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Abstract: We study the dissemination of dynamic content, such as
news or traffic information, over a mobile social network. In this
application, mobile users subscribe to a dynamic-content distribution
service, offered by their service provider. To improve coverage and
increase capacity, we assume that users share any content updates
they receive with other users they meet.
We make two contributions. First, we determine how the service
provider can allocate its bandwidth optimally to make the content
at users as “fresh” as possible. More precisely, we define a global
fairness objective (namely, maximizing the aggregate user utility) and
prove that the corresponding optimization problem can be solved by
gradient descent. Second, we specify a condition under which the sys-
tem is highly scalable: even if the total bandwidth dedicated by the
service provider remains fixed, the expected content age at each user
grows slowly (as log(n)) with the number of users n. To the best of
our knowledge, our work is the first to address these two aspects (op-
timality and scalability) of the distribution of dynamic content over a
mobile social network.



1. INTRODUCTION
In opportunistic networks, contacts between mobile

users can be exploited to exchange data, extending thus
the network’s coverage and increasing its capacity. How
often and when such contacts occur is dictated by the
social interactions and relationships between users. For
this reason, recent work [1–6] has focused on how knowl-
edge of the social network formed by the mobile users
can be used to improve the performance of a variety of
applications.

In this paper, we investigate how the social network
can assist in the distribution of dynamic content. In
this application, users subscribing to a wireless service
receive updates on frequently changing content, such as
a news-feed, a blog, the price of a stock, traffic conges-
tion information, etc. Subscribers of this service share
their updates in an opportunistic fashion: Whenever
two of them meet, the one whose content is most recent
pushes it to the one whose content is older (thereby
increasing the number of users that receive fresh infor-
mation).

One question arising in the above setting is how should
the service provider allocate its downlink capacity to en-
sure that the content at users is as “fresh” as possible.
For example, should it allocate its available bandwidth
uniformly among subscribers? Alternatively, should it
provide more frequent updates to the “most social” sub-
scribers, i.e., the ones that meet other subscribers most
often, in the hope that they would spread the content
faster? In general, the answer depends on the provider’s
downlink bandwidth as well as on how recent the con-
tent at users is required to be. Most importantly, it also
depends on the users’ social behavior, since the latter
determines how they meet. For this reason, answering
the above question requires us to understand how the
social network formed by mobile users affects the per-
formance of our application.

A second question of importance is how such a system
scales as the number of users grows. If more subscribers
are added to the system, will the age of content at users
increase, thus degrading the service, and, if so, by how
much? Again, this depends on the topology of the social
network formed by the users. Ideally, one wishes to find
a general condition under which the age increases slowly
as the network grows.

Our main contribution is providing comprehensive
answers to the above two questions. To the best of our
knowledge, our work is the first to address these two
aspects (optimality and scalability) of the distribution
of dynamic content over a mobile social network.

First, we show how the service provider can determine
the optimal allocation of its bandwidth. More precisely,
the service provider can compute a downlink rate alloca-
tion that satisfies a global fairness objective —namely,
maximizing the aggregate utility over all users. We

prove that the corresponding optimization problem is
convex and therefore can be solved efficiently by gradi-
ent descent. Moreover, we give both a centralized and a
distributed algorithm for computing the gradient; these
can be used by the service provider to compute the opti-
mal allocation, as we illustrate with an empirical study.

Second, we prove that the system described above
is scalable, under the condition that the social network
formed by the subscribers has a bounded edge expansion.
In particular, even if the service provider distributes up-
dated content with a fixed total rate, the content ages as
seen by users grow slowly (as log(n)) as the number of
users n increases. Our second result therefore identifies
edge expansion as a key property of the social network
that affects scalability. Most importantly, it also implies
that the service provider can exploit the social network
to offer the service with limited resources, without sus-
taining a considerable degradation of the service due to
system growth.

Our empirical study uses two real-life mobility traces,
spanning over different time scales (a few hours and sev-
eral days, respectively). We compute the optimal down-
link allocation and compare it to several simple heuris-
tics, illustrating its dependence on system parameters.
An interesting outcome of our study is that the intuition
that “most social” users should receive more frequent
updates can in fact be wrong: under certain conditions,
it is actually optimal to allocate none of the available
bandwidth to the most social users in the system.

2. RELATED WORK
Allocating the service provider’s bandwidth among

its subscribers has similarities to “spread of influence
maximization” problems over traditional social networks.
For example, Kempe et al. [7] looked at which con-
sumers a product should be marketed to in order to
ensure its widespread adoption. The authors show that
the objective function exhibits a property called sub-
modularity, and that greedy algorithms find solutions
within a constant approximation factor to the optimal.
Similarly, Leskovec et al. [8] looked at which blogs one
should read to quickly detect the outbreak of an impor-
tant story. Our application and our model are consider-
ably different. Moreover, in our system, the convexity
property implies that computing the optimal (rather
than an approximate) solution is feasible, as we prove,
even in a distributed manner.

In the context of DTNs, algorithms taking advantage
of the social behaviour of mobile users have been pro-
posed for publish/subscribe systems [1,2], routing [3–5]
and query propagation [4, 6]. These algorithms exploit
concepts from social networks, including node central-
ity [1, 3, 5], friendship relationships [1, 4], bazaars [6],
contact usefulness [2]. However, formally assessing the
effect of the social network on the performance of these
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algorithms remains largely an open question. Though
our focus is on a different application, our work rigor-
ously relates social network properties to the system’s
scalability and to algorithms for finding the optimal al-
location. As such, it strengthens the foundations of
research in the area of mobile social networks.

Measurement studies of human mobility [5,9–11] have
mostly focused on inter-contact time statistics and their
effect on opportunistic forwarding. Our work illustrates
how such human mobility can be used to disseminate
content optimally in Section 6.2.

The importance of edge expansion in epidemic dis-
semination is well known, and has recently been stud-
ied in the context of search in unstructured peer-to-
peer networks [12], the lifetime of infections by com-
puter viruses [13], and the distributed aggregation of
measurements [14]. Our scalability analysis is similar
in spirit, as content updates are diffused over the users’
social network. However, the dynamics of the diffusion
are much different than in the above works; thus, our
work highlights one more application in which edge ex-
pansion is of critical importance.

3. SYSTEM DESCRIPTION

3.1 Update Distribution Process
Consider a system of n mobile users that are served

by a single service provider (e.g., a cell-phone operator).
We denote by V = {1, 2, . . . , n} the set of all users. The
service provider injects new content updates to the sys-
tem according to a Poisson process with rate µ, which
is bounded by the provider’s downlink capacity. The
total injection rate µ is allocated among different users
as follows: each new update is pushed to one user cho-
sen from V with a certain probability. As a result, user
i receives updates according to a Poisson process with
injection rate xi ≥ 0, i ∈ V , such that

∑
xi = µ. We

denote by ~x the vector of injection rates, which we call
the rate allocation.

Users share their content with other users they con-
tact (i.e. that are within their transmission range) in
the following way. First, the content stored at a user is
time-stamped with the time at which it was originally
downloaded from the service provider. Let ti(t) be the
time-stamp of user i’s content at time t. The following
scheme is then used to share the content:

Content Sharing: A user i will copy
user j’s content when they meet, if the con-
tent stored at j is more recent than the con-
tent stored at i, i.e., ti < tj .

Note that, after two users i and j have met, the time-
stamp at both becomes max(ti, tj).

We are interested in the age Yi of the content stored

at each user i, defined as:

Yi(t) = t− ti(t), i ∈ V.

In particular, given a user i we wish to study the distri-
bution of the age Yi when the system is in steady state
or, informally, after the system has operated for a suffi-
ciently long time. Formally, we evaluate Yi(T ) at some
time T > 0, given that the system has been running
in the interval (−∞, T ]. Note that Yi depends both on
the rate allocation vector ~x as well as on how contacts
between users take place.

3.2 Contact Process and Contact Graph
We assume that contacts are symmetric, i.e., user

j ∈ V contacts user i ∈ V whenever i contacts j, and
they last for a time that is negligible compared to the
time between two consecutive contacts. Moreover, we
assume that the joint contact process, describing con-
tacts among all pairs of users (i, j), is independent of
the content injection process and is stationary ergodic.
A simple case for which this holds is when the contact
processes between distinct pairs (i, j) are independent
renewal processes. However, we do not require these to
be independent in our model. For example, i meeting
j might increase the chance that i will also meet some
j′ 6= j within a brief period of time.

In the case where the contact processes are indepen-
dent renewal processes, we can define the mean contact
rate qij between users i and j, where qij ≥ 0. The con-
tact graph of the system is a complete, weighted and
undirected graph G, whose vertex set is V and each
edge (i, j) has weight qij .

Given a subset of users A ⊆ V , let Ac = V \ A. The
edge expansion [15, 16] of G is then defined as

hG = min
A⊂V

∑
i∈A,j∈Ac qij

min (|A|, |Ac|)
.

As we will see in Section 4.2, this property of the contact
graph plays an important role in the system’s scalabil-
ity.

3.3 User Utilities and Optimization Objectives
We would like to choose the rate allocation vector ~x

so that a global objective is attained. In general, we
assume that a user i is happier when its content is more
recent. There are several ways to quantify this notion,
one being through a non-increasing utility ui : R+→R
that is a function of the age Yi. There is no reason to
restrict ourselves to positive utility functions —negative
utilities can express dissatisfaction or loss of profit.

How much content of a certain age is worth to a user
depends on user preferences as well as the nature of
the content provided. Some examples of non-increasing
utilities are illustrated in Fig. 1. In utilities ua and ub,
an age threshold value τ exists after which the content is
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worthless; this could be the case if, e.g., it is news about
sales offers that expire after some time. In utility uc,
even very old content has a vanishing but non-zero value
to the user. Finally, the negative utility ud expresses
“dissatisfaction” or “loss” growing linearly with the age.

Denote by E~x[·] the expectation of a random variable,
given that the rate allocation vector is ~x. A natural goal
for the service provider is to maximize the aggregated
utility among all users, i.e., the social welfare:

Social Welfare Maximization

Maximize f(~x) =
n∑
i=1

E~x[ui(Yi)],

subject to:
n∑
i=1

xi ≤ µ and xi ≥ 0, 1 ≤ i ≤ n

where ui : R+ → R, 1 ≤ i ≤ n, are non-
increasing, and E~x[ui(Yi)] the expected util-
ity at user i in steady state under the rate
allocation vector ~x.

We note that other global optimization objectives might
also be of interest. One example is a weighted version of
the above problem, where each expected utility at user
i is multiplied by weight wi ≥ 0. By setting wi = 0, a
server can target only a subset of the users. Another al-
ternative is a “max-min” fair allocation, obtained by re-
placing the summation in the objective function f by a
minimization. Our results (namely, Theorem 1) extend
to both of the above cases; the corresponding optimiza-
tion problems can again be solved with the methods we
outline in this paper, as discussed in the end of Sec-
tion 5.1. For concreteness however, our focus will be on
social welfare.

4. MAIN RESULTS

4.1 Optimal Rate Allocation
Our first main result concerns the solution of the so-

cial welfare maximization problem. Given a system of
mobile users implementing the Content Sharing pro-
tocol, we wish to find how the service provider should
choose the rate allocation ~x, in order to maximize so-
cial welfare. We prove the following theorem, whose
generality is surprising: An optimal allocation can be
found under all non-increasing utility functions and for
general stationary ergodic contact processes. In partic-
ular, it is not necessary that contacts between users are
independent.

Theorem 1. If the user utilities ui : R+ → R, 1 ≤
i ≤ n, are non-increasing functions, and the joint con-
tact process is stationary ergodic, Social Welfare
Maximization is a convex optimization problem. In
particular, the objective function f(~x) =

∑n
i=1 E~x[ui(Yi)]

is concave.

1

1
ua(Y ) = 1Y <τ

Y (sec) Y (sec)ττ

uc(Y ) = 1
Y+1
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`
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´
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Figure 1: Examples of utility functions. In cases
(a) and (b), if the age exceeds a threshold the
content has no value to the user, whereas in
case (c) even very old content has some posi-
tive value. In case (d), the older the content the
higher the loss incurred at the user.

Theorem 1 implies that any local maximum of the ob-
jective function is a global maximum, and that the max-
imization can be performed by gradient descent [17], as
we describe in Section 6.

In general, to solve the optimization problem with
gradient descent, the server needs to know both the
user utilities ui and the steady state c.d.f.’s of the ages
Yi. The latter might be hard to compute in a closed
form for a given system, even if the contact processes
are independent renewal processes; in Section 6.2, we
discuss how they can be estimated in a centralized way
by the service provider by gathering simple statistics on
the contact processes between users.

However, it is not necessary to follow a centralized
approach: In Section 6.3, we present an algorithm with
which users can estimate the gradient of the objective
function in a fully decentralized manner. Neither user
utilities nor traces of user contact processes need to be
reported to the service provider using this approach;
the users compute and report only their estimates of
the gradient, and the service provider can use this in-
formation to adjust the injection rates accordingly.

4.2 Scalability
Our second main result addresses the issue of how

the Content Sharing protocol scales as the number
of mobile users in the system increases. To obtain this
result, we assume that the contact processes between
users are independent Poisson processes.

Theorem 2. Assume that the contact processes be-
tween pairs of users (i, j) are independent Poisson pro-
cesses. If ~x =

[
µ
n

]
( i.e., the service provider chooses

uniform rate allocation), the expected age seen by any
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user i ∈ V in steady state satisfies

E~x[Yi] ≤
2
µ

(
2e−1/2 + log(n)

)
+ h−1

G log n . (1)

where hG the edge expansion of the contact graph of the
system.

The theorem suggests that sharing content can signifi-
cantly benefit the system. It is easy to see that, if the
users do not share their content, the expected age E[Yi]
at any user i grows as n/µ, i.e., linearly in n. Theo-
rem 2 states that the ages can grow much slower (as
log(n)) when content is shared, if the edge expansion
hG of the contact graph is bounded away from zero.
Graphs exhibiting a bounded expansion, also called ex-
pander graphs, are abundant [16,18]; in particular, any
graph with a sufficiently rich random structure is an
expander.

Finally, Theorem 1 can be used to give a lower bound
on the social welfare provided that user utilities are con-
vex (as, e.g., utilities ub, uc, ud of Fig. 1).

Corollary 1. If the user utilities ui, i ∈ V , are
convex, then the aggregate expected utility under the op-
timal rate allocation is at least

n∑
i=1

ui

(
2
µ

(
2e−1/2 + log(n)

)
+ h−1

G log n
)
.

5. ANALYSIS
In this section, we give the proofs of Theorems 1 and

2. We first give a simple characterization of the content
age in terms of a simple message propagation scheme.

We will say that a message originating at user i ∈
V at some time T is flooded over the system if it is
propagated as follows: every user having a copy of the
message forwards it to every other user it contacts.

For a given time T , we define the process BTi (t) ⊂ V
at user i as follows: A user j is in BTi (t) if a message
placed at a user j at time T −t can reach user i through
flooding by time T . In other words, if j forwards the
message to every user it contacts, and every other user
that receives it also relays it to all other users it meets,
the message will reach i before T .

Alternatively, BTi (t) can be defined through a flood-
ing that starts from user i and is propagated over the
“backwards” contact process: Suppose that, at time T ,
we “reverse the arrow of time” and look at the pro-
cess describing the contacts between users “going back-
wards”. If a message originating at i is flooded over
this backwards process, then BTi (t) is precisely the set
of users that will have the message after time t. For
this reason, we call BTi (t) the backwards growth process
at i.

We define sTij as

sTij = inf
t≥0
{t | j ∈ BTi (t)}.

Looking at the contact process with the arrow of time
reversed, sTij is the time it takes until a message origi-
nating at i reaches j (over the backwards process). For
this reason, we call sTij the backwards latency from i to
j. Note that, by definition, BTi (t) = {j, s.t. sTij ≤ t}
and that, if there is no t > 0 such that j ∈ BTi (t), then
sTij =∞.

Recall that Yi(T ) is the age of user i’s content at
time T . We can succinctly express Yi(T ) in terms of
the latencies sTij :

Lemma 1. Let Zi(T ) be the elapsed time since user
i downloaded content directly from the service provider.
Then, for all T ≥ 0 and all i ∈ V ,

Yi(T ) = min
j∈V
{sTij + Zj(T − sTij)}. (2)

The proof can be found in Appendix A.1.

5.1 Proof of Theorem 1
Lemma 1 relates the age at user i at time T to the

backwards latencies sTij . The following Lemma, whose
proof is in Appendix A.2, uses this relationship to ex-
press the distribution of the age of a user in terms of
the latencies in steady state. We denote by P~x(·) the
probability of an event given that the rate allocation
vector is ~x.

Lemma 2. Let Yi be user i’s the steady-state content
age and sij, j ∈ V , the steady-state backwards latencies
from i. Then

P~x(Yi > t) = P~x(Yi ≥ t) = E
[
e−

Pn
j=1 xj ·(t−sij)+

]
(3)

where the expectation is over the latencies sij, j ∈ V ,
in steady state and (·)+ ≡ max(·, 0).

An immediate implication of this lemma is that, for
every user i, the c.d.f. of Yi is a concave function of ~x.

Corollary 2. For all i = 1, . . . , n, and for any fixed
t > 0, P~x(Yi ≤ t) is concave in ~x.

To see this, observe that the function e−
Pn

j=1 xj(t−sij)+

is convex in ~x, as the composition of a convex and a
linear function. Moreover, if every element in a family
of functions g(~x, u), u ∈ Ω, is convex in ~x and ν is a
positive measure in Ω, the integral

∫
Ω
g(~x, u)dν is also

convex [17]. Hence, the expectation of the above func-
tions over sij , j ∈ V , is also convex, and the corollary
follows from Lemma 2.

As E~x[1Yi≤τ ] = P~x(Yi ≤ τ), the above corollary effec-
tively says that if the utility is a step function (like ua in
Fig. 1(a)) its expectation in steady state is concave. It
is straightforward to extend this result to general non-
increasing utilities.

Lemma 3. If u : R+ → R be a non-increasing func-
tion, then for every i ∈ V , E~x[u(Yi)] is concave.
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The proof can be found in Appendix A.3.
Theorem 1 therefore follows from the fact that the

sum of concave functions is concave. A consequence of
Lemma 3 is that Theorem 1 extends to any function of
the expected utilities E~x[ui(Yi)] that preserves concav-
ity. For this reason, Theorem 1 holds, e.g., for weighted
sums of the expected utilities as well as for “max-min
fair” allocations, as noted in Section 3.3.

5.2 Proof of Theorem 2
Assume that the contact processes between pairs (i, j),

i, j ∈ V are independent Poisson processes. Suppose
that at time T a message is placed at user i and flooded
over the forwards process. We define the forwards growth
process ATi (t) as the set of users reached by the mes-
sage by time T + t. The reversibility and stationarity
of the Poisson process imply that, in steady state, the
backwards growth process is indistinguishable from the
forwards growth process.

Lemma 4. In steady state, {ATi (t); t ≥ 0} is identi-
cally distributed as {BTi (t); t ≥ 0}.

The steady state behavior of the backwards growth pro-
cess BTi (t) can thus be understood by simply looking at
the behavior of the forwards growth process. The latter
relates to the edge expansion hG of our system’s contact
graph through the following lemma, whose proof is in
Appendix A.4.

Lemma 5. P(|ATi (t)| ≥ k) ≥ (1 − e−hGt)k−1 when
k ≤ n/2, for every i ∈ V .

Lemma 5, along with Lemma 1, allows us to obtain the
following upper bound on the steady-state expected age
at i. Intuitively, this bound is derived by observing that,
for any t > 0, the age at some time T will be no more
than t plus the minimum age among all users in the set
BTi (t).

Lemma 6. Suppose that xj = µ
n , for all j ∈ V . Then,

in steady state, for any t > 0, and any i ∈ V ,

E[Yi] ≤ t+
n

µ

[⌊n
2

⌋−1 (
1− e−hGt

)bn
2 c−1

+
hGte

−hGt

1− e−hGt

]
.

The proof can be found in Appendix A.5. Using Lemma
6, we can bound E[Yi] by appropriately choosing t. The-
orem 2 follows as a corollary by setting t = h−1

G log n.
The proof of Corollary 1 is an application of Jensen’s
inequality.

6. CENTRALIZED AND DISTRIBUTED OP-
TIMIZATION

In this section, we discuss how the service provider
can compute the optimal rate allocation. To do so,
it needs to implement gradient descent [17], which re-
quires computing the gradient vector ∇f =

[
∂f
∂xi

]
i∈V

of

the objective function f(~x) =
∑

E~x[ui(Yi)]. As noted
in Section 4.1, knowledge of the users’ utilities as well
as the c.d.f’s of the ages Yi in steady state is required
to compute the gradient. In general, it is not always
possible to obtain the latter in a closed form, even for
simple contact processes. For this reason, we settle for
estimating ∇f through an unbiased estimator, which
we denote with ∇̂f .

In the following, we first outline how the service provider
can compute the optimal rate allocation given an unbi-
ased estimator ∇̂f . We then show two ways to derive
such an estimator. The first is centralized: the service
provider needs to know the user utilities and collect con-
tact statistics to apply it. The second is distributed: the
gradient is computed directly by the users and reported
to the service provider.

6.1 Implementing Gradient Descent with a Gra-
dient Estimator

Given an unbiased estimator ∇̂f of ∇f , the service
provider can use the following projected gradient de-
scent algorithm to compute the optimal rate allocation
vector:

~xk+1 = Π
(
~xk + γk∇̂f (~xk)

)
, (4)

where γk is some positive gain parameter such that∑∞
k=0 γk = ∞, limk→∞ γk = 0 and Π is the projection

on the set {~x ∈ Rn+ :
∑
i xi ≤ µ}.

The study of such algorithms constitutes the field of
stochastic approximation, and there are known techni-
cal conditions on the sequences of gradient estimates
∇̂f(~xk) and gain parameters γk which guarantee con-
vergence of ~xk to a maximiser of the objective function
f . One example is the following lemma:

Lemma 7 (Benaim, [19]). Suppose that for some
q ≥ 2 supxk

E[||∇f(xk)−∇̂f(xk)||q] <∞ and
∑
k γ

1+q/2
k <

∞. Then the sequence (4) converges to a maximizer of
f a.s.

In the following, we will use the above lemma to guar-
antee the convergence of our algorithms to an optimal
allocation vector ~x under certain conditions. These con-
ditions are sufficient but not necessary; both our cen-
tralized and our distributed algorithms may converge
even if these conditions do not hold, as we illustrate in
Section 7.

6.2 A Centralized Implementation
We first assume the service provider knows the utility

functions ui and collects traces of user contacts. For ex-
ample, the mobile devices may log contacts and upload
their logs to their service provider; alternatively, the po-
sitions and collocations of users can be monitored (e.g.,
by triangulation). Both assumptions are removed in the
next section.
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As noted above, the service provider needs to know
the c.d.f. of the ages Yi in steady state to compute the
gradient. Lemma 2 suggests a way to estimate these
distributions from samples of the backwards latencies
sTij , i, j ∈ V . To begin with, by eq. (3), for i, j ∈ V ,

∂P~x(Yi < t)
∂xj

= E
[
(t− sij)+e

−
Pn

j=1 xj(t−sij)+
]

(5)

If the service provider has traces of user contacts, for
each i ∈ V , it can generate samples of sTij , j ∈ V ,
at different times T , by flooding messages from i over
the backwards contact process (e.g., by “running” the
contact traces backwards). In steady state (i.e., for
large T ), the empirical mean of the r.h.s. of (5) is an
unbiased estimator of ∂P~x(Yi<t)

∂xj
.

The gradient can then be estimated as follows:

∂̂f

∂xj
(~x) =

∫ ∞
0

n∑
i=1

̂∂P~x(Yi < u−1
i (t))

∂xj
dt

where ̂∂P~x(Yi<t)
∂xj

are the estimators of ∂P~x(Yi<t)
∂xj

, i, j ∈ V .
As the service provider collects more traces of user

contacts and generates more samples of backwards la-
tencies, it can adapt its allocation vector using (4). The
following lemma states that convergence to an opti-
mal solution can be guaranteed if the user utilities are
bounded and integrable (as, e.g., ua and ub of Fig. 1).
The proof can be found in Appendix A.6.

Lemma 8. Assume that the user utilities are bounded
and integrable ( i.e.,

∫∞
0
|ui(t)|dt < ∞). Then, the as-

sumptions of Lemma 7 hold for q = 2 and γk = 1/k.

6.3 A Distributed Implementation
The approach described in Section 6.2 relies on the

service provider collecting information on both the user
contacts and the utility functions ui, where i ∈ V .
While there are scenarios in which this can be done,
it is clearly appealing to avoid this requirement. We
now describe an alternative way of optimizing the rates
xi, which suppresses the need to learn the above quan-
tities.

The main step consists of obtaining an unbiased es-
timate of the derivative

∂

∂xi
E~x [uj(Yj(t))] (6)

of the expected utility of some user j, with respect to
the injection rate xi at a user i. To this end, we rely on
the following result of [20]. Let {Zt}t≥0 be a stationary
process driven by a Poisson process N with intensity
y > 0. To stress its dependency on process N , we write
Zt(N). Then, under suitable integrability assumptions,

∂

∂y
Ey [Zt(N)] = Ey

[∫ ∞
0

[Zt(N + δ0)− Zt(N)]dt
]
. (7)

In the above expression, Ey denotes the expectation
when the intensity of N is y, and N + δ0 denotes the
process consisting of the events in process N , plus an
additional event occuring at time 0.

In other words, an unbiased estimate of the derivative
in the left-hand side is given by the integral∫ ∞

0

[Zt(N + δ0)− Zt(N)]dt.

In our context, the process Zt is the instant system
utility,

∑
j uj(Yj(t)). Thus, the above expression can

be interpreted as the overall additional utility brought
to user j by an extra content injection at user i at time
0.

Let us see how this estimate can be computed in the
present context. To estimate the derivative of E~x[uj(Yj)]
with respect to xi, we proceed as follows. At some ar-
bitrary time instant, say at 0, user i generates a dummy
event, pretending to have received fresh information
from the service provider. From there on, it maintains
both its true age process Yi(t) and a dummy age process
Ỹi(t), which has been artificially set to zero at time 0,
but otherwise evolves as process Yi(t).

When two users k, ` meet, if k currently maintains
a dummy age process, it then communicates to ` both
its true and its dummy age; from there on, ` also runs
both a true and a dummy age process, Y` and Ỹ`. Note
that, for any user j, the two processes Yj and Ỹj will
eventually coincide (this is clearly enforced when the
service provider injects new content at j). Provided
that user j kept track of both its actual and its dummy
age process (from the time tstart when it first received
a dummy age till the time tend when the two processes
coincide), it can then locally compute the quantity

∆~x,i(j) :=
∫ tend

tstart

[
uj(Ỹj(t))− uj(Yj(t))

]
dt

=
∫∞

0

[
uj(Ỹj(t))− uj(Yj(t))

]
dt.

By the result (7) of [20], the quantity ∆~x,i(j) is an un-
biased estimate of (6). This quantity, being the over-
all increase in utility to user j due to the addition of
the dummy update at user i, is related to the notion
of a sample path shadow price introduced in Kelly and
Gibbens [21]. Indeed, they define this quantity as the
pathwise cost increase due to a particular packet. Thus,
the estimate ∆~x,i(j) above can be seen as the sample
path shadow utility at user j of the dummy update at
user i. Note that the creation of one dummy process by
user i allows all users j to evaluate the corresponding
estimate.

Fig. 2 illustrates how this estimate is effectively com-
puted if the utility at j is ua = 1Y <τ or ud = −Y , of
Fig. 1. For ua, the integral is simply the length of the
period during which Ỹj is below τ while Yj is above τ ,
consisting of at most one non-empty interval (t2− t1 in

7



����
����
����
����
����
����

����
����
����
����
����
����

Yj (actual)

timetstart t1

ag
e
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Figure 2: The original and dummy processes at
user j. If the utility at j is ua(Y ) = 1Y <τ , then
∆x,i(j) = t2− t1. If the utility is ud(Y ) = −Y , then
∆x,i(j) is equal to the shaded region.

Fig. 2). For ud, this integral is the area of one or more
parallelograms (shaded in Fig. 2).

It remains to communicate such estimates to the ser-
vice provider. For instance, this could happen whenever
the service provider injects new content. Given some
current choice ~x of rates, the service provider can com-
pute an unbiased estimate ∇̂f(~x) of the gradient of the
objective function f by taking its i-th coordinate to be

∂̂f

∂xi
(~x) =

∑
j

∆~x,i(j).

We can again show the convergence of the sequence
(4) provided that the utilities are again bounded and
integrable. In this case, we also place an additional
requirement on the time it takes to send a message from
user i to j. The proof can be found in Appendix A.7.

Lemma 9. Assume that the user utilities are bounded
and integrable. Moreover, assume that E[|`Tij |2] <∞ for
all T and for all i, j ∈ V , where `Tij the time it takes to
send a message from user i to j through flooding over
the forwards process. Then, the assumptions of Lemma
7 hold for q = 2 and γk = 1/k.

7. EMPIRICAL STUDY
We implemented the centralized algorithm of Sec-

tion 6.2 and used it to compute the optimal rate al-
location for two real-world data sets of human mobility
traces. The Infocom06 data set [22] contains oppor-
tunistic Bluetooth contacts between 98 iMotes, 78 of
which distributed to Infocom 06 participants and 20 of
which were static. We focused on a 10 hour period
during the first day of conference. The MIT data set,
collected by the Reality-Mining project [11], comprises
95 participants carrying GSM enabled cell-phones over
a period of 9 months. We consider, as in [22], that two
phones are in contact when they share the same GSM
base station. We exclude 12 users from our analysis, as
they were isolated. Due to memory size limitations, we
limited our analysis of the MIT data set to an 80 day
period.

10 20 30 40 50 60 70 80 90
0

2

4

6x 10
−5

User Index

se
c−

1

(a) µ = 5 × 10−5 sec−1

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2x 10
−3

User Index

se
c−

1

(b) µ = 0.0512 sec−1

10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02

User Index

se
c−

1

(c) µ = 0.8192 sec−1

10 20 30 40 50 60 70 80 90
0

0.04

0.08

User Index

se
c−

1

(d) µ = 6.5536 sec−1

Figure 3: Four optimal allocations for the util-
ity function ua(Y ) = 1Y <200 (Infocom06). Users
are indexed according to their contact rates, in
decreasing order. Although for small µ all up-
dates are injected at the user with the highest
contact rate, in (c) no updates are injected to
the highest contact rate users.

We assume that every user has the same utility (i.e.,
ui(Yi)=u(Yi)), where u is one of the functions ua and
uc shown in Fig. 1. For ua, we chose the threshold
value τ = 200sec. Although utilities uc are not inte-
grable (and, thus, Lemma 8 does not apply), our algo-
rithm converged for both utilities in both datasets. The
allocation found outperformed all other allocations we
obtained heuristically, as discussed below.

Fig. 3 presents the optimal rate allocation under ua
in the Infocom06 data set, for different values of µ. For
small µ, the optimal allocation tends to be skewed to-
wards users with high contact rates, as shown in Fig-
ures 3 (a) and (b). For both utility functions, the op-
timal allocation concentrates on a single user whenever
µ is less than 6.4 × 10−3sec−1 (i.e., one update every
2.6 minutes). We also observed this on the MIT data
set when µ is less than 4× 10−4 sec−1 (i.e., one update
every 41 minutes). Intuitively, the injection rate is con-
centrated on the most “central” user, i.e., the one from
which content is disseminated to all users the fastest.
In the Infocom06 data set, the most central user is also
the “most social” user, i.e. the one with the highest
contact rate. This is not the case however for the MIT
data set; the most central user had the third highest
contact rate.

For higher values of µ, more users are allocated posi-
tive rates. In the Infocom 06 dataset, we observe an
interesting phenomenon for utility ua when µ is be-
tween 0.2 and 0.8 sec−1. In this region, the injected
rate at the users with the top 8 contact rates is zero
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Figure 4: Four optimal allocations for the util-
ity function ua = 1Y <200 (MIT). Users are in-
dexed according to their contact rates, in de-
creasing order. For small µ, all updates are in-
jected to the user with the third highest contact
rate. The bias towards nodes with high contact
rates flips on the range [0.2 sec−1, 0.8 sec−1]:
in (c), users with high contact rates receive up-
dates less frequently than users with low contact
rates, though the difference is not as pronounced
as in Infocom 06.

(as in Fig. 3(c)), contradicting the intuition that very
“social” users should receive higher injection rates. In
fact, while for low values of µ the “most social” user ac-
cumulates all the injected rate, thus acting as a global
hub of all incoming information, in this region of µ it
receives all its updates from its neighbors. A similar
behavior is observed on the MIT dataset (see Fig. 4),
as well as for utilities ub.

Last, when µ is very large, the optimal rate alloca-
tion becomes uniform among all users. Intuitively, the
improvement provided by content sharing becomes neg-
ligible, as any user receives updates from its neighbors
at a rate much smaller than its injection rate. Thus, the
system behaves as if users were isolated (no sharing);
the concavity of the expected utility E~x[u(Yi)], implies
that, in this case, the optimal allocation is indeed the
uniform.

In Figures 5 and 6, we plot the ratio between the
social welfare achieved under several simple heuristics
and the optimal. The heuristics considered are (a) the
uniform allocation, (b) a skewed allocation, in which all
the injection rate is concentrated at the “most social”
user and (c) an allocation in which each user receives an
injection rate that is proportional to its aggregate con-
tact rate. For the Infocom06 data set, we also show the
fraction of users with content age below the threshold
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Figure 5: Ratio of social welfare of heuristic rate
allocations to the optimal in the Infocom06 data
set. Skewed is optimal for small µ, while for
large µ uniform becomes optimal.
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Figure 6: Ratio of social welfare of heuristic rate
allocations to the optimal in the MIT data set.
Skewed is not optimal for low µ, as the “most
central” user is not also the “most social”.

for ua in Table 1.
The comparison of the heuristic allocations confirms

the above observations. The skewed allocation performs
well for small values of µ, but not always optimally as
it may not select the most central user (see Figure 6).
Uniform is always optimal for large values of µ. Pro-
portional is sometimes the best among the three for in-
termediate values of µ. Moreover, from Table 1, we see
that the improvement under content sharing is signifi-
cant: when µ = 0.0128 (an update is injected every 78
sec), the expected number of users below the age thresh-
old grows from 2.5% to about a third of the network as
content sharing is used and service provider targets the
most central user. In contrast, when an update is in-
jected every 10 sec, 60% of the users on average receive
the content on time (instead of 19% without sharing),
and this is achieved when rates are allocated uniformly.

Our results highlight a transition depending on µ for
the optimal rate allocation from skewed to uniform.
These two simple heuristics perform well, but the so-
cial network plays an important role in selecting the
most central users, as well as when µ takes intermedi-
ate values.

8. CONCLUSIONS
Our results show that content updates can be dis-

tributed over a mobile social network in a scalable way.
Moreover, the social network can be successfully ex-
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µ (sec−1) no-sharing skewed prop. uniform optimal
0.0128 2.5% 34% 24% 30% 34%
0.0256 5.1% 42% 42% 37% 42%
0.1024 19% 46% 56% 60% 60%

Table 1: Expected fraction of users with age below 200sec in Infocom06.

ploited to obtain an optimal allocation of the service
provider’s aggregate injection rate.

We see several other applications that could be ex-
plored with our model. For instance, content updates
may actually be generated by the users, as opposed to
being injected by a service provider; such an application
is very appealing from a social networking perspective.
Our distributed method for computing the gradient im-
plies that such a system may support a pricing scheme.
This is because it essentially outlines how to compute
a user’s sensitivity to the injection rates of other users,
in a distributed manner.
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APPENDIX
A. PROOF OF TECHNICAL LEMMAS

A.1 Proof of Lemma 1
For a given T > 0, we define a backwards contact se-

quence from i to j as a sequence of pairs (a0, t0),. . . ,
(ak, tk) in V × R+ such that (a) a0 = i and ak = j,
(b) 0 = t0 ≤ t1 ≤ . . . ≤ tk and (c) for 1 ≤ ` ≤ k, user
a` contacts a`−1 on time T − t`. Intuitively, a back-
wards contact sequence indicates the path followed by
a packet originating at i until it reaches j, when packets
are flooded over the backwards process. Note that if a
backwards contact sequence (a0, t0), . . ., (ak, tk) from i
to j exists then j ∈ BTi (tk).

Consider w.l.o.g. a user j with sTij 6= ∞. The defi-
nition of BTi (t) implies that there exists a contact se-
quence (a0, t0),. . . , (ak, tk) from i to j such that t` =
sTia`

for 0 ≤ ` ≤ k. Intuitively, this sequence is the
route followed by the first message reaching j (in the
backwards process). At each contact, the age of a`−1 is
set to the minimum of its current age and the age of a`.
These minimizations imply (it can formally be shown by
induction over the backwards contact sequence) that

Yi(T ) ≤ sTij + Yj(T − sTij) ≤ sTij + Zj(T − sTij)

as Yj(t) ≤ Zj(t) for all t. Since the above is true for
any j in V ,

Yi(T ) ≤ min
j∈V
{sTij + Zj(T − sTij)}.

On the other hand, there must be a user, say j′, such
that the content at user i at time T was originally
downloaded by j′ at some time t ≤ T and reached
i through Content Sharing, so that Yi(T ) is T −
t. Then, there exists a backwards contact sequence
(b0, t′0), . . . , (bm, t′m) from i to j in so that (a) t′m < T−t
and (b) user j′ does not download the content from the
service provider in the interval (t, T − t′m]. We then
have that Yi(T ) = T − t = t′m + Zj′(T − t′m). Observe
that, by the existence of the above contact sequence,
j′ ∈ BTi (t′m) and, hence, sTij′ ≤ t′m. On the other hand,
observe that the function s−Zj′(T − s) is increasing in
s. For this reason we have that

Yi(T ) ≥ sTij′ + Zj′(T − sTij′) ≥ min
j∈V
{sTij + Zj(T − sTij)}

and the lemma follows.

A.2 Proof of Lemma 2
From Lemma 1, we have that

P~x(Yi(T ) > t) = P~x( min
j∈BT

i (t)
{sTij + Zj(T − sTij)} > t),

as, by definition, sTij > t for any j /∈ BTi (t). Hence,

P~x(Yi(T ) > t) = P~x
( ⋂
j∈BT

i (t)

(
Zj(T − sTij) > t− sTij

) )
.

Assume that the process is in steady state, i.e., the
contact and injection processes started at −∞. Re-
call that, as the aggregate injection process is a Poisson
process with rate µ, the injection processes at each user
j are Poisson processes with rates xj . It is a funda-
mental property of the Poisson process that these pro-
cesses are independent (see, e.g. [23]). As they are also
independent of the contact process, the random vari-
ables Zj(T −sTij), j ∈ V , are independent and exponen-
tially distributed with parameters xj , by the memory-
less property of the exponential distribution. Therefore,

P~x(Yi(T )>t) = E
[ ∏
j∈BT

i (t)

e−xi(t−sT
ij)
]

= E
[
e
−

P
j∈BT

i
(t)xi(t−sT

ij)
]

and the lemma follows as j ∈ BTi (t) iff sTij ≤ t. The
above derivation can also be repeated for P~x(Yi ≥ t) and
the equality is due to the continuity of the exponential
density.

A.3 Proof of Lemma 3
Suppose first that u ≥ 0. We then have that:

E~x[u(Yi)] =
∫ ∞

0

P~x(u(Yi) > z)dz =
∫ ∞

0

P~x(Yi ∈ u−1(Iz))dz

where u−1 the inverse mapping of h and Iz = (z,∞).
Since u is non-increasing, u−1(Iz) is either ∅,R+, an
interval of the form [0, y) or an interval of the form
[0, y]. In all four cases, P~x(Yi ∈ u−1

i (Iz)) is concave.
Hence E~x[ui(Yi)] is concave as the integral of a family
of parametrized concave functions over a positive mea-
sure. The above argument can be extended to real,
non-increasing functions u : R+→R by noting that,

E~x[u(Yi)] =
∫ ∞

0

P~x(u(Yi) > z)dz −
∫ 0

−∞
P~x(u(Yi) ≤ z)dz.

A.4 Proof of Lemma 5
Suppose that a message is placed in i at time T and

is propagated through flooding. For some j ≥ 0, let
Kj = inf{t s.t. |ATi (t)| ≥ j}, be the first time for which
at least j users have the message. Then, for 1 < j ≤ n,

P(|ATi (t)| < k) = P(Kj > t) ≤ P(
j−1∑
k=1

Bk > t), t ≥ 0

(8)

where Bk, 1 ≤ k < j are independent, exponentially
distributed random variables with parameters βk given
by βk = khG, for 1 ≤ k ≤ n/2, and βk = (n − k)hG
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for n/2 < k < n, and hG is the edge expansion of the
contact graph G. We prove this statement by induction
on j.

Proof of (8) . Let Tj = Kj+1 − Kj , for 1 ≤ j <
n, be the time between two consecutive increases of
|ATi (t)|. Then, by definition Kj =

∑j−1
k=1 Tk, 1 < j ≤ n.

For j = 2 the statement holds by the definition of hG.
Suppose that the statement is true for j = k, where
1 < k ≤ n. Then

P(Kk+1 ≥ t) = P(
k∑
j=1

Tj > t) = P(Tk +Kk ≥ t)

=
∫ ∞

0

P(Tk ≥ t− s | Kk = s)fKk
(s)ds (9)

Conditioned on ATi (Kk), Tk does not depend on Kk, so
where

P(Tk ≥ t− s | Kk = s) =
∑

A∈V,|A|=k

P(Tk ≥ t− s |ATi (Kk)=A)

· P(ATi (Kk) = A | Kk = s)

On the other hand, conditioned on ATi (Kk) = A ⊂ V
(where, by definition of Kk, |A| = k), Tk is the time
until a user within A contacts a user in Ac = V \ A.
This is exponentially distributed with rate vol(∂A) =∑
i∈A,j∈Ac qij , hence

P(Tk > t | ATi (Kk) = A) = e− vol(∂A)t.

We have vol(∂A) = vol(∂Ac), as qij = qji for all i, j ∈
V . Furthermore, by the definition of hG we have

vol(∂A) ≥ hG min(|A|, |Ac|)) ≥ hG min(k, n− k).

We thus get that P(Tk > t | Ai(Kk) = A) ≤ e−βkt

where βk as in (8) . As βk only depends on k, not on
A, we get that P(Tk ≥ t − s | Kk = s) ≤ e−βk(t−s)

for s ≤ t. Using the above bound in (9) and applying
Fubini’s Theorem yields the statement.

By induction over k we can show that P(
∑k−1
j=1 Bj >

t) = 1−(1−e−hGt)k−1, for 1 ≤ k ≤ n/2, and the lemma
follows.

A.5 Proof of Lemma 6.
BTi (t) ⊆ V and therefore, by Lemma 1,

Yi(T ) ≤ min
j∈BT

i (t)
{sTij+Zj(T−sTij)} ≤ t+ min

j∈BT
i (t)

Zj(T−t)

where the last inequality is true because sTij ≤ t for
j ∈ BTi (t) and s 7→ s + Zj(T − s) is an increasing
function. We therefore have that, for every t > 0,

E[Yi(T )] ≤ t+ E[ min
j∈BT

i (t)
Zj(T − t)]. (10)

Condition on BTi (t) = B ⊆ V . The r.v. minj∈B Zj(T −
t) is the elapsed time at T − t since a user j in B last

downloaded content from the service provider. Since
each user downloads new content independently accord-
ing to a Poisson process with rate µ/n, we have that

P( min
j∈BT

i (t)
Zj(T − t) > τ | BTi (t) = B) = e−µ|B|τ/n,

hence E[ min
j∈BT

i (t)
Zj(T − t)] = E[n/(µ|BTi (t)|)]. (11)

In steady state, by Lemma 4, BTi (t) is distributed as
ATi (t). From Lemma 5, the cardinality of the latter is
stochastically bounded from below by a truncated geo-
metric random variable, which implies that E[|BTi (t)|−1]
is upperbounded by⌊n

2

⌋−1

(1− e−hGt)b
n
2 c−1+

bn
2 c−1∑
k=1

(1− e−hGt)k−1e−hGt

k

≤
⌊n

2

⌋−1

(1− e−hGt)b
n
2 c−1 +

hGte
−hGt

1− e−hGt

as
∑n
k=1

xk

k ≤
∑∞
k=1

xk

k = − log(1 − x) for 0 < x < 1.
The lemma follows by replacing E[|BTi (t)|−1] with the
above bound in (11) and using (10) to bound E[Yi].

A.6 Proof of Lemma 8
The integrability assumption, along with the fact that

the utilities are decreasing, imply that the utilities are
positive. Observe that

|(t− sij)+e
−

Pn
j=1 xj(t−sij)+ | ≤ t. (12)

Hence, if ui(Y ) ≤ B for all Y ∈ R+, i ∈ V ,

| ∂f
∂xj
|2 = |

∫ B

0

n∑
i=1

∂P~x(Yi < u−1
i (t))

∂xj
dt|2

=

(
n∑
i=1

∫ B

0

∣∣∣∣∂P~x(Yi < u−1
i (t))

∂xj

∣∣∣∣ dt
)2

(12)

≤

(
n∑
i=1

∫ B

0

|u−1
i (t)|dt

)2

≤ (nC)2

for some C, as |u−1
i (t) are integrable. Hence, ||∇f(~x)||2

is bounded by n3C2 for all ~x. The same bound holds
for every evaluation of the estimator as well, so it also
holds for the variance in Lemma 7.

A.7 Proof of Lemma 9
Formally, we can define `Tij as

`Tij = inf{t | j ∈ ATi (t)},

where ATi (t) the forwards growth process of in Section
5.2.

The conditions on the utilities guarantee that |∇f(~x)|2
is bounded for all ~x (see proof of Lemma 8). On the

12



other hand

E[|∆~x,i|2] ≤ E[(
∫ tend

tstart

∣∣∣uj(Ỹj(t))− uj(Yj(t))∣∣∣ dt)2]

≤ 4B2E[|tend − tstart|2]

where B the bound on the utilities. Let k be a user such
that xk > µ/n (there exists at least one as

∑
xi = µ).

Let t∗ be the first time after tstart that k downloads
new content. Then

E[|tend − tstart|2] ≤ E[|t∗ − tstart|2] + E[|tend − t∗|2]

≤ 2n/µ+ E[|`t
∗

kj |2]

which is bounded.
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