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bstract

A modified generic model controller is developed and tested through a simulation study. The application involves model-based control of a
ropylene polymerization reactor in which the monomer conversion and melt index of the produced polymer are controlled by manipulating the
eactor cooling water flow and the inlet hydrogen concentration.

Non-linear control is designed using a simplified non-linear model, in order to demonstrate the robustness of the control approach for modeling
rrors. Two model parameters are updated online in order to ensure that the controlled process outputs and their predicted values track closely.

he controller is the static inverse of the process model with setpoints of the measured process outputs converted to setpoints for some of the state
ariables.

The simulation study shows that the proposed controller has good setpoint tracking and disturbance rejection properties and is superior to the
onventional generic model control and Smith predictor control approaches.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Control of polymerization reactors is probably one of the
ost challenging issues in control engineering. The difficulties

n operating such processes are numerous. Firstly, the process
ynamics are often highly non-linear because of the compli-
ated reaction mechanisms associated with the large number of
nteractive reactions. Secondly, on-line monitoring of polymer
uality is often hampered by a lack of on-line measurements
or key quality variables such as composition (or monomer con-
ersion), molecular weight and copolymer composition [1]. If
easuring quality variables is at all possible, there may still be a

umber of problems associated with these measurements, such
s (i) sampling problems, (ii) large dead times, (iii) off-line anal-
sis, and (iv) sometimes large measurement errors and/or high
oise levels. A more detailed discussion of measurement dif-
culties in the field of polymerization can be found, amongst

thers, in Kiparssides [2]. To cope with the lack of on-line
easurements of polymer quality, researchers have employed

ifferent inferential and estimation techniques [1,3–5].
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Many articles have been published in the area of polymer
eactor control in the last few years. They can be divided into
inear and non-linear control approaches. There are numerous
xamples in the literature of linear control approaches applied
o polymerization reactor control, such as, PI cascade control
6], dynamic matrix control [7,8], generalized predictive control
9] and adaptive internal model control [10]. Examples of the
pplication of non-linear control approaches are, amongst oth-
rs, globally linearizing control [11–13] and non-linear model
redictive control [14,15]. There are also some approaches in
hich linear control is used, combined with non-linear models

or setpoint updating [16].
Another type of control that has received moderate attention

s generic model control (GMC). This method uses a non-linear
rocess model and assuming a desirable process output trajec-
ory, a non-linear control law can be derived. A recent example
f its application in combination with extended Kalman filtering
s found in Arnpornwichanop et al. [17].

In the current paper an approach similar to generic model
ontrol is being proposed, although its implementation and tun-

ng is simpler. It implements the non-linear model of the process
irectly and gives an on-line estimation for the delayed measure-
ents (Fig. 1); thus, there is no need to design an estimator, such

s a Kalman filter. This control strategy is applied to the polymer-
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ig. 1. Reactor control based on simplified non-linear model, using model and
ontroller update.

zation of propylene in a fully-filled hollow shaft reactor [18].
n case of a perfect non-linear model, a perfect non-linear con-
roller can be designed. In case of a simplified non-linear model,
he control system is improved by updating two model parame-
ers of the simplified process and control models using an online

odel parameterization method. The efficiency of this control
lgorithm is compared to the performance of a conventional PI
ontrol system with Smith predictor dead time compensation.

The advantages of the proposed control approach over other
pproaches are: (i) there is no need for use of an extended
alman filter to estimate unknown states or parameters, (ii) there

s no need to solve the coupled set of non-linear ordinary differ-
ntial equations, and (iii) the controller shows a good robustness
he adaptation of the model parameters, as a result of which
rrors in dynamics and kinetics can easily be dealt with.

. Non-linear control

Consider a process, which can be described by the following
quations:

dx

dt
= f (x, p) + g(x, u) + l(x, d)

y = h(x)
(1)

here x is the vector of state variables, y the vector of measured
ariables, u the vector of input variables, d the vector of distur-
ance variables, p the vector of process parameters, and h, f, g,
are the non-linear function vectors.

Let the model be a simplified description of the process with
different parameter set p and be given by:

dx̂

dt
= f (x̂, p̂) + g(x̂)u + l(x̂)d

ŷ = h(x̂)
(2)

here the hat refers to the model values. In the development
f the generic model control algorithm it is assumed that the
erivative of y obeys the following equation [19]:∫ tf
dy

dt
= K1(ysp − y) + K2

0
(ysp − y) dt (3)

ere K1 and K2 are tuning parameters and ysp is the setpoint
alue of the process output. Using Eq. (2), the derivative of the

o
m
v
s
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tate variable can be expressed as:

˙̂ = ˙̂y

[
dh(x̂)

dx̂

]−1

(4)

ubstitution of the derivative of x̂ in Eq. (2) results in:

˙̂
[

dh(x̂)

dx̂

]−1

= f (x̂, p̂) + g(x̂)u + l(x̂)d (5)

rom which the equation for the control input vector can be
erived:

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K1(ysp − y) + K2
∫ tf

0 (ysp − y) dt

−(dh/dx̂)[f (x̂, p̂) + l(x̂)d]

(dh/dx̂)g(x̂)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

f the model is not linear in the control vector u, its values have
o be computed through iteration. The parameters K1 and K2 are
uning parameters. If the model is not perfect, control perfor-

ance will deteriorate, and the integral action in the controller
ill eliminate offset. However, it is preferred to use parameter

stimation in order to update the model and thus account for
arameter and structural errors. Farza et al. [20] suggested a
imple non-linear observer, although other estimation schemes
re possible, such as, e.g. a Kalman filter.

The tuning parameters K1 and K2 enable us to tune such
hat even some overshoot can be realized. This can primarily be
ealized through adjustment of K1. A disadvantage of tuning for
ome overshoot in one variable is that it also affects the response
f the other controlled variables. A smoother response without
vershoot will show a smoother response of the other controlled
ariables.

If parameter update ensures that the model output tracks the
rue process output, the integral term in Eq. (6) is not required,
ince there will be no sustained offset in the controlled variables.
ence if K2 = 0 and tuning of K1 is done very conservatively to

uppress variable interaction, one may wonder why one would
ot use a controller with both tuning values K1 and K2 set equal
o zero, i.e. use a controller that is based on a static process model
ith parameter update. This may give a conservative response

or setpoint changes, which approaches the open loop response
f the system, however, disturbance rejection properties are
xpected to be good. The controller can then be calculated by
he following set of equations:

= −f (x̂sp, p̂) − l(x̂sp, d)

g(x̂sp)
, x̂sp = h∗(ysp, x̂) (7)

here the estimated setpoint values of the output vector could
e filtered values of the true setpoint values and the parameter

ˆ needs to be updated. In Eq. (7) the dimension of the y vector
s usually smaller than the dimension of the x vector, therefore
ot all state variables setpoint values can be calculated, conse-
uently, some setpoint values are set equal to the current values

f the state variables from the model. This is also one of the
ain differences with generic model control where all the state

ariables follow from the process model and none of them have
etpoint targets.

ontrol of a propylene polymerization reactor, Chemical Engineering
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The parameter update should be realized such that the pre-
icted process output values do track the true process measure-
ents. Assume that it is required that the predicted process

utput values follow the true process outputs according to a
rst order response with time constant τ:

dŷ

dt
= y − ŷ (8)

n a steady state situation, when u and d are constant, an offset
etween y and ŷ can only be minimized through adjustment of
he model parameter p̂. Eq. (8) can then be rewritten as:

dp̂

dt
= 1

τ

y − ŷ

∂ŷ/∂p̂
(9)

n some cases it may be easier to rewrite Eq. (9) in a some-
hat different manner. In that case, Eq. (8) is differentiated with

espect to p̂ and substituting back into Eq. (9), which gives:

dp̂

dt
= − 1

τ2

y − ŷ

∂[dŷ/dt]/∂p̂
(10)

. Process description

The hollow shaft reactor is an experimental extruder-like con-
inuous reactor with internal recycling of the reaction medium.
t has been designed for polymerizations at high viscosities up
o a few hundred Pa s, and to work under high pressure and
emperature, 250 bar and 250 ◦C. The reactor possesses the fol-
owing properties: minimum dead volume, maximum recycle
atio, fast and predictable macro mixing; the recycle ratio and
acro-mixing do not depend on the viscosity of the reaction
ass in a wide range of viscosities [18].
The reactor is used for liquid-pool propylene polymeriza-

ion with a multi-site heterogeneous Ziegler–Natta catalyst. The
nlet flow to the reactor consists of pure monomer, catalyst and
ydrogen, the latter is used as a transfer agent to provide a bet-
er control of the molecular weight of the produced polymer. A
oolant removes the heat released due to polymerization.

One of the first considerations in establishing a control strat-
gy is to arrange the system inputs and outputs into manipulated,
ontrolled and disturbance variables. The polymerization pro-
ess studied in this work has five inputs (manipulated and dis-
urbance variables) and four controlled variables. Assuming fast
ooling water dynamics, input variables include cooling water
ow (Fw), outlet liquid flow rate (F) and feed rate of monomer
Finym,in), hydrogen (FinyH2,in), and catalyst (Finycat,in). Reactor
ressure (P), polymer melt index (MI), reaction conversion (C)
nd temperature (T) could be used as controlled outputs.
The reactor system is equipped with an automatic valve at
he outlet that controls the reactor pressure P by manipulating
he outlet flow F. In a pilot setup, it is aimed to keep the catalyst
nd monomer feed rates constant. Consequently, they will not
e used in designing the control system. The control problem
an therefore be simplified to a system with two manipulated
nputs FinyH2,in and Fw, and two controlled variables MI and C.

a
t
c

(
r
(
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. Dynamic process model

The process model consists of dynamic material balances, a
ynamic energy balance and algebraic equations for kinetic rate
xpressions and physical properties, as described in Appendix
. The mechanism of propylene polymerization is explained

lsewhere [21]. In order not to complicate the model description
oo much, a number of assumptions were made, also listed in
ppendix A.
The measurements of the process outputs, i.e. the monomer

onversion and polymer melt index are subject to measurement
elays, the delay for the conversion is 1 h and for the melt index
t is 2 h.

The detailed model as described in Appendix A is used as
he process description. If the model used for prediction of the
ontrolled output is the same as this set of equations, a perfect
rediction is obtained and the non-linear controller is a perfect
on-linear controller.

. Model simplification

In order to demonstrate the robustness of the control approach
o modeling errors, the following deliberate simplifications were
ntroduced. The rate of reaction, Eq. (A.9), is approximated by:

p = k1K3mycρ̄mX (11)

here K3 is a tunable parameter with an initial value of 0.91,
¯m the constant value for the monomer density and a 5% error
n the calculation of k1 is introduced.

Since the density is assumed constant, the equation for the
utlet flow, Eq. (A.13), can be simplified to:

=
(

Fin

ρm
+ Rp

(
1

ρp
− 1

ρm

))
ρ (12)

q. (A.19) was approximated by a linear first order differential
quation:

.9
dMIc

dt
= MIi − MIc (13)

nd the exponent in Eq. (A.16) was assumed to have a value equal
o one. Another tunable parameter K4 was therefore introduced
n Eq. (A.16) to compensate for structural and parametric model

ismatch:

Ii = K4κX (14)

ith the initial value of K4 equal to 0.88.
If the inaccuracies in the model are not known, a sensitivity
nalysis should be performed to find out which equations have
he largest impact on the controlled variables in order to be a
andidate for introduction of the parameter update.

Summarizing, the simplified model consists of Eqs.
A.1)–(A.20), with Eq. (A.9) replaced by Eq. (11), Eq. (A.13)
eplaced by Eq. (12), Eq. (A.16) replaced by Eq. (14) and Eq.
A.19) replaced by Eq. (13).

ontrol of a propylene polymerization reactor, Chemical Engineering
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. Parameterization of the simplified model

The implementation of a simplified model in non-linear
ontroller design will usually result in unacceptable perfor-
ance, the main problem being offset in the controlled vari-

bles. Thus, the parameters in the simplified model should
e updated for prediction and control to be effective. Dif-
erent updating approaches can be used. McAuley and Mac-
regor [1] implemented the recursive prediction error method

or updating a set of parameters in the instantaneous melt
ndex and density correlations. Because of its flexibility, other
esearchers [6,22,1] preferred to use extended Kalman filtering
r other types of observers such as the Luenberger estima-
or [23]. Rhinehart and Riggs [24] used Newton’s method and
n intuitive relaxation method to calculate the model parame-
er update, our proposed method shows some resemblance to
his method. In our case we do not use relaxation as a tuning
arameter, instead, we propose to use a first-order time con-

tant, which will be more acceptable from an engineering point
f view.

Fig. 2. Response to step changes in melt-index and conversion setpoints.

X

F
c
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As shown in Appendix B, update of the model parameters K3
nd K4 proceeds according to the following equation:

j,k+1 = Kj,k + αpv,kepv,k (15)

n which k is the time step, j = 3 when the process variable pv
s the conversion and j = 4 when the process variable is the melt
ndex; e is the error between the measured process output and
he estimated process output using the simplified model. The
oefficient α depends on the process conditions.

. Non-linear controller design

Starting point for the controller design is the static simplified
odel. The setpoint for the melt index MIc,sp can be written as
setpoint for ratio of hydrogen to monomer concentration by

sing Eq. (14):
sp = MIc,sp

κK4
(16)

ig. 3. Response of manipulated variable to step changes in melt-index and
onversion setpoints.

ontrol of a propylene polymerization reactor, Chemical Engineering
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he setpoint for the conversion can be written as a setpoint for
he monomer concentration by using Eq. (A.20):

m,sp = ym,in(1 − Csp) (17)

y combining Eqs. (A.2)–(A.6), the inlet hydrogen concentra-
ion can be written as:

H2,in = yH2,sp + RH2

Fin
(18)

n which RH2 follows from the simplified model equations and
in is a measured variable. Eq. (A.12) can be used to calculate

he specific heats of the reactor inlet flow and the fluid inside the
eactor, using the reactor temperature from the simplified model.
he static version of the reactor energy balance, Eq. (A.11) can
ubsequently be used to calculate the reactor jacket temperature:

j,sp = Tm + 1

UA
[Fin(Cp,inTin − CpTm) − Rp �HR,p] (19)
fter which the linear relationship between the jacket tempera-
ure and cooling water flow can be used to compute the water
ow through the reactor jacket. Tm represents the reactor tem-
erature from the simplified model.

Fig. 4. Update of model parameters during setpoint changes.
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The control law of Eqs. (18) and (19) is rather similar to
he one that can be derived for generic model control, how-
ver, there are two main differences: (i) this controller does not
ave proportional integral control action to ensure that the pro-
ess output follows a prescribed trajectory. In this case model
pdating ensures that there will be no process-model mismatch
nd the process output approaches setpoint; (ii) the setpoints for
he controlled process outputs are converted to setpoints for the
ame number of state variables. This can easily be achieved,
ince in reactor modeling component concentrations and tem-
eratures are often measured and they are also the state variables
f the model. The control approach as described in this section
s therefore called mGMC, modified generic model control.

. Conventional proportional-integral control with dead
ime compensation

In many polymer producing companies, classical control

echniques such as proportional integral (PI) control is still being
sed, the designed non-linear controller will therefore be com-
ared to a conventional PI controller with Smith predictor dead
ime compensation. Using the relative gain array method (RGA)

Fig. 5. Controlled variable responses to a +20% disturbance in feed rate.

ontrol of a propylene polymerization reactor, Chemical Engineering
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25], it was found that the melt index can be best controlled by
he inlet hydrogen concentration, yH2,in, and the conversion by
he jacket temperature, Tj (i.e. cooling water flow). Due to the
resence of measurement dead times of 1 and 2 h for conversion
nd melt index, respectively.

. Results and discussion

Since the process model is represented by a simplified model,
he responses will show process/model mismatch. As a result, the
arameter update scheme will come into effect to ensure that the
odel output tracks the process output. It should be mentioned

hat the update scheme uses fixed values of αC,k in Eq. (A.4) and
MI,k in Eq. (A.7), equal to 0.6 and 0.001, respectively, since
hanges in these values were found to be limited to a maximum
hange of 20%.

.1. Performance of the non-linear and PI control
lgorithms
In this section, the performance of the following control
pproaches will be discussed: (i) the generic model controller,
ii) the modified generic model controller and (iii) the PI–Smith

ig. 6. Manipulated variable responses to a 20% disturbance in feed rate.

f
t
u
g

F
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redictor controller. Performance is examined for four different
ases:

polymer grade change,
conversion setpoint change,
disturbance rejection,
error in dead time of the melt index measurement of 1 h and
conversion measurement of 0.5 h.

In the closed-loop simulations, it is assumed that the val-
es of MIc and C are available every 2 and 1 h, respectively;
ithin these time intervals, estimated values are obtained using

he property models and the parameter-updating scheme. The
ontroller algorithms are executed every 6 min.

In addition to monitoring the controlled variables, also the
anipulated variable moves are monitored.
Figs. 2 and 3 show the closed-loop responses of the controlled

nd manipulated variables for a change in melt index setpoint
rom 15 to 30 at time t = 5 h and a change in conversion setpoint

rom 0.18 to 0.22 at time t = 35 h. Fig. 2 shows the response of
he controlled outputs, Fig. 3 shows the responses of the manip-
lated variables for completeness. Controller tuning settings are
iven in Table 1. In Fig. 2 it can be seen that the generic model

ig. 7. Controlled variable responses to a 20% disturbance in catalyst activity.

ontrol of a propylene polymerization reactor, Chemical Engineering
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Table 1
Controller tuning for setpoint changes

PI/SP conversion controller Kc = 2, Ti = 2.0
PI/SP melt index controller Kc = 0.00125, Ti = 4.0
M
C
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for the mGMC and SP/PI controller are somewhat larger than
for the GMC controller in case of the melt index. The response
of the conversion to this change is very much the same for all
elt index setpoint filter τ = 0.2 h
onversion setpoint filter τ = 0.1 h

ontroller gives a rather large overshoot for a setpoint change
n the cumulative melt index, at the same time the interaction
s visible in the conversion response (around t = 10 h). Detuning
he GMC controller improves the response, since the interaction
etween the variables is reduced but also reduces the speed of
esponse.

On the one hand the GMC controller decouples the process
ariables through the static inverse of the process model, on the
ther hand a PI controller is added which introduces process
ariable interaction. The Smith predictor controller also suffers
rom the interaction between the process variables, detuning
lows down the response. As can be seen, the mGMC controller

utperforms the other two controllers. Fig. 4 shows the parame-
er update during these transients. As can be seen, the response
s smooth.

ig. 8. Manipulated variable responses to a 20% disturbance in catalyst activity.
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Another issue that should be considered is load or disturbance
ejection. The first type of disturbance that will be considered is a
easurable change in the propylene inlet flow rate; the rejection

ests were conducted with a 20% increase in inlet flow rate at
= 5 h, retaining the controller settings for setpoint changes. As
an be seen from Fig. 5, also in this case the mGMC controller
utperforms the other two controllers. The melt index is not
ffected much by the disturbance, the conversion suffers from a
omentary decrease (at t = 6 h) which is the largest for the Smith

redictor controller (Fig. 6).
Another type of unmeasurable disturbance that is considered

s a 20% change in the catalyst activity. As can be seen from
ig. 7, the GMC controller outperforms the other two controllers.
his is due to the aggressive tuning of the integral action in case
f GMC control, this also causes the response to be slightly more
scillatory than the other two responses. All controllers reach a
ew steady state around the same time, the maximum deviation
ontrollers (Fig. 8).

ig. 9. Controlled variable responses to setpoint changes in case of dead time
iscrepancy.

ontrol of a propylene polymerization reactor, Chemical Engineering
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ig. 10. Manipulated variable responses to setpoint changes in case of dead time
iscrepancy.

Another type of disturbance that could occur is a discrepancy
n sampling times of the controlled outputs from the model and
rom the plant. The dead time of the melt index is assumed to
e 2 h, the dead time of the conversion is assumed to be 1 h.
igs. 9 and 10 show the impact of a discrepancy in dead time
etween the process and the model, the dead time of the process
elt index is decreased by 1.0 h and the dead time of the process

onversion is decreased by 0.5 h. All controllers are affected,
he mGMC controller performed better than the other two con-
rollers.

0. Conclusions

Non-linear process model based control was studied for
ontrol of liquid propylene polymerization under varying con-
itions. The controller manipulated the hydrogen flow rate
nd cooling water flow to follow the setpoints for cumula-

ive melt index and reaction conversion and to remove the
ffects of various process disturbances. The non-linear con-
rol strategy was called modified generic model control, it
sed the static inverse of the process model with setpoints

Please cite this article as: M. Al-Haj Ali et al., Non-linear model based c
and Processing (2006), doi:10.1016/j.cep.2006.07.012
and Processing xxx (2006) xxx–xxx

f the measured process outputs converted into setpoints
or the state variables. In addition, model parameters were
pdated to ensure good setpoint tracking and disturbance rejec-
ion. Tuning of the proposed control strategy is simple, the
ime constant of the setpoint filters can be adjusted and the
peed at which the parameter update is accomplished can be
elected.

Performance of the control strategy was compared to a
eneric model controller and a proportional integral controller
ith Smith predictor dead time compensation.
Closed loop simulations revealed that for setpoint changes

he modified generic model controller was superior to the other
wo controllers, also for measurable feed disturbances it outper-
ormed the other control approaches.

For unmeasurable disturbances in the catalyst activity, the
esponse of the melt index was somewhat faster for the generic
odel controller due to aggressive tuning of the integral action,

his also lead to a more oscillatory response.

ppendix A. Dynamic model of the polymerization
rocess

In order to develop a model of limited complexity, the fol-
owing assumptions were made:

The polymerization reactions are irreversible and first order
with respect to each reactant.
The reactor is ideally mixed. Thus, no temperature and con-
centration gradients are present. If the stirrer speed in the
reactor is in the range of 100 rpm, the reactor is (macro) mixed
within 40–80 s, meanwhile, the reactor average residence time
may reach 1 h.
The reactor is fully filled, no gas phase is present in the reactor.
The energy produced due to mixer rotation is negligible.
The catalyst decay through different chemical mechanisms at
various types of active sites may be lumped together into a
single deactivation. In addition, the active site concentration
decreases in accordance with a first order decay mechanism
constant [26].
Monomer equilibrium concentration near the active sites is
assumed the same as the monomer bulk concentration. Thus,
it can be calculated using a monomer density correlation.
The reactor contains two phases: (i) a liquid monomer phase
and (ii) a polymer phase. The liquid phase consists of propy-
lene monomer with dissolved hydrogen and the polymer
phase consists of crystalline polymer and amorphous poly-
mer, which is swollen with the monomer.

In this model, all variables should have a hat in order to show
hey are model values, however, it has been omitted for reasons
f simplicity of notation.
The overall mass balance of the reactor can be described as:

dm

dt
= Fin − F (A.1)
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Table 2
Thermodynamic and physical parameters for propylene polymerization

Parameter Value

Physical parameters
Reactor volume (V) 1.86 × 10−3 m3

Reactor heat transfer area (A) 0.0961 m2

Thermodynamic parameters
Overall heat transfer coefficient (U) 1.62 MJ/h K m2

Heat of propagation reaction (�HR,p) 2.03 MJ/kg
Specific heat of polypropylene (Cp,p) 2.25 × 10−3 MJ/kg K
Density of polypropylene (ρp) 900 kg/m3

Specific heat of propylene (Cp,m)
a 2.785 × 10−3 MJ/kg K
b −9.18 × 10−6 MJ/kg K2

c 2.93 × 10−8 MJ/kg K3

Density of propylene monomer (ρm)
ρm,a −263.7 kg/m3

ρm,b 6.827 kg/K m3

ρm,c −0.0143 kg/K2 m3

Parameters for Eq. (A.16)
κ 6818.3
γ 1.03

Parameters for Eq. (A.17)
β −2.34
for X < 0.00144

d 5.32 × 10−5

e 0.115
else

d 1.52 × 10−4

e 0.0405

K0 in Eq. (A.10) [−204256.61, 1153.3314,
−1.626207]

kd0 3746 h−1

kd1 1.748 × 10−7 h−1

Ea1/R 1620.8 K

S
m
w
e

(

w
j
f
l
b

c

T
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here m is the total mass inside reactor and F the outlet mass
ow rate in kg/h, Fin = 1.0 kg/h. The monomer mass balance is:

dym

dt
= Fin(ym,in − ym) − Rp (A.2)

m is the mass fraction of monomer in the outlet flow stream, and
p is the propagation reaction rate. The hydrogen mass balance
an be described as:

dyH2

dt
= Fin(yH2,in − yH2 ) − RH2 (A.3)

n which yH2 is the hydrogen mass fraction in g H2/kg material
nside the reactor and RH2 is the apparent hydrogen consumption
ate. An apparent consumption rate is used, since the reaction
ate constants for the hydrogen reactions, transfer with hydrogen
nd dormant sites reactivation, are not known for the catalyst
ystem used in this work.

The hydrogen consumption rate, RH2 , can be calculated from:

H2 = 2Rp

42.1Pn
(A.4)

here 2 and 42.1 are the molecular weight for hydrogen and
ropylene, respectively, Rp is the polymerization rate. The num-
er average degree of polymerization Pn can be calculated from:

n = 2

qPD
(A.5)

here PD is the polydispersity of the produced polymer, for
he catalyst used in this study it has an average value of 6.8.
he polymerization termination probability q is experimentally
etermined from [21]:

= d + eX, X = 0.02104yH2

ym
(A.6)

here X is the molar ratio of hydrogen to monomer in the reactor.
he values of d and e are given in Table 2.

Based on the assumption that the catalyst is being activated
efore injecting it, the mass balance for the active catalyst, yc,
an be described as:

dyc

dt
= Fin(yc,in − yc) − Rd (A.7)

here Rd is the deactivation reaction rate. The concentration of
he deactivated catalyst, yd, can be calculated from the following
alance:

dyd

dt
= Fin(yd,in − yd) + Rd (A.8)

he reaction rates are calculated using the following equations:

Rp = k1mycρmX

Rd = kdmyc
(A.9)

n which k1 and kd are rate constants and ρm is the monomer

ensity. For the rate constants the following equations hold:

k1 = K01 + K02T + K03T
2

kd = kd0e
−Ea1/RT + kd1e

−Ea2/RT (1 − e−Ea3/X)
(A.10)

t
v

c

Please cite this article as: M. Al-Haj Ali et al., Non-linear model based c
and Processing (2006), doi:10.1016/j.cep.2006.07.012
Ea2/R 5570.7 K
Ea3 498.9

ince the mass of the reactor wall is not small compared to the
ass of the reactor contents, the heat capacities of the reactor
all and reactor contents are lumped together in the reactor

nergy balance. This balance can be written as:

mcp + mscp,s)
dT

dt
= Fin(cp,inTin − cpT ) − Rp �HR,p

−UA(T − Tjacket) (A.11)

here the subscript ‘s’ refers to steel. The dependence of the
acket temperature on the cooling water flow can be calculated
rom a static energy balance and is approximated by a simple
inear relationship. The specific heat of the reactor contents can
e given by:

p = ym(a + bT + cT 2) + Cp,pyp (A.12)

he values of the coefficients are summarized in Table 2. Cp,p is

he heat capacity of the polymer, it is assumed to have a constant
alue.

Since the reactor is completely filled and there is a significant
hange in density because the low-density monomer is converted

ontrol of a propylene polymerization reactor, Chemical Engineering
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The partial derivative of the cumulative melt index-time deriva-
tive with respect to the adjustable parameter K4 is calculated
by substituting Eq. (14) into Eq. (A.19) and differentiation with
EP-5158; No. of Pages 11
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o the high-density polymer, the reactor outlet flow rate, F, will
ary. It can be shown that the following equation can be used to
alculate this flow [27]:

=
(

Fin

ρm
+ Rp

(
1

ρp
− 1

ρm

)
− mym

dT

dt

1

ρ2
m

dρm

dT

)
ρ (A.13)

here ρp is the polymer density and ρm is the monomer density,
hich can be calculated from:

m = −ρm,a + ρm,bT − ρm,cT
2 (A.14)

he constants of this equation are summarized in Table 2. ρ is
he density of the reaction mixture inside the reactor, it can be
ritten as:

= ρmρp

ymρp + ypρm
(A.15)

he easily available measurements of the melt index are often
tilized to control the polymer quality in a homo-polymerization
eactor. In polyolefin production plants, it is well-known that
he concentration ratio of hydrogen to monomer, X, has a strong
ffect on the instantaneous melt index MIi. In the literature [1,28]
ifferent relationships have been proposed to relate MIi to X. In
his work, the following relationship is used:

Ii = κXγ (A.16)

he numerical values of κ and γ are obtained from experimen-
al work and are listed in Table 2. Because the direct on-line

easurement of the instantaneous polymer molecular proper-
ies is not practically realizable, the melt index is correlated to
he polymer average molecular weight (Mw). In this study the
ollowing semi-empirical equation is employed [29]:

Ic = αM̄β
w (A.17)

he values of α and β were calculated by fitting MI measurements
o the off-line measurements of Mw, the values are presented in
able 2. To calculate the cumulative melt index, the differential
alance for the cumulative weight average molecular weight,
¯ w, is employed [30]:

dM̄w

dt
= 1

mp
(yp,inFin[M̄w,in − M̄w] + Rp[Mw − M̄w]) (A.18)

here mp is the mass of polymer inside the reactor. Substituting
q. (A.17) into Eq. (A.18), in addition to the assumption of
free-polypropylene inlet stream, i.e. yp,in = 0, results in the

ollowing differential equation for the cumulative melt index:

m(1 − ym)

βRp

d

dt
MIc = [MI1/β

i MI1−(1/β)
c − MIc] (A.19)

hich is a first-order relationship with variable gain and time
onstant.
To complete the model description, the monomer conversion
s calculated from:

= 1 − ym

ym,t=0
(A.20)

r
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ppendix B. Parameterization of the simplified model

To parameterize the conversion model, a relationship between
he conversion and the model parameter K3 has to be derived.
his relationship can be obtained by differentiating the conver-
ion equation, Eq. (A.20) with respect to time:

dC

dt
= − 1

ym,t=0

dym

dt
(B.1)

sing Eqs. (A.2) and (11), this equation can be rewritten as:

dC

dt
= −1

ym,inm
[Fin(ym,in − ym) − k1K3mycρ̄mX] (B.2)

ince the relationship between C and K3 is represented by a
ifferential equation, Eq. (10) is used for parameter update. The
ifference between the conversion using the plant measurement
nd the estimated conversion using the simplified model is used
o make incremental adjustments to K3 at each execution interval
f the discrete controller:

C,k = Cplant,k − Cmodel,k (B.3)

fter a simple Euler discretization of Eq. (10), the updating of
he parameter K3 can be evaluated according to:

3,k+1 = K3,k + �teC,k

τ2(∂(dC/dt)/∂K3)
= K3,k + αC,keC,k

(B.4)

he partial derivative of the conversion-time derivative with
espect to the adjustable parameter K3 is calculated using Eq.
B.2):

∂(dC/dt)

∂K3
= k1ycρ̄mX

ym,in
(B.5)

n the melt index model, Eq. (14) the parameter K4 is a tunable
arameter. The difference between the cumulative melt index
rom the plant measurement and the simplified model is used
o make the corrections to the model parameter every controller
xecution interval:

MI,k = MIc,plant,k − MIc,model,k (B.6)

he value of K4 is updated using the discretized version of Eq.
10):

4,k+1 = K4,k + �teMI,k

τ2(∂(dMIc/dt)/∂K4)

= K4,k + αMI,keMI,k (B.7)
espect to K4:

∂(dMIc/dt)

∂K4
= Rp

mK4(1 − ym)
MI1/β

i MI1−(1/β)
c (B.8)
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ppendix C. Nomenclature

area of heat transfer (m2)
reaction conversion

p heat capacity of monomer (kJ/kg K)
outlet flow rate from the reactor (kg/h)

in inlet flow rate to the reactor (kg/h)
HR,p heat of polymerization (MJ/kg)

d deactivation constant (1/h)
p propagation constant (m3/gcat h)

total mass inside the reactor (kg)
Ii instantaneous melt index (g/10 min)
Ic cumulative melt index (g/10 min)
w weight average molecular weight (kg/kmol)

n number average degree of polymerization
d catalyst deactivation reaction rate (kg/m3 h)
H2 average hydrogen reaction rate (m3/gcat h)
p propagation reaction rate (kg/h)

process time (h)
reactor temperature (K)

j jacket temperature (K)
heat transfer constant (MJ/h m2 K)
reactor volume (m3)
hydrogen molar ratio (mol H2/mol)

c active catalyst mass fraction (g/kg)
d deactivated catalyst concentration (g/kg)
H2 hydrogen mass fraction (g/kg)
m monomer mass fraction in the reactor (kg/kg)
p polymer mass fraction in the reactor (kg/kg)

reek symbols
density of reaction mixture (kg/m3)

m monomer density (kg/m3)
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