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Abstract

In the limit of small activator diffusivity ε, the stability of symmetric k-spike equilibrium
solutions to the Gierer-Meinhardt reaction-diffusion system in a one-dimensional spatial domain
is studied for various ranges of the reaction-time constant τ ≥ 0 and the diffusivity D > 0 of the
inhibitor field dynamics. A nonlocal eigenvalue problem is derived that determines the stability
on an O(1) time-scale of these k-spike equilibrium patterns. The spectrum of this eigenvalue
problem is studied in detail using a combination of rigorous, asymptotic, and numerical methods.
For k = 1, and for various exponent sets of the nonlinear terms, we show that for each D > 0,
a one-spike solution is stable only when 0 ≤ τ < τ0(D). As τ increases past τ0(D), a pair
of complex conjugate eigenvalues enters the unstable right half-plane, triggering an oscillatory
instability in the amplitudes of the spikes. A large-scale oscillatory motion for the amplitudes
of the spikes that occurs when τ is well beyond τ0(D) is computed numerically and explained
qualitatively. For k ≥ 2, we show that a k-spike solution is unstable for any τ ≥ 0 when
D > Dk, where Dk > 0 is the well known stability threshold of a multi-spike solution when
τ = 0. ForD > Dk and τ ≥ 0, there are eigenvalues of the linearization that lie on the (unstable)
positive real axis of the complex eigenvalue plane. The resulting instability is of competition
type whereby spikes are annihilated in finite time. For 0 < D < Dk, we show that a k-spike
solution is stable with respect to the O(1) eigenvalues only when 0 ≤ τ < τ0(D; k). When τ
increases past τ0(D; k) > 0, a synchronous oscillatory instability in the amplitudes of the spikes
is initiated. For certain exponent sets and for k ≥ 2, we show that τ0(D; k) is a decreasing
function of D with τ0(D; k) → τ0k > 0 as D → D−

k
.

1 Introduction

Since the pioneering work of Turing [29], there have been many studies determining the conditions

for the onset of instabilities of spatially homogeneous patterns in reaction-diffusion systems in
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both bounded and unbounded spatial domains. Various types of weakly nonlinear theories, many

of them associated with the complex Ginzburg-Landau equation, have been used to study the

weakly nonlinear development of these Turing instabilities. There have been many results in this

direction. A survey of pattern formation in many different physical settings is given in [2]. However,

in the singularly perturbed limit, many reaction-diffusion systems can allow for the existence of

equilibrium solutions that exhibit a high degree of spatial heterogeneity. A very common pattern of

this type is a spike pattern, whereby one of the components of the system becomes spatially localized

at certain points in the domain. In different contexts these localized patterns are referred to either

as spots (cf. [18]) or pulses (cf. [4]). In contrast to the study of the stability of spatially homogeneous

solutions, the instabilities and the dynamics of these spatially localized patterns are not nearly as

well understood. In this paper, we determine the conditions for the onset of oscillatory instabilities

for symmetric k-spike equilibrium solutions to the singularly perturbed Gierer-Meinhardt reaction-

diffusion model in a bounded one-dimensional spatial domain. An equilibrium spike pattern is

said to be symmetric when the spikes have a common amplitude. Asymmetric equilibrium spike

patterns, where the spikes have different amplitudes, have been constructed asymptotically in [30].

The Gierer-Meinhardt (GM) model, introduced in [11], has been widely used to model localiza-

tion processes in nature, such as cell differentiation and morphogenesis (cf. [12]), biological pattern

formation (cf. [17]), and the formation of sea-shell patterns (cf. [18]). In Appendix A, we show

that in the limit where the activator diffuses more slowly than the inhibitor, the GM system can

be written in dimensionless form as

at = ε2axx − a+
ap

hq
, −1 < x < 1 , t > 0 , (1.1a)

τht = Dhxx − h+ ε−1a
m

hs
, −1 < x < 1 , t > 0 , (1.1b)

ax(±1, t) = hx(±1, t) = 0 ; a(x, 0) = a0(x) , h(x, 0) = h0(x) . (1.1c)

Here a, h, 0 < ε ≪ 1, D > 0, and τ ≥ 0, represent the activator concentration, inhibitor con-

centration, activator diffusivity, inhibitor diffusivity, and reaction-time constant, respectively. The

parameters D > 0 and τ ≥ 0 are assumed to be constant. The usual assumption on the exponents

(p, q,m, s) (cf. [11]) are that they satisfy

p > 1 , q > 0 , m > 1 , s ≥ 0 , with ζ ≡ qm

(p − 1)
− (s + 1) > 0 . (1.2)

To illustrate our analytical theory, we will give explicit stability results for the five different com-

monly used exponent sets (p, q,m, s) given by

(2, 1, 2, 0) , (2, 1, 3, 0) , (3, 2, 2, 0) , (3, 2, 3, 1) , (4, 2, 2, 0) . (1.3)
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For the case τ = 0 and ε ≪ 1, the stability and existence of symmetric and asymmetric k-

spike equilibria for (1.1) has been analyzed using formal asymptotic techniques in [14] and [30].

A rigorous framework for these stability analyses is given in [33]. A dynamical systems approach

is used in [5] to construct multi-spike equilibrium solutions for (1.1). The existence of symmetric

k-spike equilibria for (1.1) was proved in [28]. A formal asymptotic analysis of small amplitude

solutions to activator-inhibitor systems was given in [15]. For the case τ = 0, the dynamics of

k-spike patterns to (1.1) was analyzed in [13]. In [27] various types of instabilities for the dynamics

of one-spike solutions of the GM model with D = O(1) and τ > 0, and for a related reaction-

diffusion system known as the Schnakenburg model (cf. [26]), were highlighted numerically. These

instabilities include sudden oscillations of slowly drifting spikes.

For τ > 0, there are only a few stability results for spike solutions to the GM system, and most

of these results are for the shadow GM model obtained by letting D → ∞ in (1.1b). For τ > 0,

the numerical results shown in [20] suggested that oscillatory instabilities can occur for a boundary

spike solution to the shadow GM model. For τ > 0, and D sufficiently large, the stability of a

one-spike solution to (1.1) was analyzed rigorously in [21] under the condition that the exponents

(p, q,m, s) in the model are such that ζ → 0+ in (1.2). For the shadow GM model, it is proved in

[3] that there are two eigenvalues in the spectrum of the linearization around a spike solution that

are along the positive real axis when τ is sufficiently large, and a Hopf bifurcation as τ increases

past some critical parameter is suggested. A combination of rigorous, asymptotic, and numerical,

techniques is used in [31] to determine the conditions for the onset of oscillatory instabilities of an

equilibrium one-spike solution to the shadow GM model in N spatial dimensions. The origin of

the term “shadow system” first appeared in [22] in the context of examining bifurcation-theoretic

properties of solutions to a general class of activator-inhibitor systems in the singularly perturbed

limit where the diffusion coefficient of the inhibitor tends to infinity.

Our goal is to study the stability of symmetric k-spike patterns of (1.1) for finiteD and for τ > 0.

Intuitively, for a fixed value of D, a spike pattern should become unstable as τ increases. This is

because for large τ the inhibitor field responds slowly to small local fluctuations in the activator

concentration. In addition, for a fixed τ ≥ 0 and for the shadow limit D → ∞, multiple-spike

solutions are unstable since the inhibitor field has no spatial variation to suppress the autocatalysis

term ap/hq in (1.1) that is responsible for spike formation. Hence, we would expect that for

sufficiently large values of D, multiple-spike solutions will be unstable even when τ is small. Our

results characterize the onset of these instabilities precisely.

In our analysis, valid for ε → 0, we linearize (1.1) around a symmetric k-spike equilibrium

solution and use a Green’s function method to derive a nonlocal eigenvalue problem that determines
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the stability of this solution with respect to the O(1) eigenvalues. These eigenvalues are referred

to in [14] as the large eigenvalues. Our derivation of the nonlocal eigenvalue problem using Green’s

functions is related to the approach used in [23] to analyze the stability of transition layer solutions

to the Fitzhugh-Nagumo model. For k ≥ 1, we determine conditions on τ , D, and the exponent

set (p, q,m, s), such that the spectrum of this eigenvalue problem is in the stable left half-plane

Re(λ) < 0. The small eigenvalues of order O(ε2) in the spectrum of the linearization of (1.1) around

a k-spike equilibrium solution are asymptotically independent of τ as ε → 0. Thus, the spectral

result of [14] still holds for the small eigenvalues.

The spectrum of the nonlocal eigenvalue problem is studied using a combination of functional-

analytic, asymptotic, and numerical techniques. We first summarize some rigorous results for the

case of a one-spike solution where k = 1. When k = 1, we prove in proposition 3.7 that there is

a value τ0(D) > 0, such that when τ = τ0(D) there is a complex conjugate pair of eigenvalues on

the imaginary axis Re(λ) = 0. We use a winding number approach to prove in propositions 3.3

and 3.4 that, when either m = 2 and p > 1 or when a certain monotonicity condition holds, the

number of eigenvalues M in the unstable right half-plane is either M = 0 or M = 2 for any τ > 0.

In proposition 3.7, when either m = 2 and p = 2, or m = p + 1 and 1 < p ≤ 5, we prove that

for any D > 0 there exists a value τc(D) > 0 such that there are exactly two eigenvalues along

the positive real axis Re(λ) > 0 for any τ > τc(D). When m = 2 and τ > τc(D) these are the

only two eigenvalues in the right half-plane. Many additional results are obtained numerically. For

k = 1, and for each of the exponent sets of (1.3), we compute the function τ0(D) for which there is

a complex conjugate pair of eigenvalues on the imaginary axis. We find that τ0(D) is a decreasing

function of D, with τ0(D) tending to the shadow limit value τ0s > 0 as D → ∞. For each of the

exponent sets of (1.3), we show numerically that as τ increases past τ0(D), these eigenvalues cross

strictly into the right half-plane and that they merge onto the positive real axis at some critical

value τ = τc(D) > τ0(D). Hence, numerically we find that there are exactly two eigenvalues in the

right half-plane for each τ > τ0(D). For τ > τc(D), these eigenvalues remain on the positive real

axis and their asymptotic behavior as τ → ∞ is given in propositions 3.8 and 3.9. The function

τc(D) is computed numerically for each of the exponent sets of (1.3).

The stability properties of multi-spike solutions with k ≥ 2 are more intricate. For k ≥ 2, and

for certain ranges of m and p, we prove in proposition 5.3 that a k-spike solution is unstable for

any τ ≥ 0 when D > Dk, where Dk > 0 is the stability threshold for multi-spike solutions when

τ = 0 computed in [14] (see proposition 2.6 below). For D > Dk and any τ ≥ 0, there is at

least one eigenvalue of the spectrum of the linearization on the (unstable) positive real axis. For

0 < D < Dk, we show that a k-spike solution is stable with respect to the O(1) eigenvalues only

4



when 0 ≤ τ < τ0(D; k). When τ increases past τ0(D; k), an oscillatory instability is triggered. For

the exponent sets of (1.3) and for k ≥ 2, we show that τ0(D; k) is a decreasing function of D with

τ0(D; k) → τ0k > 0 as D → D−
k . For D → 0, we have that τ0(D; k) → τ0u, where the value τ0u

depends on the exponent set (p, q,m, s), but is independent of k. Further qualitative features of

the spectrum of the nonlocal eigenvalue problem for k ≥ 2 are obtained.

To confirm our spectral results for k = 1, we compute full numerical solutions to (1.1) for values

of τ near τ0 and for values of τ well beyond τ0. For the exponent sets of (1.3), we first verify that

an oscillatory instability is triggered for τ slightly beyond τ0. This is shown by computing the

amplitude am of each spike as a function of t. The amplitude am of a spike is defined to be the

value of the activator concentration a at the center of the spike. Numerical results are then shown

for values of τ well beyond the critical value τ0. For these values of τ , we show numerically that

there can be a very complicated large-scale oscillatory motion in the amplitude of the spike. A

qualitative explanation for these oscillations is given. For multi-spike solutions with k ≥ 2, we also

verify the stability results from full numerical computations of (1.1) near the threshold values.

To visually illustrate the types of instabilities that can occur, consider a four-spike solution to

(1.1) for the exponent set (p, q,m, s) = (2, 1, 3, 0) with ε = 0.01 (this is experiment 3 of §5). For

three different parameter sets of D and τ we computed the solution to (1.1) numerically using the

routine D03PCF from the NAG library [19]. The equilibrium solution ae and he is shown in Fig. 1(a)

when D = 0.18. In each case, for the initial condition for (1.1) we took a 2% localized perturbation

off of ae and he, with the perturbation chosen so that it is identical for the first and third, and for

the second and fourth, spikes. The precise form for this perturbation is given in (5.19) below. The

spike amplitudes amn are defined to be the values of a at the local maximum points. When t = 0 we

have amn = a(xn, t) for n = 1, .., 4, where xn = −1 + (2n− 1)/4 for n = 1, .., 4 are the equilibrium

spike locations. We remark that for each of the three parameter sets of D and τ , the spike locations

remained essentially at their equilibrium locations over the O(1) time interval shown in the figures.

On this O(1) time interval, only the amplitudes of the spikes change appreciably. This is because

the dynamics of the spatial locations of the spikes evolve on a much longer time-scale of order

O(ε−2) (cf. [13]). In Fig. 1(b) we show a competition instability that occurs when D = 0.18 and

τ = 0.02. For this value of D, which exceeds the critical threshold D4 = 0.1658 discussed above,

there is one eigenvalue of the linearization of the four-spike equilibrium solution on the positive

real axis. The corresponding unstable eigenfunction introduces a competition between the spikes.

When D = 0.15 < D4, in Fig. 2(a) and Fig. 2(b) we plot the spike amplitudes when τ = 1.3 and

τ = 1.2, respectively. For this value of D, the critical value of τ where a Hopf bifurcation occurs, as

discussed above, is found to be τ0(D; 4) = 1.275. In Fig. 2(a), the spike amplitudes of the resulting
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oscillatory instability are found to synchronize, so that as t increases the spikes eventually oscillate

with a common amplitude and phase. In Fig. 2(b), τ is below the critical value. In this case,

the spike amplitudes exhibit a slow oscillatory decay back to their equilibrium values. Our goal is

to characterize explicitly the conditions for the onset of these instabilities, and to determine the

mechanism that initiates both synchronous oscillatory instabilities and competition instabilities.

0:00:10:20:30:4

�1:0 �0:5 0:0 0:5 1:0
ae; he

x
(a) The equilibrium solution

0:00:10:20:30:40:50:6

0 25 50 75 100 125
am

t
(b) am versus t

Figure 1: The parameters are k = 4, (p, q,m, s) = (2, 1, 3, 0), ε = 0.01, and D = 0.18. Left figure:
ae (solid curve) and he (dashed curve). Right figure: The spike amplitudes when τ = 0.02, with
am1 (solid curve), am2 (widely space dots), am3 (heavy solid curve), and am4 (dashed curve).

Our study of the stability of symmetric k-spike patterns to (1.1) is related to the studies of the

stability of pulse-patterns to the Gray-Scott model in [4], [6], and [7], and of spike patterns to a

particular form of the GM model in [8]. As outlined in Appendix A, the form of the GM model

studied in [8] corresponds precisely to taking D = ετ in (1.1b) and replacing the finite domain

in (1.1) by the infinite domain −∞ < x < ∞. Introducing µ by µ = 1/τ , it was shown in [8]

(see page 491) that, for the exponent set (p, q,m, s) = (2, 1, 2, 0), a one-spike solution undergoes a

Hopf bifurcation when µ = 0.36. Moreover, a complex conjugate pair of eigenvalues in the right

half-plane merges onto the positive real axis when µ = 0.053. As discussed in Remark 3.10 of §3,
these previous results are consistent with our stability results for (1.1) when D ≪ 1 and ε≪ 1.

There are three key qualitative differences between the analysis here and in [8]. Firstly, the

GM model is studied on an unbounded spatial domain in [8], whereas we study (1.1) on a bounded
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Figure 2: Spike amplitudes for k = 4, (p, q,m, s) = (2, 1, 3, 0), D = 0.15, and ε = 0.01. For the left
figure τ = 1.3, while for the right figure τ = 1.2. In these figures the solid curve is both am1 and
am3, while the dashed curve is am2 and am4.

domain with the Neumann boundary conditions (1.1c). This introduces an additional parameter

into the analysis representing the length of the domain, or equivalently a finite O(1) value of the

inhibitor diffusivity D. Secondly, for the GM model of [8] on an infinite domain, a class of multi-

spike equilibrium solutions corresponding to widely spaced pulses was constructed analytically. All

of these solutions were found in [8] to be unstable. In contrast, in our analysis of (1.1) based on finite

domain, we show that a k-spike solution with k ≥ 2 is stable with respect to the O(1) eigenvalues

when 0 ≤ τ < τ0(D; k) and 0 < D < Dk, and is unstable for any τ ≥ 0 when D > Dk. Finally, a key

feature of the analysis in [8] is that the nonlocal eigenvalue problem is reduced to a transcendental

equation for the eigenvalue parameter that involves certain generalized hypergeometric functions.

In our study, we follow a PDE-based approach whereby we are able to give some rigorous proofs

of qualitative features of the spectrum of the linearization in the unstable right half-plane, without

requiring any numerical computations of special functions. Moreover, since our approach is not

based on a dynamical systems framework as in [8], it should also be possible to extend our analysis

to analyze spike stability in multi-dimensional spatial domains. In spite of these differences, the

approach taken here and in [8] are complementary, and many of the qualitative features of the

spectrum of the linearization of the GM model first discovered in [8], and found previously for the
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Gray-Scott model in [4], [6], and [7], also hold for (1.1) on a finite domain.

There has been much recent work on the dynamics and stability of weakly interacting spikes

and transition layers in reaction-diffusion systems on the infinite line (see [10] and [9] and the

references therein). For this class of problems, the localized structures, representing homoclinic

or heteroclinic connections for each of the chemical species, interact only via their exponential

tail behavior. Moreover, because of the weak interaction, many of the spectral properties of the

linearized operator for a multi-spike solution can be closely approximated by the spectral properties

of the linearization around a one-spike solution. For the GM model (1.1), this type of weak

interaction theory approach applies only to the case where D = O(ε2), so that both a and h

are singularly perturbed. In this limit, pulse-splitting behavior is known to occur for (1.1) (see

[27] and remark 6.2 of [25]). In addition, since a and h are both localized when D ≪ 1, we may

safely approximate the finite domain by an infinite domain provided that we are not examining any

strong interaction properties, such as spike reflection off of a boundary. However, since we assume

that D = O(1) in (1.1), weak interaction theory is not relevant to our analysis of (1.1). When

D = O(1), the inhibitor field h does not decay to zero between neighboring spikes (see Fig. 1(a)),

the finite domain plays a key role, and the spectrum of a multi-spike solution is very different from

that of a one-spike solution.

The outline of this paper is as follows. In §2 we use the method of matched asymptotic expan-

sions in the limit ε → 0 to derive the nonlocal eigenvalue problem that determines the stability

of a symmetric k-spike equilibrium solution to (1.1) with respect to the O(1) eigenvalues of the

linearization. This analysis is an extension of the work in [14] for the case τ = 0. Some previous

equilibrium and stability results of [14] for the case where τ = 0 are summarized. In §3 the nonlocal

eigenvalue problem is studied in detail for the case of a one-spike solution, and conditions for the

onset of an oscillatory instability are derived. In §4, the results of §3 are compared favorably with

full numerical results computed from (1.1). In addition, we also compute large-scale oscillatory

motions that occur for a one-spike solution when τ > τ0. In §5 we use many of the results in §3 to

obtain the conditions for which a multi-spike solution with k ≥ 2 is stable. The mechanism initi-

ating synchronous oscillatory instabilities and competition instabilities are also discussed. Finally,

in §6 we summarize our rigorous results for the prototypical exponent set (2, 1, 2, 0), and we give a

few open problems.
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2 Derivation of the Nonlocal Eigenvalue Problem

In this section we summarize some previous results on spike equilibria, and on spike stability for

the case where τ = 0. In addition, for τ > 0, we extend the analysis in [14] to derive the non-

local eigenvalue problem associated with linearizing (1.1) around a symmetric k-spike equilibrium

solution. This eigenvalue problem is central to the analysis in §3 and §5.
In [14], a k-spike equilibrium solution was constructed asymptotically in the limit ε → 0 using

the method of matched asymptotic expansions. The result is summarized below.

Proposition 2.1 (From [14]): For ε→ 0, a symmetric k-spike equilibrium solution to (1.1), labeled

by ae(x) and he(x), is given asymptotically by

ae(x) ∼ Hγ
k
∑

n=1

w
[

ε−1(x− xn)
]

; he(x) ∼
H

ag

k
∑

n=1

G0(x;xn) . (2.1)

Here w(y) is the unique positive solution to

w
′′ − w + wp = 0 , −∞ < y <∞ , (2.2a)

w → 0 as |y| → ∞ ; w
′

(0) = 0 , w(0) > 0 . (2.2b)

The Green’s function G0(x;xn) in (2.1) satisfies

DG0xx −G0 = −δ(x− xn) , −1 < x < 1 ; G0x(±1;xn) = 0 . (2.3)

The constants H, γ, and ag in (2.1), for which he(xn) = H for all n = 1, .., k, are defined by

Hγm−(s+1) ≡ 1

bmag
, bm ≡

∫ ∞

−∞

[w(y)]m dy , γ ≡ q

p− 1
, (2.4a)

ag ≡
k
∑

n=1

G0(xn;xk) =

[

2
√
D tanh

(

θ0
k

)]−1

, θ0 ≡ D−1/2 . (2.4b)

Finally, in (2.1) the spike locations satisfy

xn = −1 +
(2n− 1)

k
, n = 1, .., k . (2.5)

To determine the stability of this solution, we substitute

a = ae + eλtφ , h = he + eλtη , (2.6)
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into (1.1), where φ≪ 1 and η ≪ 1. This leads to the eigenvalue problem

ε2φxx − φ+
pap−1

e

hq
e
φ− qap

e

hq+1
e

η = λφ , −1 < x < 1 , (2.7a)

Dηxx − (1 + τλ)η = −ε−1ma
m−1
e

hs
e

φ+ ε−1 sa
m
e

hs+1
e

η , −1 < x < 1 , (2.7b)

φx(±1) = ηx(±1) = 0 . (2.7c)

The spectrum of (2.7) contains two classes of eigenvalues. There are eigenvalues that are O(1)

as ε→ 0 and there are k eigenvalues that are O(ε2) as ε→ 0. We refer to these eigenvalues as the

large and small eigenvalues, respectively.

In [14] the spectrum of (2.7) when τ = 0 was analyzed in the limit ε → 0. It was found that

the eigenfunctions corresponding to the small eigenvalues are, asymptotically for ε → 0, a linear

combination of the translation modes w
′ [

ε−1(x− xn)
]

. Moreover, the small eigenvalues can be

determined in terms of the eigenvalues of a certain matrix eigenvalue problem. From an explicit

calculation of the spectrum of this matrix eigenvalue problem, it was shown that, for k ≥ 2, the

small eigenvalues are real and, furthermore, are negative if and only if D < D∗
k, for some critical

value D∗
k. Since 1 + τλ = 1 + O(ε2) in (2.7b) when λ = O(ε2), the derivation and the leading

order results for the small eigenvalues given in [14] also apply to the present case where τ ≥ 0 with

τ = O(1). Thus, with this observation and with Proposition 11 of [14], we obtain the following

stability result with respect to the small eigenvalues:

Proposition 2.2: Assume that 0 < ε ≪ 1, k ≥ 2, and τ ≥ 0 with τ = O(1). Consider the eigen-

values of (2.7) of order λ = O(ε2). Then, for ε → 0, these eigenvalues are real and, furthermore,

are negative if and only if D < D∗
k, where

D∗
k ≡ 1

[

k ln(
√
r +

√
r + 1)

]2 , r ≡ ζ−1 . (2.8)

Here ζ is defined in (1.2). For the case of a one-spike solution with k = 1 and τ = 0, it was found in

[14] that the spike is stable with respect to the small eigenvalue for any D > 0. For the same reason

as given above, a one-spike equilibrium solution is stable with respect to the small eigenvalues for

any τ ≥ 0 with τ = O(1).

The spectrum of (2.7) is considerably more difficult to analyze for the large eigenvalues with

λ = O(1) as ε→ 0. We begin by deriving a nonlocal eigenvalue problem that governs the stability

of a symmetric k-spike solution with respect to these eigenvalues.
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To do so, it is convenient in (2.7) to introduce the new variables,

ae = Hγu , he = Hv , φ = Hγφ̄ , η = Hη̄ . (2.9)

Substituting (2.9) into (2.7), and dropping the overbar notation, we obtain the eigenvalue problem

ε2φxx − φ+
pup−1

vq
φ− qup

vq+1
η = λφ , −1 < x < 1 , (2.10a)

Dηxx − (1 + τλ)η = −ε−1mu
m−1

bmagvs
φ+ ε−1 sum

bmagvs+1
η , −1 < x < 1 , (2.10b)

φx(±1) = ηx(±1) = 0 . (2.10c)

In (2.10b), bm and ag are defined in (2.4).

As in [14], we look for a localized eigenfunction for φ in the form

φ(x) ∼
k
∑

n=1

cnΦ
[

ε−1(x− xn)
]

. (2.11)

Since φ is localized near each xn, both terms on the right-hand side of (2.10b) are multiples of

Dirac masses near each x = xn. Thus, for ε≪ 1, η satisfies

Dηxx −
(

1 + τλ+
s

ag

k
∑

n=1

δ(x− xn)

)

η = − m

bmag

(
∫ ∞

−∞

wm−1Φ dy

) k
∑

n=1

cnδ(x− xn) , |x| < 1 ,

(2.12a)

ηx(−1) = ηx(1) = 0 . (2.12b)

This problem for η is equivalent to

Dηxx − (1 + τλ) η = 0 , xn−1 < x < xn , n = 1, .., k + 1 , (2.13a)

[η]n = 0 , n = 1, .., k , (2.13b)

[Dηx]n = −ωn +
s

ag
η(xn) , n = 1, .., k , (2.13c)

ηx(−1) = ηx(1) = 0 . (2.13d)

In (2.13), we have defined x0 ≡ −1, xk+1 ≡ 1, [v]n ≡ v(xn+) − v(xn−), and ωn by

ωn ≡ mcn
bmag

∫ ∞

−∞

wm−1Φ dy . (2.13e)
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To determine the eigenvalue problem for λ, we first need to compute η(xn) from (2.13). To

do so, we solve (2.13a) on each subinterval and use the continuity condition (2.13b) and the jump

condition (2.13c) to patch the solution across each subinterval. This calculation results in the

matrix problem

Bsη = [(1 + τλ)D]−1/2
ω , (2.14)

where

ω =
mc

bmag

∫ ∞

−∞

wm−1Φ dy . (2.15)

Here we have defined

η ≡







η(x1)
...

η(xk)






, ω ≡







ω1
...
ωk






, c ≡







c1
...
ck






. (2.16)

The matrix Bs in (2.14) is given in terms of a tridiagonal matrix B by

Bs = B +
s

ag

√

(1 + τλ)D
I . (2.17)

Here I is the k × k identity matrix, and B has the form

B ≡



























dλ fλ 0 · · · 0 0 0
fλ eλ fλ · · · 0 0 0

0 fλ eλ
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . eλ fλ 0

0 0 0 · · · fλ eλ fλ

0 0 0 · · · 0 fλ dλ



























, (2.18a)

with matrix entries

dλ ≡ coth

(

2θλ

k

)

+ tanh

(

θλ

k

)

; eλ ≡ 2 coth

(

2θλ

k

)

; fλ ≡ −csch

(

2θλ

k

)

. (2.18b)

In (2.18b), θλ is the principal branch of the square root function defined by

θλ ≡ θ0
√

1 + τλ , θ0 ≡ D−1/2 . (2.18c)
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Next, we substitute (2.14) and (2.11) into (2.10a). Since v(xn) = 1 + o(1) as ε → 0, we obtain

the following nonlocal problem for Φ(y), for n = 1, .., k:

cn

(

Φ
′′ − Φ + pwp−1Φ

)

− qmwp

bmag

√

(1 + τλ)D

(∫ ∞

−∞

wm−1Φ dy

)

(

B−1
s c
)

n
= cnλΦ , (2.19)

with Φ(y) → 0 as |y| → ∞. Let κ and c be an eigenpair of the matrix eigenvalue problem

Bc = κc . (2.20)

These eigenpairs were calculated explicitly in Proposition 2 of [14] as

κj = eλ + 2fλ cos

(

π(j − 1)

k

)

, j = 1, .., k , (2.21a)

c
t
1 =

1√
k

(1, .., 1) ; cl,j =

√

2

k
cos

(

π(j − 1)

k
(l − 1/2)

)

, j = 2, .., k , (2.21b)

with c
t
j = (c1,j , .., ck,j). Thus, from (2.17), the eigenvalues κs of Bs in (2.14) are related to κ by

κs = κ+
s

ag

√

(1 + τλ)D
. (2.22)

Substituting (2.22), and Bsc = κsc, into (2.19), we obtain the following problem for the O(1)

eigenvalues of (2.7):

Proposition 2.3: Assume that 0 < ε≪ 1 and τ ≥ 0. Then, with Φ = Φ(y), the O(1) eigenvalues

of (2.7) satisfy the nonlocal eigenvalue problem

L0Φ − χwp

(
∫∞

−∞
wm−1Φ dy

∫∞

−∞
wm dy

)

= λΦ , −∞ < y <∞ , (2.23a)

Φ → 0 , as |y| → ∞ . (2.23b)

Here the operator L0, referred to as the local operator, and the multiplier χ are defined by

L0Φ ≡ Φ
′′ − Φ + pwp−1Φ ; χ ≡ qm

s+ agκ
√

(1 + τλ)D
, (2.24)

where κ, given in (2.21a), is an eigenvalue of B.

Using (2.18b), (2.4b) for ag, and (2.21a) for κj , we can write the multiplier χ = χ(z; j) in (2.24)

as

χ = χ(z; j) ≡ qm

(

s+

√
1 + z

tanh (θ0/k)

[

tanh (θλ/k) +
(1 − cos [π(j − 1)/k])

sinh (2θλ/k)

])−1

, (2.25a)
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where

z ≡ τλ , θλ ≡ θ0
√

1 + z , θ0 ≡ D−1/2 . (2.25b)

The eigenvalue problem (2.23) is nonstandard since it is nonlocal and because the multiplier χ

of the nonlocal term depends on λ. A nonlocal eigenvalue problem similar to (2.23) was studied

in [4], [6], [7], [8] in regards to the stability of a one-spike solution to the Gray-Scott model and

the GM model. For τ > 0, the continuous spectrum for (2.23) is on the negative real axis with

λ < max
(

−1,−τ−1
)

, and is thus bounded away from the origin.

In §3 and §5 below, we require various limiting formulae for χ in different cases. When D ≪ 1,

we get to a first approximation from (2.25) that

χ(z; j) ∼ qm

s+
√

1 + z
, D ≪ 1 . (2.26)

Notice that, in this limit, χ(z; j) is independent of j and k. Alternatively for D ≫ 1, we get from

(2.25) that

χ(z; j) ∼
{

qm [s+ 1 + z]−1 , j = 1 , D ≫ 1 ,

qm
(

Dk2

2 [1 − cos (π(j − 1)/k)]
)−1

j = 2, .., k , D ≫ 1 .
(2.27)

Next, we calculate the behavior of χ as τ → ∞. Assume that λ is real with λ > 0 and λ = O(1) as

τ → ∞. Then, from (2.25), we get

χ(z; j) ∼ qm√
z

tanh

(

θ0
k

)

, τ → ∞ , λ = O(1) . (2.28)

Thus, in this limit, χ = O
(

τ−1/2
)

as τ → ∞, independent of j.

For the case τ = 0, the stability thresholds with respect to D were calculated in [14]. The

following rigorous result, obtained in [32], was critical to the stability analysis of [14]:

Theorem 2.4 (From [32]): Let α0 > 0 be real and L0 be as defined in (2.24). Consider the

following eigenvalue problem for Φ ∈ H1(R):

L0Φ − α0(p− 1)wp

(
∫∞

−∞
wm−1Φ dy

∫∞

−∞
wmdy

)

= λΦ , −∞ < y <∞ , (2.29a)

Φ → 0 as |y| → ∞ , (2.29b)

corresponding to eigenpairs for which λ 6= 0. Here w satisfies (2.2). Let λ0 6= 0 be the eigenvalue

of (2.29) with the largest real part. Then, if α0 < 1, we conclude that

Re(λ0) > 0 . (2.30)
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Alternatively, if α0 > 1, and if either of the following two conditions hold

(i) m = 2 , 1 < p ≤ 5 , or (ii) m = p+ 1 , p > 1 , (2.31a)

then

Re(λ0) < 0 . (2.31b)

Proof: The proof of (2.30) is given in Appendix E of [14]. The proof of (2.31) is given in Lemma

A and Theorem 1.4 of [32], and is reproduced in Appendix F of [14]. �

For the special case α0 = 0, (2.29) reduces to the spectrum of the local operator L0. This

problem was first studied in [16], where the following result was obtained:

Theorem 2.5 (From [16]): Consider the local eigenvalue problem L0φl = νφl for φl ∈ H1(R). This

problem admits the eigenvalues ν0 > 0, ν1 = 0, and νj < 0 for j > 1. The eigenvalue ν0 is simple,

and the corresponding eigenfunction φl0 has one sign.

Notice that for any α0 in (2.29), the translation mode Φ = w
′
, which is an odd function, is an

eigenfunction of (2.29) corresponding to the eigenvalue λ = 0. Since the eigenvalues of the local

operator L0 do not lead to oscillatory instabilities, we are only interested in the eigenvalues of

(2.23) for which
∫∞

−∞
wm−1Φ dy 6= 0.

To recover the stability results of [14] we set τ = 0 in (2.25) to get χ(0; j). Let λ0 be the eigen-

value with the largest real part of (2.23) with χ replaced by χ(0; j). Then, from the monotonicity

result that χ(0; j − 1) > χ(0; j) for j = 2, .., k, it follows upon comparing (2.23) and (2.29) that,

when condition (2.31a) is satisfied, we have Re(λ0) < 0 for each j = 1, .., k if and only if

χ(0; k) > (p− 1) . (2.32)

Thus, it is the smallest value of χ(0; j) for j = 1, .., k that sets the stability threshold. By calculating

χ(0; k), and substituting the result into (2.32), we recover proposition 7 of [14]:

Proposition 2.6 (From [14]): Let τ = 0 and ε ≪ 1. Assume that condition (2.31a) holds. Then,

the k-spike symmetric equilibrium solution of proposition 2.1 is stable with respect to the O(1)

eigenvalues if and only if

D < Dk ≡ µ−2
k , k = 1, 2, .. , (2.33a)

µk ≡ k

2
ln

[

ak +
√

a2
k − 1

]

, ak ≡ 1 +
[

1 + cos
(π

k

)]

ζ−1 . (2.33b)

Here ζ is defined in (1.2). The critical values Dk are related to the critical values D∗
k in proposition

2.2, regarding the stability with respect to the small eigenvalues, by D∗
k < Dk for k ≥ 2.
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From (2.33) we note that D1 = ∞ when k = 1. Thus, when τ = 0, a one-spike solution is

stable with respect to the large eigenvalues for any D > 0, with D independent of ε. For the case

where D is exponentially large as ε → 0, the eigenvalue problem (2.23) must be modified slightly

to incorporate the effect of the finite domain. A more refined analysis (see proposition 13 of [14]),

based on this modified eigenvalue problem, has shown that when τ = 0 a one-spike solution is

stable when D < D∗, where D∗ = O
(

ε2e2/ε
)

as ε→ 0.

The stability Theorem 2.4 easily yields the following instability result for τ ≥ 0:

Proposition 2.7: Let τ ≥ 0, ε≪ 1, and k ≥ 2. Assume that condition (2.31a) holds. Then, when

D is sufficiently large, the k-spike symmetric equilibrium solution of proposition 2.1 is unstable with

respect to the large eigenvalues.

Proof: This result follows readily since from (2.27) we have χ(z; j) → 0 as D → ∞ for any

j = 2, .., k and τ ≥ 0. By comparing the eigenvalue problems (2.23) and (2.29), we conclude that

the eigenvalue λ0 of (2.23) with the largest real part will satisfy Re(λ0) > 0. �

Finally, we reformulate (2.23) into a form more amenable to the analysis of §3 and §5. Let ψ(y)

be the solution to

L0ψ ≡ ψ
′′ − ψ + pwp−1ψ = λψ + wp ; ψ → 0 as |y| → ∞ . (2.34)

Then, the eigenfunctions of (2.23) can be written as

Φ = χ(τλ; j)ψJ , J ≡
∫∞

−∞
wm−1Φ dy

∫∞

−∞
wm dy

. (2.35)

We then multiply both sides of (2.35) by wm−1 and integrate over the domain. Assuming, as men-

tioned earlier that
∫∞

−∞
wm−1Φ dy 6= 0, we then obtain a transcendental relation for the eigenvalues

of (2.23) given by g(λ) = 0, where

g(λ) ≡ 1

χ(τλ; j)
− f(λ) , f(λ) ≡

∫∞

−∞
wm−1ψ dy

∫∞

−∞
wm dy

, ψ = (L0 − λ)−1wp . (2.36)

3 The Stability of One-Spike Solutions

In this section we study the spectrum of (2.23) in detail for the case of a one-spike solution. The

eigenvalues of (2.23) are the roots of g(λ) = 0 in (2.36). With this formulation we can obtain some

qualitative, but rigorous, results on the spectrum of (2.23). Many of the results derived in this

section are used in §5 to study the stability of multi-spike solutions. We remark that some of the
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results in propositions 3.1 and 3.2 below were obtained previously in the analysis of [31] of spike

oscillations for the shadow GM system in N -spatial dimensions.

We begin by separating (2.36) into real and imaginary parts by writing

g = gR + igI , f = fR + ifI , λ = λR + iλI , ψ = ψR + iψI . (3.1)

Substituting (3.1) into (2.36), and using the formula (2.25a) for χ with j = k = 1, we obtain

gR(λ) = Re [C(λ)] − fR(λ) , fR(λ) ≡
∫∞

−∞
wm−1ψR dy

∫∞

−∞
wm dy

, (3.2a)

gI(λ) = Im [C(λ)] − fI(λ) , fI(λ) ≡
∫∞

−∞
wm−1ψI dy

∫∞

−∞
wm dy

. (3.2b)

Here we have defined C(λ) by

C(λ) ≡ 1

χ(τλ; 1)
=

s

qm
+

√
1 + τλ

qm

[

tanh (θλ)

tanh (θ0)

]

, θλ ≡ θ0
√

1 + τλ , θ0 = D−1/2 . (3.2c)

In (3.2), the functions ψR and ψI , obtained from separating real and imaginary parts in (2.34),

satisfy the coupled system

L0ψR = λRψR − λIψI + wp ; L0ψI = λRψI + λIψR , (3.3)

with ψR → 0 and ψI → 0 as |y| → ∞.

3.1 Critical Parameters for a Hopf Bifurcation

We first look for a pure imaginary eigenvalue of the form λ = iλI . Without loss of generality

we may assume that λI > 0. Using (3.2) and (3.3), the eigenvalues of (2.23) along the positive

imaginary axis λI > 0 are the roots of the coupled system g̃R = g̃I = 0, given by

g̃R(λI) ≡ C̃R (λI) − f̃R (λI) , g̃I(λI) ≡ C̃I (λI) − f̃I (λI) , (3.4a)

where

f̃R (λI) ≡
∫∞

−∞
wm−1L0

[

L2
0 + λ2

I

]−1
wp dy

∫∞

−∞
wm dy

, f̃I (λI) ≡
λI

∫∞

−∞
wm−1

[

L2
0 + λ2

I

]−1
wp dy

∫∞

−∞
wm dy

.

(3.4b)

Here we have defined

C̃R (λI) ≡ Re [C (iλI)] , C̃I (λI) ≡ Im [C (iλI)] . (3.4c)
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Some qualitative results on the spectrum along the imaginary axis can be obtained by first

determining some analytical results on the functions f̃R and f̃I . The following result holds for f̃R:

Proposition 3.1: The function f̃R in (3.4b) has the asymptotic behavior

f̃R(λI) ∼
1

p− 1
− κcλ

2
I +O(λ4

I) , as λI → 0 ; f̃R(λI) = 0
(

λ−2
I

)

, as λI → ∞ , (3.5a)

where

κc ≡
∫∞

−∞
wm−1L−3

0 wp dy
∫∞

−∞
wm dy

. (3.5b)

In the special case where m = p+ 1 and p > 1, we can calculate κc explicitly as

κc =
(p+ 3)

2(p + 1)(p − 1)2

[

1

p− 1
− 1

4

]

, for m = p+ 1 . (3.5c)

In the special case where m = 2 and p > 1, we have,

κc =
1

(p− 1)

∫∞

−∞

[

L−1
0 w

]2
dy

∫∞

−∞
w2 dy

> 0 . (3.5d)

Furthermore, when m = 2 and p > 1 we have the global result that

f̃
′

R(λI) < 0 , for λI > 0 . (3.6)

Proof: The global result (3.6) was proved in [31]. For convenience, we reproduce the result here.

The proof relies heavily on two explicit formulae for the local operator L0 defined in (2.24). By a

direct computation, we have

L−1
0 wp =

w

p− 1
; L−1

0 w =
w

p− 1
+

1

2
y w

′

, (3.7)

where w is defined in (2.2). Setting m = 2 in the expression for f̃R in (3.4b), we integrate by parts

and use (3.7) for L0w, to get

f̃R(λI) = (p− 1)

∫∞

−∞
wp
[

L2
0 + λ2

I

]−1
wp dy

∫∞

−∞
w2 dy

. (3.8)

Differentiating (3.8) with respect to λI , and integrating the resulting expression by parts, we obtain

f̃
′

R(λI) = −2(p−1)λI

∫∞

−∞
wp
[

L2
0 + λ2

I

]−2
wp dy

∫∞

−∞
w2 dy

= −2(p−1)λI

∫∞

−∞

(

[

L2
0 + λ2

I

]−1
wp
)2

dy
∫∞

−∞
w2 dy

. (3.9)
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Therefore, f̃
′

R < 0 for λI > 0, which proves (3.6).

We now establish the local behavior (3.5) for f̃R. The asymptotic behavior for f̃R as λI → ∞ in

(3.5a) is immediately clear. It remains to show the local behavior for f̃R as λI → 0 given in (3.5).

It is clear that all the odd derivatives of f̃R at λI = 0 are zero. Using (3.4b) for f̃R, we calculate

that

f̃R(0) =

∫∞

−∞
wm−1L−1

0 wp dy
∫∞

−∞
wm dy

, κc = − f̃
′′

R(0)

2
=

∫∞

−∞
wm−1L−3

0 wp dy
∫∞

−∞
wm dy

. (3.10)

Using (3.7) for L−1
0 wp, we obtain f̃R(0) = 1/(p − 1). The formula for κc in (3.10) is precisely (3.5b).

When m = 2, we can use (3.7) for L−1
0 wp to readily obtain (3.5d). When m = p + 1, we can use

(3.7) for L−1
0 wp and L−1

0 w to get

κc ≡
1

(p− 1)

∫∞

−∞
wpL−1

0

[

w
p−1 + 1

2yw
′
]

dy
∫∞

−∞
wp+1 dy

. (3.11)

We then integrate by parts in (3.11) and use (3.7), to obtain

κc ≡
1

(p− 1)

∫∞

−∞

(

w
p−1 + 1

2yw
′
)

L−1
0 wp dy

∫∞

−∞
wm dy

=
1

(p− 1)2

∫∞

−∞

(

w2

p−1 + 1
2yww

′
)

dy
∫∞

−∞
wp+1 dy

. (3.12)

Finally, integrating by parts in (3.12), we get

kc =
1

(p − 1)2

[

1

p− 1
− 1

4

]

∫∞

−∞
w2 dy

∫∞

−∞
wp+1 dy

. (3.13)

The ratio of the integrals in (3.13) was evaluated in Appendix B of [31], with the result

∫∞

−∞
w2 dy

∫∞

−∞
wp+1 dy

=
p+ 3

2(p + 1)
. (3.14)

Substituting (3.14) into (3.13), we obtain (3.5c). This completes the proof of proposition 3.1. �

Next, we establish some analytical results on the function f̃I in (3.4b). We summarize the result

as follows:

Proposition 3.2: The function f̃I in (3.4b) has the asymptotic behavior

f̃I(λI) ∼
λI

p− 1

[

1

p− 1
− 1

2m

]

+O(λ3
I) , as λI → 0 ; f̃I(λI) = 0

(

λ−1
I

)

, as λI → ∞ .

(3.15)
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In the special case where either m = p + 1 and p > 1, or m = 2 and 1 < p ≤ 5, we have the global

result,

f̃I(λI) > 0 , for λI > 0 . (3.16)

Proof: We now prove this proposition. The asymptotic behavior for f̃I as λI → ∞ in (3.15) is

clear. To establish the local behavior (3.15) as λI → 0, we use (3.4b) for f̃I , and (3.7), to get

f̃
′

I(0) =

∫∞

−∞
wm−1L−2

0 wp dy
∫∞

−∞
wm dy

=
1

(p − 1)

∫∞

−∞
wm−1L−1

0 w dy
∫∞

−∞
wm dy

=
1

(p− 1)

∫∞

−∞
wm−1

[

w
p−1 + 1

2yw
′
]

dy
∫∞

−∞
wm dy

.

(3.17)

The last integral in (3.17) is readily evaluated to obtain the local behavior (3.15).

We now prove the global result (3.16) for m = p + 1. Setting m = p + 1 in (3.4b), we write

f̃I(λI) as

f̃I(λI) = λIN(λI) , N(λI) ≡
∫∞

−∞
wp
[

L2
0 + λ2

I

]−1
wp dy

∫∞

−∞
wp+1 dy

. (3.18)

We calculate

N
′

(λI) = −2λI

∫∞

−∞

[

(

L2
0 + λ2

I

)−1
wp
]2
dy

∫∞

−∞
wp+1 dy

< 0 , N(0) =
1

p− 1

[

1

p− 1
− 1

2(p + 1)

]

. (3.19)

Thus, for p > 1, we have N(0) > 0, N
′
(λI) < 0 for λI > 0, and N(λI) → 0 as λI → ∞. Hence

N(λI) > 0 for λI > 0. This establishes (3.16) when m = p+ 1.

We now prove (3.16) for the more difficult case where m = 2. For the shadow GM model where

D = ∞ this result was proved as a consequence of Theorem 2.3 of [31]. We can adapt the proof

given there to our case where D is finite. Let τ = τ0 and λ0 = iλ0
I , with λ0

I > 0, correspond to a

root of g(λ) = 0. Then, repeating the proof as in [31], we can show for 1 < p ≤ 5 that (see equation

(2.29) of [31]),

0 < |χ(τ0λ0; 1) − (p− 1)|2 ≤ −Re
[

λ0χ(τ0λ0; 1)
]

(
∫∞

−∞
w2 dy

∫∞

−∞
wp+1 dy

)

. (3.20)

From the relation (3.2c) between χ and C, and using λ0 = −iλ0
I , we obtain from (3.20) that

0 < −Re
[

λ0χ(τ0λ0; 1)
]

= Re

[

iλ0
I

C
(

iλ0
I

)

]

=
λ0

IC̃I(λ
0
I)

|C(iλ0
I)|2

. (3.21)

Thus, we have C̃I(λ
0
I) > 0 and, consequently, f̃I(λ

0
I) > 0. This proof does not require any explicit

formula for λ0
I . However, since 0 < f̃R

(

λ0
I

)

< 1/(p − 1), C̃R(0) = (s+ 1)/(qm) < f̃R(0), and g̃R = 0
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has exactly one root, we can get any value for λ0
I on λ0

I > 0, by choosing the ratio (s+ 1)/(qm)

accordingly. This gives an indirect proof that f̃I(λI) > 0 when m = 2 and 1 < p ≤ 5, and completes

the proof of proposition 3.2. �

We now describe the numerical procedure used to compute the eigenvalues of (2.23) along the

imaginary axis, and we give some numerical results. We first use the BVP solver COLSYS [1] to

compute w satisfying (2.2). We then fix a large value of the inhibitor diffusivity D, and compute

the value τ0, λ
0
I for which g̃R = g̃I = 0 in (3.4a). When D = ∞, which corresponds to the shadow

GM model, a numerical value for τ0 and for λ0
I were computed in [31]. Thus, we have a good initial

guess for Newton’s method when D is large. We then use Euler continuation and Newton’s method

to follow this root of g̃R = g̃I = 0 as D is decreased. At each step, ψR and ψI are computed from

the coupled BVP system (3.3) with λR = 0 using COLSYS [1]. In this way, we obtain curves τ = τ0

and λI = λ0
I as a function of D for which (2.23) has a complex conjugate pair of eigenvalues on the

imaginary axis. The calculations are performed for the five different exponent sets (p, q,m, s) given

in (1.3). In each case, we find numerically that τ0 is a decreasing function of D with τ0 → τ∗0 > 0

as D → 0, where τ∗0 is independent of D. This limiting behavior for τ0 is a consequence of the

independence of χ on D when D ≪ 1, as seen from (2.26).

In Fig. 3(a) we plot τ0 and λ0
I versus D for the exponent set (2, 1, 2, 0). For this set, τ0 → 2.75

as D → 0, and τ0 → 0.771 as D → ∞. A similar plot is shown in Fig. 3(b) for the exponent set

(2, 1, 3, 0). For this case where m = 3, τ0 is larger than in Fig. 3(a) where m = 2. In particular,

τ0 → 5.4 as D → 0. In Fig. 4(a) and Fig. 4(b) we plot τ0 and λ0
I versus D, respectively, for

the other exponent sets of (1.3). These results, together with other numerical experiments we have

performed, suggest that for each D > 0, τ0 increases with m and decreases with p. Thus, oscillatory

instabilities occur for smaller values of τ when p is larger, and are delayed as m increases. For the

five exponent sets of (1.3), the small oscillation frequency λ0
I shows only a small variation with

respect to D.

To determine the number of eigenvalues of (2.23) in the right half-plane, we calculate the

winding number of g(λ) in (3.2) over the counterclockwise contour composed of the imaginary axis

−iR ≤ Imλ ≤ iR and the semi-circle ΓR, given by |λ| = R > 0, for −π/2 ≤ argλ ≤ π/2. Assuming

that τ is chosen so that there are no zeros of g(λ) on the imaginary axis, we let R→ ∞ and use the

argument principle to determine the number of zeros of g(λ) in the right half-plane. The function

g(λ) in (3.2) is analytic in the right half-plane, except at the simple pole λ = ν0 > 0, where ν0 is

the unique positive eigenvalue of the local operator L0 (see Theorem 2.5 above). For any τ > 0 and

D finite, C(λ) ∼ b
√
λ as |λ| → ∞ for some b > 0. Also, f(λ) → 0 as |λ| → ∞. Thus, for any τ > 0,
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Figure 3: Plots of τ0 (solid curve) and λ0
I (dashed curve) versus D for the exponent sets (2, 1, 2, 0)

and (2, 1, 3, 0).
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Figure 4: Plots of τ0 and λ0
I versus D for three exponent sets. The solid curve is (4, 2, 2, 0), the

dashed curve is (3, 2, 2, 0), and the heavy solid curve is (3, 2, 3, 1).
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the change in the argument of g over ΓR as R → ∞ is π/2. By using the argument principle, and

g(λ) = g(λ), we then obtain the following criterion:

Proposition 3.3: Let τ > 0 and assume that there are no zeros of g(λ) on the imaginary axis.

Then, the number of eigenvalues M of (2.23) in the right half-plane Re(λ) > 0 satisfies

M =
5

4
+

1

π
[arg g]ΓI

, τ > 0 . (3.22)

Here [arg g]ΓI
denotes the change in the argument of g along the semi-infinite imaginary axis ΓI =

iλI , 0 ≤ λI <∞, traversed in the downwards direction.

This criterion, together with proposition 3.1, leads to the following key result:

Proposition 3.4 Assume that τ > 0, m = 2, and p > 1. Then, for any D > 0, the number of

eigenvalues M of (2.23) in the right half-plane is either M = 0 or M = 2. This result for M also

holds whenever f̃R in (3.4b) is a monotonically decreasing function of λI .

Proof: The proof of this result is simple. Define C̃(λI) = C(iλI) = C̃R + iC̃I . Then, for any τ > 0,

we have from (3.2c) that C̃ ∼ b
√
iλI as λI → +∞ for some b > 0. Thus, since f̃R → 0 and f̃I → 0

as λI → +∞, we have g̃R/g̃I → 1 as λI → +∞, with g̃R > 0 and g̃I > 0. Hence, the starting point

for the argument of g on ΓI is π/4 as λI → +∞. At λI = 0, we have from (3.2c) and (3.4c) that

C̃R(0) = (s+ 1)/qm and C̃I(0) = 0. The local behavior in (3.5a) and (3.15) gives f̃R(0) = 1/(p − 1)

and f̃I(0) = 0. Hence, since f̃R(0) > C̃R(0) holds from the condition (1.2) on the exponents, we

have that g̃R(0) < 0 and g̃I(0) = 0. Thus, the ending point for the argument is on the negative real

axis in the g̃R and g̃I plane. Next, a simple differentiation shows that C̃R(λI) is a monotonically

increasing function of λI when τ > 0 and D is finite. Hence, using the monotonicity result (3.6)

on f̃R that holds for m = 2 and p > 1, the condition g̃R = 0 is satisfied at only one value of λI for

each τ > 0. The sign of g̃I at this unique root of g̃R = 0 determines whether the winding number

is 3π/4 or −5π/4. If g̃I > 0 at the unique root of g̃R = 0, we have [arg g]ΓI
= 3π/4. If g̃I < 0 at

this root, we get [arg g]ΓI
= −5π/4. Substituting this result into (3.22), we obtain proposition 3.4

for m = 2. �

The key condition in this proof is that g̃R = 0 has exactly one root for each τ > 0. Thus,

proposition 3.4 will hold whenever f̃R in (3.4b) is a monotonically decreasing function of λI .

To illustrate these analytical results, in Fig. 5(a) and Fig. 5(b) we show a graphical determi-

nation of the zeros of g̃R and g̃I for the exponent set (2, 1, 2, 0) with D = 1. Since m = 2, we are

guaranteed by proposition 3.1 that f̃
′

R < 0, with f̃R > 0. In Fig. 5(a) we plot f̃R together with C̃R

at the critical value τ = τ0 and λI = λ0
I . In this figure, we have also plotted C̃R for three values

of τ larger than τ0. It is easy to show that when τ > 0 and D is finite, we have C̃
′

R > 0 for all
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λI > 0. In addition, when D is finite and τ > 0, C̃R is an increasing function of τ for each λI > 0.

Thus, the unique root λ∗I to g̃R = 0 is a decreasing function of τ when D is finite, and it has the

limiting behavior λ∗I → 0+ as τ → +∞. In Fig. 5(b), we plot f̃I and C̃I at the critical value τ = τ0,

together with C̃I at three values of τ > τ0. Since m = p = 2, we have from proposition 3.2 that

f̃I > 0 for λI > 0. Again, it is easy to show that when D is finite, C̃I is an increasing function of

λI when τ > 0, and for each λI > 0 is an increasing function of τ . Hence, from the local behavior

(3.15), it follows that at the root of g̃R = 0, we have g̃I > 0 when τ is sufficiently large. From the

proof of proposition 3.4, we conclude that there are exactly two eigenvalues in the right half-plane

when τ is sufficiently large.
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�I
(a) g̃R = 0: plots of f̃R and C̃R

0:00:51:01:5

0:0 1:0 2:0 3:0 4:0 5:0
~CI ; ~fI

�I
(b) g̃I = 0: plots of f̃I and C̃I

Figure 5: The roots of g̃R = g̃I = 0 shown graphically for the exponent set (2, 1, 2, 0) with D = 1.
The heavy solid curve in the left and right figures are f̃R and f̃I , respectively. The solid curves
are C̃R (left figure) and C̃I (right figure) at τ = τ0 = 1.343. The top, middle, and bottom, dashed
curves are C̃R (left figure) and C̃I (right figure) for τ = 4.0, τ = 2.0 and τ = 1.5, respectively.

We have made plots similar to Fig. 5(a) and Fig. 5(b) for each of the exponent sets of (1.3).

Although the monotonicity result (3.6) is proved only for m = 2 and p > 1, we have found

numerically that f̃
′

R < 0 for each exponent set of (1.3). Thus, g̃R = 0 has a unique root. In

addition, although f̃I > 0 is proved in (3.16) only when m = p+ 1, or when m = 2 and 1 < p ≤ 5,

we have found numerically that f̃I > 0 for the exponent sets of (1.3). Thus, the results for the

exponent sets of (1.3) are all qualitatively exactly the same as for the set (2, 1, 2, 0). To illustrate

this, in Fig. 6(a) and Fig. 6(b) we show the graphical determination of the root to g̃R = g̃I = 0 for
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the exponent set (2, 1, 3, 0) when D = 1. Once again, for τ > τ0, with τ sufficiently large, there

must be two eigenvalues in the right half-plane. Numerically, we used the winding number criterion

(3.22) to verify that there are always two eigenvalues in the right half-plane for τ > τ0 for each of

the exponent sets in (1.3).
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(a) g̃R = 0: plots of f̃R and C̃R
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(b) g̃I = 0: plots of f̃I and C̃I

Figure 6: Same caption as in the previous figure except that here the exponent set is (2, 1, 3, 0) and
D = 1. The dashed curves are C̃R and C̃I for three values of τ > τ0 = 2.48. The top, middle, and
bottom, dashed curves are for τ = 4.3, τ = 3.5 and τ = 2.8, respectively.

Finally, we make a few remarks. Firstly, the frequency of small oscillations, λ0
I , is smaller

for finite D than it is for the shadow GM model where D = ∞. This follows since C̃R(λI) ≡
(s+ 1)/(qm) when D = ∞, and C̃R is an increasing function of both λI and τ when τ > 0 and

D is finite. Secondly, we note that the analysis is significantly more complicated for large values

of p. When p > 5 and m = p + 1, the local behavior of proposition 3.1 proves that f̃R is locally

increasing near λI = 0. The non-monotonicity of f̃R could change the winding number calculation

and lead to more eigenvalues in the right half-plane. In addition, from the local behavior (3.15), we

have that f̃I < 0 in a neighborhood of the origin if p > 1 + 2m. However, f̃I tends to zero through

positive values as λI → +∞. Thus, f̃I = 0 at some point. This suggests that it is possible that

τ0 < 0, implying that M > 0 when τ = 0. We have not explored these different possibilities that

can occur for large values of p since the previous numerical simulations have all had p ≤ 4 (cf. [11],

[12], [17], [18]).
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3.2 Eigenvalues in the Right Half-Plane

Next, for a fixed value of D, we use Newton’s method to track the roots of g(λ) = 0 for τ > τ0

as they enter the right half-plane. At each step, the coupled BVP system (3.3) is solved using

COLSYS [1]. This generates a path λ(τ) = λR(τ) + iλI(τ) as τ is increased past τ0. For each

of the exponent sets of (1.3), we have found numerically that this path converges monotonically,

with λ
′

R > 0 and λ
′

I < 0, towards the positive real axis. For each exponent set of (1.3), we have

found that the complex conjugate pair of eigenvalues merges onto the real axis at λR = λ0
R, for

some critical value τ = τc(D) > τ0(D). As τ increases past τc(D), one eigenvalue tends to zero

as τ → ∞, while the other eigenvalue tends to ν−0 as τ → ∞. This path, and its conjugate, are

plotted in Fig. 7(a) and Fig. 7(b) for the exponent sets (2, 1, 2, 0) and (3, 2, 2, 0) when D = 1.

This numerical evidence supports the conjecture that there are exactly two eigenvalues in the right

half-plane for any τ > τ0. This type of path in the spectrum is qualitatively very similar to that

found for the N -dimensional shadow GM problem studied in [31]. A similar spectral result was

first shown to occur for the Gray-Scott model in one spatial dimension in [7]. It was also found in

[8] in their analysis of (A.9) for the stability of a one-spike solution to the GM model on the infinite

line.
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(a) (p, q, m, s) = (2, 1, 2, 0)
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(b) (p, q, m, s) = (3, 2, 2, 0)

Figure 7: Plots of the path of λ = λR± iλI for D = 1 as τ increases past τ0(D). As τ increases, the
paths converge monotonically onto the real axis at some critical value τ = τc(D) with λR = λ0

R.
For τ > τc(D), one eigenvalue tends to zero, and the other eigenvalue tends to the eigenvalue ν0 > 0
of the local operator L0 as τ → ∞.
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Our next goal is to prove rigorously that there exists a value τ = τc(D), such that for each

τ > τc(D) there are exactly two eigenvalues on the real axis. To do so, we first look for eigenvalues

λ = λR on the positive real axis. From (3.2) and (3.3), they satisfy gR(λR) = 0, where

gR(λR) = CR(λR) − fR(λR) , fR(λR) =

∫∞

−∞
wm−1 (L0 − λR)−1 wp dy

∫∞

−∞
wm dy

. (3.23)

Here CR(λR) ≡ C(λR), where C(λR) is given in (3.2c). Clearly fR(λR) → +∞ as λR → ν−0 , where

ν0 is the principal eigenvalue of the local operator defined in (2.24). We need some analytical results

on fR(λR). Our results are summarized as follows:

Proposition 3.5: The function fR in (3.23) has the asymptotic behavior

fR(λR) ∼ 1

p− 1
+

λR

p− 1

[

1

p− 1
− 1

2m

]

+ κcλ
2
R +O(λ3

R) , as λR → 0 , (3.24)

with fR → +∞ as λR → ν−0 . Here κc is defined in (3.5b). Assume that either m = p + 1 and

p > 1, or m = 2 with 1 < p ≤ 5. Then, we have the global result

f
′

R(λR) > 0 , for 0 < λR < ν0 . (3.25)

Furthermore, assume that either m = p+1 and 1 < p ≤ 5, or m = p = 2. Then, we have convexity

f
′′

R(λR) > 0 , for 0 < λR < ν0 . (3.26)

Finally, on the interval λR > ν0, we have

fR(λR) < 0 , for λR > ν0 . (3.27)

Proof: We now prove these results. To establish the local behavior (3.24) as λR → 0, we use fR

in (3.23) to calculate

fR(0) =

∫∞

−∞
wm−1L−1

0 wp dy
∫∞

−∞
wm dy

, f
′

R(0) =

∫∞

−∞
wm−1L−2

0 wp dy
∫∞

−∞
wm dy

, f
′′

R(0) =
2
∫∞

−∞
wm−1L−3

0 wp dy
∫∞

−∞
wm dy

.

(3.28)

Using (3.7) for L−1
0 wp, we get fR(0) = 1/(p − 1). The integral for f

′

R(0) was calculated in (3.17).

The integral for f
′′

R(0) is fR
′′(0) = 2κc, where κc was given in (3.5b)–(3.5d). This proves (3.24).

Next, we prove the global result (3.25) and (3.26) for the case m = p + 1. When m = p + 1,

(3.23) for fR becomes,

fR(λR) =

∫∞

−∞
wp (L0 − λR)−1wp dy
∫∞

−∞
wp+1 dy

. (3.29)
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By differentiating (3.29) we obtain

f
′

R(λR) =

∫∞

−∞
wp (L0 − λR)−2 wp dy
∫∞

−∞
wp+1 dy

=

∫∞

−∞

[

(L0 − λR)−1wp
]2
dy

∫∞

−∞
wp+1 dy

> 0 . (3.30)

This establishes (3.25) form = p+1. To prove the convexity result, we first note that f
′′′

R (λR) > 0 on

0 ≤ λR < ν0. Thus, if f
′′

R(0) ≥ 0, the result (3.26) follows. By differentiating (3.30), and comparing

with (3.5b), we readily obtain that f
′′

R(0) = 2κc, where κc is given in (3.5c) when m = p+1. Hence,

f
′′

R(0) =
(p+ 3)

(p + 1)(p − 1)2

[

1

p− 1
− 1

4

]

. (3.31)

Thus, f
′′

R(0) ≥ 0 when 1 < p ≤ 5. Therefore, by the remark above, f
′′

R(λR) > 0 on 0 < λR < ν0

when m = p+ 1 and 1 < p ≤ 5.

Next, we prove the global result (3.25) and (3.26) for the case m = 2. When m = 2, we use

(3.7) to write fR in (3.23) as

fR(λR) =

∫∞

−∞
w (L0 − λR)−1 [(L0 − λR)w + λRw] dy

(p − 1)
∫∞

−∞
w2 dy

=
1

(p− 1)
+
λR

∫∞

−∞
w (L0 − λR)−1 w dy

(p− 1)
∫∞

−∞
w2 dy

.

(3.32)

By differentiating (3.32) we obtain

f
′

R(λR) =
1

(p − 1)

∫∞

−∞
w (L0 − λR)−1w dy
∫∞

−∞
w2 dy

+
λR

(p− 1)

∫∞

−∞

[

(L0 − λR)−1 w
]2
dy

∫∞

−∞
w2 dy

, (3.33a)

and

f
′′

R(λR) =
1

(p− 1)

∫∞

−∞
2
[

(L0 − λR)−1w
]2
dy

∫∞

−∞
w2 dy

+
2λR

(p− 1)

∫∞

−∞
w (L0 − λR)−3w dy
∫∞

−∞
w2 dy

. (3.33b)

To establish the sign of these terms, we need some properties for the auxiliary functions h1(α) and

h3(α) defined by

h1(α) =

∫ ∞

−∞

w (L0 − α)−1w dy , h3(α) =

∫ ∞

−∞

w (L0 − α)−3 w dy . (3.34)

From (3.33a), the result f
′

R(λR) > 0 follows if we can show that h1(α) ≥ 0 on 0 ≤ α < ν0. From

differentiating h1(α) in (3.34), it is clear that h
′

1(α) > 0. Next, we use (3.7) to calculate

h1(0) =

∫ ∞

−∞

wL−1
0 w dy =

∫ ∞

−∞

(

w2

p− 1
+

1

2
yww

′

)

dy =

(

1

p− 1
− 1

4

)
∫ ∞

−∞

w2 dy . (3.35)
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Thus, when 1 < p ≤ 5 we have h1(0) ≥ 0. Since h
′

1(α) > 0, we obtain that h1(α) > 0 on 0 < α < ν0.

This establishes (3.25) when m = 2 and 1 < p ≤ 5. From (3.33b) it is clear that a sufficient, but

not necessary, condition for the convexity of fR is that h3(α) > 0 for 0 < α < ν0. Since h
′

3(α) > 0,

the result (3.26) is proved when m = 2 if we can show that h3(0) > 0. This detailed calculation,

which we give in Appendix B, shows that the determination of the sign of h3(0) can be reduced to

a quadrature. From (B.4) of Appendix B, we get

h3(0) =

[

1

p− 1
− 1

4

](

1

(p− 1)2

∫ ∞

−∞

w2 dy − 1

2(p − 1)

∫ ∞

−∞

w2 dy +
1

2

∫ ∞

−∞

(

yw
′
)2

dy

)

+
1

4

∫ ∞

−∞

(

w + yw
′
)

L−1
0

(

yw
′
)

dy . (3.36)

The function L−1
0

(

yw
′
)

is given explicitly in (B.6) in terms of a quadrature. We cannot calculate

h3(0) analytically, but (3.36) is readily evaluated numerically to give h3(0) = 2.7 when p = 2. Thus,

we have convexity of fR when m = 2 and p = 2. However, for integer values of p with p > 2, we

calculate h3(0) < 0. Therefore, this method for proving the convexity of fR fails when p > 2.

Finally, we prove the global result (3.27) for fR on the interval λR > ν0. For this result we need

the following technical lemma:

Lemma 3.6: Let ξ(y) be an even solution to

(L0 − λR) ξ = v , for 0 ≤ y <∞ , (3.37)

satisfying ξ
′
(0) = 0, for which ξ decays exponentially to zero as y → ∞. The function v is assumed

to be even, smooth, and satisfies v(y) > 0 on 0 < y < ∞, with v → 0 exponentially as y → +∞.

Let ν0 > 0 be the principal eigenvalue of L0 as given in Theorem 2.5 of §2. Then, for any λR with

λR > ν0, we have ξ(y) ≤ 0 for y ≥ 0.

The proof of this Lemma is given in Appendix C. By applying this result to v = wp, we have

(L0 − λR)−1wp ≤ 0 for y ≥ 0 when λR > ν0. From the definition of fR in (3.23), we then conclude

fR(λR) ≤ 0 on λR > ν0, which proves (3.27). This completes the proof of proposition 3.5. �

Next, we derive a few key properties of the function CR(λR) in (3.23), given explicitly by

CR(λR) =
s

qm
+

√
1 + τλR

qm

(

tanh θλ

tanh θ0

)

, θλ ≡ θ0
√

1 + τλR , θ0 ≡ D−1/2 . (3.38)

A simple calculation gives,

C
′

R(λR) =
τθ0

2qm tanh θ0
R(ξ) , (3.39a)
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where R(ξ) and ξ are defined by

R(ξ) ≡ tanh ξ

ξ
+ sech2ξ , ξ ≡ θ0

√

1 + τλR . (3.39b)

Since R(ξ) > 0 for ξ > 0 and R(ξ) = O(ξ−1) as ξ → ∞, it follows that C
′

R > 0 for λR > 0, and

C
′

R = O(τ1/2) as τ → ∞ for any λR > 0. Moreover, for each value of τ > 0 and D > 0 it follows

that the function CR is concave for λR > 0 if we can show that R
′
(ξ) < 0 for any ξ > 0. We

calculate,

R
′

(ξ) = −tanh ξ

ξ2
+

sech2ξ

ξ
− 2 tanh ξ sech2ξ . (3.40)

This can be re-written more conveniently as

R
′

(ξ) =
1

2ξ2 cosh2 ξ
[2ξ − sinh(2ξ)] − 2 tanh ξ sech2ξ . (3.41)

Since z < sinh(z) for z > 0, we have R
′
(ξ) < 0 for ξ > 0. From (3.39a), this proves that for any

D > 0 and τ > 0, the function CR(λR) is concave for λR > 0. This leads to the next proposition.

Proposition 3.7: Suppose that either m = 2 and p = 2, or m = p + 1 and 1 < p ≤ 5. Then,

for any D > 0, there exists a value τc = τc(D) > 0, such that there are exactly two eigenvalues of

(2.23) on the positive real axis for all τ > τc. These two roots are in the interval 0 < λR < ν0. For

τ > τc, and m = 2, these are the only two eigenvalues in the right half-plane. In the limit τ → ∞,

one of these eigenvalues tends to zero, while the other eigenvalue tends to ν−0 . This also proves the

existence of a value τ0(D) > 0 such that there is a pair of complex conjugate eigenvalues on the

imaginary axis when τ = τ0(D).

This result states that, under certain m and p, once the eigenvalues have merged onto the real

axis, they remain on the real axis for all τ > τc.

Proof: We now prove this result. Firstly, any roots of gR(λR) = 0 must satisfy 0 < λR < ν0. This

follows readily since CR(λR) > 0 for τ > 0 and fR(λR) < 0 for λR > ν0 by (3.27) of proposition 3.5.

On the interval 0 < λR < ν0, and for these ranges of m and p, we have from proposition 3.5 that fR

is monotonically increasing, fR is convex, and fR has the limiting behavior fR → +∞ as λR → ν−0 .

In addition, since fR(0) = 1/(p − 1) and CR(0) = (s + 1)/(qm), we have fR(0) > CR(0) from

condition (1.2). For τ = 0, CR(λR) = CR(0) for all λR > 0. Since, from (3.39a), C
′

R(λR) → +∞
as τ → ∞, and C

′

R is monotonic in τ , there will exist a value τ = τc for which gR = 0. For τ < τc,

we have gR < 0. Since fR is convex and CR is concave there will be exactly two roots to gR = 0

for any τ > τc. This indirectly also proves the existence of a value τ0(D) such that there is a pair

of complex conjugate eigenvalues on the imaginary axis when τ = τ0(D). This follows, since by
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proposition 2.6 we know that Re(λ) < 0 when τ = 0 and by proposition 3.7 we know that there

are two eigenvalues on the positive real axis when τ > τc(D). Since CR(0) is independent of τ ,

eigenvalues cannot cross into the right half-plane along the real axis as τ is increased. Hence, by

continuity they must have crossed into the right half-plane along the imaginary axis at some value

τ0(D) > 0 (possibly non-unique). This completes the proof. �
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(a) (p, q, m, s) = (2, 1, 2, 0)
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Figure 8: The roots of gR = 0 are shown graphically for two exponent sets with D = 1. The heavy
solid and solid curves are fR and CR, respectively, at the critical value τ = τc. For (2, 1, 2, 0),
τc = 10.25, while for (3, 2, 2, 0), τc = 3.97, The top, middle, and bottom dashed curves in the left
figure are CR for τ = 30, τ = 25, and τ = 18, respectively. The top, middle, and bottom dashed
curves in the right figure are CR for τ = 9, τ = 7, and τ = 5, respectively.

In Fig. 8(a) we show graphically the determination of eigenvalues of (2.23) along the positive

real axis for the exponent set (2, 1, 2, 0) when D = 1. Since p = m = 2, the proposition 3.7 applies.

In this figure, we plot fR (heavy solid curve) and CR (solid curve) versus λR when τ = τc = 10.25.

The dashed curves in this figure are CR for three values of τ > τc. For each τ > τc there are exactly

two roots to gR = 0. The curve fR is convex, while CR is concave. For the exponent sets in (1.3),

proposition 3.7 applies only to (2, 1, 2, 0) and (2, 1, 3, 0). Although, we do not have a proof that

fR is convex for the other exponent sets of (1.3), we have verified numerically that this is indeed

the case. Thus, the determination of roots along the real axis will be qualitatively identical to that

shown in Fig. 8(a). In particular, in Fig. 8(b) we plot fR and CR versus λR for the exponent set

(3, 2, 2, 0) when D = 1. For this set we find numerically that τc = 3.97.
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Next, we use Newton’s method to compute the curves τc and λ0
R versus D for the exponent sets

in (1.3). In Fig. 9(a) and Fig. 9(b), we plot τc and λ0
R, respectively, for the exponent sets (2, 1, 2, 0)

and (2, 1, 3, 0). We find that τc is a decreasing function of D, and that τc is larger when m = 3 than

when m = 2. There is only a slight variation of λ0
R with respect to D. In Fig. 10(a) and Fig. 10(b),

we plot τc and λ0
R, respectively, for the other exponent sets of (1.3). In each case, we find that τc

is a monotone decreasing function of D.
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�
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(a) τc versus D

0:350:400:450:50
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�0R

D
(b) λ0

R versus D

Figure 9: Plots of τc (left figure) and λ0
R (right figure) for two exponent sets when D = 1. The

solid and heavy solid curves are for the exponent sets (2, 1, 2, 0) and (2, 1, 3, 0), respectively.

For each of the exponent sets of (1.3), we have verified numerically that there are two eigenvalues

along the real axis for τ > τc. We now derive asymptotic formulae for these eigenvalues and their

corresponding eigenfunctions in the limit τ → ∞. It is convenient here to write the eigenvalue

relation (3.23) as

CR(λR) =

∫∞

−∞
wm−1ψR dy

∫∞

−∞
wm dy

. (3.42)

Here CR(λR) is given in (3.38), and ψR solves

(L0 − λR)ψR = wp . (3.43)

As τ → ∞, one eigenvalue tends to zero and the other tends to the eigenvalue ν0 of the local

operator L0. For this larger O(1) eigenvalue, we have the following asymptotic result:
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Figure 10: Plots of τc (left figure) and λ0
R (right figure) for three exponent sets when D = 1. The

solid, dashed, and heavy solid curves are for the exponent sets (4, 2, 2, 0), (3, 2, 2, 0), and (3, 2, 3, 1),
respectively.

Proposition 3.8: For τ ≫ 1, there is an eigenvalue of (2.23) with λR = O(1) as τ → ∞. For

τ ≫ 1, it has the asymptotic expansion,

λR = λb ∼ ν0 + δ1/τ
1/2 + · · · ; ψR = ψb ∼ τ1/2A0φl0 +O(1) . (3.44)

The constants A0 and δ1 are given by,

A0 =
c0
∫∞

−∞
wm dy

∫∞

−∞
wm−1φl0 dy

, δ1 = −

(

∫∞

−∞
wm−1φl0 dy

)(

∫∞

−∞
wpφl0 dy

)

c0
∫∞

−∞
wm dy

, (3.45a)

where

c0 =

√
ν0

qm
(tanh θ0)

−1 . (3.45b)

Here ν0 and φl0 are the principal eigenpair of the local operator L0 (see Theorem 2.5 in §2 above),

with φl0 normalized so that
∫∞

−∞
φ2

l0 dy = 1.

Proof: To derive this result, for τ ≫ 1, we expand

λR = λb ∼ δ0 + δ1/τ
1/2 + · · · ; ψR = ψb ∼ τ1/2ψb0 + ψb1 + · · · . (3.46)

Substituting (3.46) into (3.43), and collecting powers of τ1/2, we obtain

L0ψb0 − δ0ψb0 = 0 ; L0ψb1 − δ0ψb1 = δ1ψb0 + wp . (3.47)
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Thus, δ0 = ν0 > 0 and ψb0 = A0φl0, where A0 is an unknown constant. We normalize φl0 by
∫∞

−∞
φ2

l0 dy = 1. Then, the solvability condition for the equation for ψb1 in (3.47) determines δ1 as

δ1 = −A−1
0

∫ ∞

−∞

wpφl0 dy . (3.48)

To determine A0, we substitute (3.46) into (3.42). This determines A0 as

A0 =
c0
∫∞

−∞
wm dy

∫∞

−∞
wm−1φl0 dy

, (3.49)

where c0 is given in (3.45b). The constant c0 is the leading coefficient in the expansion CR(λR) =

c0τ
1/2 +O(1) as τ → ∞. Then, substituting (3.49) into (3.48), we determine δ1 as in (3.45a). This

completes the derivation of proposition 3.8. �

The asymptotic behavior of the eigenvalue that tends to zero as τ → ∞ is summarized as

follows:

Proposition 3.9: For τ ≫ 1, there is an eigenvalue of (2.23) with λR = O
(

τ−1
)

as τ → ∞. For

τ ≫ 1, it has the asymptotic expansion,

λR = λs ∼
ω0

τ
+
ω1

τ2
+ · · · ; ψR = ψs ∼ ψs0 +

ψs1

τ
+ · · · . (3.50)

The functions ψs0 and ψs1 are given by,

ψs0 =
w

p− 1
, ψs1 =

ω0

p− 1

[

w

p− 1
+

1

2
yw

′

]

, (3.51)

where w satisfies (2.2). The positive constant ω0 is the unique root of

ĈR(ω0) =
1

p− 1
, (3.52a)

and the constant ω1 is

ω1 =
ω0

(p− 1)Ĉ
′

R(ω0)

[

1

p− 1
− 1

2m

]

. (3.52b)

Here the function ĈR(ω) is simply ĈR(ω) ≡ CR (ω/τ).

Proof: To derive this result, we substitute (3.50) into (3.42) and (3.43). Collecting powers of τ ,

we obtain

L0ψs0 = wp , ĈR(ω0) =

∫∞

−∞
wm−1ψs0 dy

∫∞

−∞
wm dy

, (3.53a)

L0ψs1 = ω0ψs0 , ω1Ĉ
′

R(ω0) =

∫∞

−∞
wm−1ψs1 dy

∫∞

−∞
wm dy

. (3.53b)
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Here ĈR(ω) ≡ CR (ω/τ ). By using (3.7), we readily obtain that the solutions ψs0 and ψs1 are as

given in (3.51). By substituting these solutions into the integrals in (3.53), and by calculating the

integrals explicitly, we obtain (3.52). Finally, we show that ω0 > 0 and is unique. Using (3.52a),

and (3.38) for CR, ω0 can be written as the root of the transcendental equation

R(ω0) ≡
√

1 + ω0

(

tanh
[

θ0
√

1 + ω0

]

tanh θ0

)

− 1 = ζ , θ0 = D−1/2 . (3.54)

Here ζ > 0 is the combination of exponents given in (1.2). Clearly R(−1) = −1, R(0) = 0,

R
′
(ω) > 0 for ω > −1, with R(ω) → ∞. Hence, for any ζ > 0 and D, (3.54) has a unique root

ω0, satisfying ω0 > 0. Since ω0 > 0, the small eigenvalue of (3.50) approaches the origin through

positive real values as τ → ∞, but it cannot cross through the origin into the left half-plane. This

completes the derivation of proposition 3.9. �

The results in propositions 3.8 and 3.9 apply to all m and p satisfying the basic condition (1.2).

In Fig. 11(a) and Fig. 11(b), we compare the asymptotic formulae, given in propositions 3.8 and 3.9,

with the corresponding numerically computed values when D = 1. The exponent sets for Fig. 11(a)

and Fig. 11(b) are (2, 1, 2, 0) and (4, 2, 2, 0), respectively. These plots show that the asymptotic

results (3.44) and (3.50) are quite accurate, even for only moderately large values of τ .

0:000:250:500:751:00

15 20 25 30 35 40
�R

�
(a) (p, q, m, s) = (2, 1, 2, 0)

0:01:02:03:04:05:0

2:0 4:0 6:0
�R

�
(b) (p, q, m, s) = (4, 2, 2, 0)

Figure 11: Plot of the eigenvalues on the real axis for two exponent sets when D = 1 and τ > τc.
The solid curves are the numerical results, and the dashed curves are the asymptotic approximations
of propositions 3.8 and 3.9. One eigenvalue tends to zero and the other tends to ν−0 as τ → ∞.
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An open problem is to prove a transversal crossing condition that ensures that whenever there

is a pair of complex conjugate eigenvalues on the imaginary axis at some value τ = τ0(D), then they

remain inside the right-half plane for τ > τ0(D). This condition would also imply that τ0(D) is

unique. If we write the eigenvalue path as λ(τ) = λR(τ)+ iλI(τ), the transversal crossing condition

is equivalent to proving that λ
′

R(τ0) > 0 whenever λR(τ0) = 0. A simple calculation shows that

λ
′

R(τ0) > 0 for a root λ = iλ0
I on the imaginary axis if and only if

Im

[

dC

dz
f

′

(λ)

]

< 0 when z = iλ0
Iτ0 , λ = iλ0

I . (3.55)

Here we have written C = C(z), where z = τλ. In [31], we were able to prove a transversal crossing

condition for the N -dimensional shadow GM model, since in that case the root of C̃R(λI) = f̃R(λI)

remained fixed as τ increased. We have not been able to give a rigorous proof of the sign in (3.55).

Remark 3.10 When D ≪ 1, the key parameter in (1.1) is τ . As discussed in Appendix A, our

spectral results for a one-spike solution when D ≪ 1 should correspond to the spectral results

obtained in [8] for the GM system (A.9) of Appendix A, provided we identify µ = 1/τ in (A.9b).

For the parameter set (p, q,m, s) = (2, 1, 2, 0), it was shown in [8] (see page 491) that there is a

Hopf bifurcation when µ = 0.36. The corresponding value of λI on the positive imaginary axis

computed in [8] is λI = 0.86. From the data used to generate Fig. 3(a) with D ≪ 1, our numerical

values for the Hopf bifurcation point are τ = 2.75 and λI = 0.867, which are consistent with those

of [8]. In addition, it was shown in [8] (see page 491) that the complex conjugate pair of eigenvalues

in the right half-plane merge onto the positive real axis at λR = 0.38 when µ = 0.053. From the

data used to generate Fig. 9(a) and Fig. 9(b) with D ≪ 1, our corresponding values are λR = 0.386

and τ = 18.7. These results are again consistent with those of [8].

4 Numerical Validation: Small and Large-Scale Oscillations

We now confirm numerically our predictions for the onset of an oscillatory instability as τ increases

past τ0. We also give numerical results for the large-scale oscillations that occur when τ is well

beyond τ0. To do so, we solve the GM model (1.1) numerically using the NAG library routine

D03PCF [19] with 2000 uniformly spaced meshpoints and stringent control on the accuracy of local

time-steps. The initial condition for the GM model (1.1) is taken to be

a(x, 0) = ae

[

1 + 0.02 cos
(πx

ε

)

e−x2/(2ε2)
]

, h(x, 0) = he(x) , (4.1)

where ae and he are the one-spike equilibrium solutions given in proposition 2.1. The initial

condition for ae represents a 2% localized perturbation. To show the oscillatory behavior, in each

36



of the figures below we plot am ≡ a(0, t), referred to as the amplitude of the spike, versus t.

In Fig. 12(a) we plot am versus t for two values of τ for the exponent set (4, 2, 2, 0) with D = 1,

and ε = 0.03. For this data, the critical value τ0 for the onset of an oscillatory instability as

predicted by the spectral analysis in §3 is τ0 = 0.197. From Fig. 12(a), we note that when τ = 0.19

the oscillations generated by the initial perturbation are damped out, whereas when τ = 0.2, the

oscillations grow. A similar plot is shown in Fig. 12(b) for the exponent set (3, 2, 2, 0) with D = 1,

and ε = 0.01. For this data, we compute τ0 = 0.497. The oscillations are seen to decay when

τ = 0.485, and they grow when τ = 0.5. We have performed many other numerical simulations for

different exponent sets and for different values of D to confirm our spectral results for the onset of

an oscillatory instability.

Next, we plot am versus t for values of τ near τ0, and for values well beyond τ0. In Fig. 13(a)

we plot am versus t, showing small-scale oscillations for the exponent set (2, 1, 2, 0) with D = 1 and

ε = 0.01. For this data, τ0 = 1.343. From Fig. 13(a), the oscillations die out when τ = 1.3 and they

grow when τ = 1.35. In Fig. 13(b) we increase τ to τ = 1.38. For this value, we observe a very

intricate large-scale motion in the spike amplitude. In Fig. 14(a), we increase τ to τ = 1.5. For

this value, the amplitude of the spike exhibits a few large transient oscillations, but then eventually

collapses to zero. Similar spike collapse behavior occurs for this exponent set at even larger values

of τ . When τ > τc, the eigenvalues of the linearized analysis are on the real axis. In this case,

we have found that am → 0 as t → ∞ monotonically, without any oscillations. The behavior for

τ near τ0 suggests that the resulting Hopf bifurcation at τ = τ0 is probably subcritical, since we

have found numerically that the emerging small-scale oscillations are unstable. In particular, in

Fig. 14(b) we plot am versus t for the exponent set (3, 2, 3, 1) with τ = 1.3, D = 1, and ε = 0.02.

For this set, the critical value τ0 is predicted to be τ0 = 1.22. For the value τ = 1.3, it is shown in

Fig. 14(b) that am → 0 as t→ ∞.

These numerical results suggest that when τ is only slightly beyond τ0, there can be a large-

scale oscillation that persists for long time intervals, such as that shown in Fig. 13(b). However,

for larger values of τ , the numerical evidence suggests that the amplitude am of the spike should

eventually tend to zero as t increases. It is beyond our scope here to give an analysis of these large-

scale oscillations. However, we now derive a heuristic criterion for the stability of the degenerate,

uniform solution a ≡ 0 and h ≡ 0. What we now show is that the uniform solution is linearly stable

when τ > τ∗ = q/(p − 1).

Consider a one-spike time-dependent solution to the GM model (1.1), where the spike is located

at x = 0. We construct a solution by the method of matched asymptotic expansions. In the inner

region near x = 0, we introduce y = ε−1x, and we expand a = a0(y, t) + εa1(y, t) + · · · , and
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Figure 12: Plots of am versus t for two exponent sets when D = 1. In the left figure, τ = 0.19
(heavy solid curve), and τ = 0.2 (dashed curve). In the right figure, τ = 0.485 (heavy solid curve),
and τ = 0.5 (dashed curve). The critical values are τ0 = 0.197 (left), and τ0 = 0.497 (right).
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Figure 13: Plots of am versus t for several values of τ for the exponent set (2, 1, 2, 0) with ε = 0.01
and D = 1.0. In the figure on the left, the heavy solid curve is for τ = 1.3 and the dashed curve is
for τ = 1.35. In the figure on the right, τ = 1.38. The critical value τ0 is τ0 = 1.343.

38



0:00:20:40:60:81:01:2

0 50 100 150
am

t
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Figure 14: In the figure on the left we plot am versus t for the exponent set (2, 1, 2, 0) with τ = 1.5,
D = 1, and ε = 0.01. The figure on the right corresponds to the exponent set (3, 2, 3, 1) with
τ = 1.3, D = 1, and ε = 0.02. In both cases, am → 0 as t increases.

h = h0(y, t)+ εh1(y, t)+ · · · . Substituting this expansion into (1.1), we obtain that h0 = H(t), and

that a0 satisfies

a0t = a0yy − a0 +
ap

0

Hq
, −∞ < y <∞ ; a0 → 0 as |y| → ∞ . (4.2)

Here H(t) is a function to be determined. In (4.2), we introduce the new variable v defined by

a = Hγv, where γ = q/(p− 1). From (4.2), we obtain that v satisfies

vt = vyy −
(

1 + γ
H

′

H

)

v + vp ; −∞ < y <∞ , v → 0 as |y| → ∞ . (4.3a)

In the outer region, a is exponentially small, and h = O(1). Since the term ε−1am/hs in (1.1b) is

localized near x = 0, we obtain from (1.1b), that for ε≪ 1, h satisfies

τht = Dhxx − h+Hζ+1

(∫ ∞

−∞

[v(y, t)]m dy

)

δ(x) , −1 < x < 1 ; hx(±1, t) = 0 . (4.3b)

Here ζ > 0 is defined in (1.2), and δ(x) is the Delta function. The matching condition of the inner

and outer solutions for h provides the coupling between (4.3a) and (4.3b). This condition requires
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that

h(0, t) = H(t) . (4.3c)

In the v, h formulation of (4.3), we can investigate the stability of the zero solution to small

localized perturbations in a. For 0 < σ ≪ 1, suppose that h(x, 0) = σh0(x) > 0 on |x| ≤ 1,

and v(y, 0) = σv0(y) > 0, with v0(y) → 0 exponentially as |y| → ∞. Since ζ > 0 in (4.3b), the

linearization of (4.3) for σ ≪ 1 is

vt = vyy −
(

1 + γ
H

′

H

)

v , −∞ < y <∞ ; v → 0 , as |y| → ∞ , (4.4a)

τht = Dhxx − h , −1 < x < 1 ; hx(±1, t) = 0 , (4.4b)

with v(y, 0) = v0(y), h(x, 0) = h0(x), and h(0, t) = H(t). The problem (4.4a) for v is readily solved

by Fourier transforms to get

v(y, t) =

(

U(0)

U(t)

)γ

e−(1−γ/τ )t g(y, t) , g(y, t) =
1

2
√
πt

∫ ∞

−∞

v0(s) e
−(y−s)2/4t ds . (4.5)

Here U(0) = h0(0), and U(t) is to be determined from

τut = Duxx , −1 < x < 1 ; ux(±1, t) = 0 ; u(x, 0) = u0(x) ; U(t) = u(0, t) . (4.6)

For t≫ 1, we readily calculate that

U(t) ∼ 1

2

∫ 1

−1
u0(x) dx+ e−Dπ2t/τ b0 cos(πx) + · · · , b0 ≡

∫ 1

−1
u0(x) cos(πx) dx . (4.7)

From (4.5), we predict that the zero solution is stable when τ > τ∗ ≡ γ, where γ = q/(p − 1),

and is unstable when τ < τ∗. As a remark, if we took an initial condition with v(y, 0) = O(1)

and h(x, 0) = σh0(x), with σ ≪ 1, then the linearization would have (4.4b) for h, and (4.3a) for

v. The resulting equation for v, with the vp term retained, is highly unstable when v = O(1) since

it closely approximates the nonlinear heat equation for which the linearized operator is the local

operator L0 of Theorem 2.5. Thus, v should grow exponentially with a growth rate close to ν0,

where ν0 > 0 is the principal eigenvalue of the local operator L0 in Theorem 2.5. However, if v

does increase exponentially, then the integral term in the h equation (4.3b) that is proportional

to Hξ+1 becomes significant. This term has the effect of limiting the growth in v by introducing

a large positive coefficient H
′
/H in (4.3a). This type of self-limiting growth is presumably a very
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rough outline of the mechanism of the large-scale oscillations found in the numerical simulations

above.

For the exponent sets (2, 1, 2, 0), (2, 1, 3, 0), and (3, 2, 3, 1), we have computed numerically that

τ0 > τ∗ when D = 1. Therefore, to test our prediction of the stability of the zero solution, we

take the exponent set (3, 2, 2, 0) with D = 1, for which τ∗ = 1. For this data set, τ0 = 0.497 and

τc = 3.97. Thus, if we choose τ > 1, we should expect that if am gets close enough to the basin

of attraction of the zero solution, it will approach the zero solution as t increases. Alternatively,

if we take a value of τ with 0.497 < τ < 1 then the one-spike equilibrium solution is unstable and

the zero solution is unstable. In this case, we should observe a very intricate oscillatory motion

that persists over long time intervals. In Fig. 15(a) we plot log10(1 + am) versus t for the exponent

set (3, 2, 2, 0) with τ = 1.05, D = 1, and ε = 0.02. In Fig. 15(b) we plot log10(1 + vm) versus

t, where vm = am(t)/[h(0, t)]. This definition of vm is motivated by the analysis leading to (4.3)

above. For this value of τ , which exceeds τ∗ = 1, we do indeed observe that am and vm tend to

zero as t → ∞. However, since the amplitude of am can become very large during the transient

process, the plot has been done on a logarithmic scale. Alternatively, in Fig. 16(a) and Fig. 16(b)

we plot log10(1+am) and log10(1+ vm) versus t for the same data, but now with τ = 0.65. For this

case, where both the one-spike solution and the zero solution are unstable, we do indeed observe

a persistent, large-scale oscillation punctuated by sudden, and large, peaks in the amplitude am.

Notice that, in agreement with the qualitative analysis above, vm does become very small, but the

zero solution seems unstable. The ultimate fate of this solution as t → ∞ is unknown. A related

type of intermittent behavior was computed numerically in [31] for the shadow GM model, under

certain parameter regimes. In [24] it was shown that the Gray-Scott model can exhibit various

types of chaotic pulse dynamics in certain parameter regimes when the two diffusion coefficients

in the model are both asymptotically small. The irregular behavior observed above is significantly

different in that it occurs for an O(1) inhibitor diffusivity and an O(ε2) activator diffusivity.

5 The Stability of Multi-Spike Solutions

In this section we study the stability of multi-spike solutions. From (2.36), the eigenvalues of (2.23)

are the union of the zeros of the functions gj(λ) = 0 for j = 1, .., k, where

gj(λ) ≡ Cj(λ) − f(λ) , f(λ) ≡
∫∞

−∞
wm−1 (L0 − λ)−1wp dy
∫∞

−∞
wm dy

. (5.1)
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Figure 15: Plots of am and vm versus t for the exponent set (3, 2, 2, 0) with τ = 1.05, D = 1, and
ε = 0.02. Here vm(t) ≡ am(t)/h(0, t). Notice that there is one very large peak in am, but that am

and vm tend to zero as t increases.
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Figure 16: Plots of am and vm versus t for the exponent set (3, 2, 2, 0) with τ = 0.65, D = 1, and
ε = 0.02. The large-scale oscillation persists for long time intervals.
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Here we have defined Cj(λ) ≡ [χ(τλ; j)]−1, where from (2.25a),

Cj(λ) =
s

qm
+

√
1 + τλ

qm tanh (θ0/k)

[

tanh (θλ/k) +
(1 − cos [π(j − 1)/k])

sinh (2θλ/k)

]

, (5.2)

with θλ = θ0
√

1 + τλ and θ0 = D−1/2.

As we will explain below, there is one main difference between the spectrum of (2.23) for a

one-spike solution and for a multi-spike solution with k ≥ 2. In order to explain this difference

precisely, we need a few properties of Cj(λR), when λR is real with λR ≥ 0.

Proposition 5.1: For any fixed τ > 0 and D > 0, we have a monotonicity result for λR ≥ 0 that

Ck(λR) > Ck−1(λR) > ... > C1(λR) > 0 , C
′

k(λR) < C
′

k−1(λR) < ... < C
′

1(λR) . (5.3a)

For any fixed D > 0 and τ > 0, and for each j = 1, .., k, we have for λR > 0 that

C
′

j(λR) > 0 , C
′′

j (λR) < 0 , C
′

j(λR) = O(τ1/2) , as τ → +∞ . (5.3b)

Define the functions Bj(D) = Cj(0) for j = 1, .., k. These functions are independent of τ , and for

D > 0 and j = 2, .., k, they are monotonically increasing in D. For j = 1, B1(D) is independent

of D. We have

B
′

j(D) > 0 , for D > 0 , and j = 2, .., k ; B1(D) =
s+ 1

qm
. (5.3c)

Finally, for j = 2, .., k, we have Bj(D) = 1/(p − 1) when D = D̃j, where

D̃j ≡
4

k2
[

log
(

aj +
√

a2
j − 1

)]2 , aj ≡ 1 +

[

1 − cos

(

π(j − 1)

k

)]

ζ−1 . (5.3d)

Here ζ is defined in (1.2), and the relation D̃j−1 > D̃j holds for j = 3, .., k.

Proof: We now prove this result. To prove (5.3a), we use (5.2) to calculate for j = 1, .., k − 1 that

Cj+1(λR) −Cj(λR) =
2
√

1 + τλR

qm tanh (θ0/k)

sin [π(j − 1/2)/k] sin [π/k]

sinh (2θλ/k)
> 0 . (5.4)

This proves Cj+1(λR) > Cj(λR) for j = 1, .., k − 1. Clearly, Cj(λR) > 0 for λR > 0. By differenti-

ating (5.4), we obtain for j = 1, .., k − 1 that

C
′

j+1(λR) − C
′

j(λR) =
sin [π(j − 1/2)/k] sin [π/k]

qm tanh (θ0/k)

(

2θ0τ

kξ

)

(tanh ξ − ξ)

sinh2 ξ cosh ξ
, (5.5)
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where ξ ≡ 2θλ/k. Since tanh ξ < ξ for ξ > 0, we have C
′

j+1(λR) < C
′

j(λR) for j = 1, .., k− 1, which

proves (5.3a).

Next, we prove (5.3b). Here it is convenient to define ξ ≡ θλ/k ≥ 0. We then differentiate

Cj(λR) in (5.2), and rearrange the resulting equation, to obtain

C
′

j(λR) =
τθ0

2kqm tanh (θ0/k)
Rj(ξ) . (5.6)

Here Rj(ξ) is defined by

Rj(ξ) ≡
1

2ξ cosh2 ξ
[sinh(2ξ) + 2(1 − γj)ξ] +

γj

ξ sinh2(2ξ)
[sinh(2ξ) − 2ξ] , (5.7a)

γj ≡ 1 − cos [π(j − 1)k] , j = 1, .., k . (5.7b)

Since 0 ≤ γj < 2 for j = 1, .., k, it follows that Rj(ξ) > 0 for ξ > 0, since both terms in the square

brackets in (5.7a) are positive when ξ > 0. Therefore, C
′

j(λR) > 0 for λR > 0 and j = 1, .., k. To

prove that Cj(λR) is concave, we must show that R
′

j(ξ) < 0 when ξ > 0 for j = 1, .., k. The proof

of this is straightforward, but lengthy, and we leave the details to the reader. For τ → ∞, we have

ξ → ∞ and Rj(ξ) = O (1/ξ). Therefore, for any ξ > 0 we have Rj(ξ) = O(τ−1/2) as τ → ∞. From

(5.6), we conclude that C
′

j(λR) = O(τ1/2) as τ → ∞ for any λR > 0. This proves (5.3b).

Next, we prove (5.3c). Defining Bj(D) ≡ Cj(0), we calculate from (5.2) that

Bj(D) =
(s+ 1)

qm
+

γj

2qm sinh2 (θ0/k)
, θ0 = D−1/2 . (5.8)

Here γj is defined in (5.7b). For j = 1, we have γ1 = 0, and B1(D) = (s+ 1)/qm < 1/(p − 1).

By differentiating (5.8), we get B
′

j(D) > 0 for j = 2, .., k. This proves (5.3c). Finally, by setting

Bj(D) = 1/(p − 1) for j = 2, .., k, and using (5.8), we obtain after a little algebra that D = D̃j ,

where D̃j is given in (5.3d). A simple calculation shows that D̃j−1 > D̃j for j = 3, .., k. This

completes the proof. �

We now use these properties of Cj(λR) to determine the spectrum of (2.23) on the positive real

axis. When λ = λR, we have from (5.1) that the eigenvalues of (2.23) are the union of the roots

of Cj(λR) = fR(λR), for j = 1, .., k, where fR(λR) ≡ f(λR). The properties of fR(λR) were given

previously in proposition 3.5. This leads to the proposition.

Proposition 5.2: Let k ≥ 2, and suppose that either m = p+ 1 and p > 1, or m = p = 2. Then,

when D > D̃2, and for any τ ≥ 0, the number of eigenvalues M of (2.23) on the positive real axis

satisfies

k − 1 ≤M ≤ k + 1 . (5.9)
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These eigenvalues are all located in the interval 0 < λR < ν0, where ν0 is the principal eigenvalue

of the local operator L0 in Theorem 2.5. Moreover, suppose that 0 < D < Dk, where Dk is given

in (2.33) of proposition 2.6, and τ > 0 is sufficiently large. Then, there are exactly 2k eigenvalues

on the positive real axis.

Proof: We now prove this result. Suppose that D > D̃2. Then, by (5.3a) and (5.3c), we have

that Cj(0) > 1/(p − 1) for j = 2, .., k. Moreover, Cj(λR) is increasing and concave from (5.3b). By

proposition 3.5, fR(0) = 1/(p − 1) and fR is increasing and convex on the interval 0 < λR < ν0

when either m = p + 1 and p > 1, or m = p = 2. The function fR tends to +∞ as λR → ν−0 ,

and by (3.27), we have fR < 0 for λR > ν0. Thus, for each j = 2, .., k, there is exactly one root to

gj(λR) = 0 for any τ > 0 on the interval 0 < λR < ν0. Therefore, we have at least k−1 eigenvalues

on the real axis when D > D̃2. For j = 1, C1(0) < fR(0), and hence for τ sufficiently small there

will be no roots to g1(λR) = 0. The concavity of C1 and the convexity of fR, together with the

fact that C
′

1 → ∞ as τ → ∞, proves that there will be exactly two roots to g1(λR) = 0 when τ is

sufficiently large. Thus, the total number of roots on the real axis is at most k+ 1. Next, we prove

the second conclusion of this proposition. By comparing (5.3d) for D̃j and (2.33) for Dk, we have

that Dk = D̃k. When D < Dk, we are guaranteed from proposition 5.1 that Cj(0) < 1/(p − 1)

for j = 1, .., k. The curves Cj are concave for j = 1, .., k, fR is convex, and Cj = O(τ1/2) as

τ → ∞, uniformly in λR. Hence, for τ sufficiently large, each of the curves Cj(λR) will intersect

fR(λR) exactly twice, yielding exactly 2k roots on the positive real axis. This completes the proof

of proposition 5.2. �

As a remark, in the limit τ → ∞, we can readily extend propositions 3.8 and 3.9 to determine

the explicit asymptotic behavior of each pair of roots of gj = 0 for j = 1, .., k. We leave the details

to the reader.

When D = ∞ and τ = 0, it is well known that a multi-spike solution with k ≥ 2 is unstable for

the shadow GM model as a result of having k − 1 eigenvalues of the linearization on the positive

real axis (cf. [32]). Proposition 5.2 proves that a multi-spike solution to the full GM model (1.1)

for any τ > 0 has a very similar type of instability as for the shadow GM model with τ = 0 until

D is decreased to the value D̃2. For the exponent set (2, 1, 2, 0) we calculate from (5.3d) that

D̃2 = 0.5766 when k = 2, D̃2 = 0.4798 when k = 3, and D̃2 = 0.4470 when k = 4. Since these

values are numerically rather small, it is clear that the shadow GM model instability result holds

for a wide range of D.

We now use the numerical method of §3 to graphically illustrate the conclusions of propositions

5.2 for a three-spike solution to (1.1) for the exponent set (2, 1, 2, 0). In Fig. 17(a) we take D =
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0.52 > D̃2 = 0.4798. For the value τ = 2.0 chosen in Fig. 17(a), there are exactly two eigenvalues

of (2.23) on the positive real axis. In Fig. 17(b) we we take take the values τ = 12.5 and D =

0.134 < D3 = 0.181. For this value of τ , each of the curves Cj(λR), for j = 1, 2, 3, intersects fR(λR)

exactly twice. Thus, we have six positive real eigenvalues. As a remark, for each of the exponent

sets of (1.3) we verified numerically in §3 that fR(λR) is monotone increasing and convex. Thus,

although we are unable to give a rigorous proof, the results of proposition 5.2 should hold for all

of the exponent sets of (1.3).
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Figure 17: Plots of fR(λR) (heavy solid curve) and Cj(λR) (dashed curves) for j = 1 (bottom
curve), j = 2 (middle curve), and j = 3 (top curve), for a three-spike solution for the exponent set
(2, 1, 2, 0). In the left figure τ = 2.0 and D = 0.52 > D̃2, so that proposition 5.2 guarantees at least
two roots. In the right figure D = 0.13 < D3 = 0.181 and τ = 12.5. In this case there are six roots.

The main difference between the spectrum of (2.23) for one-spike and multi-spike solutions is

that for a multi-spike solution eigenvalues can cross through the origin along the real axis Im(λ) = 0

as D is varied. Since Cj(0) is independent of τ , the eigenvalues of (2.23) can never cross through

the origin along the real axis for any fixed D as τ is increased. Thus, instabilities as τ is increased

can only occur from Hopf bifurcations, whereas instabilities that occur as D is increased can occur

from real eigenvalues entering the right half-plane. As D is increased, eigenvalues can cross between

the left and right half-planes in either direction. To see this, suppose that τ > 0 is sufficiently small

and D < Dk. Then, gk(λR) < 0 for λR > 0. Keeping the value of τ fixed, we then increase D
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slightly past the value Dk. When D > Dk there is a root of gk(λR) = 0 in λR > 0, and hence an

eigenvalue of (2.23) has crossed through the origin into the positive real axis. Next, suppose that

D < Dk, but that τ is sufficiently large so that gk(λR) = 0 has exactly two roots in 0 < λR < ν0.

For this value of τ , as D is increased past Dk one of these roots crosses from the right to the left

half-plane, since when D > Dk there is exactly one root to gk(λR) = 0 in 0 < λR < ν0.

We now determine eigenvalues on the imaginary axis. Setting λ = iλI in (5.1) and defining

gj(iλI) = g̃Rj(λI) + ig̃Ij(λI), we obtain that the eigenvalues of (2.23) along the imaginary axis are

the union of the roots of the coupled systems g̃Rj = g̃Ij = 0, given by

g̃Rj(λI) ≡ C̃Rj(λI) − f̃R(λI) , g̃Ij(λI) ≡ C̃Ij(λI) − f̃I(λI) , j = 1, .., k . (5.10a)

Here we have defined C̃Rj and C̃Ij by

C̃Rj(λI) = Re [Cj(iλI)] , C̃Ij(λI) = Im [Cj(iλI)] , (5.10b)

where Cj is given in (5.2). The functions f̃R and f̃I are as defined in (3.4b), and their properties

were given in propositions 3.1 and 3.2 of §3, respectively.

We can readily generalize the winding number criterion given in proposition 3.3. Suppose that

τ > 0, and that there are no zeros of gj(λ) on the imaginary axis for j = 1, .., k. Then, for k ≥ 1,

the number of eigenvalues M of (2.23) in the right half-plane is

M =
5k

4
+

1

π

k
∑

j=1

[arg gj ]ΓI
, for τ > 0 . (5.11)

Here [arg gj ]ΓI
denotes the change in the argument of gj along the semi-infinite imaginary axis

ΓI = iλI , 0 ≤ λI <∞, traversed in the downwards direction.

Our next result gives conditions for the stability and instability of a multi-spike solution to the

GM model (1.1).

Proposition 5.3: Let k ≥ 2 and suppose that either m = p+1 and p > 1, or m = 2 and 1 < p ≤ 5.

Then, a multi-spike solution is unstable for any τ ≥ 0 when D > Dk, where Dk is given in (2.33)

of proposition 2.6. Next, suppose that 0 < D < Dk, with m = 2 and 1 < p ≤ 5. Then, a multi-spike

solution is stable on an O(1) time-scale for 0 ≤ τ < τ0, where τ0 > 0 is sufficiently small.

Proof: We now prove this result. As noted in the proof of proposition 5.2 we have Dk = D̃k. When

D > Dk, we are guaranteed from (5.3c) that Ck(0) > 1/(p − 1). Under the conditions on m and p

given in proposition 5.3, we have from (3.25) of proposition 5.3 that f
′

R(λR) > 0 and fR → ∞ as

λR → ν−0 . Hence gk(λR) = 0 has a root in 0 < λR < ν0. Therefore, a k-spike solution is unstable
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for any τ > 0 when D > Dk. Next, suppose that D < Dk. Then, since Cj(0) < 1/(p − 1) for

j = 1, .., k, the curves Cj(λR) and fR(λR) will not intersect when τ is sufficiently small. Hence,

for τ small, there are no eigenvalues of (2.23) on the real axis. We now show that for τ sufficiently

small, there are also no eigenvalues on the imaginary axis. When τ = 0 we have C̃Rj(λI) = C̃Rj(0)

for j = 1, .., k. For τ > 0, we can readily verify from (5.2) and (5.10b) that C̃Rj is an increasing

function of λI for j = 1, .., k with C̃Rj(0) > 0. Since for m = 2 and p > 1, we know that f̃R is

monotone decreasing from (3.6) of proposition 3.1, we have that g̃Rj = 0 has a unique root for each

j = 1, .., k. As in the proof of proposition 3.4, we will have that [arg gj ]ΓI
= −5π/4 for each j if we

can show that g̃Ij < 0 at the root of g̃Rj = 0. This is clear, since for m = 2 and 1 < p ≤ 5, we have

f̃I > 0 from (3.16) of proposition 3.2, together with C̃Ij(0) = 0 and C̃Ij = O(τ) as τ → 0 for finite

λI . Hence, for j = 1, .., k, there exists a τ0 > 0 such that [arg gj ]ΓI
= −5π/4 for all τ satisfying

0 ≤ τ < τ0. Substituting this result into the winding number criterion (5.11), we get M = 0. This

proves stability on an O(1) time-scale. To ensure stability on an O(ε−2) time-scale, recall that the

additional criterion in proposition 2.2 needs to be satisfied. This completes the proof of proposition

5.3. �

Therefore, when 0 < D < Dk, we will have stability on an O(1) time-scale until τ increases past

some value τ0 > 0. We now determine this critical value. First, we claim that for each j = 1, .., k,

there exists a value λI = λ0
Ij(D) and τ = τ0j(D) > 0 such that g̃Rj = g̃Ij = 0 in (5.10a). This

follows since by proposition 2.6, the eigenvalues of (2.23) are in the left half-plane when τ = 0,

and by proposition 5.2 each gj has two roots on the positive real axis when τ is sufficiently large.

Hence, since eigenvalues cannot enter into the right half-plane along the real axis as τ is increased,

by continuity of the eigenvalue branch with respect to τ they must have entered the right half-plane

at some points λI = λ0
Ij(D) and τ = τ0j(D) > 0 for j = 1, .., k. Even without the existence of a

transversal crossing condition to ensure that τ = τ0j(D) is uniquely determined, we still have the

result that for 0 < D < Dk, a k-spike solution for (1.1) will be stable on an O(1) time-scale when

0 ≤ τ < τ0(D; k) ≡ Min (τ0j(D) ; j = 1, .., k) . (5.12)

This defines a function τ0(D; k).

The numerical method of §3 is used to compute the curves τ0j(D) for j = 1, .., k for each of the

exponent sets of (1.3). The value τ0(D; k) is then computed from (5.12). For each of the exponent

sets of (1.3) we have found numerically that there is a strict transversal crossing condition in that

for any τ > τ0j(D), the function gj contributes exactly two eigenvalues to the right half-plane.

Moreover, for the exponent sets of (1.3), we have found that for each value of k and D, with

0 < D < Dk, the criterion (5.12) yields τ0(D; k) = τ01(D). Moreover, there is an ordering principal
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of the form τ0j(D) < τ0j+1(D) for j = 1, .., k − 1. Thus, the numerical evidence suggests that the

j = 1 mode determines the stability threshold for 0 < D < Dk.

In Fig. 18(a), we plot the curves τ0(D; k) for k = 2, 3, 4, for the exponent set (2, 1, 2, 0). The

critical values Dk are labeled in the figure. In Fig. 18(b) we also plot the curves τ0j(D) for

2 ≤ j ≤ k. These curves represent the values of τ where additional pairs of complex conjugate

eigenvalues first enter the right half-plane. For k = 1, 2, 3 we have found numerically that τ0j(D) <

τ0j+1(D). In Fig. 19(a) and Fig. 19(b) we plot τ0(D; k) for the exponent sets (2, 1, 3, 0) and

(3, 2, 2, 0), respectively. Similarly, in Fig. 20(a) and Fig. 20(b) we plot τ0(D; k) for the exponent

sets (3, 2, 3, 1) and (4, 2, 2, 0). As seen from these figures, the threshold curves τ0(D; k) are all

qualitatively quite similar. For a given exponent set, there is a universal limit τ0(D; k) → τ0u as

D → 0, where τ0u is independent of k. This results from the asymptotic independence of χ(τλ; j)

on k when D ≪ 1, as seen from (2.26).

0:00:51:01:52:02:53:0

0:0 0:1 0:2 0:3 0:4 0:5 0:6
�0(D; k)

D
(a) τ0(D; k) versus D
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Figure 18: Left figure: we plot τ0(D; k) (solid lines), for k = 2, .., 4, for the exponent set (2, 1, 2, 0).
The values of Dk (vertical dashed lines) are D2 = 0.5767, D3 = 0.1810, and D4 = 0.0915. Right
figure: we also plot τ0j(D) (dashed curves) for 2 ≤ j ≤ k and k = 2, 3, 4. These dashed curves are
the values of τ , where more pairs of complex conjugate eigenvalues first enter the right half-plane.

Next, we suggest an explanation to support the conclusion that the j = 1 mode corresponds to

the minimum in the stability criterion (5.12). We begin by trying to establish an ordering principle
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for C̃Rj and C̃Ij . From (5.10b) and (5.2), we readily calculate for j = 1, .., k − 1 that

C̃Rj+1 − C̃Rj = βjRe [E(ξ)] , C̃Ij+1 − C̃Ij = βjIm [E(ξ)] . (5.13a)

Here βj and E(ξ) are defined by

βj ≡
(

k

θ0qm

)(

sin [π(j − 1/2)/k] sin [π/k]

tanh (θ0/k)

)

> 0 , E(ξ) ≡ ξ

sinh ξ
, (5.13b)

with

ξ ≡ 2θ0
k

√

1 + iτλI . (5.13c)
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Figure 19: Plots of τ0(D; k) (solid curves) for the exponent sets (2, 1, 3, 0) (left figure) and (3, 2, 2, 0)
(right figure). For (2, 1, 2, 0), the critical values are D2 = 1.080, D3 = 0.3310, and D4 = 0.1658.
For (3, 2, 2, 0), the critical values are D2 = 0.5767, D3 = 0.1810, and D4 = 0.0915.

Let ξ = ξR + iξI . When λI = 0 we have ξR = 2θ0/k > 0 and ξI = 0. With the principal value of

the square root, we have ξR > 0 and ξR > ξI for λI > 0. As λI → ∞, we have ξR ∼ ξI ∼ |ξ|eiπ/4.

Thus, to establish an ordering principle as λI ranges from 0 ≤ λI < ∞, we must determine the

signs of the real and imaginary parts of E(ξ) in the region ξR ≥ 2θ0/k > 0 with 0 ≤ ξI ≤ ξR. By

calculating E(ξ) explicitly in (5.13b), it is easy to see that Re [E(ξ)] > 0 for 0 ≤ ξI < π/2, and

that Im [E(ξ)] < 0 for some range 0 ≤ ξI < ξc. The value ξc > 0 is tedious to determine. Thus, for
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λI sufficiently small, we have from (5.13a) that there is an ordering principle for any D > 0 and

τ > 0 of the form

C̃Rj+1(λI) > C̃Rj(λI) , C̃Ij+1(λI) < C̃Ij(λI) . (5.14)

This ordering principle only holds for λI sufficiently small. For λI sufficiently large, it is easy to

see that the signs of the real and imaginary parts of E will change.
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Figure 20: Plots of τ0(D; k) (solid curves) for the exponent sets (3, 2, 3, 1) (left figure) and (4, 2, 2, 0)
(right figure). For (3, 2, 3, 1), the critical values are D2 = 0.5767, D3 = 0.1810, and D4 = 0.0915.
For (4, 2, 2, 0), the critical values are D2 = 0.2349, D3 = 0.0778, and D4 = 0.0410.

We now argue that if the ordering principle (5.14) holds up until beyond the values of λI where

C̃Rj and C̃Ij intersect f̃R and f̃I , then we are guaranteed that the stability threshold in (5.12) is

set by the j = 1 mode. This implies that τ0(D; k) = τ01(D). For each of the exponent sets of (1.3),

we have verified numerically that this ordering assumption is satisfied. To illustrate graphically

this analysis, in Fig. 21(a) we plot the numerically computed functions f̃R and C̃Rj for j = 1, 2, 3

for a three-spike solution for the exponent set (2, 1, 2, 0) with D = 0.1465. From proposition 3.1

we know that f̃R is monotone decreasing, and hence since C̃Rj is increasing, there is exactly one

crossing point for each j in Fig. 21(a). Similarly, in Fig. 21(b) we plot the corresponding f̃I and C̃Ij

for j = 1, 2, 3. From these figures we notice that the ordering principle (5.14) holds until, at least,

after the crossing points. The plots in Fig. 21(a) and Fig. 21(b) correspond to the numerically

computed value τ = τ01 = 1.18. From Fig. 21(a) and Fig. 21(b), we see that the implication of
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this ordering principle is that when g̃Rj = 0 for j = 2, 3, we will have g̃Ij < 0. Repeating the

steps in the proof of proposition 3.4, we calculate that the contribution of gj for j = 2, 3 to the

winding number is [arg gj ]ΓI
= −5π/4. Thus, when τ = τ01, there are no zeros of gj for j = 2, 3

in the right half-plane. Hence, the complex conjugate pair for g1 when τ = τ01 is the first pair to

cross into the right half-plane. For each of the exponent sets in (1.3), we found numerically that

τ0(D; k) = τ01(D). The discussion above suggests the underlying mechanism behind this result.

The ordering principal (5.14) for small λI , also suggests why τ0j < τ0j+1 for j = 1, .., k − 1.
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(a) f̃R; C̃Rj for j = 1, 2, 3
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Figure 21: Left figure: Plots of f̃R and C̃Rj for j = 1 (heavy solid), j = 2 (solid), and j = 3
(dashed). Right figure: Plots of f̃I and C̃Ij (same labels) for j = 1, 2, 3. The exponent set is
(2, 1, 2, 0) with k = 3, D = 0.1465. The plot is for τ = τ01 = 1.18 at which g1 = 0. Notice that at
the roots of g̃Rj = 0 for j = 2, 3, we have g̃Ij < 0.

Next, we consider the limit D → D−
k . In this limit, the complex conjugate roots of g̃Rk = 0

approach the real axis. This occurs since Ck(0) → 1/(p− 1) from below. When D = Dk we have a

double root at the origin. For D > Dk the roots split, with one root moving along the real axis into

the right half-plane. Thus, as discussed earlier, it is the j = k mode that determines the instability

of a k-spike solution for D > Dk. We now characterize the merger of this complex conjugate pair

onto the real axis as D → D−
k . We define δ = Dk −D with 0 ≤ δ ≪ 1. We then look for a solution

λ = iλI and τ = τ0k to

Ck(τλ;D) = f(λ) , f(iλI) = f̃R(λI) + if̃I(λI) . (5.15)
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Here we have indicated the explicit dependence of Ck on z = τλ and on D. Since λI → 0, the

local behaviors of f̃R and f̃I given in (3.5a) and (3.15) of propositions 3.1 and 3.2 are central to the

calculation. Performing a Taylor expansion of Ck in both D and λ, we substitute the expansion into

the left-hand side of (5.15) and use the local behaviors (3.5a) and (3.15) to calculate the right-hand

side of (5.15). Equating real and imaginary parts, we obtain the local scaling result for δ ≪ 1 that

λ ∼ iδ1/2

(

κ−1
c

∂Ck

∂D
(0 : Dk)

)1/2

, (5.16a)

τ0k ∼ τ∗0k + o(1) , τ∗0k ≡ 1

p− 1

(

1

p− 1
− 1

2m

)[

∂Ck

∂z
(0;Dk)

]−1

. (5.16b)

In (5.16a), we need to assume that κc, defined in proposition 3.1, is positive. From (3.5c) and (3.5d)

this occurs for m = p + 1 with p > 1, and m = 2 with p > 1. This condition implies that f̃R is

locally decreasing for λI small. This local behavior yields the scaling law λI = O
(√
Dk −D

)

as

D → D−
k for the j = k mode.

5.1 Competition Instabilities and Synchronous Oscillations

Finally, we illustrate the physical manifestations of the different types of unstable modes that give

rise to the initial instability. As discussed above, and verified numerically, the oscillatory instability

for 0 < D < Dk is a result of the j = 1 mode. The corresponding eigenfunction has the form given

in (2.11) with coefficients given in (2.21b). Thus, from (2.9), (2.11), (2.21b), and from (2.35) which

relates Φ to ψ, we conclude that the initial instability for 0 < D < Dk has the form

a = ae + δeiλ
0
I tφ+ c.c , φ(x) =

k
∑

n=1

cnψ
[

ε−1(x− xn)
]

, cn = 1 , n = 1, .., k . (5.17)

Here c.c denotes complex conjugate, δ << 1, and ψ(y) is the solution to (L0 − λ)ψ = wp at the

value λ = iλ0
I , τ = τ0(D; k) corresponding to the zero of g1(λ) = 0. The key point here is that,

since cn = 1 for n = 1, .., k, the initial form of the instability is to synchronize the amplitudes of

the spikes. In contrast, suppose that Dk < D < D̃k−1 and that τ is sufficiently small. We have

shown above that the instability that occurs here is a result of only the j = k mode. For this mode

there is exactly one eigenvalue λR on the positive real axis. Therefore, using (2.21b) with j = k,

the initial instability has the different form

a = ae + δeλRtφ , φ(x) =

k
∑

n=1

cnψ
[

ε−1(x− xn)
]

, cn = cos

(

π(k − 1)

k
(n− 1/2)

)

n = 1, .., k .

(5.18)
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Here ψ(y) is the solution to (L0 − λR)ψ = wp, at the value λ = λR for which gk(λR) = 0. Since
∑k

n=1 cn = 1, this type of initial instability conserves the sum of the amplitudes of the spikes.

However, it introduces a spike competition as it increases the amplitude of some of the spikes while

decreasing the amplitude of others. As shown in the numerical experiments below, this instability

has the effect of annihilating spikes.

5.2 Numerical Validation: Small and Large-Scale Oscillations

We now illustrate numerically the rigorous and formal asymptotic results given above for the

stability of multi-spike solutions. As in §4, we solve the GM model (1.1) numerically using the

NAG library routine D03PCF [19] with 2000 uniformly spaced meshpoints and stringent control

on the accuracy of local time-steps. The initial condition for the GM model (1.1) is now taken to

be a localized perturbation off of ae in the form

a(x, 0) = ae

[

1 + 0.02
k
∑

n=1

bn cos

(

π(x− xn)

ε

)

e−(x−xn)2/(2ε2)

]

, h(x, 0) = he(x) . (5.19)

Here bn ≡ 1 if n is odd and bn ≡ −1 if n is even. The functions ae and he are the k-spike equilibrium

solutions given in proposition 2.1. In each of the figures below we plot the amplitude amn of each

spike, defined by amn ≡ a(xn, t), versus t. To illustrate the theory, we consider three experiments.

In each of these experiments the time-scale chosen was much smaller than O(ε−2). Therefore, the

spike locations remained essentially frozen at their equilibrium values.

Experiment 1: Consider a two-spike solution to (1.1) for the exponent set (2, 1, 2, 0) with ε =

0.01. In Fig. 22(a), we plot the equilibrium solution ae and he when D = 0.59. Notice that the

initial perturbation (5.19) is different for the two spikes. Since D > D2 = 0.5766, this solution is

unstable as a result of one eigenvalue of the linearization on the positive real axis. In Fig. 22(b),

we plot the amplitudes am1 and am2 of the spikes when τ = 0.02. As t increases, one of the

spikes is annihilated, but there is no oscillatory instability. This instability, whereby one spike

is annihilated in a competition, is suggested by (5.18). In Fig. 23(a) and Fig. 23(b) we plot the

spike amplitudes when D = 0.5472. For this value of D, the critical threshold, τ0(D; 2), for an

instability is τ0(D; 2) = 1.012 as obtained from Fig. 18(a). For the value τ = 0.99 < 1.012, we

show in Fig. 23(a) that the initial perturbations in the spike amplitudes die out as t increases.

However, this only shows that we have stability on an O(1) time-scale. The threshold for stability

with respect to the small O(ε2) eigenvalues in the spectrum is that D < D∗
2, where D∗

2 is as

given in proposition 2.2. For the data given, we calculate D∗
2 = 0.3218. Since D = 0.5472 > D∗

2,

we would expect to see another instability that is only triggered after a much longer time-scale
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t = O(ε−2) ≈ 1.0 × 104. In Fig. 23(b), we take D = 0.5472 and τ = 1.1 > τ0(D; 2). For this value

we observe that an oscillatory instability is triggered. As t increases, the phase and amplitudes

of the two spikes become synchronous as suggested, at least near the onset of the instability, by

(5.17). As shown in Fig. 23(b), when τ = 1.1, the long-time behavior of the solution appears to be

a synchronous periodic oscillation of the amplitudes of the two spikes.
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Figure 22: Experiment 1: The left figure is ae (solid curve) and he (dashed curve) for k = 2 with
D = 0.59. In the right figure we plot the spike amplitudes versus t when τ = 0.02 and D = 0.59.
The solid curve is am1 and the dashed curve is am2. As t increases the second spike is annihilated.

Experiment 2: Next, we consider a three-spike solution to (1.1) for the exponent set (2, 1, 2, 0)

with ε = 0.01. In Fig. 24(a) we plot the equilibrium solution ae and he when D = 0.19. Notice that

from (5.19), the initial perturbation is the same for the first and third spikes, but is different for the

second spike. Since D > D3 = 0.1811, but D < D̃2 = 0.4798, there is exactly one eigenvalue on the

positive real axis. In Fig. 24(b), where we plot the spike amplitudes when τ = 0.02, we observe that

the middle spike is annihilated as t is increased, and there is no oscillatory instability. This type of

competition instability is again suggested by (5.18), since the unstable eigenvector from (5.18) is

c1 = c3 = 1/2 and c2 = −1. For other initial perturbations of the spike amplitudes, we were able to

obtain solutions where the first and third spikes were annihilated leaving only the middle spike. In

Fig. 25(a) and Fig. 25(b), we plot the spike amplitudes when D = 0.1695. For this value of D, the

critical threshold for an instability is τ0(D; 3) = 1.128 from Fig. 18(a). When τ = 1.05 < 1.128, we
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Figure 23: Experiment 1: In the left figure we plot the spike amplitudes am1 (solid curve) and am2

(dashed curve) for k = 2, D = 0.5472, and τ = 0.99. In the right figure a similar plot is made for
D = 0.5472 and τ = 1.1. The critical value is τ0 = 1.012.

show in Fig. 25(a) that the initial perturbations in the spike amplitudes die out as t is increased.

However, as in experiment 1, this only shows stability on an O(1) time-scale. From proposition 2.2

we require D < D∗
3 = 0.143 to obtain stability on an O(ε−2) time-scale. Finally, in Fig. 25(b) we

take τ = 1.15 and D = 0.1695. An oscillatory instability is triggered, the oscillations synchronize

near the onset of the instability, and the numerical evidence suggests that the final pattern is a

synchronous periodic oscillation of the amplitudes of the three spikes.

Experiment 3: Finally, we consider the four-spike example mentioned in §1 for the exponent set

(p, q,m, s) = (2, 1, 3, 0) with ε = 0.01. For this exponent set, the critical value of D is D4 = 0.1658.

Since D = 0.18 > D4 in Fig. 1(b), and τ = 0.02 is small, there is only one eigenvalue of the lineariza-

tion in the right half-plane and it is on the positive real axis. The resulting competition instability

was shown in Fig. 1(b). From the data used to generate Fig. 19(a), we calculate τ0(D; 4) = 1.275

when D = 0.15. For the value τ = 1.3 and D = 0.15, we predict the onset of an oscillatory insta-

bility that synchronizes as t increases. This was precisely the behavior shown in Fig. 2(a). When

τ = 1.2 and D = 0.15, there are two complex conjugate eigenvalues of the linearization that have

small negative real parts. The resulting slowly decaying oscillation in the spike amplitudes was

shown in Fig. 2(b). Finally, consider the parameter set D = 0.18 with τ = 1.75. Since D > D4

56



0:000:050:100:15

�1:0 �0:5 0:0 0:5 1:0
ae; he

x
(a) ae and he

0:000:050:100:150:20

0 20 40 60 80
am

t
(b) am versus t

Figure 24: Experiment 2: The left figure is ae (solid curve) and he (dashed curve) for k = 3 with
D = 0.19. In the right figure we plot the spike amplitudes versus t for τ = 0.02 and D = 0.19. The
solid curve is am1 and am3, and the dashed curve is am2. As t increases am2 is annihilated.
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Figure 25: Experiment 2: In the left figure the solid curve is the spike amplitudes am1 and am3.
The dashed curve is am2. The parameter values are k = 2, D = 0.1695, and τ = 1.05. In the right
figure a similar plot is made for D = 0.1695 and τ = 1.15. The critical value is τ0 = 1.128.
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there is an eigenvalue on the positive real axis. In addition, for these values of τ and D there is also

a pair of complex conjugate eigenvalues that have small positive real parts. The threshold value

of τ , where this additional unstable mode entered the right half-plane is computed to be τ = 1.72.

Therefore, we predict that the onset of the instability will be, approximately, a superposition of

a synchronous oscillation and a competition instability. In Fig. 26(a) we plot the resulting spike

amplitudes. The oscillations indeed becomes synchronized after a short time period. However, near

t = 30, the spikes am2 and am4 are annihilated. This annihilation behavior is shown more clearly on

the magnified time interval of Fig. 26(b). This type of oscillatory competition is to be contrasted

with the monotone behavior shown previously in Fig. 1(b) for the same parameter values, but with

τ = 0.02.
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Figure 26: Experiment 3: The spike amplitudes when k = 4, (p, q,m, s) = (2, 1, 3, 0), ε = 0.01,
D = 0.18, and τ = 1.75. Here am1 (solid curve), am2 (widely spaced dots), am3 (heavy solid curve),
and am4 (dashed curve). The time interval for the right figure is near when am2 and am4 are
annihilated.

6 Conclusions

We have analyzed the stability of one-spike and multi-spike equilibrium solutions for (1.1) in the

limit ε → 0 for different ranges of D and τ . The analysis was a blend of rigorous, asymptotic,
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and numerical methods. The results given in the propositions have been proved rigorously. Let

us summarize the rigorous results established for the prototypical exponent set (2, 1, 2, 0). In

proposition 3.4 we proved that there are either zero or two eigenvalues in the right half-plane

for any τ > 0. In proposition 3.7 we proved that there is a value τc(D) > 0, such that when

τ > τc(D) there are exactly two eigenvalues on the positive real axis on the interval 0 < λR < ν0.

In proposition 3.7, we proved that these eigenvalues must have entered the right half-plane as a

complex conjugate pair at some value τ = τ0(D) > 0. The asymptotic behavior of the eigenvalues

on the real axis for τ > τc(D) is given in propositions 3.8 and 3.9. In proposition 5.3 we prove that

a multi-spike solution with k > 2 is unstable for any τ ≥ 0 when D > Dk, where Dk was given

in proposition 2.6. In proposition 5.2, we prove that when D > D̃2 (see (5.3d)), then there are at

least k − 1 eigenvalues on the positive real axis. Moreover, in proposition 5.2, we prove that when

0 < D < Dk, there are exactly 2k eigenvalues on the positive real axis for τ sufficiently large. In

proposition 5.3, we prove that there exists a τ0 ≥ 0, such that a k-spike solution is stable on an

O(1) time-scale when 0 < D < Dk and 0 ≤ τ < τ0.

For a one-spike solution, and for certain exponent sets, we have shown in Fig. 12(a), Fig. 12(b),

and Fig. 13(a), that small-scale oscillations in the spike amplitude occur when τ increases past

the critical value τ0. We conjecture that this behavior occurs for all exponent sets satisfying (1.2).

Large-scale oscillations in the spike amplitude for τ well beyond τ0, that await a mathematical

understanding, were shown in Fig. 13(b), Fig. 14(a), Fig. 14(b), Fig. 15(a), Fig. 15(b), Fig. 16(a),

and Fig. 16(b). For multi-spike solutions, our analysis has suggested two different instability mech-

anisms for different ranges of D and τ : competition instabilities and synchronous oscillations in the

spike amplitudes. The conditions for the onset of these instabilities were predicted in §5. In the

figures corresponding to Experiments 1–3 in §5.2 we have illustrated these instabilities numerically.

We now list several interesting open problems. We begin with the technical problems that await

rigorous proof. A central problem is to establish analytically the transversal crossing condition

(3.55) that guarantees that eigenvalues enter the right half-plane at some τ = τ0 and remain in the

right half-plane for τ > τ0. A second technical problem is to establish more general conditions on

the exponent set (p, q,m, s) under which f̃R(λI) in proposition 3.1 is monotone decreasing. This

condition is key to the winding number criterion that guarantees that each gj for a k-spike solution

contributes, exactly, either zero or two eigenvalues to the right half-plane. Finally, it would be

interesting to prove that the stability threshold for a multi-spike solution for the range 0 < D < Dk

is set by the j = 1 mode, as was found numerically and suggested analytically for the exponent

sets of (1.3). From (5.17), the existence of such a threshold mode is the mechanism that leads to

the onset of a synchronicity for the amplitude and phase of the spike oscillations.
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Another open problem suggested by the numerical computations is to investigate the nature

of the small and large-scale oscillations computed in §4 and §5. One problem is to determine

analytically whether the Hopf bifurcation is subcritical or supercritical. Another problem is to

investigate rigorously the stability of the degenerate zero solution studied asymptotically in §4.
In §4, we argued that the zero solution is stable only when τ > q/(p− 1). However, for certain

exponent sets, such as for (3, 2, 2, 0), the threshold τ0 for an oscillatory instability for a one-spike

solution can satisfy τ0 < q/(p − 1). Hence, if one chooses τ in the range τ0 < τ < q/(p− 1), then the

zero solution is unstable and a one-spike equilibrium solution is unstable. The resulting oscillation

shown in Fig. 16(a) and Fig. 16(b) is intricate and has large dramatic peaks in the amplitude. These

peaks become even more pronounced as D is increased. In particular, for the shadow limit D → ∞,

an extremely large amplitude, and irregular, oscillation was shown numerically in [31] to occur for

the shadow GM model in N -dimensions. It would be interesting to study this problem analytically.

Finally, for a multi-spike solution on the range 0 < D < Dk, it would be interesting to study

analytically the large-scale synchronous oscillations computed in §5 for values of τ slightly beyond

τ0(D; k). These oscillations that occur for k ≥ 2 seem much more regular than the oscillatory

instabilities that occur for a one-spike solution.

It would also be of interest to extend the framework of the analysis given here to include

other reaction-diffusion systems that have localized spike patterns, such as the Schnakenburg model

(cf. [26]) and the Gray-Scott model (cf. [7]). In addition, it should be possible to analyze a modified

GM system that includes a saturation effect on the activator autocatalysis term ap/hq in (1.1a).

A qualitative discussion of such saturation mechanisms is described in [18] (see section 2.4), and a

preliminary mathematical analysis of the resulting modified GM system is given in [23]. Finally,

since our framework for studying spike stability has not relied on dynamical systems techniques, it

should also be possible to extend this framework to analyze spike stability in a multi-dimensional

spatial domain.
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A Nondimensionalizing the GM Model

The dimensional Gierer-Meinhardt model is

AT = D1Ayy − αA+ β
Ap

Hq
, (A.1a)

HT = D2Hyy − ξH + σ
Am

Hs
, (A.1b)

where α, β, ξ, and σ, are positive constants. The exponents (p, q,m, s) satisfy (1.2). We assume

that D2/D1 is large, and so we introduce a small parameter ε by

D2

D1
= ε−2K0 , (A.2)

where K0 > 0 is O(1) as ε → 0. In this limit, (A.1) supports spike solutions that are localized in

A. We introduce dimensionless variables a, h, t and x, by

T = ωt , x = y/L , A = ε−νaa0a , H = ε−νhh0h , (A.3)

where a0 and h0 are constants. Substituting (A.3) into (A.1), we get

1

ω
at =

D1

L2
axx − αa+ βενa(1−p)+νhq

(

ap−1
0

hq
0

)

ap

hq
, (A.4a)

1

ω
ht =

D2

L2
hxx − ξh+ σε−νam+νh(1+s)

(

am
0

hs+1
0

)

am

hs
. (A.4b)

To ensure that the amplitude of a spike is O(1) as ε → 0, we must make the coefficients of ap/hq

and am/hs be O(1) and O(ε−1) as ε→ 0, respectively. This condition yields that

νa =
q

p− 1
ζ−1 , νh = ζ−1 , (A.5)

where ζ was defined in (1.2). To eliminate as many parameters as possible in (A.4), we choose ω

and L by ω = 1/α and L2 = D1ε
−2/α. The constants a0 and h0 are taken to be

h0 =

[

ξ

σ

(

β

α

) m
p−1

] 1
ζ

, a0 =

(

α

β

) 1
p−1

[

ξ

σ

(

β

α

) m
p−1

]
q

(p−1)ζ

. (A.6)

Then, (A.4) becomes

at = ε2axx − a+
ap

hq
, (A.7a)

τht = τε2
(

D2

D1

)

hxx − h+ ε−1 a
m

hs
. (A.7b)
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Finally, substituting (A.2) for D2/D1 into (A.7b), we obtain the dimensionless system (1.1), where

τ and D in (1.1) are defined by

τ ≡ α/ξ D ≡ τK0 . (A.8)

In [8] spectral results are proved for the following reaction-diffusion system (see equation (1.2)

of [8]) on the infinite line −∞ < y <∞:

Vt = ε̂2Vyy − V + γ2U
α2V β2 , (A.9a)

Ut = Uyy − µU + γ1U
α1V β1 . (A.9b)

Here ε̂ ≪ 1, while γ1 and γ2 are positive O(1) constants. In the GM model of (1.1) we identify

α1 = −s, α2 = −q, β1 = m, and β2 = p. The usual assumptions (1.2) on the exponents are assumed

to hold. To compare our form (1.1) of the GM system with (A.9), we set D = ετ in (1.1b), with

ε ≪ 1, and consider (1.1) on the infinite domain −∞ < x < ∞. When D ≪ 1, the inhibitor field

decays exponentially away from a spike core. Therefore, in this limit it is reasonable to replace the

finite domain in (1.1) with an infinite domain. Introducing the new variable y by x = ε1/2y, we

transform (1.1) to

at = εayy − a+ ap/hq , (A.10a)

ht = hyy − h/τ + ε−1am/(τhs) . (A.10b)

Next, we introduce the new variables U and V by a = a0V and h = h0U , where a0 and h0 satisfy

ap−1
0 /hq

0 = γ2 , ε−1am
0 /(τh

s+1
0 ) = γ1 . (A.11)

In terms of U and V , (A.10) becomes

Vt = εVyy − V + γ2V
p/U q , (A.12a)

Ut = Uyy − U/τ + γ1V
m/U s . (A.12b)

This system is precisely (A.9) if we identify ε̂ = ε1/2 and µ = 1/τ .

Therefore, we conclude that our results in the limit D ≪ 1 for the spectrum of the linearization

of (1.1) around a one-spike equilibrium solution should correspond to the spectral results obtained

in [8] provided we identify τ = 1/µ. This correspondence is compared quantitatively in Remark

3.10 of §3.
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B Calculation of an Integral

A sufficient condition for the convexity result (3.26) when m = 2 is that h3(0) > 0, where h3(α) is

defined in (3.34). Using (3.7) for L−1
0 w and (3.34), we calculate

h3(0) ≡
∫ ∞

−∞

wL−3
0 w dy =

1

(p− 1)

∫ ∞

−∞

wL−2
0 w dy +

1

2

∫ ∞

−∞

wL−2
0

(

yw
′
)

dy . (B.1)

Integrating by parts on the second term in (B.1), and using (3.7) for L−1
0 w, we get

h3(0) =
1

(p − 1)

∫ ∞

−∞

wL−1
0

(

w

p− 1
+

1

2
yw

′

)

dy +
1

2

∫ ∞

−∞

[

w

p− 1
+

1

2
yw

′

]

L−1
0

(

yw
′
)

dy . (B.2)

Integrating by parts on the second term in (B.2), we get

h3(0) =
1

(p− 1)2

∫ ∞

−∞

wL−1
0 w dy+

1

(p− 1)

∫ ∞

−∞

wL−1
0

(

yw
′
)

dy+
1

4

∫ ∞

−∞

yw
′

L−1
0

(

yw
′
)

dy . (B.3)

Finally, we integrate by parts on the middle term in (B.3), and calculate
∫∞

−∞
wL−1

0 w dy explicitly.

This gives the main formula,

h3(0) =

[

1

p− 1
− 1

4

](

1

(p− 1)2

∫ ∞

−∞

w2 dy − 1

2(p − 1)

∫ ∞

−∞

w2 dy +
1

2

∫ ∞

−∞

(

yw
′
)2

dy

)

+
1

4

∫ ∞

−∞

(

w + yw
′
)

L−1
0

(

yw
′
)

dy . (B.4)

In (B.4) we must calculate the function ξ ≡ L−1
0 (yw

′
). This function changes sign, but since it

it is even, we consider only the domain 0 ≤ y < ∞. To calculate ξ, it is convenient to first find an

even function that satisfies L0ψe = 0. A simple calculation gives

ψe = be

[

1

w
+

5

3
− 10

3

(

w +
1

2
yw

′

)]

, when p = 2 , (B.5a)

ψe = be

[

1

w
− 3

2

(

w + yw
′
)

]

, when p = 3 . (B.5b)

Here be is a constant chosen so that ψe(0) = 1. A formula for ψe for arbitrary p can be written in

terms of a quadrature. The function ψe is even, it grows exponentially as y → ∞, and there is a

unique y∗ where ψe(y
∗) = 0. Since ξ is even, we look for a solution for ξ in the form ξ = vψe. This

gives the following formula for ξ

ξ(y) = ψe(y)v(y) , v
′

(y) =
1

[ψe(y)]
2

∫ y

y∗

sw
′

(s)ψe(s) ds . (B.6)
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We must choose the lower limit to be y∗ in the integral in (B.6) to obtain a removable singularity

for v
′

at y∗. Next, we multiply the equation L0ξ = yw
′

by w
′
, and integrate over the domain

0 < y <∞ to get

ξ(0) =
1

w′′(0)

∫ ∞

0
y
[

w
′

(y)
]2
dy . (B.7)

Since ψe(0) = 1, this implies that v(0) = ξ(0) < 0. We then integrate (B.6) with this initial value

and determine v(y), which yields ξ(y). We can then evaluate the integrals in (B.4) numerically.

When p = 2, we use w = 3
2sech2 (y/2). In this way we calculate that h3(0) = 2.7 when p = 2.

However, our computations show that h3(0) < 0 when p = 3, 4.

C The Proof of Lemma 3.6

In this appendix we prove Lemma 3.6. The proof is by contradiction. Assume that there exists a

y0 > 0 with ξ(y0) > 0. Then, by continuity, it follows that ξ(y) > 0 on y ∈ (y1, y2), with either:

(i) ξ(y1) = ξ(y2) = 0, with ξ
′
(y1) ≥ 0 and ξ

′
(y2) ≤ 0, where 0 < y1 < y2 ≤ ∞, or (ii) y1 = 0 with

ξ(0) ≥ 0, ξ
′
(0) = 0, ξ(y2) = 0, and ξ

′
(y2) ≤ 0, where y2 ≤ ∞.

Let ν0, φl0 be the principal eigenpair of L0 as in Theorem 2.5. Since φl0 has constant sign, we

can assume that φl0 > 0 for y ≥ 0. We then multiply (3.37) by φl0, and integrate by parts over the

interval y1 < y < y2, to get

(ν0 − λR)

∫ y2

y1

φl0ξ dy + φl0ξ
′ |y2

y1
=

∫ y2

y1

φl0v dy . (C.1)

In both cases (i) and (ii) we obtain that φl0ξ
′ |y2

y1 ≤ 0. Therefore, since λR > ν0, the left-hand side

of (C.1) is negative, whereas the right-hand side of (C.1) is positive. This is a contradiction, and

hence ξ(y) ≤ 0 on y ≥ 0 when λR > ν0. This proves Lemma 3.6.
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