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Joyce Farrell,"* Peter B. Catrysse,'? and Brian Wandell'®
'Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
2Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

%Department of Psychology, Stanford University, Stanford, California 94305, USA

*Corresponding author: Joyce_Farrell@stanford.edu

Received 5 October 2011; revised 22 December 2011; accepted 23 December 2011;
posted 10 January 2012 (Doc. ID 156026); published 1 February 2012

We describe a simulation of the complete image processing pipeline of a digital camera, beginning with a
radiometric description of the scene captured by the camera and ending with a radiometric description of
the image rendered on a display. We show that there is a good correspondence between measured and
simulated sensor performance. Through the use of simulation, we can quantify the effects of individual
digital camera components on system performance and image quality. This computational approach can

be helpful for both camera design and image quality assessment.
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1. Introduction

Digital cameras are designed by a team of engineers
and scientists who have different expertise and who
use different analytical tools and language to charac-
terize the imaging component they work on. Typi-
cally, these engineers work at different companies
that specialize in the design and manufacturing of
one imaging component, such as optical lenses, fil-
ters, sensors, processors, or displays.

Digital cameras are purchased by consumers who
judge the image quality of the digital camera by
viewing the final rendered output. Achieving a high
quality output depends on multiple system compo-
nents, including the optical system, imaging sensor,
image processor, and display device. Consequently,
analyzing components singly, without reference to
the characteristics of the other components, provides
only a limited view of the system performance. In
multidevice systems, a controlled simulation envir-
onment can provide the engineer with useful gui-
dance that improves the understanding of the
system and guides design considerations for indivi-
dual parts and algorithms.
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There has been much progress in modeling the in-
dividual components of a digital camera, including
camera optics [1-3] and sensor noise [4-9]. Progress
has also been made in modeling the spectral reflec-
tances and illuminants in a scene [10-17]. There is
also a very large literature on image processing algo-
rithms that are part of any digital camera [18]. This
is an opportune time to develop a system simulator
that incorporates models for each of the system com-
ponents. In this paper, we describe how to model and
simulate the complete imaging pipeline of a digital
camera, beginning with a radiometric description
of the scene captured by the camera and ending with
a radiometric description of the final image as it
appears on an LCD display.

Computer simulations have played an important
role in evaluating remote imaging systems that
are used to classify agricultural plants and materials
and to detect and identify buildings, vehicles, and
other targets [19-22]. Modeling the complete system
for remote imaging systems includes (1) characteriz-
ing spectral properties of possible targets, (2) model-
ing atmospheric conditions, (3) characterizing the
spectral transmissivity of filters, the sensitivity,
noise, and spatial resolution of imaging sensors
(typically one pixel sensors), and (4) implementing
image processing operations, including exposure



control, quantization, and detection algorithms. The
veridicality of the simulations is judged by how well
the models predict target detection as quantified by
receiver operating curves. The visual abilities of the
human observer are also modeled when the final
detector is a human [22,23].

We describe a simulation for consumer imaging
that parallels this methodology. We (1) characterize
the radiometric properties of scenes and illuminants,
(2) model the optical properties of lenses, (3) charac-
terize the sensitivity and noise of sensors, including
spatial and spectral sampling of color filter arrays,
(4) implement image processing algorithms, and
(5) generate a radiometric representation of displayed
images. We also model spatial and chromatic sensitiv-
ity of human observers for purposes of predicting the
visibility of noise and sampling artifacts [24,25].

The digital camera simulations are comprised of
an integrated suite of MATLAB software tools re-
ferred to as the Image Systems Evaluation Toolbox
(ISET) [26]. ISET incorporates and extends the work
that we and our colleagues have been doing over the
past 15 years on modeling and evaluating the quality
of imaging systems [24-35]. We first describe the
computational modules in ISET and then validate
the system by comparing simulated and measured
sensor data obtained from a calibrated device in
our laboratory.

2. Digital Camera Simulation

The digital camera imaging pipeline can be sepa-
rated into a sequence of computational modules cor-
responding to the scene, optics, sensor, processor, and
display. The scene module creates a radiometric
description of the scene. The optics module converts
scene radiance data into an irradiance image at the
sensor surface. The sensor module converts the irra-
diance image into electrons. The processor module
converts the digital values in the two-dimensional
sensor array into a three-dimensional (RGB) image
that can be rendered on a specified display. Finally,
the display module generates a radiometric descrip-
tion of the final image as it appears on an LCD dis-
play. We describe these five modules in the sections
below.

A. Scene

Digital camera simulation requires a physically
accurate description of the light incident on the ima-
ging sensor. We represent a scene as a multidimen-
sional array describing the spectral radiance
(photons/s/nm/sr/m?) at each pixel in the sampled
scene.

There are several different sources of scene data.
The simplest are synthetic scenes, such as the Mac-
beth ColorChecker, spatial frequency sweep pat-
terns, intensity ramps, and uniform fields. These
are the spectral radiance image data that arise from
a single image plane at a specified distance from the
optics. When used in combination with image quality
metrics, these synthetic target scenes are useful for

evaluating specific features of the system, such as
color accuracy, spatial resolution, intensity quantiza-
tion, and noise.

We can also create synthetic scenes using three-
dimensional multispectral data generated by other
software [36]. These three-dimensional rendering
methods provide data in which both the spectral
radiance and the depth are specified. Such data can
be used to simulate the effect of optical depth of
focus [37], synthetic apertures [38], and light-field
cameras [39].

Another important source of scene data are mea-
surements of natural scenes using multispectral
imaging methods [40-44]. These data provide in-
sights about the typical dynamic range and spectral
characteristics of the likely scenes.

The ISET spectral radiance scene data can be
stored in a compact wavelength format using a linear
model for the spectral functions. Hence, a relatively
small number (four—six) of chromatic samples—along
with the modest overhead of the basis functions—can
represent the full spectral radiance information. In
addition, the illuminant spectral power distribution
is typically stored in the scene representation; this
enables simulation of illumination changes.

B. Optics

The optics module converts scene radiance data into
an irradiance image (photons/s/nm/m?) at the sen-
sor surface. The conversion from radiance to irradi-
ance is determined by the properties of the optics,
which gather the diverging rays from a point in the
scene and focus them onto the image sensor [45].

We call the irradiance image at the sensor surface,
just prior to capture, the optical irradiance. To com-
pute the optical irradiance image, we must account
for a number of factors. First, we account for the lens
f-number and magnification. Second, we account for
lens shading (relative illumination), the fall-off in
intensity with lens field height. Third, we blur the
optical irradiance image. The blurring can be per-
formed with one of three models: a wavelength-
dependent shift-invariant diffraction-limited model,
a wavelength-dependent general shift-invariant
model (arbitrary point spread), and a general ray-
trace calculation, which further incorporates geo-
metric distortions and a wavelength-dependent blur
that is not shift invariant.

1. Converting Radiance to Irradiance
The camera equation [46,47] defines a simple model

for converting the scene radiance function, L., to
the optical irradiance field at the sensor, Iiya5. The

camera equation is
xT' (1) Xy
4(}(‘/#)2Lscene(aaaa/1)~ (1)

The term f/# is the effective f-number of the lens
(focal length divided by effective aperture), m is
the lens magnification, and T'(1) is the lens trans-
missivity. The camera equation holds with good

Iimage(xaya/l) =
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precision for the center of the image (i.e., on the
optical axis). For all other image locations, we apply
an off-axis (relative illumination) correction.

2.  Relative Illumination

The fall-off in illumination from the principal axis is
called the relative illumination or lens shading,
R(x,y,4). There is a simple formula to describe the
shading in the case of a thin lens without vignetting
or (geometric) distortion. In that case, the fall-off
is proportional to cos* 0, where 0 is the off-axis angle
[48]:

d 4
R(x,y,4) = cos* 0 = (S) ) 2

The term S is the image field height (distance from
on-axis) and d is the distance from the lens to the im-
age plane. The (x,y) coordinates specify the position
with respect to the center of the image axis. This for-
mula is often called the cosine-fourth law. In real
lenses, or lens collections, the actual off-axis correc-
tion may differ from this function. It is often used,
however, as a good guess for the irradiance decline
as we measure off-axis.

3. Irradiance Image Blurring

The irradiance image, Iimage(%,y,4) cannot be a per-
fect replica of the scene radiance, Lg.one(x,y,4). Im-
perfections in the lens material or shape, as well
as fundamental physical limitations (diffraction),
limit the precision of the reproduction. The imperfec-
tions caused by these factors can be modeled by sev-
eral types of blurring calculations of increasing
complexity.

Diffraction-limited optics. A diffraction-limited
system can be modeled as having a wavelength-
dependent, shift-invariant point spread function
(PSF) [49,50]. Diffraction-limited modeling uses a
wave-optics approach to compute the blurring caused
by a perfect lens with a finite aperture. The PSF of a
diffraction-limited lens is quite simple, depending
only on the f-number of the lens and the wavelength
of the light. It is particularly simple to express the
formula in terms of the Fourier transform of the
PSF, which is also called the optical transfer function
(OTP).

The formula for the diffraction-limited OTF is

2 _ 2
OTF:{;acos(p) (p 1+p), p<17 (3)
0, p=21

where p=f(A/(Ad)) (normalized frequency), in
which f = frequency in cycles/meter, A = aperture
diameter in meters, A= wavelength, and d =
distance between the lens aperture and detector.
Shift-invariant image formation. The
diffraction-limited PSF is a specific instance of a
shift-invariant linear model. In optics, the term
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isoplanatic is used to define conditions when a
shift-invariant model is appropriate. Specifically,
an isoplanatic patch in an optical system is a region
in which the aberrations are constant; experimen-
tally, a patch is isoplanatic if translation of a point
in the object plane causes no change in the irradiance
distribution of the PSF except its location in the
image plane. This is precisely the idea behind a
shift-invariant linear system.

The lens transformation from a shift-invariant
system can be computed much more efficiently than
a shift-variant (anisoplanatic) system. The computa-
tional efficiency arises because the computation can
take advantage of the fast Fourier transform to cal-
culate the spatial distribution of the irradiance
image.

Specifically, we can convert the image formation
and PSF into the spatial frequency domain. The
shift-invariant convolution in the space domain is
a pointwise product in the spatial frequency domain.
Hence, we have

FT{limage(x,y, 1)} = FT{PSF(x,y,4)}
- FT{Ligeal (%, ,4)}, (4)

FT{Iimage (x 4 ai) } =0TF (fx 7fy 7’1) 'FT{Iideal (x7yal) } ) %)

Iimage(x7y7 )*) = FT_I{OTF ' FT{Iideal(xay7A)}}a (6)

where FT{} is the Fourier transform operator and the
OTF is the Fourier transform of the PSF. Because no
photons are lost or added, the area under the PSF is
1, or equivalently, OTF(0,0,4) = 1. In this shift-
invariant model, we assume that the point spread
is shift-invariant for each wavelength, but the PSF
may differ across wavelengths. Such differences
are common because of factors such as longitudinal
chromatic aberrations.

Shift-variant image formation: ray-tracing.
When measuring over large fields, in real systems
the PSFs vary considerably. The ray-trace method
model replaces the single, shift-invariant, PSF with
a series of wavelength-dependent PSF's that vary as
a function of field height and angle. In addition, ray
tracing must account for the geometric distortion.
This can be specified as a displacement field that var-
ies as a function of input image position [d(x,y)]. In
the ray-trace calculation, the displacement field is
first applied and the result is blurred by the local
PSF, wavelength by wavelength.

When using the ray-trace method, it is necessary
to specify the geometric distortion and how the point
spread varies with field height and wavelength. For
real systems, these functions can be specified by the
user or calculated using lens design software [51].

C. Sensor

The sensor module transforms the optical irradiance
image into a two-dimensional array of voltage sam-
ples, one sample from each pixel. Each sample is



associated with a position in the image space. Most
commonly, the pixel positions are arranged to form a
regular, two-dimensional sampling array. This array
matches the spatial sampling grids of common out-
put devices, including displays and printers.

In most digital image sensors, the transduction of
photons to electrons is linear: specifically, the photo-
detector response (either CCD or CMOS) increases
linearly with the number of incident photons. De-
pending on the material properties of the silicon sub-
strate, such as its thickness, the photodetector
wavelength sensitivity will vary. But even so, the re-
sponse is linear in that the detector sums the re-
sponses across wavelengths. Hence, ignoring device
imperfections and noise, the mean response of the
photodetector to an irradiance image (I(4,x),
photons/s/nm/m?) is determined by the sensor spec-
tral quantum efficiency (S(4), the e~ /photon), aper-
ture function across space A;(x), and exposure time
(T, s). For the ith photodetector, the number of elec-
trons will be summed across the aperture and wave-
length range:

e;=T I S; (DA, () (2, x)dAdx. (7)
Ax

A complete sensor simulation must account for the
device imperfections and noise sources. Hence, the
full simulation is more complex than the linear
expression in Eq. (7). Here, we outline the factors
and computational steps that are incorporated in
the simulation.

1. Computing the Signal Current Density Image
The irradiance image already includes the effects of
the imaging optics. To compute the signal current
density, we must further specify the effect of several
additional optical factors within the sensor and pixel.
For example, most consumer cameras include an in-
frared filter that covers the entire sensor. This filter
is present because the human eye is not sensitive to
infrared wavelengths, while the detector is. For con-
sumer imaging, the sensor is designed to capture the
spectral components of the image that the eye sees—
and to exclude those parts that the eye fails to see.
The infrared filter helps to accomplish this goal,
and thus it covers all of the pixels.

We must also account for the color filters placed in
front of the individual pixels. While the pixels in the
sensor array are typically the same, each is covered
by a color filter that permits certain wavelengths of
light to pass more efficiently than others.

The geometric structure of a pixel, which is some-
thing like a tunnel, also has a significant impact on
the signal current density image. The position and
width of the opening to the tunnel determine the pix-
el aperture [52]. Ordinarily the photodetector is at
the bottom of the tunnel in the silicon substrate.
In modern CMOS imagers, usually built using multi-
ple metal layers, the pixel depth can be as large as

the pixel aperture. Imagine a photon that must enter
through the aperture and arrive safely at the photo-
detector at the bottom. If the pixel is at the edge of
the sensor array, the photon’s direction as it travels
from the center of the imaging lens must be signifi-
cantly altered. This redirection is accomplished by a
microlens, positioned near the aperture. The position
of each microlens with respect to the pixel center var-
ies across the array because the optimal placement
of the microlens depends on the pixel position with
respect to the imaging lens.

As the photon travels from the aperture to the
photodetector, the photon must pass through a series
of materials. Each of these has its own refractive
index and thus can scatter the light or change its di-
rection. The optical efficiency of each pixel depends
on these materials [29].

2. Space-Time Integration

After accounting for the photodetector spectral quan-
tum efficiency, the various filters, the microlens
array, and pixel vignetting, we can compute the ex-
pected current per unit area at the sensor. This sig-
nal current density image is represented at the same
spatial sampling density as the optical irradiance
image.

The next logical step is to account for the size, po-
sition, and exposure duration of each of the photode-
tectors by integrating the current across space and
time. In this stage, we must coordinate the spatial
representation of the optical image sample points
and the pixel positions. Once these two images are
represented in the same spatial coordinate frame,
we can integrate the signal across the spatial dimen-
sions of each pixel. We also integrate across the
exposure duration to calculate the electrons accumu-
lated at each pixel.

3. Incorporating Sensor Noise

At this stage of the process, we have a spatial array of
pixel electrons. The values are noise free. In the third
step, we account for various sources of noise, includ-
ing the photon shot noise, electrical noise at the pixel,
and inhomogeneities across the sensor.

Photon shot noise refers to the random (Poisson)
fluctuation in the number of electrons captured with-
in the pixel even in response to a nominally identical
light stimulus. This noise is an inescapable property
of all imaging systems. Poisson noise is characterized
by a single rate parameter that is equal to both the
mean level and the variance of the distribution.

There are a variety of electrical imperfections in
the pixels and the sensor. Dark voltage refers to
the accumulation of charge (electrons) even in the ab-
sence of light. Dark voltage is often referred to as
thermally generated noise because the noise in-
creases with ambient temperature. The process of
reading the electrons accumulated within the pixel is
noisy, and this is called read noise. Resetting the
pixel by emptying its electrons is an imperfect pro-
cess, and this noise is called reset noise. Finally,
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the detector captures only a fraction of the incident
photons, in part because of the material properties
and in part because the photodetector occupies only
a portion of the surface at the bottom of the pixel.
The spectral quantum efficiency is a wavelength-
dependent function that describes the expected
fraction of photons that produce an electron. The fill
factor is the percentage of the pixel that is occupied
by the photodetector.

Finally, there is the inevitable variance in the elec-
trical linear response function of the pixels. One
variation is in the slope of the response to increasing
light intensity; this differs across the array and is
called photoresponse nonuniformity (PRNU). Second,
the offset of the linear function differs across the ar-
ray, and this variance in the offset is called dark signal
nonuniformity (DSNU). PRNU and DSNU are types
of fixed pattern noise (FPN)—another source of FPN
is due to variation in column amplifiers.

Over the years, circuit design has improved greatly
and very low noise levels can be achieved. Also, var-
ious simple acquisition algorithms can reduce sensor
noise. An important example is correlated double
sampling. In this method, the read process includes
two measurements—a reference measurement and
a data measurement. The reference measurement in-
cludes certain types of noise (reset noise, FPN). By
subtracting the two measurements, one can eliminate
or reduce these noises. Correlated double sampling
does not remove, and may even increase, other types
of noise (e.g., shot noise or PRNU variations) [53,54]

4. Analog-to-Digital Conversion

In the fourth step, we convert the current to a voltage
at each pixel. In this process, we use the conversion
gain and we also account for the upper limit imposed
by the voltage swing. The maximum deviation from
the baseline voltage is called the voltage swing. The
maximum number of electrons that can be stored in a
pixel is called the well capacity. The relationship be-
tween the number electrons and the voltage is called
conversion gain (volts/e™1).

In many cases, the output voltage is further scaled
by an analog gain factor; this too can be specified in
the simulation. Finally, the voltages are quantized
into digital values.

D. Processor

The processor module converts the digital values in
the two-dimensional sensor array into an RGB image
that can be rendered on a specified display. This is
accomplished by controlling exposure duration, in-
terpolating missing RGB sensor values (demosaick-
ing), and transforming sensor RGB values into an
internal color space for encoding and display (color
balancing and display rendering). There are many
different approaches to autoexposure, demosaicking,
and color balancing, and describing these methods is
beyond the scope of this paper. ISET implements sev-
eral algorithms that are in the public domain.
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E. Display

The display module generates a radiometric descrip-
tion of the final image as it appears on an LCD dis-
play. It is important to calculate the spatial-spectral
radiance emitted from the displayed image because,
unlike the digital image values generated by the pro-
cessor, this is the stimulus that actually reaches the
eye. Simplifying the process of modeling the radiance
distribution makes it possible to use the radiance
field as the input to objective image quality metrics
based on models of the human visual system.

ISET uses three functions to predict the spatial—
spectral radiance emitted by a display. First, the dis-
play gamma is used as a lookup table to convert
digital values into a measure of the linear intensity.
Second, pixel PSFs for each color component (sub-
pixel PSF) are used to generate a spatial map of lin-
ear intensity for each of the display color primaries.
Third, the spectral power distributions of the color
primaries are used to calculate the spectral composi-
tion of the displayed image. These three functions—
the display gamma, the subpixel PSFs, and the
spectral power distributions—are sufficient to char-
acterize the performance of linear displays with
independent pixels.

More formally, the spatial-chromatic image from a
pixel, given a digital input, (R,G,B), is

Py, 2) =) gi)s;(x,y)wi(2), (8)

where g;(v) represents the display gamma for each
color primary, s;(x,y) is the spatial spread of the light
for each color subpixel, and w;(1) is the spectral
power distribution of the color primary.

These equations apply to the light emitted from a
single pixel. The full display image is created by re-
peating this process across the array of display pix-
els. This calculation assumes that the light emitted
from a pixel is independent of the values at adjacent
pixels. These assumptions are a practical starting
point for display simulation, although they may
not be sufficient for some displays [55].

3. Validation

We created software models for the scene, optics, sen-
sor, processor, and display in an integrated suite of
MATLAB software tools, the ISET [26]. The ISET si-
mulation begins with scene data; these are trans-
formed by the imaging optics into the optical
image, an irradiance distribution at the image sensor
array; the irradiance is transformed into an image
sensor array response; finally, the image sensor
array data are processed to generate a display image.
In the next section, we use ISET to model the scene,
optics, and sensor of a calibrated 5 megapixel CMOS
digital camera and compare the simulated and mea-
sured sensor performance.



A. Simulation Parameters

The simulation parameters were derived from a few
fundamental measurements that characterize sen-
sor spectral sensitivity and electrical properties
including dark current, read noise, DSNU, and
photoreceptor nonuniformity. While we estimated
these parameters from a modest set of calibration
measurements (see Appendices A and B), other pa-
rameters, such as conversion gain and voltage swing,
were provided by the sensor manufacturer.

We modeled the camera lens using a diffraction-
limited model [56] with a lens f-number of 4 and a
focal length of 3 mm. An optical diffuser that filters
out signals above the Nyquist frequency limit of the
imaging sensor was simulated using a Gaussian
filter with full width at half-maximum equal to the
pixel width.

Table 1 lists the sensor parameters along with the
reference source for the data. The sensor spectral
quantum efficiencies for the red, green, and blue
pixels were calculated by combining the effects of
the lens transmittance, color filter arrays, and photo-
diode quantum efficiency into one spectral sensitiv-

ity function for each red, green, or blue pixel,
respectively (Fig. 1). Appendix B describes the la-
boratory measurements and calculations used to es-
timate these spectral curves.

B. Simulation Performance

To evaluate the quality of the simulation, we first
measured the radiance image of a Macbeth Color-
Checker illuminated by a tungsten light using the
methods described in Subsection 2.A. We then used
the measured radiance data as the scene input in
ISET simulations. Second, we acquired an image
of this scene using the real camera. We compared
the simulations with the real acquisition in sev-
eral ways.

Figure 2 compares the predicted and simulated
sensor images of the Macbeth ColorChecker after
they have been demosaicked using bilinear inter-
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Fig. 1. (Color online) Spectral quantum efficiencies of red, green,
and blue channels for a calibrated imaging sensor.

polation. These processed images (not color
balanced) illustrate the similarity between the mea-
sured and simulated sensor images. For a quantita-
tive comparison, we calculated the mean and
standard deviation of the pixel values for the 24 color
patches in the sensor images of the Macbeth Color-
Checker. A scatter plot of the signal-to-noise ratio
(SNR, mean divided by the standard deviation) in
the measured and simulated images also show good
agreement for each of the 24 patches in the Macbeth
Color Checker (Figs. 3 and 4).

An important simulation objective is to under-
stand how accurately a sensor can render a color
scene. The color accuracy of the measured and simu-
lated imaging sensors are characterized in Figs. 5
and 6, respectively. In this example, we render a sen-
sor image of a Macbeth ColorChecker. To perform the
rendering, we specify the linear sRGB [58] display
values of an image that match a Macbeth Color-
Checker under D65 illumination. These are the

Sensor Parameters for ISET Simulations

Sensor Parameter

Parameter Value Reference Source
Pixel width (um) 2.2 manufacturer
Pixel height (um) 2.2 manufacturer
CFA pattern ghrg manufacturer
Spectral quantum efficiencies — measured (see Appendix B)
Dark voltage (V) 4.68 mV/s measured (see Appendix A)
Read noise (mV) 0.89 measured (see Appendix A)
DSNU (mV) 0.83 measured (see Appendix A)
PRNU (%) 0.736 measured (see Appendix A)
Fill factor 45% manufacturer
Well capacity (electrons) 9000 manufacturer
Voltage swing (V) 1.8 manufacturer
Conversion gain (uV/e) 2.0000e - 004 manufacturer
Analog gain 1.0 software setting
Exposure duration (s) 100 measured
Scene luminance (cd/m?2) 61 measured
Lens f-number 4 lens setting
Lens focal length (mm) 3

lens calibration software [57]
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Fig. 2. (a) Measured and (b) simulated sensor images. The
images have been demosaicked but not color balanced.

desired sRGB values. Then, we find the 3 x 3 matrix
that best transforms (in a least squares sense) the
sensor RGB values into the desired sRGB values.
We compare the transformed and desired sRGB va-
lues for the measured (Fig. 5) and simulated sensor
images (Fig. 6). Histograms of the CIELAB color dif-
ference error (AE) are also shown. Again, the simu-
lation predicts the color accuracy of the sensor
quite well.

Figures 2—6 show that there is a good correspon-
dence between measured and simulated sensor per-
formance. The mean and variance in pixel values are
nearly the same for simulated and measured sensor
images (see Figs. 3 and 4). And both simulated and
measured sensor images have comparable color accu-
racy (see Figs. 5 and 6).

4. Discussion

We described how to model and simulate the com-
plete image processing pipeline of a digital camera,
beginning with a radiometric description of the scene
captured by the camera and ending with a radio-
metric description of the final image rendered on
an LCD display. The laboratory measurements con-
form well to the predictions from the simulation.
Two independent studies also show that simula-
tion accurately models real systems [30,59]. These
studies simulated imaging sensors in development
and reported a close correspondence between the dis-
tribution of pixel values for measured and simulated

0.4
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015

Measured RGB

01k
0.05

Simulated RGB

Fig. 3. (Color online) Mean pixel values averaged for each of the
24 patches in the Macbeth ColorChecker in the measured sensor
images plotted against mean pixel values for the same patches in
the simulated sensor images.
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Fig. 4. (Color online) Mean divided by the standard deviation
(SNR) in pixel values for each of the 24 patches in the Macbeth
ColorChecker in the measured sensor images plotted against
standard deviation in pixel values for the same patches in the
simulated sensor images.

images of the Macbeth ColorChecker. One investiga-
tion [30] used the ISET ray-trace modeling tools to
simulate the effects of the lens on the sensor irradi-
ance image. The authors of this study compared si-
mulated and actual sensor images of a spatial
resolution chart and calculated the system modula-
tion transfer function (MTF) using the ISO 12233
method implemented in ISET. They report that the
MTF for the simulated sensor was slightly higher
than the MTF for the measured sensor. The authors
explain this difference by noting that they had more
control over the focus setting for a simulated than for
a measured sensor. Given the results of their study,
the authors conclude that the simulator “is capable of
generating results that are close to those of the ac-
tual product” and that they now use the simulator
“for commercial image sensor design.”

The complexity of the digital imaging pipeline,
coupled with a moderate array of image quality me-
trics, limits our ability to offer closed-form mathema-
tical solutions to design questions. In such cases,
simulation technology can be a helpful guide for
engineers who are selecting parts, designing algo-
rithms, and inventing new imaging sensors. Simula-
tion of image system performance complements and
extends explorations using specific hardware proto-
types [60] in several ways.

First, creating and calibrating images to test com-
ponents is essential for system design and evalua-
tion; obtaining an adequate range of calibrated
test images is a major bottleneck in the laboratory.
The availability of digitally accurate radiometric
scenes for use in a simulator enables the user to pre-
dict sensor performance for a wide range of scenes
that are difficult to create in the laboratory (high dy-
namic range, low light levels, and so forth). For exam-
ple, to study the trade-off between pixel size and light
sensitivity [31], we used the ISET simulator to para-
metrically vary scene light levels and sensor pixel
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Fig. 5. Color accuracy of measured imaging sensor. The graph on the left plots the desired sSRGB values against the color-balanced sRGB
values derived from the measured sensor images. The histograms show the distribution of AE color errors for the 24 color patches in the

Macbeth ColorChecker.

size. And to characterize the effects of camera motion
[36] on image quality, we varied scene intensity, pixel
size, exposure duration, and camera motion.
Second, simulators make it possible to model and
evaluate imaging components that are difficult or
even impossible to manufacture with current tech-
nologies. This includes novel pixel designs with inte-
grated color filters based on nanopatterned metal
layers [61], transverse field detectors with pixel
electrically tunable spectral sensitivities [62], and

Desired (r,g,b)

0 05 1

Observed (r,g,b)
@)

imaging sensors with novel color pixel arrays
[33,63,64], as well as sensors for other applications,
including microscopy, endoscopy [65], and high-speed
document sensing [66].

Third, a simulator can enhance communication
and collaboration among people with different types
of expertise and at different locations. For example,
an engineer working on one part of the system—say,
demosaicking—need not be familiar with the physi-
cal simulation of the sensor itself. Similarly, the

Count

Fig. 6. Color accuracy of simulated imaging sensor. (a) plots the desired sRGB values against the color-balanced sRGB values derived
from the simulated sensor images. The histograms in (b) show the distribution of AE color errors for the 24 color patches in the Macbeth

ColorChecker.
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engineer working to reduce circuit noise need not be
an expert in demosaicking algorithms. A simulator
provides both users with a framework that imple-
ments the less familiar parts of the pipeline. Differ-
ent laboratories can communicate about a sensor by
simply sending the data files that characterize the
sensor to one another.

Finally, a simulator can produce fully rendered
images so that the user can see the effects of the
parameter changes. The combination of visualization
and quantification increases the user’s confidence
that sensible design and evaluation decisions will
be made.

Appendix A: Characterizing Sensor Noise

We describe how to estimate several types of sensor
noise from unprocessed (“raw”) sensor data.

Dark voltage or dark current is thermally gener-
ated electron noise in the absence of light. To char-
acterize dark voltage, capture many images in the
dark at a set of different exposure durations. The
rate of increase in pixel digital values (DVs) over
time is proportional to the dark voltage. The dark
voltage (volts/second) can be derived from the DV/
time data using the voltage swing and number of
quantization levels.

Read noise is the variance in digital values from
repeated reads of the same pixel. To measure read
noise, capture many images in the darsk with the
same very short exposure duration. The exposure
duration should be as short as possible in order to
avoid contributions from dark voltage. Read noise
is the standard deviation in the multiple measure-
ments obtained in the dark with the same (short) ex-
posure duration. It has units of volts.

Dark signal nonuniformity (DSNU) is the variabil-
ity across pixels in dark voltage. DSNU can be esti-
mated by averaging multiple measurements in the
dark with constant exposure duration and then cal-
culating the standard deviation of the mean pixel va-
lue across the array of pixels. Averaging many dark
images reduces the contribution of read noise. DSNU
has units of volts.

Photoresponse nonuniformity (PRNU) is the stan-
dard deviation in sensitivity across pixels. PRNU can
be estimated by analyzing raw sensor images of a
uniform light field captured at a series of exposure
durations. Do not include sensor images that are
dominated by noise at short durations or saturated
at long exposure durations. Then, for each pixel, cal-
culate the increase in mean digital value as exposure
duration increases. The slope differs between color
channels because each has its own light sensitivity.
The standard deviation of the slope, measured as a
proportion of the mean slope for that channel, is
the same across the colored pixels. This standard de-
viation is the PRNU and is dimensionless.

Appendix B: Characterizing Channel Spectral Efficiency

The spectral sensitivity of a color channel depends on
the spectral quantum efficiency of the photodetector
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and the spectral transmittance of optical elements
and filters in the imaging path. For instrument de-
sign, one would like to measure the spectral trans-
mission of all of these. Measuring the components,
however, requires access prior to assembly or disas-
sembling the device; often neither of these options is
practical. Here, we describe how to measure the com-
bined effect of these components, which is called the
spectral efficiency of the channel.

To measure the channel spectral efficiency, we re-
cord the channel response to a series of narrowband
lights. The wavelength range of these lights should
span 400 and 700 nm, matching the range of human
vision and the typical range of consumer cameras.
One method of creating such lights is to use a mono-
chromator that separates broadband light into mono-
chromatic wavelength components. Another way to
create narrowband lights is to use a set of LEDs with
different peak wavelengths that sample the visible
range [67]

Figure 7 illustrates a procedure for measuring
the spectral efficiency of the RGB color channels in a
digital camera. We illuminate a surface with a
Lambertian reflectance, such as a flat piece of
magnesium—oxide chalk, with narrowband light
from a monochromator. Using a spectrophotometer,
we measure the spectral radiance of each of the nar-
rowband lights [Fig. 7(a)l. The spectral radiance
measured for each of the narrowband lights is com-
bined into a matrix, L. The matrix is N x M, where N
is the number of wavelength samples and M is the
number of spectral lights.

Second, place the camera at the same location used
for the spectrophotometer measurement [Fig. 7(b)];
capture an image of each of the narrowband lights.
For each wavelength band, use the camera exposure
duration that yields the highest SNR. Normalize the
linear camera values (i.e., correct for differences in
exposure duration by dividing the RGB values to
obtain a total response per unit time). To avoid the

(@) (b)

Fig. 7. (a) Illuminate a Lambertian surface with narrowband
lights spanning 400-800 nm using a monochromator. Measure
the spectral radiance of each of the narrowband lights using a spec-
trophotometer. (b) Place the camera at the same location used for
the spectrophotometer measurement and capture an image of each
of the narrowband lights.



effects of chromatic aberration, calculate the mean R,
G, and B values for the central region of the normal-
ized camera image. Place the corrected RGB values
for each of the M lights in the columns of a 3 x M ma-
trix, C. We estimate the channel spectral sensitivity
by using a robust method to solve for S in the linear
equation C = S'L.

We recommend measuring the lens spectral trans-
missivity independently. Manufacturers use unique
lens coatings that can strongly influence the channel
spectral efficiency. Hence, the channel spectral effi-
ciency can depend strongly on the imaging lens.
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