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1 Introduction

The explosion of interest in object-oriented approaches in the
last few years has led to a proliferation of definitions and inter-
pretations of this much-used and much-abused term. As a con-
sequence, it can be very difficult for a newcomer to understand
and evaluate what is meant when it is claimed that a program-
ming language or a piece of software or a user interface is “ob-
ject-oriented.” Do they all mean the same thing or not?

In this chapter we shall survey object-oriented approaches
as they are manifested in programming languages and systems
today. We shall see that what these approaches have in common
is that they all exploitencapsulation or “packaging” in various
interesting ways. Encapsulation has been traditionally impor-
tant in computer science for the simple reason that it is neces-
sary to decompose large systems into smaller encapsulated
subsystems that can be more easily developed, maintained and
ported. Object-oriented languages and systems formalize en-
capsulation and encourage programming in terms of “objects”
rather than “programs” and “data.” Each of these approaches
adopts a particular object model, depending on which proper-
ties of objects they need to encapsulate. A complete definition
of what it means to be object-oriented is therefore not possible,
though we can perhaps judge when one system or language is
“more” object-oriented than another.

In the following sections we shall first survey object models
as manifested by various object-oriented programming lan-
guages. Object-oriented concepts such as instantiation via ob-
ject classes, class inheritance, polymorphism, genericity, and
strong-typing in object-oriented languages will be shown to de-
pend ultimately on object encapsulation. We shall then briefly
consider systems that provide run-time support for objects and
for programmers building object-oriented applications.

2 Object-Oriented Programming
Languages

The first appearance of the notion of anobject as a program-
ming construct was inSimula, a language for programming
computer simulations [8]. This is not so surprising, since it is
quite natural to directly model the objects of a simulation as

software “objects.” More surprising is the discovery that soft-
ware objects can be useful not only for programming simula-
tions, but also for prototyping and application development.
This is the direction that was pursued by the Smalltalk system
[16], building upon the concept of anobject class introduced in
Simula.

Since object-oriented programming has been popularized
mainly through the Smalltalk effort, it is extremely tempting to
adopt ade facto definition of an object-oriented programming
language as one that supports both object classes and class in-
heritance (discussed below). We feel that this view is too re-
strictive, however, since there are many arguably object-orient-
ed approaches that do not depend on class inheritance. We
therefore suggest that any programming language that provides
mechanisms that can be used to exploit encapsulation is (at
least to some degree) object-oriented. By using such a loose
definition, we do not feel obliged to answer difficult questions
like, “Are Ada and Modula object-oriented?” Instead, we say
that you should ask, “In whatways are Ada or Modula object-
oriented (or not)?” By analogy, it is not so interesting whether
Prolog is “declarative” or “procedural,” but in which ways it is
declarative, and where the paradigm breaks down.

In passing, we should point out that another important way
in which one language can be “more” object-oriented than an-
other is in howhomogeneous the object model is. Is “every-
thing” an object? Are object classes themselves objects? Is
there a distinction between “user objects” and “system ob-
jects,” or between “active objects” and “passive objects”?
These distinctions are important if we wish to apply object-ori-
ented mechanisms (like class inheritance) and discover that
they are not valid for certain kinds of “objects.”

Object models for programming languages often encapsu-
late objects in terms of a set ofoperations as a visible interface,
while hiding the object’srealization (i.e., its data structures and
the implementation of the operations). To emphasize object in-
dependence, one often speaks of objects as communicating by
message passing. This is not so much an implementation strat-
egy as it is a paradigm for communication: one may not manip-
ulate or view an object’s hidden data; instead one sends a “mes-
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sage” to an object, and the object itself selects themethod by
which it will react to the message.

Once objects are encapsulated in this fashion, we can ex-
ploit encapsulation to provide, for example, the possibility of
multiple object instantiation, behavioural sharing through var-
ious inheritance mechanisms, verification of correct object us-
age through strong-typing, and structuring of resources in con-
current applications. Object-oriented programming languages
make iteasier to program with objects by providing language
constructs for defining useful kinds of objects. Our discussion
will center in turn on the issues of software reusability, object
types, and concurrency.

2.1 Reusability

Encapsulation of procedures, macros and libraries has been ex-
ploited for many years to enhance the reusability of software.
Object-oriented techniques achieve further reusability through
the encapsulation of programs and data. The techniques and
mechanisms we shall discuss here are primarily concerned
with paradigms for packaging objects in such a way that they
can be conveniently reused without modification to solve new
problems.

Instantiation and Object Classes

Instantiation is perhaps the most basic object-oriented reusabil-
ity mechanism. Every programming language provides some
built-in data types (like integers and floating-point numbers)
that can be instantiated as needed. Objects may either be stati-
cally or dynamically instantiated. Statically instantiated ob-
jects are allocated at compile-time and exist for the duration
that the program executes. Dynamically instantiated objects re-
quire run-time support for allocation and for either explicit
deallocation or some form of garbage collection.

The next step is to provide a way for programmers to define
and instantiate their own objects. This can be done by provid-
ing the programmer with a facility to defineobject classes, as is
the case in Smalltalk. An object class specifies a set of visible
operations, a set of hiddeninstance variables and a set of hid-
den methods which implement the operations. The instance
variables can only be modified indirectly by invoking the oper-
ations. When a new instance of an object class is created, it has
its own set of instance variables, and it shares the operations’
methods with other instances of its class.

A simple example is the classComplexNumber. The pro-
grammer would define an interface consisting of the arithmetic
operations that complex numbers support, and provide the im-
plementation of these operations and the internal data struc-
tures. It would be up to the programmer to decide, for example,
whether to use a representation based on Cartesian or polar co-
ordinates.

An alternative approach to instantiation is to useprototypi-
cal objects [19] rather than object classes as the “template”
from which new instances are forged. This is exactly what we
do when we make a copy of a text file containing a document
composed in a formatting language like TeX ~ or troff: we re-
use the structure of the old document, altering its contents, and
possibly refining the layout. This approach is useful to avoid a
proliferation of object classes in systems where objects evolve

rapidly and display more differences than similarities. The dif-
ference between object classes and prototypical objects is
brought out sharply when viewed in terms of applicable inher-
itance mechanisms (discussed next).

Inheritance

Inheritance has many forms depending on what we wish to in-
herit and when and how the inheritance takes place. In most
cases, however, inheritance is strictly areusability mechanism
for sharing behaviour between objects, not to be confused with
subtyping, which will be discussed in a later section. (Many of
the “problems” with inheritance arise from the discrepancy be-
tween these two notions.) The differences between the various
forms of inheritance can be loosely summed up in terms of the
following issues:

• Does inheritance occur statically or dynamically (at run-
time)?

• What are the clients of the inherited properties? (I.e.,
classes or instances of classes?)

• What properties can be inherited? (E.g., instance vari-
ables, methods, rules, values, etc.)

• Which inherited properties are visible to the client?

• Can inherited properties be overridden or suppressed?

• How are conflicts resolved?

We shall proceed with a brief overview of the more common
kinds of inheritance, starting with class inheritance, and con-
cluding with what we will calldynamic inheritance.

Class inheritance is often represented as the fundamental
feature that distinguishes object-oriented from other program-
ming languages. Although this may be a useful and simple
guide it over-emphasizes the importance of just one aspect of
object-oriented programming and therefore undercuts the con-
tributions of other languages that do not provide an explicit
mechanism for class inheritance. Nevertheless, class inherit-
ance is an important mechanism which, when properly applied,
can simplify large pieces of software by exploiting the similar-
ities between certain object classes.

The key idea of class inheritance is to provide a simple and
powerful mechanism for defining new classes that inherit prop-
erties from existing classes. Withsingle inheritance, asubclass
may inherit instance variables and methods of a singleparent
class, possibly adding some methods and instance variables of
its own. Suppose, for example, that we want to display our
complex numbers on a two-dimensional grid. We could then
define a subclassGraphicComplexNumber that inherits from
ComplexNumber and adds adisplay operation.

A natural extension to simple inheritance ismultiple inher-
itance, that is, inheritance of a subclass from multiple parent
classes. In this case we would view ourGraphicComplexNum-
ber as, say, a subclass of bothGraphicObject andComplex-
Number. Some languages that support multiple inheritance in-
clude Lisp with flavors [26], Mesa with Traits [11], Trellis/Owl
[32], and Eiffel [25].

At this point we get into some interesting fine points con-
cerning class inheritance. First, not all languages with class in-
heritance support multiple inheritance (Smalltalk-80, for ex-
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ample). Although multiple inheritance is not frequently re-
quired, it can be quite clumsy to make do without it. Second, it
is important to be able to override inherited methods. Adisplay
operation is quite specific to an object, and may have to be re-
implemented or altered for a subclass that inherits it.

Next, subclasses may or may not be permitted direct access
to inherited instance variables. Should a subclass, as a client of
the parent class it inherits from, be allowed to see what is nor-
mally hidden from regular clients of its parent? When a sub-
class adds a method that accesses inherited instance variables,
it effectively violates encapsulation of that parent. Consider
our GraphicComplexNumber. If its display operation makes
use of inherited instance variables, then we are no longer free to
alter the internal representation of the parentComplexNumber.
On the other hand, ifdisplay only makes use of inherited oper-
ations, such asxvalue andyvalue (which may in fact be com-
puted from polar coordinates), then we achieve greater inde-
pendence between subclass and parent.

A fourth point is the issue of name clashes in the presence of
multiple inheritance. If we inherit twodisplay operations,
which method do we take? Actually, this is a non-problem that
can easily be resolved by indicating precisely what is to occur
when adisplay operation is invoked. Either the system pro-
vides default rules for selecting one method or for combining
inherited methods, or it requires the programmer to explicitly
disambiguate. Similarly, inheritance of identically-named in-
stance variables from multiple parents poses no real problem
provided we separately inherit each variable, and we have a
means to distinguish them in new methods (for example, by
prefixing them with their parent class name).

The difficulties with access to “hidden” inherited properties
and with resolving inheritance clashes are most pronounced
when we must consider the possibility of changes to the class
hierarchy. If we wish to change the definition or implementa-
tion of an object class, how will this affect inheriting subclass-
es? Will the rules for resolving name clashes adversely affect
subclasses? Principles for evaluating “good” and “bad” inher-
itance mechanisms are discussed in [35]. Supporting modifica-
tions to class definitions is especially problematic when the ex-
isting instances of the modified classes and subclasses must be
preserved. This problem is known asschema evolution in ob-
ject-oriented databases, by analogy with schema evolution in
relational and other database systems. An approach to schema
evolution used in the Orion object-oriented database is de-
scribed in [7].

Inheritance has a slightly different flavour in the field of
knowledge representation. Object classes may then represent
knowledge or beliefs rather than software packages. (See also
[31] in this book.) An instance of a subclass, then, has all the
properties of its parents, and possibly more. A subclass is
viewed as aspecialization of its parents. For example, every-
thing that we know to be true about mammals also holds for hu-
mans, but not vice versa. Note that this means that every in-
stance of a subclass is also effectively a member of its parent
classes. This points out how specialization is distinct fromag-
gregation. It isnot valid to define a classCar that inherits from
Body, Frame, Wheels etc., since a car is not a wheel. AGraph-

icComplexNumber, however, is at once both aGraphicObject
and aComplexNumber. Inheritance in this case serves not only
as a reusability mechanism, but also as a conceptual structuring
mechanism.

An interesting variation on class inheritance is what we call
partial inheritance. In this case we inherit some properties and
suppress others. For example, we may define aQueue to inherit
from aList by inheriting instance variables and alength opera-
tion. We suppress, however, theinsert anddelete operations,
replacing them with, say,getfirst andputlast. In this case nei-
therQueue norList are subclasses of one another, but they are
undeniably related. Partial inheritance is therefore arguably
convenient for code sharing, but it can create a mess of a class
hierarchy. This mechanism is provided by both C++ [36] and
CommonObjects [34].

Class inheritance is essentially astatic form of inheritance:
new classes inherit properties when they are defined rather than
at run-time. Once a class has been defined, the properties of its
instances (instance variables and methods) are determined for
all time. Note that if we permit the re-definition of object class-
es at run-time (i.e., schema evolution), then instances and sub-
class instances will effectively inherit new properties. We do
not consider this an example of dynamic inheritance, however,
because class re-definition is not an operation on objects. By
analogy, modifying a database schema is not normally consid-
ered a database transaction. We must temporarily step out of the
object model in order to make dynamic changes to the inherit-
ance hierarchy.

We will usedynamic inheritance to refer mechanisms that
permit objects to alter their behaviour in the course of normal
interactions between objects. Dynamic inheritance, as opposed
to schema evolution, occurswithin the object model. We can
distinguish two fundamentally different forms of dynamic in-
heritance, which we will callpart inheritance andscope inher-
itance. The key difference is that the former occurs when an ob-
ject explicitly changes its behaviour by accepting new parts
from other objects, whereas the latter occurs indirectly through
changes in the environment.

Basically, part inheritance is nothing more than an exchange
of value between objects: an object that modifies an instance
variable necessarily changes its behaviour, though in a way that
is limited by its object class. But part inheritance is far more in-
teresting if we consider instance variables and methods them-
selves as values. In such a model, an object may dynamically
inherit new instance variables and methods from other objects.
An example of this kind of inheritance occurs in a system for
distributed problem-solving using “knowledge objects”
[39][10]. Evolving active objects can acquire new rules and
methods in response to events occurring in their environment.

More common is scope inheritance. In this case an object’s
behaviour is determined in part by its environment or its ac-
quaintances. When changes in the environment occur, the be-
haviour of the object changes. A simple example is that of a
paragraph in a document that inherits its font, type style, point
size and line width from its enclosing environment. If the same
paragraph is moved to a footnote or a quotation, new properties
will be inherited.
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Both forms of dynamic inheritance are possible within sys-
tems based on prototypical objects [19]. An object may have
instance variables and methods, but it may alsodelegate certain
messages to an acquaintance, called a prototypical object. Part
inheritance occurs when an object replaces an acquaintance to
which it delegates messages. Scope inheritance occurs when a
prototype changes its behaviour, implicitly affecting all the ob-
jects that delegate to it. Modification of a prototype is analo-
gous to modifying a class in a class-based language, but re-
quires no changes to the inheriting instances.

To illustrate that dynamic inheritance is not limited to proto-
typical objects, let us consider a new mechanism calleddynam-
ic subclassing. Suppose we have an instance of aComplex-
Number, and we want to display it. Unfortunately it does not
have adisplay method. What we really want is an instance of
GraphicComplexNumber. With dynamic subclassing, we
would temporarily re-package the originalComplexNumber as
aGraphicComplexNumber, perform thedisplay operation, and
then discard the shell. Although dynamic subclassing is not
supported by any object-oriented language, it can easily be
simulated by implementing aGraphicComplexNumber as an
object containing the identifier of aComplexNumber, and dele-
gating all messages other thandisplay. When we enter the
scope in which we want to display the object, we create a new
GraphicComplexNumber initialized to point to the oldCom-
plexNumber, and simply release it when we are done. (The
point of dynamic subclassing is to be able to provide a standard
mechanism for extending the behaviour of objects at run-time
in way that is independent of the application that uses it: the
new display operation can be added to anyComplexNumber
anywhere.)

Polymorphism and overloading

A polymorphic function is one that can be applied uniformly to
a variety of objects. For example, the same notation may be
used to add two integers, two floating point numbers, or an in-
teger and a float. Similarly, the addition function for a program-
mer-defined complex number type may also be able to cope
with the addition of complex numbers to integers or floats, pro-
vided that the handling of these combinations is defined. In
these cases the “same” operation maintains its behaviour trans-
parently for different argument types.

On the other hand, the operationopen may apply to both
data streams and windows. Here we are concerned with two op-
erations that coincidentally share a name, and otherwise have
completely different behaviour. This isad hoc polymorphism,
or “mere” overloading of operation names [9]. This kind of
polymorphism is nevertheless useful, but can lead to unpleas-
antness if abused. It is up to the programmers to choose mean-
ingful names for operations, and to avoid reusing names that
can be misinterpreted.

Class inheritance is closely related to polymorphism. The
same operations that apply to instances of a parent class also
apply to instances of its subclasses. Of course, it is possible to
have support for polymorphism without class inheritance. In
Unix, for example, the paradigm of a file (or data stream) is om-
nipresent: the operationsopen, read, write and close apply
polymorphically to any “stream” object. In each case different

methods are used to implement these operations. In an object-
oriented Unix, every stream object class would inherit methods
from a generic stream class, and tailor those specific to the new
kind of stream.

Polymorphism enhances software reusability by making it
possible to implement generic software that will work not only
for a range of existing objects, but also for objects to be added
later. ASorter will sort any list of objects that support a com-
parison operator, just as software written for Unix streams will
continue to work if we add a new kind of stream object.

Polymorphism may or may not impose a run-time overhead
depending on whetherdynamic binding is permitted by the pro-
gramming language. If all objects are statically bound to vari-
ables, we can determine the methods to be executed at compile-
time. For example, the addition of an integer expression to a
floating-point expression is normally detected by the compiler
which then generates the appropriate code for that kind of addi-
tion. In this case polymorphism is little more than a syntactic
convenience. On the other hand, if variables can be dynamical-
ly bound to instances of different object classes, some form of
run-time method lookup must be performed. In Smalltalk, for
example, it may be necessary to search through the class hier-
archy at run-time to find the method of an inherited operation.
The cost of dynamic binding can be much lower, of course,
with the result that there will be more work involved when
modifying a method inherited by many subclasses. In both
Simula and C++, the designer of an object class may decide that
dynamic binding is to be permitted, and thus declare certain op-
erations asvirtual functions. Subclasses can specify implemen-
tations of virtual functions, and invocation of these functions
on instances will be resolved at run-time depending on the class
to which the instance belongs.

Generic classes

Whereas the mechanism of class inheritance achieves software
reusability by factoring out common properties of classes in
parent classes, generic object classes do so by partially describ-
ing a class and parameterizing the unknowns. (For a good dis-
cussion of the relationship between inheritance and genericity
in a strongly-typed setting, see [25].) These parameters are typ-
ically the classes of objects that instances of the generic classes
will manipulate. There are basically two categories of generic
object: homogeneous “container” objects, like arrays and lists,
that operate on any kind of object, and “tool” objects, like sort-
ers and editors, that can only operate on certain object classes.

In the case of tool objects, the parameter must be con-
strained to indicate the required parent class of the parameter. A
generic sorter, for example, could only sort objects with a com-
parison operator, that is, instances of some subclass of the class
TotallyOrdered. The sorter object can then exploit polymor-
phism to apply uniformly to all objects that satisfy the con-
straint. This idea of constrained parameters works well in a
typed object-oriented language, as we shall see shortly.

Even when the parameter is not important for the generic
object itself, it can be useful for maintaining homogeneous col-
lections. AList object, for example, may be capable of storing
any kind of object, but when used by theSorter object, it is im-
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portant to guarantee that onlyTotallyOrdered objects are in-
serted in the list.

Depending on the nature of the parameters, it may or may
not be possible to compile generic classes before the parame-
ters are bound. For example, the code for aList object could be
pre-compiled if implemented using pointers to the elements,
but theSorter object might need to statically bind the compari-
son operator in order to achieve reasonable performance. In the
latter case, a generic class is similar to a macro.

2.2 Object Types

An object type is superficially the same thing as an object class.
The difference is that when we manipulate typed objects, we
would like to statically verify that we are doing so in a consis-
tent fashion. With static type-checking we can eliminate the
need for objects to protect themselves from unexpected mes-
sages.

Languages like Clu [22] and Ada [1] support the definition
of abstract data types but provide no mechanisms for class in-
heritance. In other words, there are languages that are legiti-
mately “object-oriented” (i.e., oriented towards programming
in terms of objects), yet support a very different style of pro-
gramming from that encouraged by languages like Smalltalk or
Lisp with flavors. More recently several attempts have been
made to unify object classes and object types. Languages like
C++, Trellis/Owl and Eiffel are both object-oriented in the
Smalltalk sense as well as being strongly-typed.

The traditional approach to type-checking in languages with
user-defined object types is to insist that the types of expres-
sions supplied to operation invocations and to assignments
must correspond exactly to the expected type. In object-orient-
ed languages with polymorphic operations and dynamic bind-
ing, we must cope with the fact that some types may be equiva-
lent, or included in other types. In this case, the declared types
of variables and of arguments to operations serve asspecifica-
tions for valid bindings and invocations. Informally, one type
conforms to a second if some subset of its interface is identical
to that of the second. We also say that the first is asubtype of the
second. They areequivalent if they conform to one another.
What constitutes the interface of an object type depends on the
particular type model chosen for a language, but normally in-
cludes operation names and the types of the arguments and re-
turn values. These issues are discussed in detail in the context
of functional programming languages in [9].

We can more clearly interpret the difference between object
classes and object types if we view the latter purely as specifi-
cations. In the presence of dynamic binding it is (in general)
impossible to statically determine the class of a variable, but
with the appropriate type rules, we can still perform type-
checking. For example, if we consider the expression:

x <- y + z

then we can statically determine whether this expression is
type-correct, without knowing the classes of the instances that
x, y and z will be bound to (they may change). First, we exam-
ine the declared type of y and see if it supports the operator +. If
so, we check if the type of z is valid for an argument. Then, the
type information of y will tell us the type of y+z (but not its

class). If this type conforms to the type of x (i.e., if y+z supports
at least the interface required by x), then the expression is type-
correct.

Many variations on this basic scheme are possible. If dy-
namic binding is not supported then an object type will always
uniquely determine an object class. For primitive objects (like
integers) one may also insist on information about the repre-
sentation of instances. At the opposite extreme in an “untyped”
object world all objects have the same type,object, and will ac-
cept any message, though their response may be unpredictable.

Note that class hierarchies arenot the same as type hierar-
chies, although they may overlap. Two classes may be equiva-
lent as types, though neither inherits anything from the other.

Type information can be extremely useful for generic object
classes. For example, our genericSorter object will only be
able to sortTotallyOrdered classes. This constraint is in fact a
type constraint, since we do not care what class the objects to be
sorted belong to, only whether a total order is defined. Our pro-
gramming language should then verify that whenever aSorter
is instantiated, the type parameter must be bound to an object
class that satisfies the constraint, e.g.:

var s : Sorter of integer ;

where the classinteger conforms to the typeTotallyOrdered.

2.3 Concurrency

There are two ways in which concurrency and communication
have traditionally been dealt with in programming languages:

1. Active entities (processes) communicate indirectly
through shared passive objects.

2. Active entities communicate directly with one another
by message passing.

The first approach is typical of languages like Modula-2 [40],
whereas the second is adopted by, for example, Thoth [15] and
various Actor languages [2]. (See [5] for an excellent survey of
concurrent programming languages and notations.) These
same approaches are used in object-oriented programming lan-
guages in order to structure concurrent applications, though
they result in different object models.

If we adopt the first approach, it is quite natural to structure
the shared memory as a collection of passive objects and to
view a process as a special kind of activeProcess object. We re-
quire that actions on the passive objects be performed accord-
ing to their declared interface. For this approach to work, we
must have some mechanism whereby the active objects may
synchronize their accesses to the shared objects. This may be
through the use of semaphores or locks as in Smalltalk and
Trellis/Owl [27], or through the use of monitors (as in Modula-
2) or transactions as in Avance (formerly OPAL) [3]. This ap-
proach is necessarily non-homogeneous, that is, the object
model contains two fundamentally different kinds of objects:
active and passive. Furthermore, it is not possible to directly in-
teract with the active objects, at least not using the same para-
digms for interaction that apply to passive objects: two active
objects can only communicate through a passive intermediary.
Finally, it is not possible to extend this model to a distributed
environment without employing some form of hidden message
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passing. This suggests that the second approach is in some
sense more general.

Considering the second approach, we permit any object to
communicate with any other object. Objects become “active”
in response to a communication. In effect, threads of control are
determined implicitly by message passing, whereas in the first
approach each thread of control was localized in an explicit
Process object. Explicit synchronization is not required since
message passing packages both communication and synchro-
nization, but we must make a choice as to what style of message
passing to adopt. For example, message passing may be syn-
chronous as in POOL-T [4] or buffered, as between top-level
objects inHybrid [28]. Similarly, we may permit uni-direction-
al message passing as in Act-1 [20], or we may insist on acall/
return protocol as in Hybrid and ConcurrentSmalltalk [41]. We
may also find it useful to provide anexpress mode of message
passing for interrupting active objects as in ABCL/1 [42].

In either case, it is possible to accommodate the various re-
usability mechanisms we have discussed as well as an extend-
ible type system. With the message-passing model we interpret
strong-typing to mean that a message-passing expression is
type-correct if the message being sent is guaranteed to be valid
for the recipient. Similarly, we can support an untyped view, if
all objects are prepared to handle any message sent to them.
Run-time support for concurrent applications can be quite dif-
ferent for these two object models, as we shall see in the follow-
ing section. For a more detailed look at approaches to concur-
rency in object-oriented languages, see [38] in this book.

3 Object-Oriented Systems

Our discussion thus far has focussed on object-oriented pro-
gramming language constructs and mechanisms, without con-
sideration for run-time support for objects, or for tools to aid
programmers in constructing object-oriented applications. In
this section we shall provide a brief overview of two important
kinds of object-oriented system: those that provide run-time
support for object-oriented applications, and those that com-
prise an environment for object-oriented software develop-
ment.

3.1 Object management

Object management refers to a mixed bag of run-time issues
such as object-naming, persistence, concurrency, distribution,
version control, security, and so on. The amount of support pro-
vided or required depends very much on the intended applica-
tion domain. At the low end we have single-user, single-thread
applications with minimal persistence requirements, and at the
high-end we have distributed, concurrent, multi-user applica-
tions with support for evolving software. In either case objects
reside in a “workspace” which may be local and private, or dis-
tributed and shared.

Minimal object management support is provided for C++
objects. Objects may be allocated and freed in virtual memory.
Memory addresses serve as object identifiers. There is no sup-
port for garbage collection, persistence, concurrency or distri-
bution. The result is a very lean language and object environ-
ment that imposes very little run-time overhead for objects,

without preventing the programmer from defining various ex-
tensions (for persistence, concurrency, etc.).

Smalltalk and Lisp additionally provide for automatic gar-
bage collection, and implement a trivial form of persistence by
permitting users to save the (single-user) object workspace.
Since there is no provision for communication between objects
in different workspaces, there is no need to worry about main-
taining global consistency in a distributed environment. Persis-
tence for distributed object applications must cope with the
possibility of local failures: if a message sent between work-
spaces is lost, or if either the sender or receiver is accidentally
destroyed, then we risk a global inconsistency. Means for deal-
ing with these problems are suggested by two traditional fields:
operating systems and database systems.

An object-oriented operating system may provide support
for persistence, resilience, reliable communication or distribut-
ed object-naming at a low level. For example, Chorus [43] and
Mach [17] provide kernel support for distributed object-orient-
ed systems. Argus is a programming language with operating
system support for persistence, encapsulation and distribution
through the concept ofguardians [21]. LOOM provides a large
object-oriented memory for Smalltalk systems [18].

Most of the object management issues we have mentioned
are addressed in some way or another by traditional database
technology. It is therefore natural to try and see whether this
technology can be transferred to problem of managing objects.
An object-oriented database is therefore a system that provides
database-like support (i.e., for persistence, transactions, query-
ing, etc.) forobjects, that is, encapsulated data and operations.
Some examples are the GemStone system from Servio Logic
[24][30], Orion from MCC [6], and Iris from Hewlett-Packard
Labs [12][14].

Although object-oriented databases are being built and have
clearly practical applications, there are several open problems
in this area. First of all, there is no agreement as to a standard
data model for object-oriented databases. We do not have the
equivalent of relational algebra for an object-oriented data
model, and we therefore have no standard guidelines for de-
signing object-oriented databases. This is to be expected, since
we have no corresponding agreement as to what mechanisms
belong in an object-oriented programming language, or what
the rules for encapsulation or inheritance should be. For this
reason it is also difficult to decide on a standard query language
for objects. Should we be permitted to query on attributes (i.e.,
instance variables), and if so, how does that square with the
principle of encapsulation? (With typical applications for
which object-oriented databases have been designed, like
CAD/CAM, querying on attributes may be precisely what we
want to do, but what about other application domains?) Finally,
should we consider object-oriented databases as providing a
complete picture of executing applications, or are they better
seen as repositories for persistent objects? In particular, can we
view active objects as executingwithin the database (as they do
inside a Smalltalk workspace) or should we adopt a more tradi-
tional database view in which running applications (i.e.,
threads) are explicitlyoutside the database?
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3.2 Object-oriented programming

environments

Another significant category of object-oriented system is that
of tools and environments for application development. Ob-
ject-oriented programming promises a great deal in terms of
easing the cost of building applications; our ability to realize
this promise depends largely on whether or not objects are truly
reusable. This implies that we not only need powerful mecha-
nisms and paradigms for reusability (such as those provided by
object-oriented languages), but we need tools to help us design
objects, to select and reuse objects, and to manage an evolving
software base.

Object design is a software engineering issue: how should
we decompose our application into objects in such a way as to
best exploit the object-oriented paradigms available to us? This
task can be supported to some extent by applying conceptual
modeling techniques from the database area to object design.
An example of such an approach is described in [23]. See also
[13] in this book.

The next major problem is that of selecting objects from the
software base that may be useful for building your application
(ideally this would be carried out in tandem with the design
task). Here a programmer would normally rely on three things:
his personal expertise, software documentation, andbrowsing
tools. Smalltalk, Trellis [29] and Cedar [37] are examples of
programming environments that provide tools for browsing the
available software base. The real difficulty is that human exper-
tise cannot realistically cope with a large, evolving software
base. Perhaps one can manage to remember the 300 fundamen-
tal Smalltalk object classes, or even a couple of thousand gen-
erally useful object classes, but how are we to cope with tens of
thousands of object classes available perhaps from different
vendors? The object selection problem is similar to that of per-
forming a literature search. We depend heavily on services to
classify objects and to maintain cross-references in the face of
updates.

Finally, an object-oriented programming environment must
cope with evolution of the software base. There are two ways in
which it can do so. The first is by providing software manage-
ment tools that maintain global consistency. When changes are
made to the software base, it is important to ensure that these
changes are properly distributed. The problem of managing
software evolution in object-oriented systems is especially in-
teresting in the face of class inheritance and subtyping [33]. As
long as the interface to an object class is not modified, we have
considerable freedom in modifying its realization. When the
interface is changed, however, we fall into a snake pit of inval-
idated references between object classes.

The second problem with evolution is essentially Darwini-
an: how do we encourage “survival of the fittest”? If prototyp-
ing and application development are really much easier with a
well-designed software base, how do we make sure that the
right objects end up there? This suggests that we should take
more of a long range view of application development: when-
ever we can’t find the objects we need to solve our problem in
the software base, either we need new objects, or we need to
modify old ones. What we do not know is how to make sure that

the new objects will not only solve our problem, but will also
give us a “better” software base.

Summary

We have put forward the proposition that the termobject-ori-
ented is best interpreted as referring to any approach that ex-
ploits encapsulation or “packaging” in the process of designing
and building software. With this premise in mind, we have sur-
veyed object-oriented techniques in programming languages
to enhance software reusability, to enhance maintainability and
robustness through extendible type systems, and to ease the de-
velopment of concurrent and distributed applications. We have
also given a brief overview of the issues in providing run-time
support for objects, and in providing programming environ-
ments for the development of object-oriented software.

We have not discussed other applications of object-oriented
concepts, for example, in the area of user interfaces. (Direct
manipulation interfaces provide the user with the illusion that
the objects of the application are being “directly” manipulated
by a set of polymorphic operators: move, copy, delete, resize,
etc.)

Object-oriented languages and systems are a developing
technology. There can be no agreement on the set of features
and mechanisms that belong in an object-oriented language
since the paradigm is far too general to be tied down. (What fea-
tures belong in a declarative language?) The idea of using ob-
jects to model software is a natural one that will inevitably ap-
pear and reappear in various forms; we can expect to see new
ideas in object-oriented systems for many years to come.
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