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Abstract—In this paper we initially study degraded relay
channels with finite-length intersymbol interference (ISI). For
such channels, we show that the decode-and-forward strategy
achieves the capacity, and prove a special structure for the
capacity achieving distributions of the source and relay signals.
We also prove that a general memoryless relay channel used with
delayed feedback from the destination node to the relay node is
an instance of a degraded relay channel with ISI, and observe
that the delayed feedback from the destination node to the relay
node does not decrease the capacity compared to instantaneous
feedback. In all cases where the channel is used with delayed
feedback from the destination node to the relay node the decode-
and-forward scheme is optimal and the capacity is not decreased
by delaying the feedback from the destination node. We extend
these results to general (non-degraded) relay channels with ISI
to obtain upper and lower bounds on their capacities.

Index Terms − Relay channel, channels with memory, coopera-
tive communications, channel capacity, delayed feedback capac-
ity, feedback capacity, finite-state machine channels, intersymbol
interference (ISI).

I. INTRODUCTION

A model for the relay channel was introduced and studied

in the pioneering work by van der Meulen [1], [2], [3].

Substantial advances in the theory were made by Cover and

El Gamal, who developed two fundamental coding strategies

for the relay channel [4]. A combination of these strategies

achieves capacities for several classes of degraded memoryless

relay channels. Most of the work done so far was related to

memoryless relay channels with or without feedback. In this

paper we analyze the feedback capacity of the general relay

channel with finite length ISI, or equivalently with memory.

First in Section II we introduce the notation and the signal

models used in the paper. In Section III we describe the

degraded relay channel with memory and derive an expression

for its capacity. Section IV establishes the link between the

degraded relay channel with ISI and the general memoryless

relay channel used with delayed feedback. Section V gives

lower and upper bounds on the capacity of a general ISI relay

channel. Finally, Section VI concludes the paper.

II. NOTATION AND SIGNAL MODEL

In the following text, the uppercase letters represent random

variables (or vectors), while lowercase letters represent their

realizations. A random variable at discrete time i ∈ Z is

indexed by i (e.g., Xi). A vector of time-dependent variables is

denoted as Xj
i = [Xi, Xi+1, . . . , Xj ] and Xi = Xi

−∞. pX(x)
is the probability density function of the random variable X ,

pX,Y (x, y) denotes the joint probability of X and Y , while

pY |X(y|x) stands for the conditional probability of Y given X .

Throughout the paper we shall use the notational convenience

pX,Y (x, y) = p(x, y) or pY |X(y|x) = p(y|x), where the

dropped subscripts will be obvious from the arguments of the

function. To avoid cumbersome distinctions between discrete

and continuous random variables, we shall use use H(X) to

represent either the entropy of a discrete random variable,

or the differential entropy of a continuous random variable.

I(X; Y ) is the mutual information between the random vari-

ables X and Y . All the logarithms are base 2, so the measure

units for all information rates are bits.

The general relay channel with ISI of length m is de-

noted by (X × U , f(yi, vi|xi
i−m, ui

i−m),Y × V). In order

to better distinguish the input and output probabilities from

the channel transition probability, we denote the latter by

f(y, v|x, u). The channel consists of four sets: X ,U ,Y,V ,

and a collection of conditional probability (density) func-

tions f(yi, vi|xi
i−m, ui

i−m) on Y × V , one for each tuple

(xi
i−m, ui

i−m) ∈ Xm+1 × Um+1. The memoryless channel

(m = 0) is denoted by (X × U , f(yi, vi|xi, ui),Y × V).

III. DEGRADED RELAY CHANNEL WITH ISI

In this section we consider the degraded relay channel with

ISI of length m described in (Fig. 1).

Y n
1

Relay Encoder

V n
1 Un

1

f(vi|xi
i−m, ui

i−m)f(yi|vi, u
i
i−m)

Xn
1

Fig. 1. Degraded relay channel with memory m.

Definition 1: A relay channel with ISI of length m,

(X × U , f(yi, vi|xi
i−m, ui

i−m),Y × V) is said to be

physically degraded if its channel transition probability

f(yi, vi|xi
i−m, ui

i−m) can be written in the form

f(yi, vi|xi, ui) = f(vi|xi
i−m, ui

i−m)f(yi|vi, u
i
i−m).

Equivalently we see that if the relay channel is degraded,

then for any i, f(yi|vi, x
i
i−m, ui

i−m) = f(yi|vi, u
i
i−m), i.e.,

Xi
i−m → (U i

i−m, Vi) → Yi form a Markov chain. We next

characterize the capacity of a physically degraded channel with

ISI.
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Lemma 2: For time-invariant channels the capacity achiev-

ing input process is stationary.

Proof: The proof is given in [13].

�
Theorem 3: The capacity of the degraded relay channel

with ISI of finite length m, (X×U , f(yi, vi|xi
i−m, ui

i−m),Y×
V) is given by

C = lim
n↑∞

1
n

max
p(xn

1 ,un
1 )

min
{

I(Xn
1 , Un

1 ; Y n
1 ),

I(Xn
1 ; V n

1 |Un
1 )

}
, (1)

where the capacity achieving processes X and U are jointly

stationary.

Proof: Since the relay channel is degraded and time-

invariant, the expression for the feedback capacity fol-

lows directly from [4] if we replace (Xn
1 , Un

1 , Y n
1 , V n

1 ) by

(X, U, Y, V) and then let n ↑ ∞. The proof mimics that of

[4] with the only difference being that we need to use vectors
as signaling symbols, as described in [6]. To avoid a lengthy

proof, we only provide a sketch.

The code that achieves the capacity (1) uses the random-

binning proof described in [5]. We use the same block-Markov

method as in [4], however applied on vectors of length n.

First generate at random 2NnR0 independent and iden-

tically distributed (iid) N sequences of vectors of length

n, according to p(uN
1 ) =

∏N
i=1 p(ui) and index them as

uN
1 (s), s ∈ [1, 2NnR0 ]. Note that ui is a vector of length

n and uN
1 is a vector of length N × n that represents a

codeword (row) in the codebook. For each uN
1 (s), generate

2NnR conditionally independent N -sequences of vectors of

length n, and index them as xN
1 (w|s), w ∈ [1, 2NnR] drawn

according to p(xN
1 |uN

1 ) =
∏N

i=1 p(xi|ui(s)). We also need a

random partition S = {S1, S2, . . . , S2NnR0} of the message

set W = {1, 2, . . . , 2NnR} into 2NnR0 cells, with Si ∩ Sj =

∅, i �= j and

2NnR0⋃
i

Si = W . With a good choice of {C,S}, for

N large enough, the relay will know wi and the receiver will

know (wi−1, si) at the end of block i with probability of error

smaller than some ε > 0. Because of the memory of length

m, we transmit the following codewords of length N(n + m)
in block b

[ξ0, x1(wb|sb), ξ0, x2(wb|sb), . . . , ξ0, xN (wb|sb)]
[η0, u1(sb), η0, u2(sb), . . . ,η0, uN (sb)].

The vectors ξ0 and η0 are constant vectors of length m and

are known as the initial state of the channel if the channel is

a controllable state machine. In other words, at most m steps

are necessary to come back to the initial state. For example

ξ0 and η0 both could be the all-zero vectors of length m. The

relay/channel output in block b are

[Y1(b),γ1, Y2(b),γ2, . . . , YN (b),γN ]
[V1(b), ν1, V2(b), ν2, . . . , VN (b), νN ]

received according to

f(yN
1 , vN

1 , γN
1 , νN

1 |xN
1 (w|s), uN

1 (s), ξ0, η0)

=
N∏

i=1

f(yi, vi,γi,νi|xi, ui, ξ0, η0), (2)

where the factorization in (2) is possible because the

known vectors ξ0 and η0 decouple (yi, γi, vi, νi) from

(yi+1, γi+1, vi+1, νi+1). Then, following the same procedure

as in [4], using joint-typicality decoding based on vectors of

length n, we can show that as N ↑ ∞, we get that

(n + m)R < I(Xn
1 ; V n+m

1 |Un
1 , ξ0,η0)

and

(n + m)R < I(Xn
1 , Un

1 ;Y n+m
1 |ξ0, η0).

Since the relay channel is degraded, we may easily prove the

converse by applying the method from [4] on vectors of length

n.

Now we use the standard procedure where we let n → ∞,

so we have

C = lim
n↑∞

1
n + m

max
p(xn

1 ,un
1 )

min
{

I(Xn
1 , Un

1 ; Y n+m
1 |ξ0, η0),

I(Xn
1 ;V n+m

1 |Un
1 , ξ0, η0)

}

which is equivalent to (1) since m is finite and since the

initial state (ξ0, η0) of finite-length ISI channels does not

alter the information rate. Finally, Lemma 2 establishes joint

stationarity of X and U .

�
Expression (1) gives the capacity of a degraded relay chan-

nel with memory, however it is impractical for computation.

Our goal is to further characterize the capacity achieving

process and simplify expression (1).

Lemma 4: For the degraded relay channel with ISI

I(Xi; Vi|V i−1, Un) ≤ I(Xi; Vi|V i−1, U i).

Proof:

I(Xi;Vi|V i−1, Un)
= H(Vi|V i−1, Un) − H(Vi|Xi, V i−1, Un)
(a)
= H(Vi|V i−1, Un) − H(Vi|Xi, V i−1, U i)
(b)

≤ H(Vi|V i−1, U i) − H(Vi|Xi, V i−1, U i)
= I(Xi;Vi|V i−1, U i), (3)

where (a) follows from the fact that for all i, Vi is condition-

ally independent of Un
i+1 given V i−1 and Xi and (b) due to

the fact that conditioning reduces entropy.

�
In order to precisely characterize the capacity achieving

source, we will distinguish two types of sources. We call them

“type p” and “type q”. Type p will stand for a general source

p(xn
1 , un

1 ) =
n∏

i=1

p(xi|xi−1, un)p(ui|ui−1),
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while type q is a more constrained source derived from p and

defined as

q(xn
1 , un

1 ) �
n∏

i=1

p(xi|xi−1, ui)p(ui|ui−1).

We further underline the importance of the difference between

constrained sources of type q and general sources of type p.

Obviously sources of type q form a subset of all sources of

type p. We will show that the capacity achieving source must

be of type q. However, before we establish this formally, we

give an intuitive interpretation of this claim. For a general

source of type p, we have for any i

p(xi, ui|xi−1, ui−1) = p(xi|xi−1, ui)p(ui|ui−1, xi−1),

but for the source of type q, we have for any i

q(xi, ui|xi−1, ui−1) = q(xi|xi−1, ui)q(ui|ui−1). (4)

This reveals that under the probability law q, the process U is

allowed to evolve on its own without any dependence on the

process X , while the process X may be causally dependent

on U . So, under the probability law q, it is as if the source

node (X) is capable of observing the relay node signal U .

From [4] we know that this is possible by using the block

Markov coding strategy. A general source p does not have

this property. So, even though in (1) we may optimize over a

general source p, the maximum will be achieved by a source

of type q which we formally establish next.
In order to distinguish between two different mutual infor-

mation terms that are induced by two different input prob-

ability measures p and q, we denote them by Ip(·; ·) and

Iq(·; ·), respectively. We shall use the same notation for the

corresponding entropies, i.e., Hp(·|·) and Hq(·|·).
Lemma 5: For the degraded relay channel with ISI

Ip(Xi, U i; Yi|Y i−1) = Iq(Xi, U i;Yi|Y i−1) (5)

Ip(Xi, Vi|V i−1, U i) = Iq(Xi, Vi|V i−1, U i) (6)

= Iq(Xi, Vi|V i−1, Un). (7)

Proof: From the definition of q, we see that

q(xi|xi−1, un) = q(xi|xi−1, ui) for every i. This is

equivalent to

q(xi|un) = q(xi|ui) for every i.

Also, it is easy to see from the construction of the probability

measure q(·, ·) that q(xi|xi−1, ui) = p(xi|xi−1, ui), which, by

induction, leads to

q(xi|ui) = p(xi|ui) for every i.

We will use these equalities to prove the lemma.
Equation (5) holds since both conditional input probabilities

p(xi|ui) and q(xi|ui) give rise to the same joint probability

measure

p(yi, ui, xi) = p(yi|ui, xi)p(xi, ui)
= p(yi|ui, xi)p(ui)p(xi|ui)
= p(yi|ui, xi)p(ui)q(xi|ui)
= q(yi, ui, xi).

To prove (6) and (7) note that

Ip(Xi, Vi|V i−1, U i)
(a)
= Iq(Xi, Vi|V i−1, U i)
(b)
= Iq(Xi, Vi|V i−1, Un),

where (a) holds since both conditional input probabilities

p(xi|ui) and q(xi|ui) induce the same probability measure

p(vi, ui, xi) = p(vi|ui, xi)p(xi, ui)
= p(vi|ui, xi)p(ui)p(xi|ui)
= p(vi|ui, xi)p(ui)q(xi|ui)
= q(vi, ui, xi).

To prove equality (b) observe that

Iq(Xi, Vi|V i−1, U i)
= Hq(Vi|V i−1, U i) − Hq(Vi|Xi, V i−1, U i)
= Hq(Vi|V i−1, U i) − Hq(Vi|Xi, V i−1, Un). (8)

For the second entropy in (8) we use the fact that Vi is

conditionally independent of Un
i+1 given V i−1 and Xi. We

now show that Hq(Vi|V i−1, Un) = Hq(Vi|V i−1, U i) which

concludes the proof of (b).

Hq(Vi|V i−1, Un)

=
∫

vi,ui,un
i+1,xi

f(vi|xi, un)q(xi|un)p(ui)p(un
i+1|ui)

× log
p(un)

∫
x̂i

f(vi|x̂i, un)q(x̂i|un)dx̂i

p(un)
∫

x̂i−1

f(vi−1|x̂i−1, un)q(x̂i−1|un)dx̂i−1
dψ

=
∫

vi,ui,xi

f(vi|xi, ui)q(xi|ui)p(ui)

× log

∫
x̂i

f(vi|x̂i, ui)q(x̂i|ui)dx̂i

∫
x̂i−1

f(vi−1|x̂i−1, ui)q(x̂i−1|ui)dx̂i−1
dviduidxi

= Hq(Vi|V i−1, U i),

where for convenience of writing we use dψ = dvidundxi.

�
For future use, we combine Lemmas 4 and 5 into one

Corollary.

Corollary 6:

Ip(Xi, U i;Yi|Y i−1) = Iq(Xi, U i; Yi|Y i−1),
Ip(Xi, Vi|V i−1, Un) ≤ Iq(Xi, Vi|V i−1, Un)

= Iq(Xi, Vi|V i−1, U i). (9)

Theorem 7: The capacity of the degraded relay channel

with ISI memory of length m is

C = max
q

min
{

I(Xi
i−m, U i

i−m;Yi|Y i−1),
I(Xi

i−m; Vi|V i−1, U i)

}
, (10)

where the maximization is taken over the input distribution

q = p(xi|xi−1, ui)p(ui|ui−1).
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Proof: Starting from Theorem 3

C = lim
n↑∞

1
n

max
p(xn

1 ,un
1 )

min
{

I(Xn
1 , Un

1 ;Y n
1 ),

I(Xn
1 ; V n

1 |Un
1 )

}

(a)
= lim

n↑∞
1
n

max
p

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=1

I(Xi, U i; Yi|Y i−1),

n∑
i=1

I(Xi; Vi|V i−1, Un)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(b)
= lim

n↑∞
1
n

max
q

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=1

I(Xi, U i; Yi|Y i−1),

n∑
i=1

I(Xi; Vi|V i−1, Un)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(b′)
= lim

n↑∞
1
n

max
q

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=1

I(Xi, U i; Yi|Y i−1),

n∑
i=1

I(Xi; Vi|V i−1, U i)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(c)
= max

q
min

{
I(Xi, U i;Yi|Y i−1),
I(Xi; Vi|V i−1, U i)

}

(d)
= max

q
min

{
I(Xi

i−m, U i
i−m;Yi|Y i−1),

I(Xi
i−m; Vi|V i−1, U i)

}
.

Equality (a) follows from the chain rule for mutual infor-

mation that is applied to channels used without feedback,

equalities (b) and (b′) follow from Corollary 6 and the fact

that sources of “type q” form a subset of the sources of “type

p”, (c) from the stationarity of the optimal source (Lemma

2), while (d) follows from the fact that the channel has finite

memory m.

�
Comment: The directed information rate between two

random processes X and Y is given by [9], [10],

I(X → Y ) = lim
n↑∞

1
n

n∑
i=1

I(Xi;Yi|Y i−1),

and the causally conditioned directed information rate between

X and V given U , by [11]

I(X → V ‖U) =
1
n

lim
n↑∞

n∑
i=1

I(Xi; Vi|U i, V i−1).

Note that

I(Xi
i−m, U i

i−m; Yi|Y i−1) = I(X,U → Y )
I(Xi

i−m;Vi|V i−1, U i) = I(X → V ‖U).

Therefore, the capacity of the degraded relay channel with ISI

memory of length m could be written in a more compact form

as

C = max
q

min {I(X, U → Y ), I(X → V ‖U)} . (11)

IV. GENERAL MEMORYLESS RELAY CHANNEL USED WITH

DELAYED FEEDBACK

Consider now the general memoryless relay channel used

with noiseless delayed feedback from the destination to the

relay node, shown in Fig. 2. Since the feedback is noiseless, we

assume that the relay, before emitting the symbol Ui, knows

all previous channel output symbols Y i−d−1 without an error.

fU (vi−1, yi−1)

f(yi, vi|xi, ui)

Vi Ui

Xi

Dd
Yi Yi−d

Relay Encoder

Fig. 2. Relay channel used with feedback of delay d.

First note that any general memoryless relay channel used

with feedback of delay d is an instance of a degraded relay

channel with ISI of length d. To see this, let Ỹi = Yi−d and

Ṽi = (Vi, Yi−d). Then, from

f(ỹi, ṽi|xi, ui) = f(yi−d, vi|xi, xi−d, ui, ui−d)
= p(ỹi, ṽi|xi

i−d, u
i
i−d)

= p(ṽi|xi
i−d, u

i
i−d) p(ỹi|ṽi, x

i
i−d, u

i
i−d)︸ ︷︷ ︸

1

= p(ṽi|xi
i−d, u

i
i−d)p(ỹi|ṽi, u

i
i−d),

we conclude that the general memoryless relay channel used

with feedback of delay d is equivalent to a degraded relay

channel with memory d. In that case their capacities are given

by Theorem 7, i.e., the capacity of the general memoryless

relay channel used with feedback with delay d is

CFB(d) = max
q

min
{

I(Xi
i−d, U

i
i−d; Ỹi|Ỹ i−1),

I(Xi
i−d; Ṽi|Ṽ i−1, U i)

}

= max
q

min
{

I(Xi
i−d, U

i
i−d; Yi−d|Y i−d−1),

I(Xi
i−d; Vi, Yi−d|V i−1, Y i−d−1, U i)

}
, (12)

where q = p(xi|xi−1, ui)p(ui|ui−1).
Proposition 8:

CFB(d) = CFB(0).

Proof: Since we use a delayed feedback, it is true that

CFB(d) ≤ CFB(0).

Next we show that CFB(d) ≥ CFB(0). Let us calculate both

mutual information terms in (12) by using a memoryless

source p(xi|ui)p(ui). In that case we have

I(Xi
i−d, U

i
i−d;Yi−d|Y i−d−1) = I(Xi−d, Ui−d; Yi−d)

= I(Xi, Ui; Yi)
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and

I(Xi
i−d; Vi, Yi−d|V i−1, Y i−d−1, U i)

= I(Xi; Vi|Ui) + I(Xi−d;Yi−d|Vi−d, Ui−d)
= I(Xi; Vi|Ui) + I(Xi;Yi|Vi, Ui)
= I(Xi; Vi, Yi|Ui).

Since we use a particular class of memoryless sources

p(xi, ui), the maximization of these two mutual information

terms over this class of sources is a lower bound on CFB(d).

At the same time, from [4] we have

max
p(xi,ui)

min {I(Xi, Ui; Yi), I(Xi; Vi, Yi|Ui)} = CFB(0).

Hence,

CFB(0) ≤ CFB(d).

�
Note that similar reasoning could be also straightforwardly

applied to general relay channels with ISI. That means that

delaying the feedback does not decrease the capacity of any

general relay channel used with instantaneous feedback.

V. GENERAL RELAY CHANNELS WITH ISI

We are now in a position to establish lower and upper

bounds for the general (non-degraded) relay channel with ISI.

It is straightforward that the capacity of a degraded relay

channel with ISI is a lower bound for the capacity of the

general relay channel with ISI. It is also clear that the feedback

capacity is an upper bound for the capacity. Therefore,

C ≥ max
q

min
{

I(Xi
i−m, U i

i−m; Yi|Y i−1),
I(Xi

i−m; Vi|V i−1, U i)

}

C ≤ max
q

min
{

I(Xi
i−m, U i

i−m; Yi|Y i−1),
I(Xi

i−m; Vi, Yi|V i−1, Y i−1, U i)

}
,

where q = p(xi|xi−1, ui)p(ui|ui−1). These bounds are very

similar to [4], with the distinction that here the maximization

is over sources with memory of type q as defined in (4). We

can also characterize the bounds using the directed information

rate notation

C ≥ max
q

min{I(X, U → Y ), I(X → V ‖U)}
C ≤ max

q
min{I(X, U → Y ), I(X → Y, V ‖U)}.

Finally, similar to arguments given in Section IV, we can

show that for general relay channels with ISI, delaying the

feedback from the destination node to the relay node does not

reduce the feedback capacity, i.e.,

CFB(d) = CFB(0).

VI. CONCLUSION

We established that the decode-and-forward strategy

achieves the capacity of any degraded relay channel with ISI.

We also characterized the capacity achieving source distribu-

tion to consist of a freely running relay signal U (independent

of the source signal X), while the source signal X may

be causally dependent on the relay signal U . Any general

relay channel (with or without ISI) when used with (delayed)

feedback from the destination node to the relay node is an

instance of a degraded relay channel with ISI, so the (delayed)

feedback capacities can readily be established. We also showed

that the delayed feedback capacity equals the instantaneous

feedback capacity.
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