptusopen-source cloud-
computing system. InCCGRID, pages 124–131, Washington, DC, USA, 2009. IEEE
Computer Society.

[62] Open Grid Forum. Open Cloud Computing Interface (OCCI). Online, 2011.
http://occi-wg.org/.

[63] OpenNebula. OpenNebula open-source toolkit for cloud-computing. Online, 2011.
http://www.opennebula.org.

[64] OpenNebula Project Leads. Xml-rpc api 3.0. Online, 2011.
http://opennebula.org/documentation:rel3.0:api.

[65] Simon Ostermann, Alexandru Iosup, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick H. J. Epema. A performance analysis of ec2 cloud computing
services for scientific computing. InCloudComp, pages 115–131, 2009.

[66] Simon Ostermann, Radu Prodan, and Thomas Fahringer. Resource management
for hybrid grid and cloud computing. InCloud Computing, volume 0 ofComputer
Communications and Networks, pages 179–194. Springer London, 2010.

[67] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. Ama-
zon s3 for science grids: a viable solution? InDADC, pages 55–64, 2008.

[68] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, and Calton
Pu. Understanding performance interference of i/o workload in virtualized cloud
environments. InIEEE CLOUD, pages 51–58, 2010.

[69] Andres Quiroz, Hyunjoo Kim, Manish Parashar, Nathan Gnanasambandam, and
Naveen Sharma. Towards autonomic workload provisioning for enterprise grids and
clouds. InGRID, pages 50–57, 2009.

[70] John J. Rehr, Fernando D. Vila, Jeffrey P. Gardner, Lucas Svec, and Micah Prange.
Scientific computing in the cloud.Computing in Science and Engineering, 12(3):34–
43, 2010.

[71] Mohsen Salehi and Rajkumar Buyya. Adapting market-oriented scheduling policies
for cloud computing. InICA3PP. 2010.

[72] Mohsen Amini Salehi and Rajkumar Buyya. Adapting market-oriented scheduling
policies for cloud computing. InICA3PP (1), pages 351–362, 2010.

[73] Salesfoce. CRM software on-demand. Online, 2011. http://www.salesforce.com/.
[74] Love H. Seawright and Richard A. MacKinnon. Vm/370 - a study of multiplicity

and usefulness.IBM Systems Journal, 18(1):4–17, 1979.
[75] Borja Sotomayor, Rub́en S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual

infrastructure management in private and hybrid clouds.IEEE Internet Computing,
13:14–22, September 2009.

[76] Standard Performance Evaluation Corporation. SPEC’sStructure. Online, 2011.
http://www.spec.org/spec/.

68

[77] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Beowulf cluster
computing with linux. chapter Condor: a distributed job scheduler, pages 307–350.
MIT Press, Cambridge, MA, USA, 2002.

[78] Juan M. Tirado, Daniel Higuero, Florin Isaila, and Jesús Carretero. Predictive data
grouping and placement for cloud-based elastic server infrastructures. InCCGRID,
pages 285–294, 2011.

[79] Yohei Ueda and Toshio Nakatani. Performance variations of two open-source cloud
platforms. InIISWC, pages 1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

[80] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins,
Andrew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung, and Larry
Smith. Intel virtualization technology.Computer, 38:48–56, May 2005.

[81] David Villegas, Athanasios Antoniou, Seyed Masoud Sadjadi, and Alexandru Iosup.
An analysis of provisioning and allocation policies for infrastructure-as-a-service
clouds: Extended results. Technical report, Delft University of Technology, 2011.

[82] VMware. VMware ESXi and ESX Info Center. Online, 2011.
http://www.vmware.com/products/vsphere/esxi-and-esx/overview.html.

[83] VMware. VMware products. Online, 2011. http://www.vmware.com/products.
[84] William Voorsluys, James Broberg, and Rajkumar Buyya.Introduction to Cloud

Computing, chapter 1, pages 1–41. Cloud Computing: Principles and Paradigms.
John Wiley & Sons, Inc., 2011.

[85] Vrije Universiteit Amsterdam. The Distributed ASCI Supercomputer 4. Online,
2011. http://www.cs.vu.nl/das4/.

[86] Edward Walker. Benchmarking Amazon EC2 for high-performance scientific com-
puting. LOGIN, 33(5):18–23, Oct. 2008.

[87] Chuliang Weng, Qian Liu, Lei Yu, and Minglu Li. Dynamic adaptive scheduling for
virtual machines. InHPDC, pages 239–250, 2011.

[88] Andrew Whitaker, Marianne Shaw, and S D Gribble. Denali :Lightweight virtual
machines for distributed and networked applications.Technical Report, 02(Figure
1):10, 2002.

[89] WikiBooks. QEMU/Images. Online, 2011.
http://en.wikibooks.org/wiki/QEMU/Images.

[90] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. Sla-based resource alloca-
tion for software as a service provider (saas) in cloud computing environments. In
CCGRID, pages 195–204, 2011.

[91] Nezih Yigitbasi, Alexandru Iosup, Dick H. J. Epema, andSimon Ostermann. C-
meter: A framework for performance analysis of computing clouds. InCCGRID,
pages 472–477, 2009.

[92] Lamia Youseff, Rich Wolski, Brent Gorda, and Ra Krintz.Paravirtualization for
hpc systems. InIn Proc. Workshop on Xen in High-Performance Cluster and Grid
Computing, pages 474–486. Springer, 2006.

[93] Weikuan Yu and Jeffrey S. Vetter. Xen-based hpc: A parallel i/o perspective. In
CCGRID, pages 154–161, 2008.

[94] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Delay scheduling: a simple technique for achieving lo-
cality and fairness in cluster scheduling. InEuroSys, pages 265–278, New York, NY,
USA, 2010. ACM.

69

