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1 Introduction software “objects.” More surprising is the discovery that soft-
ware objects can be useful not only for programming simula-
tions, but also for prototyping and application development.
This is the direction that was pursued by the Smalltalk system
[16], building upon the concept of ahject classntroduced in
Simula.

The explosion of interest in object-oriented approaches in:
last few years has led to a proliferation of definitions and int:
pretations of this much-used and much-abused term. As a ¢
sequence, it can be very difficult for a newcomer to underst:
and evaluate what is meant when it is claimed that a progr
ming language or a piece of software or a user interface is“  Since object-oriented programming has been popularized
ject_oriented_" Do they all mean the same thing or not? mainly through the Smalltalk effort, itis extremely tempting to

In this chapter we shall survey object-oriented approaciadom ade factodefinition of an object—oriented programming .
as they are manifested in programming languages and SystIanguage as one that supports both object clgssgs apd class in-
today. We shall see that what these approaches have in comheritance (discussed below). We feel that this view is too re-
is that they all exploiencapsulatiorr “packaging” in various strictive, however, since there are many arguably objgct—orlent—
interesting ways. Encapsulation has been traditionally imp€d @Pproaches that do not depend on class inheritance. \We
tant in computer science for the simple reason that it is nectherefore suggestthatany programming language that provides
sary to decompose large systems into smaller encapsul;meCha”'SmS that can be_used Fo exploit enc_apsulatlon is (at
subsystems that can be more easily developed, maintained!€@St {0 some degree) object-oriented. By using such a loose
ported. Object-oriented languages and systems formalize Qeﬂnmon, we do not feel obhg_ed to answer difficult questions
capsulation and encourage programming in terms of “objecl'ke’ “Are Ada and Modula object-oriented?” Instead, we say
rather than “programs” and “data.” Each of these approacithat you should ask, “In whataysare Ada or Modula object-
adopts a particular object model, depending on which Ioroporlented (or not)?” By analogy, it is not so interesting whether

ties of objects they need to encapsulate. A complete definitP0l0g is “declarative” or “procedural,” but in which ways it is
of what it means to be object-oriented is therefore not possiideclarative, and where the paradigm breaks down.
though we can perhaps judge when one system or langua¢ In passing, we should point out that another important way
“more” object-oriented than another. in which one language can be “more” object-oriented than an-
In the following sections we shall first survey object modeother is in howhomogeneouthe object model is. Is “every-
as manifested by various object-oriented programming Ihing” an object? Are object classes themselves objects? Is
guages. Object-oriented concepts such as instantiation viathere a distinction between “user objects” and “system ob-
ject classes, class inheritance, polymorphism, genericity, §ects,” or between “active objects” and “passive objects™?
strong-typing in object-oriented languages will be shown to cThese distinctions are important if we wish to apply object-ori-
pend ultimately on object encapsulation. We shall then brieented mechanisms (like class inheritance) and discover that
consider systems that provide run-time support for objects ithey are not valid for certain kinds of “objects.”
for programmers building object-oriented applications. Object models for programming languages often encapsu-
2 Object-Oriented Programming Iatg obj.e(_:ts in terms ofa S(Iatap‘.erat.ions.as a visible interface,
Languages Whl|.e hiding the iject’ﬂaal|zat|oq(|.e., its data strugtures _and.
the implementation of the operations). To emphasize object in-
The first appearance of the notion ofabjectas a program- dependence, one often speaks of objects as communicating by
ming construct was isimulg a language for programmingmessage passinghis is not so much an implementation strat-
computer simulations [8]. This is not so surprising, since itegy as itis a paradigm for communication: one may not manip-
quite natural to directly model the objects of a simulation ulate or view an object’s hidden data; instead one sends a “mes-
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sage” to an object, and the object itself selectsrtbhodby rapidly and display more differences than similarities. The dif-
which it will react to the message. ference between object classes and prototypical objects is
Once objects are encapsulated in this fashion, we can brought out sharply when viewed in terms of applicable inher-
ploit encapsulation to provide, for example, the possibility itance mechanisms (discussed next).
multiple object instantiation, behavioural sharing through ve
ious inheritance mechanisms, verification of correct object |
age through strong-typing, and structuring of resources in cInheritance has many forms depending on what we wish to in-
current applications. Object-oriented programming languacherit and when and how the inheritance takes place. In most
make iteasierto program with objects by providing languagcases, however, inheritance is stricthgasabilitymechanism
constructs for defining useful kinds of objects. Our discussifor sharing behaviour between objects, not to be confused with
will center in turn on the issues of software reusability, objesubtypingwhich will be discussed in a later section. (Many of

Inheritance

types, and concurrency. the “problems” with inheritance arise from the discrepancy be-
. tween these two notions.) The differences between the various
2.1 Reusability forms of inheritance can be loosely summed up in terms of the

Encapsulation of procedures, macros and libraries has beerfollowing issues:

ploited for many years to enhance the reusability of softwa « poes inheritance occur statically or dynamically (at run-
Object-oriented techniques achieve further reusability throu time)?

the encapsulation of programs and data. The techniques
mechanisms we shall discuss here are primarily concer
with paradigms for packaging objects in such a way that tF
can be conveniently reused without modification to solve ni
problems.

« What are the clients of the inherited properties? (l.e.,
classes or instances of classes?)

* What properties can be inherited? (E.g., instance vari-
ables, methods, rules, values, etc.)

* Which inherited properties are visible to the client?

e Caninherited properties be overridden or suppressed?

Instantiation is perhaps the most basic object-oriented reuse ;
. ; . : How are conflicts resolved?
ity mechanism. Every programming language provides so _ i )
built-in data types (like integers and floating-point numberVVe shall proceed with a brief overview of the more common
that can be instantiated as needed. Objects may either be Kinds of inheritance, starting with class inheritance, and con-
cally or dynamically instantiated. Statically instantiated olcluding with what we will caltlynamic inheritance
jects are allocated at compile-time and exist for the durati  Class inheritance is often represented as the fundamental
that the program executes. Dynamically instantiated objectsfeature that distinguishes object-oriented from other program-
quire run-time support for allocation and for either explicming languages. Although this may be a useful and simple
deallocation or some form of garbage collection. guide it over-emphasizes the importance of just one aspect of

The next step is to provide a way for programmers to defobject-oriented programming and therefore undercuts the con-
and instantiate their own objects. This can be done by protributions of other languages that do not provide an explicit
ing the programmer with a facility to defiobject classesas is mechanism for class inheritance. Nevertheless, class inherit-
the case in Smalltalk. An object class specifies a set of visi@NCe is an important mechanism which, when properly applied,
operations, a set of hidderstance variableand a set of hid- ¢an simplify large pieces of software by exploiting the similar-
den methodswhich implement the operations. The instancities between certain object classes.
variables can only be modified indirectly by invoking the ope ~ The key idea of class inheritance is to provide a simple and
ations. When a new instance of an object class is created, itpowerful mechanism for defining new classes that inherit prop-
its own set of instance variables, and it shares the operatierties from existing classes. Waimgle inheritancgasubclass
methods with other instances of its class. may inherit instance variables and methods of a spayient

A simple example is the cla€@mplexNumbefThe pro- class, possibly adding some methods and instance variables of
grammer would define an interface consisting of the arithmeits own. Suppose, for example, that we want to display our
operations that Comp|ex numbers Support, and provide the CompleX numbers on a two-dimensional grld We could then
plementation of these operations and the internal data stidefine a subclassraphicComplexNumbethat inherits from
tures. It would be up to the programmer to decide, for examfComplexNumbeand adds displayoperation.
whether to use a representation based on Cartesian or pola A natural extension to simple inheritancengltiple inher-
ordinates. itance that is, inheritance of a subclass from multiple parent

An alternative approach to instantiation is to pstotypi- ~ classes. In this case we would view GuaphicComplexNum-
cal objects[19] rather than object classes as the “templatber as, say, a subclass of bdsnaphicObjectand Complex-
from which new instances are forged. This is exactly what \Number Some languages that support multiple inheritance in-
do when we make a copy of a text file containing a documclude Lisp with flavors [26], Mesa with Traits [11], Trellis/Owl
composed in a formatting language like TeX ~ or troff: we r[32], and Eiffel [25].
use the structure of the old document, altering its contents, At this point we get into some interesting fine points con-
possibly refining the layout. This approach is useful to avoiccerning class inheritance. First, not all languages with class in-
proliferation of object classes in systems where objects evcheritance support multiple inheritance (Smalltalk-80, for ex-

Instantiation and Object Classes
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ample). Although multiple inheritance is not frequently ricComplexNumbehowever, is at once bothGraphicObject
quired, it can be quite clumsy to make do without it. Secondand aComplexNumbeinheritance in this case serves not only

is important to be able to override inherited methodtisplay as a reusability mechanism, but also as a conceptual structuring
operation is quite specific to an object, and may have to bemechanism.

implemented or altered for a subclass that inherits it. An interesting variation on class inheritance is what we call
Next, subclasses may or may not be permitted direct accpartial inheritance In this case we inherit some properties and
to inherited instance variables. Should a subclass, as a clieisuppress others. For example, we may defipieeudo inherit
the parent class it inherits from, be allowed to see what is rfrom aList by inheriting instance variables aniagthopera-
mally hidden from regular clients of its parent? When a sttion. We suppress, however, timsertanddeleteoperations,
class adds a method that accesses inherited instance variareplacing them with, sagetfirstandputlast In this case nei-
it effectively violates encapsulation of that parent. ConsidtherQueuenorList are subclasses of one another, but they are
our GraphicComplexNumbeif its display operation makes undeniably related. Partial inheritance is therefore arguably
use of inherited instance variables, then we are no longer freconvenient for code sharing, but it can create a mess of a class
alter the internal representation of the pa@orplexNumber hierarchy. This mechanism is provided by both C++ [36] and
On the other hand, dfisplayonly makes use of inherited oper-CommonQObjects [34].

ations, such asvalueandyvalue(which may in fact be com-  Class inheritance is essentiallgtaticform of inheritance:
puted from polar coordinates), then we achieve greater innew classes inherit properties when they are defined rather than
pendence between subclass and parent. at run-time. Once a class has been defined, the properties of its
A fourth point is the issue of name clashes in the presencinstances (instance variables and methods) are determined for
multiple inheritance. If we inherit twalisplay operations, alltime. Note that if we permit the re-definition of object class-
which method do we take? Actually, this is a non-problem ttes at run-time (i.e., schema evolution), then instances and sub-
can easily be resolved by indicating precisely what is to occclass instances will effectively inherit new properties. We do
when adisplay operation is invoked. Either the system prcnotconsider this an example of dynamic inheritance, however,
vides default rules for selecting one method or for combinibecause class re-definition is not an operation on objects. By
inherited methods, or it requires the programmer to explicianalogy, modifying a database schema is not normally consid-
disambiguate. Similarly, inheritance of identically-named iiered a database transaction. We must temporarily step out of the
stance variables from multiple parents poses no real problobject model in order to make dynamic changes to the inherit-
provided we separately inherit each variable, and we havance hierarchy.
means to distinguish them in new methods (for example,  We will usedynamic inheritancéo refer mechanisms that
prefixing them with their parent class name). permit objects to alter their behaviour in the course of normal
The difficulties with access to “hidden” inherited propertieinteractions between objects. Dynamic inheritance, as opposed
and with resolving inheritance clashes are most pronounto schema evolution, occursthin the object model. We can
when we must consider the possibility of changes to the cldistinguish two fundamentally different forms of dynamic in-
hierarchy. If we wish to change the definition or implementheritance, which we will capart inheritanceandscope inher-
tion of an object class, how will this affect inheriting subclasitance The key difference is that the former occurs when an ob-
es? Will the rules for resolving name clashes adversely affiect explicitly changes its behaviour by accepting new parts
subclasses? Principles for evaluating “good” and “bad” inhd{rom other objects, whereas the latter occurs indirectly through
itance mechanisms are discussed in [35]. Supporting modifichanges in the environment.
tions to class definitions is especially problematic when the ¢ Basically, part inheritance is nothing more than an exchange
isting instances of the modified classes and subclasses muof value between objects: an object that modifies an instance
preserved. This problem is knownsahema evolutiom ob-  variable necessarily changes its behaviour, though in a way that
ject-oriented databases, by analogy with schema evolutioris limited by its object class. But part inheritance is far more in-
relational and other database systems. An approach to schteresting if we consider instance variables and methods them-
evolution used in the Orion object-oriented database is selves as values. In such a model, an object may dynamically
scribed in [7]. inherit new instance variables and methods from other objects.

Inheritance has a slightly different flavour in the field ¢An example of this kind of inheritance occurs in a system for
knowledge representation. Object classes may then repredistributed  problem-solving using “knowledge objects”
knowledge or beliefs rather than software packages. (See [39][10]. Evolving active objects can acquire new rules and
[31] in this book.) An instance of a subclass, then, has all ‘methods in response to events occurring in their environment.
properties of its parents, and possibly more. A subclass More common is scope inheritance. In this case an object’s
viewed as a&pecializationof its parents. For example, everybehaviour is determined in part by its environment or its ac-
thing that we know to be true about mammals also holds for lquaintances. When changes in the environment occur, the be-
mans, but not vice versa. Note that this means that everyhaviour of the object changes. A simple example is that of a
stance of a subclass is also effectively a member of its paiparagraph in a document that inherits its font, type style, point
classes. This points out how specialization is distinct figm size and line width from its enclosing environment. If the same
gregation It isnotvalid to define a clag3ar that inherits from paragraph is moved to a footnote or a quotation, new properties
Body Frame Wheelsetc., since a car is not a wheelGfaph-  will be inherited.
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Both forms of dynamic inheritance are possible within symethods are used to implement these operations. In an object-
tems based on prototypical objects [19]. An object may hzoriented Unix, every stream object class would inherit methods
instance variables and methods, but it maydddegatecertain  from a generic stream class, and tailor those specific to the new
messages to an acquaintance, called a prototypical object. kind of stream.

inheritance occurs when an object replaces an acquaintanc Polymorphism enhances software reusability by making it
which it delegates messages. Scope inheritance occurs Whysssible to implement generic software that will work not only
prototype changes its behaviour, implicitly affecting all the olor 5 range of existing objects, but also for objects to be added
jects that delegate to it. Modification of a prototype is analjater, A Sorterwill sort any list of objects that support a com-
gous to modifying a class in a class-based language, butyarison operator, just as software written for Unix streams will
quires no changes to the inheriting instances. continue to work if we add a new kind of stream object.

To iIIus'trate that dynamic inheritance is no'glimited to protc Polymorphism may or may not impose a run-time overhead
j[yplcal objepts, letus consider anew mechamsm odyipem- depending on whethdynamic bindings permitted by the pro-
ic subclassingSuppose we havg an instance cﬁqxnplex- gramming language. If all objects are statically bound to vari-
Numbe( and we want to display it. Unfortun.ately it does Nables, we can determine the methods to be executed at compile-
have a@splaymethod. Wha.t we really yvant IS an In'Stance ‘time. For example, the addition of an integer expression to a
GraphlcCompIe'xNumberth dy”"’.‘m.'c subclassing, We{loating-point expression is normally detected by the compiler
would te;mporanly re-package the ong@dmplexNgmbems which then generates the appropriate code for that kind of addi-
aGraphlcCompIexNumbeperform theﬁsp!ayoperatmp, aqd tion. In this case polymorphism is little more than a syntactic
then discard the shel'l. Althgugh dynamic supcla35|ng 'S lconvenience. On the other hand, if variables can be dynamical-
sypported by.any objec't-orlented. language, it can eaSIIyIy bound to instances of different object classes, some form of
smulated by |.mplem'entln.g'@raph|cCompIexNumbeas an ryn-time method lookumust be performed. In Smalltalk, for
object containing the identifier ozomplexNumbeand dele- example, it may be necessary to search through the class hier-

gating .aII messages other thm;play When we enter the archy at run-time to find the method of an inherited operation.
scope in which we want to display the object, we create a "The cost of dynamic binding can be much lower, of course,

GraphicComplexNumbenitialized to point to the ol€Com- with the result that there will be more work involved when

pngNumberaqd simply r.elea}se it when we are done. (Tlmodifying a method inherited by many subclasses. In both
point of Qynam|c subclgssmg Isto be.able to pr'owde a StanqSimuIa and C++, the designer of an object class may decide that
mechan|sm 'fo.r extending the behawogr Of, objects at rur?"[”dynamic binding is to be permitted, and thus declare certain op-
in way that is |nde'pendent of the application that uses it: erations asirtual functions Subclasses can specify implemen-
new display operation can be added to angmplexNumber tations of virtual functions, and invocation of these functions
anywhere.) on instances will be resolved at run-time depending on the class

Polymorphism and overloading to which the instance belongs.

A polymorphic function is one that can be applied uniformly (Generic classes

a variety of objects. For example, the same notation may ] ] ) .
used to add two integers, two floating point numbers, or an Whereas the mechanism of class inheritance achieves software

teger and a float. Similarly, the addition function for a prograi"eusability by factoring out common properties of classes in
mer-defined complex number type may also be able to cParent classes, generic obj_e_ct classes do so by partially descrlb—
with the addition of complex numbers to integers or floats, pind @ class and parameterizing the unknowns. (For a good dis-
vided that the handling of these combinations is defined.CUSSION of the relationship between inheritance and genericity
these cases the “same” operation maintains its behaviour tri" @ strongly-typed setting, see [25].) These parameters are typ-
parently for different argument types. ically the classes of objects that instances of the generic classes
On the other hand, the operatiopenmay apply to both will manipulate. There are basically two categories of generic
data streams and windows. Here we are concerned with two®PJECt: homogeneous “container” objects, like arrays and ists,
erations that coincidentally share a name, and otherwise hthat Operate on any kind of object, and “tool” objects, like sort-
completely different behaviour. Thisasl hocpolymorphism ers and editors, that can only operate on certain object classes.

or “mere” overloading of operation names [9]. This kind ¢ In the case of tool objects, the parameter must be con-
polymorphism is nevertheless useful, but can lead to unplestrained to indicate the required parent class of the parameter. A
antness if abused. It is up to the programmers to choose mgeneric sorter, for example, could only sort objects with a com-
ingful names for operations, and to avoid reusing names tparison operator, that is, instances of some subclass of the class
can be misinterpreted. TotallyOrdered The sorter object can then exploit polymor-
Class inheritance is closely related to polymorphism. TPhism to apply uniformly to all objects that satisfy the con-
apply to instances of its subclasses. Of course, it is possibltyPed object-oriented language, as we shall see shortly.
have support for polymorphism without class inheritance.  Even when the parameter is not important for the generic
Unix, for example, the paradigm of afile (or data stream) is oobject itself, it can be useful for maintaining homogeneous col-
nipresent: the operatiorapen read, write andclose apply lections. AList object, for example, may be capable of storing
polymorphically to any “stream” object. In each case differeany kind of object, but when used by Bwrterobject, it is im-
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portant to guarantee that onfptallyOrderedobjects are in- class). If this type conforms to the type of x (i.e., if y+z supports
serted in the list. atleasthe interface required by x), then the expression is type-

Depending on the nature of the parameters, it may or nCOrrect.

not be possible to compile generic classes before the para Many variations on this basic scheme are possible. If dy-
ters are bound. For example, the code tdstobject could be namic binding is not supported then an object type will always
pre-compiled if implemented using pointers to the elemenuniquely determine an object class. For primitive objects (like
but theSorterobject might need to statically bind the comparintegers) one may also insist on information about the repre-
son operator in order to achieve reasonable performance. Irsentation of instances. At the opposite extreme in an “untyped”
latter case, a generic class is similar to a macro. object world all objects have the same tygigect and will ac-

2.2 Object Types cept any message, though their response may be unpredictable.

Note that class hierarchies arat the same as type hierar-

An object types superficially the same thing as an object claschies, although they may overlap. Two classes may be equiva-

The difference is that when we manipulate typed objects, |ent as types, though neither inherits anything from the other.

WOUIfd I|I;§ to Stat'ﬁa"y yenfy thart] W(Ia(.are doing so :n aconsi Type information can be extremely useful for generic object

tent fas on. With static type-checking we can eliminate tclasses. For example, our genedurter object will only be

need for objects to protect themselves from unexpected Mable to sorffotallyOrderedclasses. This constraint is in fact a

sages. type constraint, since we do not care what class the objects to be
Languages like Clu [22] and Ada [1] support the definiticsorted belong to, only whether a total order is defined. Our pro-

heritance. In other words, there are languages that are lejs instantiated, the type parameter must be bound to an object
mately “object-oriented” (i.e., oriented towards programmirg|ass that satisfies the constraint, e.g.

in terms of objects), yet support a very different style of pr
gramming from that encouraged by languages like Smalltalk
Lisp with flavors. More recently several attempts have be
made to unify object classes and object types. Languages g g Concurrency

C++, Trellis/Owl and Eiffel are both object-oriented in th . . o
Smalltalk sense as well as being strongly-typed. There are two ways in which concurrency and communication

have traditionally been dealt with in programming languages:

var s : Sorter of integer ;
where the clasategerconforms to the typ&otallyOrdered

The traditional approach to type-checking in languages w . - . 2
user-defined object types is to insist that the types of expr 1. Active entities (processes) communicate indirectly

sions supplied to operation invocations and to assignme through shared passive objects.
must correspond exactly to the expected type. In object-orie 2. Active entities communicate directly with one another
ed languages with polymorphic operations and dynamic bir by message passing.

ing, we must cope with the fact that some types may be equTne first approach is typical of languages like Modula-2 [40],
lent, or included in other types. In this case, the declared ty\yhereas the second is adopted by, for example, Thoth [15] and
of variables and of arguments to operations serepesifica- yarious Actor languages [2]. (See [5] for an excellent survey of
tionsfor valid bindings and invocations. Informally, one typeoncurrent programming languages and notations.) These
conformgto a second if some subset of its interface is identiiggme approaches are used in object-oriented programming lan-

to that of the second. We also say that the firgubgypeofthe  gyages in order to structure concurrent applications, though
second. They arequivalentif they conform to one another.they result in different object models.

What constitutes the interface of an object type depends on
particular type model chosen for a language, but normally th
cludes operation names and the types of the arguments an
turn values. These issues are discussed in detail in the cor
of functional programming languages in [9].

If we adopt the first approach, it is quite natural to structure
e shared memory as a collection of passive objects and to
view a process as a special kind of addvecesobject. We re-
quire that actions on the passive objects be performed accord-
) ) _ing to their declared interface. For this approach to work, we

We can more clearly interpret the difference between objiy, st have some mechanism whereby the active objects may
classes and object types if we view the latter purely as speigynchronize their accesses to the shared objects. This may be
cations. In the presence of dynamic binding it is (in genery,ygh the use of semaphores or locks as in Smalltalk and
impossible to statically determine the class of a variable, ryg|lis/owl [27], or through the use of monitors (as in Modula-
with the appropriate type rules, we can still perform typy) o transactions as in Avance (formerly OPAL) [3]. This ap-
checking. For example, if we consider the expression: proach is necessarily non-homogeneous, that is, the object

X<-y+z model contains two fundamentally different kinds of objects:
then we can statically determine whether this expressioractive and passive. Furthermore, it is not possible to directly in-
type-correct, without knowing the classes of the instances tteract with the active objects, at least not using the same para-
X, ¥ and z will be bound to (they may change). First, we exadigms for interaction that apply to passive objects: two active
ine the declared type of y and see if it supports the operator -objects can only communicate through a passive intermediary.
so, we check if the type of z is valid for an argument. Then, {Finally, it is not possible to extend this model to a distributed
type information of y will tell us the type of y+z (but not itenvironment without employing some form of hidden message
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passing. This suggests that the second approach is in swithout preventing the programmer from defining various ex-
sense more general. tensions (for persistence, concurrency, etc.).

Considering the second approach, we permit any objec  gmgitalk and Lisp additionally provide for automatic gar-
communicate with any other object. Objects become “activpage collection, and implement a trivial form of persistence by
in response to a communication. In effe(_:t, threads of (*fontroI permitting users to save the (single-user) object workspace.
determined implicitly by message passing, whereas in the fgjnce there is no provision for communication between objects
approach each thread of control was localized in an expli, gitferent workspaces, there is no need to worry about main-
Processobject. Explicit synchronization is not required sinCisining global consistency in a distributed environment. Persis-
message passing packages both communication and synGence for distributed object applications must cope with the
nization, butwe must make a choice as to what style of messssipility of local failures: if a message sent between work-
passing to ao_lopt. For example, message passing may be spaces is lost, or if either the sender or receiver is accidentally
chronous as in POOL-T [4] or buffered, as between top-le\yesiroyed, then we risk a global inconsistency. Means for deal-
objects irHybrid [28]. Similarly, we may permit uni-direction- g \yith these problems are suggested by two traditional fields:

al message passing as in Act-1 [20], or we may insistaii/a operating systems and database systems.
returnprotocol as in Hybrid and ConcurrentSmalltalk [41]. W

may also find it useful to provide ampressnode of message An object-oriented operating system may provide support
passing for interrupting active objects as in ABCL/1[42].  for persistence, resilience, reliable communication or distribut-
ed object-naming at a low level. For example, Chorus [43] and
Mach [17] provide kernel support for distributed object-orient-
ed systems. Argus is a programming language with operating
system support for persistence, encapsulation and distribution
through the concept gliardiang21]. LOOM provides a large
object-oriented memory for Smalltalk systems [18].

In either case, it is possible to accommodate the various
usability mechanisms we have discussed as well as an ext
ible type system. With the message-passing model we inter|
strong-typing to mean that a message-passing expressic
type-correct if the message being sent is guaranteed to be \
for the recipient. Similarly, we can support an untyped view,

all objects are prepared to handle any message sent to tt  Most of the object management issues we have mentioned
Run-time support for concurrent applications can be quite care addressed in some way or another by traditional database
ferent for these two object models, as we shall see in the folltechnology. It is therefore natural to try and see whether this
ing section. For a more detailed look at approaches to contechnology can be transferred to problem of managing objects.
rency in object-oriented languages, see [38] in this book.  An object-oriented databasetherefore a system that provides

. . database-like support (i.e., for persistence, transactions, query-
3 Object-Oriented Systems ing, etc.) forobjects that is, encapsulated data and operations.
Our discussion thus far has focussed on object-oriented (Some examples are the GemStone system from Servio Logic
gramming language constructs and mechanisms, without c[24][30], Orion from MCC [6], and Iris from Hewlett-Packard
sideration for run-time support for objects, or for tools to aLabs [12][14].

programmers in constructing object-oriented applications. Although object-oriented databases are being built and have

th's section we Sh‘f"” provide a brief overview of tW,O Import‘f"clearly practical applications, there are several open problems
kinds of obJecF—orlen.ted system_: thF’SG that provide FUN-titiny this area. First of all, there is no agreement as to a standard
support for opject—or|ented appllcat!ons, and those that CCata model for object-oriented databases. We do not have the
prise an environment for object-oriented software deVelcequivalent of relational algebra for an object-oriented data
ment. model, and we therefore have no standard guidelines for de-
3.1 Object management signing object-oriented Qatabases. This is to be expected, sjnce
we have no corresponding agreement as to what mechanisms

Object management refers to a mixed bag of run-time iSSbeIong in an object-oriented programming language, or what
such as object-naming, persistence, concurrency, distributithe rules for encapsulation or inheritance should be. For this
version control, security, and so on. The amount of support preason it is also difficult to decide on a standard query language
vided or required depends very much on the intended applifor gbjects. Should we be permitted to query on attributes (i.e.,
tion domain. At the low end we have single-user, single-threjnstance variables), and if so, how does that square with the
applications with minimal persistence requirements, and at principle of encapsulation? (With typical applications for
high-end we have distributed, concurrent, multi-user applicyhich object-oriented databases have been designed, like
tions with support for evolving software. In either case obje«cap/cAMm, querying on attributes may be precisely what we
reside in a “workspace” which may be local and private, or dyant to do, but what about other application domains?) Finally,
tributed and shared. should we consider object-oriented databases as providing a

Minimal object management support is provided for C+complete picture of executing applications, or are they better
objects. Objects may be allocated and freed in virtual memcseen as repositories for persistent objects? In particular, can we
Memory addresses serve as object identifiers. There is no view active objects as executiwithin the database (as they do
port for garbage collection, persistence, concurrency or disinside a Smalltalk workspace) or should we adopt a more tradi-
bution. The result is a very lean language and object envirtional database view in which running applications (i.e.,
ment that imposes very little run-time overhead for objecthreads) are explicitlgutsidethe database?
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3.2 Object-oriented programming the new objects will not only solve our problem, but will also
environments give us a “better” software base.

Another significant category of object-oriented system is thummary

of tools and environments for application development. G h ; dth ition that th . .
ject-oriented programming promises a great deal in terms//& have put forward the proposition that the tefject-ori-

easing the cost of building applications; our ability to reali;em_ediS best interpreted as ref‘?”‘”g to any approach that ex-
this promise depends largely on whether or not objects are tiPICItS €ncapsulation or “packaging” in the process of designing
reusable. This implies that we not only need powerful mecjand building software. With this premise in mind, we have sur-

nisms and paradigms for reusability (such as those providec/€Yed object-oriented techniques in programming languages

object-oriented languages), but we need tools to help us delo enhance software reusability, to enhance maintainability and

objects, to select and reuse objects, and to manage an eVo‘robustness through extendible type systems, and to ease the de-
software base velopment of concurrent and distributed applications. We have

Obiect desian is a software engineering issue: how Shoalso given a brief overview of the issues in providing run-time
) 9 rware engineering, . support for objects, and in providing programming environ-
we decompose our application into objects in such a way a

. . . . . ments for the development of object-oriented software.
best exploit the object-oriented paradigms available to us? 1 We h di doth licati  obi , q
task can be supported to some extent by applying concep 'e have not discussed other applications of object-oriente

modeling techniques from the database area to object desconcepts, for example, in the area of user interfaces. (Direct
An example of such an approach is described in [23]. See manipulation interfaces provide the user with the illusion that
[13] in this book ' the objects of the application are being “directly” manipulated

. . . . f polymorphi rators: mov I resiz
The next major problem is that of selecting objects fromtgce; set of polymorphic operators: move, copy, delete, resize,

software base that may be useful for building your applicati Obi . q] d developi
(ideally this would be carried out in tandem with the desi ject-oriented languages and systems are a developing
technology. There can be no agreement on the set of features

task). Here a programmer would normally rely on three thinc q hani hat bel > bi . dl
his personal expertise, software documentationbamasing and mechanisms t, at belong in an o Jegt—orlente anguage
since the paradigm is far too general to be tied down. (What fea-

tools. Smalltalk, Trellis [29] and Cedar [37] are examples bel i 2 declarative | 2 The id £ usi b
programming environments that provide tools for browsing t.tures elong in a dec aff”‘“"e anguage?) The dea o using ob-
ects to model software is a natural one that will inevitably ap-

available software base. The real difficulty is that human expI . .
tise cannot realistically cope with a large, evolving softwaP&f a?”d reappear in various forms; we can expect to see new
base. Perhaps one can manage to remember the 300 funda|deas in object-oriented systems for many years to come.

tal Smalltalk object classes, or even a couple of thousand (R eferences

erally useful object classes, but how are we to cope with ten
thousands of object classes available perhaps from differ]
vendors? The object selection problem is similar to that of p
forming a literature search. We depend heavily on services
classify objects and to maintain cross-references in the fao[
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