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Abstract

A secret-sharing schemeenables a dealer to distribute a secret amongn parties such that only some
predefined authorized sets of parties will be able to reconstruct the secret from their shares. The (mono-
tone) collection of authorized sets is called anaccess structure, and is freely identified with its charac-
teristic monotone functionf : f0; 1gn ! f0; 1g. A family of secret-sharing schemes is calledefficient
if the total length of then shares is polynomial inn. Most previously known secret-sharing schemes
belonged to a class oflinear schemes, whose complexity coincides with themonotone span program
size of their access structure. Prior to this work there was no evidence that nonlinear schemes can be
significantly more efficient than linear schemes, and in particular there were no candidates for schemes
efficiently realizing access structures which do not lie inNC.

The main contribution of this work is the construction of twoefficient nonlinear schemes: (1) A
scheme with perfect privacy whose access structure is conjectured not to lie inNC; (2) A scheme with
statistical privacy whose access structure is conjecturednot to lie inP=poly. Another contribution is
the study of a class of nonlinear schemes, termedquasi-linearschemes, obtained bycomposinglinear
schemes over different fields. While these schemes are (super-polynomially) more powerful than linear
schemes, we show that they cannot efficiently realize accessstructures outsideNC.

Keywords. secret-sharing, nonlinear secret-sharing, monotone spanprograms, quadratic residuosity.

1 Introduction

Secret-sharing schemes enable a dealer, holding a secret piece of information, to distribute this secret amongn parties such that only some predefined authorized subsets ofparties can reconstruct the secret from their
shares and others learn nothing about it. The (monotone) collection of authorized sets that can reconstruct
the secret is called anaccess structure, and is freely identified with its characteristic monotone functionf : f0; 1gn ! f0; 1g.

The first secret-sharing schemes were introduced by Blakley[14] and Shamir [52]. They constructed
thresholdschemes, in which the access structure is defined by a threshold function. General secret-sharing
schemes, realizing non-threshold access structures, wereintroduced by Ito, Saito, and Nishizeki [43], where
it was shown that every monotone access structure can be (inefficiently) realized by a secret-sharing scheme.�A preliminary version of this paper appeared in the proceedings of the 16th Annu. IEEE Conf. on Computational Complexity,
pages 188–202, 2001.yWork done while at AT&T Labs – Research, and DIMACS.



More efficient schemes for specific types of access structures were presented, e.g., in [10, 54, 18, 45]. We
refer the reader to [53, 58] for extensive surveys on secret-sharing literature.1

Originally motivated by the problem of secure information storage, secret-sharing schemes have found
numerous other applications in cryptography and distributed computing (cf. [50, 9, 23, 27, 30]). However,
secret-sharing is independently interesting as a pure complexity question. The default complexity measure
of secret-sharing schemes is theirshare size, i.e., the total length of all shares distributed by the dealer. This
is a measure of the amount of communication (or storage) required for sharing a secret.2 One of the most
interesting open questions in this area is to characterize which access structures can beefficientlyrealized,
i.e., with shares of polynomial size in the number of partiesn. For most access structures, the best known
upper bound on the share size is exponential. However, unlike other concrete complexity measures such as
circuit complexity, one cannot apply simple counting arguments to show that this must indeed be the case.
In fact, given the current knowledge, one cannot even rule out the possibility thatall access structures can
be efficiently realized.

Several lower bounds on the share size of secret-sharing were obtained [22, 15, 32, 29, 28]. The strongest
current bound is
(n2= log n) [28]. This bound applies to anexplicit access structure. However, as noted
above, there is a huge gap between these lower bounds and the best known upper bounds.

1.1 Linear vs. Nonlinear Secret-Sharing

Most previously known secret-sharing schemes werelinear. In a linear scheme, the secret is viewed as
an element of a finite fieldF , and the shares are obtained by applying a linear mapping to the secret and
several independent random field elements. Linear schemes may be equivalently defined by requiring that
each authorized set reconstructs the secret by applying a linear function to its shares [6]. For example, the
schemes of [52, 14, 43, 10, 54, 18, 13, 45, 33] are all linear.

The share size in linear schemes overF realizing a monotone functionf is proportional to themono-
tone span programsize off overF . (Span programs are a linear-algebraic model of computation introduced
in [45].) In fact, there is a one-to-one correspondence between linear secret-sharing schemes and monotone
span programs. The class of functions that have polynomial size monotone span programs, which coincides
with those admitting efficient linear secret-sharing schemes, is fairly well understood: (1) it contains mono-
toneNC1 and even monotone symmetric logspace [10, 11, 45]; (2) it is contained in algebraicNC2 (as
follows from [12, 17, 49, 21]), implying that it is containedin NC3 whenlog jF j is polynomially bounded;
and (3) there are explicit monotone functions that are provably not in this class [7, 2, 37] (this is proved
without any complexity assumptions).

As opposed to linear secret-sharing schemes, nearly nothing is known for general (i.e., possibly nonlin-
ear) schemes. Several constructions of nonlinear secret-sharing schemes have been suggested, both for the
threshold case [61, 31, 51] and for general access structures [35].3 The question of basing verifiable secret-
sharing and secure multi-party computation on nonlinear secret-sharing has been recently studied in [26].
However, none of these works provides evidence that nonlinear schemes are significantly more powerful
than their linear counterparts.

The relation between linear and nonlinear complexity has been studied in other contexts, such as coding
and randomness extraction (cf. [60]). While in some of thesecontexts the margins of possible improvement
obtained by relaxing the linearity restriction are provably small, this is not the case for our problem. As
discussed above, it is not even known if there exists an access structure thatcannotbe efficiently realized

1Similarly to almost all of the vast literature on secret-sharing, this work is concerned with theinformation-theoreticvariant of
the problem. A relaxed notion ofcomputationally-secure secret-sharing has been considered in [63, 46, 4, 62].

2By default, we ignore thecomputationalcomplexity of the scheme. However, most of our efficient constructions are also
computationally efficient. We explicitly indicate when this is not the case.

3A nonlinear construction of [19] has been shown to be incorrect by [55].
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by a nonlinear scheme. On the other hand, prior to this work there was no evidence that nonlinear schemes
are significantly more efficient than linear schemes. In particular, there were no explicit candidates for
secret-sharing schemes realizing access structures whichdo not lie inNC.

1.2 Our Results

We attempt to remedy the above state of affairs. To this end, we take two different approaches.

Specific candidates. The main contribution of this work is the construction of specific efficient nonlinear
secret-sharing schemes, whose access structures are conjectured to be hard. We present two main schemes,
whose access structures are related to two variants of the quadratic residuosity problem.4 A third scheme,
which is a simplified version of the second, realizes an access structure related to the co-primality problem.5

The first scheme realizes an access structure whose computational complexity is equivalent to that of
deciding quadratic residuosity modulo afixed prime, where the prime modulus may depend only on the
number of parties.6 This problem is not known to be inNC. In particular, assuming that it is indeed not inNC, a separation of efficient nonlinear schemes from efficient linear schemes follows.

The second scheme realizes a presumably much harder access structure, whose computational com-
plexity is equivalent to the general quadratic residuosityproblem. The latter is widely conjectured to re-
quire super-polynomial (or even exponential) size circuits, and its intractability is implied by the so-called
Quadratic Residuosity Assumption[39], which is commonly relied on in cryptography. In contrast to the first
construction, the second construction only meets a more liberal notion of secret-sharing (with a statistical re-
laxation of the perfect correctness and privacy requirements, see Section 2), and its reconstruction procedure
is computationally inefficient. Yet, the second scheme demonstrates that the share size in a secret-sharing
scheme may be super-polynomially smaller than the circuit size of its access structure.

As a variant of the second scheme described above, we obtain ascheme whose access structure is
equivalent to the co-primality problem. Similarly to quadratic residuosity modulo a (fixed) prime, the co-
primality problem is inP but is not known to be inNC. As the second scheme, the third scheme meets only
the more liberal notion of security. However, unlike the second scheme it is also computationally efficient.
Compared to the first scheme, the co-primality problem is more standard than the problem of deciding
quadratic residuosity modulo afixedprime. The main properties of the three schemes described above are
summarized in Table 1.

section perfect/ access structure computational. Hardness of Access Structure
statistical related to. . . efficient?x3 perfect

quadratic residuosity
modulo a fixed prime

yes in P, not known to be inNCx4 statistical quadratic residuosity no in NP, conjectured not to be inP=polyx4.2 statistical co-primality yes in P, not known to be inNC
Table 1: Summary of Our Main Schemes.

Our constructions were inspired by a non-interactive private protocol for the quadratic residuosity prob-
lem from [36]. In fact, every protocol in the model of [36, 42]can be transformed into a secret-sharing
scheme for a related access structure.

4The quadratic residuosity problem is that of deciding, given a pair of integersw; u, whetherw is a square modulou.
5The co-primality problem is that of deciding, givenw; u, whetherg
d(w; u) = 1.
6While a generalization to quadratic residuosity modulo afixedcomposite is possible, this problem is essentially equivalent in a

non-uniform setting to deciding quadratic residuosity modulo a fixed prime.
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Quasi-linear schemes. In addition to the above specific candidates, we study a classof nonlinear schemes,
which we termquasi-linearschemes, obtained bycomposinglinear schemes over (possibly) different fields.
Composition of secret-sharing schemes has been used in previous works (cf. [10, 20, 59, 47, 27]). However,
to the best of our knowledge this is the first work to explicitly discuss compositions of linear schemes over
different fields. We characterize the complexity of quasi-linear schemes in terms of Boolean formulas over
the basis of monotone span programs. We prove that quasi-linear schemes cannot realize any access structure
outsideNC. Specifically, we show that the class of structures which they can efficiently realize is contained
in NC4. Thus, quasi-linear schemes do not provide the strong (conjectured) results implied by the specific
candidates described above. On a positive note, we show an application of quasi-linear schemes for the
construction of secret-sharing schemes efficiently realizing monotone span programs over a ringZu, whereu is a square-free composite. A naive generalization of the construction for monotone span programs over
fields[45] fails to achieve this goal.7 Following our work, it was shown in [8] that quasi-linear schemes are
strictly more powerful than linear schemes, that is, there are explicit functions that have small quasi-linear
schemes, however require super-polynomial linear schemes.

ORGANIZATION. In Section 2 we present some definitions and background. In Sections 3 and 4 we
describe our two main constructions of efficient nonlinear schemes, and discuss the complexity of their
access structures. Finally, in Section 5 we introduce and study the class of quasi-linear schemes.

2 Preliminaries

In this section we define secret-sharing schemes, linear schemes, and span programs, and briefly discuss
the connections between these notions. We end this section with some definitions related to the quadratic
residuosity problem.

Definition 2.1 (Access Structure)Let fP0; : : : ; Pn�1g be a set of parties. A collectionA � 2fP0;:::;Pn�1g
is monotoneif B 2 A andB � C implyC 2 A. Anaccess structureis a monotone collectionA of non-
empty subsets offP0; : : : ; Pn�1g (that is,A � 2fP0;:::;Pn�1g n f;g). The sets inA are called theauthorized
sets. A setB is called aminimal setof A if B 2 A, andC 62 A for everyC ( B. The minimal sets
of an access structure uniquely define it. Finally, we freelyidentify an access structure with its monotone
characteristic functionfA : f0; 1gn ! f0; 1g, whose variables are denotedx0; : : : ; xn�1.
Definition 2.2 (Secret-Sharing) LetS be a finite set of secrets, wherejSj � 2. Ann-party secret-sharing
scheme� with secret-domainS is a randomized mapping fromS to a set ofn-tuplesS0�S1� : : :�Sn�1,
whereSi is called theshare-domainof Pi. A dealer distributes a secrets 2 S according to� by first
sampling a vector ofshares(s0; : : : ; sn�1) from�(s), and then privately communicating each sharesi to
the partyPi. We say that� realizesan access structureA � 2fP0;:::;Pn�1g (or the corresponding monotone
functionfA : f0; 1gn ! f0; 1g) if the following two requirements hold:

Correctness. The secrets can be reconstructed by any authorized subset of parties. That is, for any subsetB 2 A (whereB = fPi1 ; : : : ; PijBjg), there exists areconstruction functionRe
B : Si1 � : : : �SijBj ! S such that for everys 2 S,Pr[ Re
B(�(s)B) = s ℄ = 1;
where�(s)B denotes the restriction of�(s) to itsB-entries.

7This result does not follow from [35], who impose stronger requirements in their definition of span programs over rings.
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Privacy. Every unauthorized subset cannot learn anything about the secret (in the information theoretic
sense) from their shares. Formally, for any subsetC 62 A, for every two secretsa; b 2 S, and for
every possible shareshsiiPi2C :Pr[ �(a)C = hsiiPi2C ℄ = Pr[ �(b)C = hsiiPi2C ℄:

Theshare complexityof the scheme (orcomplexityfor short) is defined as
Pn�1i=0 log jSij.

As the mutual information between the secret and the shares of a set of parties can only grow when we add
parties to the set, it suffices to prove the correctness for minimal authorized sets and the privacy for maximal
unauthorized sets.

The above correctness and privacy requirements capture thestrict notion ofperfectsecret-sharing, which
is the one most commonly referred to in the secret-sharing literature. We will also consider a relaxed but
natural notion ofstatisticalsecret-sharing, in which� accepts an additional argumentk, called thesecurity
parameter, and the perfect correctness and privacy requirements are relaxed tostatistical correctnessand
statistical privacy, defined as follows.

Statistical correctness.Any authorized subset of parties can reconstruct the secrets except withnegligible
probability �(k). That is, for every authorizedB 2 A there exists a reconstruction functionRe
B
such that Pr[ Re
B(�(s)B) = s ℄ � 1� �(k) (1)

for some�(k) 2 k�!(1).
Statistical privacy. Any unauthorized subset of parties learns only a negligibleamount of information

about the secret. That is, for any unauthorizedC 62 A and two secretsa; b 2 S,

SD(�(a; k)C ;�(b; k)C ) � �(k) (2)

for some�(k) 2 k�!(1), whereSD(Y0; Y1) denotes thestatistical distancebetween distributionsY0; Y1
defined asSD(Y0; Y1) = 12Py jPr[Y0 = y℄� Pr[Y1 = y℄j.8

We next define the class oflinear secret-sharing schemes. There are several equivalent definition for
these schemes, see [6].

Definition 2.3 (Linear Secret-Sharing) Let F be a finite field. A secret-sharing scheme� is said to be
linearoverF if:

1. The secret-domainS is a subset ofF .

2. There existd0; : : : ; dn�1 such that each share-domainSi is a sub-space of the vector spaceF di .
3. The randomized mapping� can be computed as follows. First, the dealer chooses independent ran-

dom variables, denotedr1; : : : ; r`, each uniformly distributed overF . Then, each coordinate of each
of then shares is obtained by taking alinear combinationof r1; : : : ; r` and the secrets.

We remark that the notions of perfect secret-sharing and statistical secret-sharing coincide in the case of
linear schemes: Any linear scheme that satisfies the weaker conditions of statistical correctness and privacy
satisfies the stronger requirements of perfect correctnessand privacy.

8Equivalently, the statistical distance betweenY0 andY1 may be defined as the maximum, over all functionsA, of thedistin-
guishing advantagejPr[A(Y0) = 1℄� Pr[A(Y1) = 1℄j.
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Remark 2.4 Van Dijk [32] describes a generalization of linear schemes which, following [55], we call
multi-linear schemes. In a multi-linear scheme the secret is viewed as a collection of elements from a
finite field F , and the shares are obtained by applying a linear mapping to the elements of the secret and
several independent random field elements. Simonis and Ashikhmin [55] show that multi-linear schemes
can be somewhat more efficient than linear schemes. However,if we require that the length of the secret
is polynomial in the number of parties, then multi-linear schemes can only be polynomially more efficient
than linear schemes.

As for any other concrete complexity measure, we will often implicitly use the term “scheme” for
referring to an infinitefamily of schemesf�ngn2N , parameterized by the number of partiesn. In the
statistical case, we require the same negligible function�(k) to apply in Equations (1) and (2) for all�n in the
family. In the linear case, such a family can have a differentunderlying field for eachn. A family f�ngn2N
is efficientif the complexity of�n is polynomial inn (or the complexity of�n(k) is polynomial inn andk
in the statistical case). Note that the above definition doesnot make any requirement on the computational
complexity of the scheme. We say that the scheme iscomputationally efficientif both sharing the secret and
reconstructing it can be done in time poly(n,k,log jSj). Finally, the family of access structuresfAng realized
by a scheme familyf�ng is naturally identified with a monotone Boolean functionf : f0; 1g� ! f0; 1g or
its characteristic language.

We next define span programs – a linear algebraic model of computation whose monotone version is
equivalent to linear secret-sharing.

Definition 2.5 (Span Program [45]) A span programover a fieldF is a triplet 
M = hM;�;~vi, whereM
is an r � 
 matrix overF , the vector~v 2 F 
 is a non-zero row vector called thetarget vector, and� is
a labeling of the rows ofM by literals fromfx0; �x0; : : : ; xn�1; �xn�1g (every row is labeled by one literal,
and the same literal can label many rows). A span program
M is said to bemonotoneif all of its rows are
labeled by positive literals.

A span program accepts or rejects an input by the following criterion. For every inputy 2 f0; 1gn letMy denote the sub-matrix ofM consisting of those rows whose labels are satisfied by the assignmenty. The

span program
M acceptsy if and only if ~v is in the row-span ofMy (where each row ofM is viewed as a
vector inF 
). A span programcomputesa Boolean functionf : f0; 1gn ! f0; 1g if it accepts exactly those
inputsy such thatf(y) = 1. Note that monotone span programs compute monotone functions. Finally, the
sizeof 
M is the number ofrows in M .

The complexity of realizing a given access structure by a linear secret-sharing scheme overF is propor-
tional to the minimal size of a monotone span program overF computingf . Specifically,

Lemma 2.6 ([45, 6]) An access structure can be realized by a linear secret-sharing scheme overF in which
the shares include a total ofd field elements if and only if it can be computed by a monotone span program
overF of sized.

It follows from [12, 17, 49, 21] that all functions that have small span programs are inNC. Specifically,

Lemma 2.7 If a functionf has a span program overF = GF(q) of size`, thenf has an arithmetic circuit
of sizepoly(`) and depthO(log2 `) overF , implying that it has a Boolean circuit of sizepoly(`; log q) and
depthO(log2 ` log log q).
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Quadratic Residues. Let Zu be the ring of integers modulou, whose elements are identified with the
integersf0; 1; : : : ; u � 1g. LetZ�u denote the multiplicative group of the elements ofZu that are relatively
prime tou, that is, the elements ofZ�u aref1 � w < u : g
d(w; u) = 1g. The number of element inZ�u is
denoted by'(u), and is referred to as the Euler function ofu.

An integerw is said to be aquadratic residuemodulou if g
d(w; u) = 1 and there exists an integerb
such thatw � b2 mod u. It is said to be aquadratic non-residuemodulou if g
d(w; u) = 1 and there is
no integerb such thatw � b2 mod u. We will pay particular attention to the case where the modulus is an
odd primep; thus,w andb may be viewed as elements of the fieldZp. In this case,w 2 Z�p = Zp n f0g is
said to be a quadratic residue if it is a square of some field element, and aquadratic non-residueotherwise.
(The element0 is neither a quadratic residue nor a quadratic non-residue.) The quadratic residues form a
subgroup of the multiplicative groupZ�p . Thequadratic residuosity problemis that of deciding, givenw andu, whetherw is a quadratic residue modulou. Whenu is restricted to be a prime (or given the factorization
of u) this problem can be solved in polynomial time, but is not known to have an efficientparallel algorithm.
Whenu is arbitrary, this problem is widely assumed to be intractable. See Section 3.1 for more details.

3 An Efficient Nonlinear Scheme: The Perfect Case

In this section we construct an efficient nonlinear secret-sharing scheme whose access structure is conjec-
tured not to lie inNC. The scheme constructed in this section isperfectlyprivate and correct. Astatistical
scheme realizing a computationally harder access structure will be given in the next section.

Definition 3.1 (The Access StructureNQRPp) Let p be an odd prime andm def= blog p
. We define then-party access structureNQRPp, wheren def= 2m, by specifying its collection of minimal sets. The parties
of the access structure are denoted byP bi , where0 � i < m andb 2 f0; 1g. With eachw 2 f0; 1gm (also

viewed as anm-bit integer) we naturally associate a setBw of sizem defined by:Bw def= fPwii : 0 � i < mg.
A setB is a minimal set ofNQRPp if:� B = �P 0i ; P 1i 	 for some0 � i < m, or:� B = Bw for somew such thatw is not a quadratic residue modulop. (That is, it is either0 or a

quadratic non-residue.)

We letNQRP denote a family of access structures such that thenth structure isNQRPp for somep such
that blog p
 = bn=2
 (say, the least suchp).9

We next construct a secret-sharing scheme forNQRP.

Theorem 3.2 For every odd primep there exists a perfect secret-sharing scheme forNQRPp in which the
secret-domain isf0; 1g and the share-domain of each party isZp.
Proof: We prove this theorem by describing the secret-sharing scheme.

The dealer chooses at randomm� 1 random elementsz0; z1; : : : ; zm�2 2 Zp and an additional random
elementr 2 Z�p . Define zm�1 def= �m�2Xi=0 zi; (3)

9To make the access structure ZPP-uniform,p can be chosen to be the least prime in the interval[2dn=2e; 2dn=2e + n℄, or 3 if
none exists. However, as for other number-theoretic functions, a random choice ofp may be safer when assuming thatNQRP is
not inNC.
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where here and in the following all arithmetic operations involving ring elements are performed inZp. The
shares of the parties are specified in Table 2. We turn to provethat this secret-sharing scheme satisfies thes = 0 s = 1P b0 ; where b 2 f0; 1g r2 + z0 br2 + z0P bi ; where 1 � i < m; b 2 f0; 1g zi 2ibr2 + zi

Table 2: A secret-sharing scheme forNQRPp.
correctness and privacy properties with respect toNQRPp. Let SUMw denote the sum of them shares
held by parties inBw. Both the correctness and the privacy proofs will rely on thefollowing lemma.

Lemma 3.3 SUMw = wsr2.
Proof: By (3) we get:

- If s = 0 then

SUMw = m�1Xi=0 zi + r2 = r2:
- If s = 1 then

SUMw = m�1Xi=0 (zi +wi2ir2)= m�1Xi=0 zi + r2 m�1Xi=0 (wi2i)= r2w: 2
Correctness. We separately consider two types of minimal authorized setsB:� B = �P 0i ; P 1i 	 for some0 � i < m. In this case,s = 0 iff the shares ofP 0i andP 1i are equal. This

follows from the fact that2ir2 6� 0 mod p for everyi.� B = Bw for somew such thatw is not a quadratic residue. In this case, it follows from Lemma 3.3
thats = 0 iff SUMw is a quadratic residue (since the product of a quadratic residue and a non quadratic
residue is a non quadratic residue).

Privacy. We need to prove that every unauthorized subsetC =2 NQRPp has no information on the secret.
It suffices to prove this claim for everymaximalC not in the access structure. There are two cases to
consider.� C = Bw for somew 2 f0; 1gm such thatw is a quadratic residue. In this case we claim that,

regardless of the value of the secret, the share-vector of the parties inC is uniformly distributed over
them-tuples of field elements whose sum is a quadratic residue. Indeed, by Lemma 3.3, ifs = 0 then
SUMw = r2, which is a uniformly random quadratic residue. Furthermore, fixing the choice ofr, the
choices ofzi induce a uniformly random share vector among all those whichsum tor2. Similarly,
if s = 1 then SUMw = r2w. Sincew is a quadratic residue, SUMw is again a uniformly random
quadratic residue determined byr, and the same argument as above applies.
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� C = Bw n nPwjj o
for somew 2 f0; 1gm and0 � j < m. That is,C is a set of sizem � 1 such

that for exactly onej it contains neitherP 0j nor P 1j . We claim that in this case the share-vector of
the parties inC is uniformly distributed inZm�1p , regardless of the secret. It suffices to show that for
every secrets 2 f0; 1g, every possible value of the share-vector fromZm�1p , and every fixedr0 2 Z�p ,
there exists a unique choice ofz0; : : : ; zm�2 generating this value withr = r0. This can be verified
by inspection of the corresponding system of linear equations overZp. 2

A generalization of our construction forNQRP is described in Appendix A. This generalization will
uncover what algebraic properties we use in our construction, and will supply us with a few more examples.

3.1 DoesNQRP Have an Efficient Linear Secret-Sharing Scheme?

The access structureNQRP we have realized above is related to the problem of deciding quadratic residu-
osity modulo a prime. We would like to argue thatNQRP is likely not to be inNC, which would imply in
particular thatNQRP cannot be efficiently realized by linear schemes. We start bydescribing some known
facts about the complexity of the quadratic residuosity problem.

Unlike quadratic residuosity modulo a composite, whose intractability is commonly assumed in cryp-
tography (see [39]), quadratic residuosity modulo a prime can be decided in polynomial time. All known
algorithms for this problem are sequential. It is not known if efficient parallel algorithms for this prob-
lem exist; that is, the situation is similar to the exponentiation function and the gcd function. There are
two types of known algorithms. The first uses Euler’s criterion, which states thatw is a quadratic residue
modulo an odd primep iff w(p�1)=2 � 1 mod p. Thus, this algorithm requires modular exponentiation.
For a survey of algorithms for exponentiation see [40]. The second type of algorithm computes the Jacobi
symbol in a way similar to Euclid’s algorithm for computing the gcd. For more details see, e.g., [3, Chap-
ter 5]. “Weak” parallel algorithms for checking quadratic residuosity follow from the algorithms of [34]
for computing the Jacobi symbol and the algorithm of [1] for exponentiation. More precisely, there is (1)
an algorithm that runs inO(n= log log n) time usingO(n1+�) processors [34]; (2) an algorithm that runs
in O(log2 n log logn) time using2O(n= log n) processors [34]; (3) an algorithm that runs inO(log3 n) time
using2O(pn logn) processors [1].

The best known polynomial-size circuit for the quadratic residuosity problem has depthO(n= log logn)
wheren = log p [34]. Thus, given the current state of knowledge on this problem and the related modular
exponentiation problem, it is reasonable to assume that they are not inNC. In fact, this assumption (for the
exponentiation problem) has been explicitly relied on in [16].

It is easy to see that deciding quadratic residuosity modulop can be very efficiently reduced to computing
the monotone function defined byNQRPp. However, there is a major difference between the “standard”
algorithmic setting for this problem and our setting. Our setting is highly non-uniform, in the sense that with
each input length (or number of parties) we associate somefixedprimep. Hence, when computing this access
structure one may use a non-uniform polynomial-size “advice” depending onp. In algorithmic terms, we
allow unlimited preprocessing which depends on the primep but not on the other inputw. Nevertheless, we
do not know how to use this type of preprocessing to obtain an efficient parallel algorithm for the quadratic
residuosity problem.10 (It is interesting to note, however, that deciding quadratic residuosity modulo a
compositeis no more difficult in our setting than deciding quadratic residuosity modulo a prime, since the
factorization of the composite may be used as advice.) To conclude, the assumption thatNQRP 62 NC is

10Preprocessing can parallelize the algorithms for exponentiation when the field size and the exponentiation base are given in
advance (see [40]). However, in our case we know in advance the field size and the exponentiation power.
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stronger than the assumption that the standard quadratic residuosity problem (or modular exponentiation) is
not inNC, although still seems very reasonable given the current state of knowledge.

In light of the uncertain situation described above, one could hope for an unconditional super-polynomial
lower bound on a size of amonotone span programcomputingNQRP. This would be sufficient for proving
thatNQRP cannot be efficiently realized by linear schemes and, as noted in the introduction, there are
explicit monotone functions for which such bounds are known. However, as we argue next, such lower
bounds are impossible to prove for theNQRP structure, as well as for the access structures considered
in Section 4, without proving thatNC1 6= P. For a fixed(m + 1)-bit prime p, the quadratic residuosity
function (modulop) is defined as:fp(x0; : : : ; xm�1) = 1 iff

Pm�1i=0 xi2i is a quadratic residue modulop. This function is not monotone. To define the monotone accessstructureNQRP we replaced each
literal by two parties, obtaining an access structure with2m parties. (This is a standard transformation, e.g.,
when proving that monotone circuit evaluation isP-complete [38].) For technical reasons we also addedm minterms of size two. It follows that the monotone formula size ofNQRPp is equal, up to an additiveO(n) difference, to the (non-monotone) formula size of the function fp. Thus, one cannot expect to prove
super-polynomial lower bounds on the size of a monotone spanprogram (or even a monotone formula)
for NQRP, since they will imply, in particular, super polynomial lower bounds on the (non-monotone)
formula size of the quadratic residuosity function.11

4 An Efficient Nonlinear Scheme: The Statistical Case

In this section we construct an efficient nonlinear secret-sharing scheme whose access structure is as hard
as the general quadratic residuosity function. Unlike the previous construction, the scheme we construct
below is only statistically private and correct, and its reconstruction procedure is computationally ineffi-
cient. In Section 4.1 we show that perfect correctness (but not perfect privacy) can be achieved under a
number-theoretic assumption, namely the extended Riemannhypothesis. We end this section by discussing
a generalization of our construction which applies to the so-called t-residuosity problem. As a special
case, we obtain an efficient scheme whose access structure iscomputationally equivalent to the co-primality
problem.

Definition 4.1 (The Access StructureNQRm) Letm be a positive integer. We define then-party access

structureNQRm, wheren def= 4m, by specifying its collection of minimal sets. It will be convenient in
the following to denote the first2m parties byW bi and the last2m parties byU bi , whereb 2 f0; 1g and0 � i < m. With each pair(w; u), wherew; u 2 f0; 1gm, we naturally associate a subset of partiesBw;u
of size2m, defined by: Bw;u def= fWwii : 0 � i < mg [ fUuii : 0 � i < mg :
We will freely identify stringsw; u as above with integers in the interval[0; 2m � 1℄. A setB is a minimal
set ofNQRm if:

1. B = �W 0i ;W 1i 	 or B = �U0i ; U1i 	 for some0 � i < m, or:

2. B = Bw;u for somew; u such thatw is not a quadratic residue modulou. (For technical reasons, we
assume here that this condition never holds whenu = 1, and always holds whenu = 0 except whenw = 1.)

We letNQR denote the family of access structures in which thenth structure isNQRbn=4
.
11The best known lower bound on the formula size for an explicitfunction is
(n3�o(1)) [41].
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We start by observing that the computational complexity of the access structureNQR is essentially the
same as that of the general quadratic residuosity problem.

Claim 4.2 The circuit complexity ofNQR is the same, up to anO(n) difference, as that of the languagef(w; u) : jwj = juj and w is a quadrati
 residue modulo ug.
It follows that, under the Quadratic Residuosity Assumption [39], computingNQR requires circuits of
super-polynomial size. The remainder of this section will be devoted to proving the existence of an efficient
nonlinear secret-sharing scheme forNQR. Specifically, we show:

Theorem 4.3 There exists a statistical secret-sharing scheme forNQRm in which:� the secret-domain isf0; 1g;� the share size of each party isO(k2 + km) (wherek is the security parameter);� the reconstruction error probability is2�k;� the privacy level is�(k) = O(k=2k).
Our secret-sharing scheme forNQRm proceeds as follows. LetD def= 24m+3k+1. In the following,

all arithmetic operations will be performed inZD. The dealer choosesz0; z1; : : : ; z2m�1 2 ZD at random
subject to the restriction that they sum to0. In addition, it chooses two random integers1 � r � 2m+k and1 � r0 � 23(m+k). Each party receives a single element ofZD, as specified in Table 3. For amplifying thes = 0 s = 1W b0 ; where b 2 f0; 1g r2 + z0 br2 + z0W bi ; where 1 � i < m; b 2 f0; 1g zi 2ibr2 + ziU bi ; where 0 � i < m; b 2 f0; 1g; 2ibr0 + zi+m 2ibr0 + zi+m

Table 3: A secret-sharing scheme forNQRm.

correctness probability, the above distribution procedure should be independently repeatedk times, so that
each party receivesk elements ofZD. In addition, the minimal authorized sets of size 2 should betaken
care of separately, by independently sharings among each such authorized pair (that is, for each such pair
choose an independent random bit�, and give� to the first party and�� s to the second).12 This only adds
a single bit to the size of each share. The following analysiswill mostly focus on the core of the scheme, as
described in Table 3.

Statistical correctness. The minimal authorized sets of size 2 were explicitly taken care of in the above
construction. It thus remains to prove the correctness for asubsetBw;u, wherew is not a quadratic residue
modulou. The following lemma, which can be verified by inspection of Table 3, is used to show how to
reconstruct the secret.

Lemma 4.4 LetSUMw;u be the sum of the2m shares held by parties inBw;u. Then,SUMw;u = r2ws+r0u
for any0 � w; u < 2m and secrets 2 f0; 1g.

12In fact, as in the previous construction this additional sharing is unnecessary for sets of the form
�W 0i ;W 1i 	.
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Let SUMw;u be the sum of the2m shares held by parties inBw;u.
If g
d(w; u) = 1 then (*w is a quadratic non-residue modulou *)

If SUMw;u is a quadratic residue modulou thens = 0 elses = 1
If g
d(w; u) 6= 1 then

Let 
 = g
d(w; u)
If 
 divides SUMw;u thens = 1 elses = 0

Figure 1: Reconstruction Procedure forBw;u inNQRm.

Note that by our choice of parameters, the expressionr2ws + r0u in Lemma 4.4 is always less thanD. We
will therefore treat this expression as being evaluated over the integers.

If r was chosen such thatg
d(r; u) = 1 then the correctness would follow from similar arguments
to those of the proof forNQRP (that is, the secret is reconstructed by checking if the sum of shares is
a quadratic residue modulou). However, since hereu is not fixed, we cannot guarantee that the above
condition always holds. Nevertheless, this already implies that the secret can be correctly reconstructed
from the shares in Table 3 with a one-sided error probabilityof at most1 � '(u)=u, which is bounded
away from 1 (that is, it is1 � O(1= log log u)). The following tighter analysis, which does not assume thatg
d(r; u) = 1, shows that the one-sided error probability of reconstruction is at most1=2. Hence, withk independent repetitions the error probability is at most2�k. In Figure 1 we present the reconstruction
procedure and then prove its correctness.

From now on, we assume thatu � 2 (the case thatu = 0 andw 6= 1 can be verified separately). Suppose
first thatg
d(w; u) = 
 > 1, and let
0 > 1 be a prime dividing
. In this case,
 always dividesr2w + r0u,
whereas
 dividesr2 + r0u implies that
0 dividesr. Thus, with probability at least1� 1=
0 � 1=2, the gcd
 does not divider2+ r0u. It follows that wheng
d(w; u) > 1 the cases = 0 can be distinguished from the
cases = 1 with a one-sided error probability of at most1=2, as described above.

Now suppose thatw is a quadratic non-residue modulou. In this case,r2 + r0u � r2 mod u is always
a square modulou. This implies that SUMw;u is a quadratic residue whens = 0. The following lemma
shows that with probability at least1=2, this is not the case forr2w + r0u, i.e., whens = 1.

Lemma 4.5 Suppose thatw is a quadratic non-residue modulou (in particular, g
d(w; u) = 1). Then, the
probability thatr2w is a quadratic residue modulou is at most1=2.

Proof: By the Chinese Remainder Theorem, a number is a quadratic-residue modulou if and only if it
is a quadratic-residue modulo each prime power dividingu. Thus, there exists a prime powerp� dividingu such thatw is a quadratic non-residue modulop�. Now, if wr2 is a square modulou, then it is also a
square modulop�, and so there existsd such thatd2 � wr2 mod p�. We argue that it must be the case thatp dividesr. Otherwise,r has an inverse modulop� andw � (d=r)2 mod p� contradicting the fact thatw is
a quadratic non-residue modulop�. The lemma follows by noting that the probability thatp dividesr is at
most1=p � 1=2, as required. 2

This concludes the analysis of the reconstruction procedure described above. Note that this reconstruc-
tion procedure is computationally inefficient if the factorization ofu is unknown.

Statistical privacy. We now prove the privacy of our construction. As before, it suffices to consider
maximal unauthorized sets of two types. The first type consists of setsC such thatjCj < 2m andC does
not contain a pairW 0i ;W 1i or a pairU0i ; U1i . For such a setC, it can be verified that the shares received by
its parties are uniformly and independently distributed overZD, regardless of the secrets.
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We turn to the more interesting case of a setC = Bw;u such thatu � 2 andw is a quadratic residue
modulou. (The casesu = 1 andu = 0; w = 1 can be verified separately.) Whens = 0 the shares are
random subject to the restriction that their sum isr2+ r0u, and whens = 1 the shares are random subject to
the restriction that their sum isr2w+r0u. Thus, it suffices to show that in this case SD(r2+r0u; r2w+r0u) =O(2�k). We prove this using the following lemmas. In the lemmas we denote byr and r0 the random
variables used in the scheme (taking uniform integral values from the intervals[1; 2m+k ℄ and[1; 23(m+k)℄,
respectively). For the proof we also use an additional random variableru which is a uniformly distributed
integer in[0; u � 1℄.
Lemma 4.6 If w is a quadratic residue modulou, then the distribution of(wr2u) mod u is identical to that
of r2u mod u.

Proof: Sincew is a quadratic residue modulou, there existsb such thatg
d(b; u) = 1 andb2 � w mod u.
Sincewr2u � (bru)2 mod u, it suffices to show that(bru) mod u is identically distributed toru mod u =ru. Finally, sinceg
d(b; u) = 1, i.e.,b has an inverse modulou, thenPr[bru � �℄ = Pr[ru � (�=b)℄ = 1=u
for every value�. 2
Lemma 4.7 SD(r2 mod u ; r2u mod u) � 2�k.

Proof: Recall thatr is chosen uniformly from the interval[1; 2m+k℄. If u divides2m+k then the above
two distributions are identical. Otherwise, the contribution of eachy 2 [0; u � 1℄ to this distance is at most1=2m+k, and sinceu < 2m the total contribution is at most2m=2m+k = 2�k. 2

From the previous two lemmas, we may conclude that

SD(wr2 mod u; r2 mod u) = O(2�k): (4)

Now, define the multisets V = nwr2 mod u : 1 � r � 2m+ko
and Z = nr2 : 1 � r � 2m+ko :
Let Z 0 be a maximal multiset such thatZ 0 � Z andZ 0 mod u def= fz mod u : z 2 Z 0g � V . It follows
from Eq. (4) thatjZ 0j = (1�O(2�k))jZj. DefineS = Z 0[(V n(Z 0 mod u)). Note thatjSj = jV j = 2m+k.
We will denote the elements ofS by y1; : : : ; y2m+k and the uniform distribution overS by Y . It follows
from the above thatY satisfies: (1) SD(Y; r2) = O(2�k); (2) the distribution ofY mod u is identical to
that ofwr2 mod u; and (3)Y � 22(m+k).

We would like to conclude that SD(wr2 + r0u; r2 + r0u) = O(2�k). To this end, we use the following
lemma.

Lemma 4.8 Lety; z be two integers in some interval[0;M ℄ such thaty � z mod u, and letR be uniformly
distributed in the interval[1;MK℄. Then,SD(y +Ru ; z +Ru) � 1=K.

Proof: The statistical distance is bounded byjy � zj=(uMK) �M=(uMK) < 1=K. 2
We are now ready to complete the proof of privacy. From Property (1) of Y it follows that

SD(Y + r0u; r2 + r0u) = O(2�k): (5)

From Property (2) ofY , we may assume thatyr � wr2 mod u for every1 � r � 2m+k. LettingM =23m+2k andK = 2k, bothY andwr2 are no larger thanM , andr0 is uniform in [1;MK℄. Since

SD(Y + r0u;wr2 + r0u) � Er[SD(yr + r0u;wr2 + r0u)℄
13



it follows from Lemma 4.8 that
SD(Y + r0u;wr2 + r0u) � 2�k: (6)

Combining Eq. (5) and Eq. (6) we get that SD(wr2 + r0u; r2 + r0u) = O(2�k), as required.
As explained above, to reduce the error probability in the reconstruction from1=2 to 2�k we share

the secret independentlyk times. By standard arguments, this can only increase the statistical distance toO(k=2k), which is still negligible ink.

4.1 A Perfectly Correct Scheme

In this section we show that under the Extended Riemann Hypothesis (abbreviated ERH), one can obtain a
variant of the above scheme which isperfectlycorrect, though still only statistically private. (It is open if
there is a scheme with perfect correctness and privacy whichefficiently realizesNQR.) The only required
modification is the choice ofr: instead of choosing it uniformly from the interval[1; 2m+k℄, it is chosen
as a randomprime from the interval[2m; 2m+k℄. Sinceu < 2m, this guarantees thatr is relatively prime
to u, and this in turn is sufficient to guarantee perfect correctness. We next argue that under the ERH, the
resulting scheme is statistically private.

We will need the following results on the distribution of primes. For more information on this subject
the reader might consult, e.g., [3, Chapter 8]. For an integer x let �(x) be the number of primes in the
interval [1; x℄, and for integersx;w andu let �(x; u;w) be the number of primes in the interval[1; x℄ that
are congruent tow mod u. It is known that�(x) � x= log x. If g
d(w; u) > 1 then every number that is
congruent tow mod u is a composite. It turns out that the primes are nearly uniformly distributed among
the other residue classes modulou. That is, ifg
d(w; u) = 1 then�(x; u;w) � 1'(u)x= log x, where'(u)
is the Euler function ofu.

We will need good bounds on the error terms in the above approximations. The bounds that can be
proved unconditionally are too crude for our purpose, and wewill need bounds based on the the Extended
Riemann Hypothesis. Proving this famous hypothesis is one of the most important open questions in mathe-
matics. We will not formulate the statement of this hypothesis, and only state the following conclusion from
the ERH. The estimations that are used to derive the next theorem are presented in Appendix B, where it is
also shown how to derive Theorem 4.9 from these estimations.

Theorem 4.9 If the ERH holds andg
d(w; u) = 1 then for everyx andx0, whereu � x0 � px,�����(x; u;w) � �(x0; u; w)�(x)� �(x0) � 1'(u) ���� = O� log2 xpx � ;
where the constant in the “O” notation is an absolute constant independent ofw, u, andx.

Notice that�(x;u;w)��(x0;u;w)�(x)��(x0) is the probability that a uniformly random prime in the interval [x0; x℄ is
congruent tou modulow. Thus, the above theorem states that this probability is close to the probability that
a uniformly random element fromZ�u is equal tow.

Corollary 4.10 Let u < 2m, U be a random variable distributed uniformly inZ�u, and r be a uniformly
chosen prime in the interval[2m; 2m+k℄. If ERH holds thenSD(U; r mod u) � 2�
(k) for everyk andm
such thatk � 3m, and in particularSD(U2 mod u; r2 mod u) � 2�
(k).
Proof:

SD(U; r mod u) = 12 Xy2Z�u jPr[U = y℄� Pr[r mod u = y℄j
14



� '(u) �O�(m+ k)2p2m+k �= O�2m(m+ k)220:5(m+k) � = 2�
(k):
The last equality holds sincek � 3m. 2

To guarantee that the statistical distance decreases exponentially with the security parameterindepen-
dently ofm, we execute the scheme withk0 = max(k; 3m). Closely following the privacy proof of the
previous protocol (and replacing Lemma 4.7 with Corollary 4.10), one can show that the scheme is statisti-
cally private with�(k) = 2
(�k). The next theorem summarizes the properties of this scheme.

Theorem 4.11 If ERH holds, then there exists a statistical secret-sharingscheme forNQRm with perfect
correctness in which:� the secret-domain isf0; 1g;� the share size of each party isO(k +m);� the privacy level is�(k) = 2�
(k).
4.2 Schemes fort-Residuosity

The quadratic residuosity problem naturally generalizes to thet-residuosity problem defined as follows. An
integerw is a t-residue modulou if g
d(w; u) = 1 and there exists an integerb such thatw � bt mod u.
The access structureNtR is defined as the access structureNQR, with quadratic residuosity replaced bytth residuosity.

A scheme forNtR can be obtained by the following small modification to the scheme forNQR: the
ring sizeD is changed to2(t+2)m+(t+1)k+1, the random stringr0 is chosen with uniform distribution from[1; 2(t+1)(t+k) ℄, and in the dealer’s distribution procedure we replacer2 by rt. The correctness and privacy
of the modified scheme are argued similarly to the original scheme. These modification also work in the
scheme based on the ERH.

An interesting special case of the general scheme is whent = 1. In the resultant scheme,Bw;u can
reconstruct the secret iff the integersw andu are not co-primes (i.e.,g
d(w; u) > 1). Hence, its access
structure is computationally equivalent to the co-primality problem. Checking if two integers are co-primes
is clearly inP, and it is not known to be inNC. The best parallel algorithms for the co-primality problem
compute the gcd. The question if the gcd can be computed in parallel, that is, with polylogarithmic time and
polynomial number of processors, was first raised by Cook [25] and is still open. Parallel algorithms with
sub-linear time, namelyO(n= log n) time, and polynomial number of processors where presented by [44,
24, 56]. Parallel algorithms with polylogarithmic time andsub-exponential number of processors where
presented by [1]. An important feature of this instance of the general construction is that it is computationally
efficient: indeed, reconstruction only requires checking if g
d(w; u) divides SUMw;u.

5 Quasi-Linear Secret-Sharing

In this section we study a natural extension of the class of linear secret-sharing schemes to what we call
quasi-linearschemes. Quasi-linear schemes are obtained bycomposinga finite number of linear secret-
sharing schemes, possibly over different fields.

Towards defining quasi-linear schemes, it will be convenient to use the following notation for extending
the secret-domain of a given secret-sharing scheme to an arbitrarily large finite domain.
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Definition 5.1 Let� be a secret-sharing scheme with secret-domainS and share-domainsS0; : : : ; Sn�1,
let T = f0; 1; : : : ; jT j � 1g be any finite secret-domain, and let` = dlogjSj jT je. Then, by~�T we denote

the randomized mapping fromT to S0̀ � � � � � Sǹ�1 defined as follows. For a secrett 2 T , let (t1; : : : ; t`)
denote its base-jSj representation, whereti 2 S for all i. The output of~�T (t) is obtained by independently
applying� to eachti and letting theith entry of the output be the concatenation of theith entries from the` outputs of�.

As can be easily seen,~�T defines a secret-sharing scheme realizing the same access structure as�,
whose secret-domain isT and whose share-complexity is` = dlogjSj jT je times that of�. We are now
ready to formally define the notion of quasi-linear schemes.

Definition 5.2 Ann-party quasi-linear secret-sharing scheme is recursivelydefined as follows:

1. Anyn-party linear secret-sharing scheme is ann-party quasi-linear scheme.

2. Suppose that� is ann0-party linear scheme over a fieldF with share-domainsS0; : : : ; Sn0�1, and let�0; : : : ; �n0�1 ben-party quasi-linear schemes. Then, define ann-party quasi-linear secret-sharing
scheme�(�0; : : : ; �n0�1) with secret-domainF as follows. To shares 2 F , first apply�(s) to
obtain sharess0; : : : ; sn0�1. Then, identifying each share-domainSi with the setf0; 1; : : : ; jSij � 1g,
independently share eachsi among then parties using~�iSi .

It is convenient to view ann-party quasi-linear scheme� as a tree, in which every node contains a linear
secret-sharing scheme. Associating each linear scheme with its corresponding monotone span program, we
may view this tree as a Boolean formula'� over the basis of all monotone span programs (over all finite
fields);13 that is, each gate in the formula computes the Boolean function computed by a monotone span
program. For brevity we refer to such a formula as anMSP-formula.

The following proposition establishes the correspondencebetween a quasi-linear scheme and its associ-
ated MSP-formula. Its proof is a generalizing the proof for the AND-OR-Threshold formula construction
from [10].

Proposition 5.3 Let� be a quasi-linear secret-sharing scheme and'� be the corresponding MSP-formula.
Then,� realizes the access structure computed by'�.

The scheme�(�0; : : : ; �n0�1) from Case (2) in Definition 5.2 is just the standard definitionof com-
position of� with �0; : : : ; �n0�1, thus, a formal proof of Proposition 5.3 follows, by induction, from,
e.g., [47, 48].

Beimel and Weinreb [8] proved that quasi-linear schemes arestrictly stronger than linear schemes. More
precisely, they proved that there are explicit functions that have small quasi-linear schemes, however require
linear schemes of sizen
(log n). However, as we show next, quasi-linear schemes cannot be too powerful.
More specifically, if there is an efficient quasi-linear scheme for f thenf can be computed by a shallow
circuit. The idea of the proof is to consider the corresponding MSP-formula'. We use a result of [5]
showing that a formula' over a general basis can be “balanced” to obtain an equivalent formula whose
depth is small and its size is not too big (this is a generalization of the well-known result from [57] for
bounded fan-in formulae over the standard basis). An instantiation of this result which is useful for our
purposes is quoted in the following lemma.

13An input variable is viewed as a size-1 monotone span programin the variablesx0; : : : ; xn�1 returning its value.
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Lemma 5.4 (Beigel and Fu [5])Let' be a MSP-formula. Then, there exists a MSP-formula'̂ such that:
(1) '̂ computes the same function as'; (2) the depth of̂' isO(log(size('))); (3) the size of̂' is size(')O(1);
and (4) each node of̂' is either labeled by some span program appearing in', or is labeled by an AND,
OR, or NOT gate.

Theorem 5.5 Suppose thatf is efficiently realized by quasi-linear schemes. Then,f 2 NC4.
Proof: Let� be an efficient quasi-linear scheme realizingf , and let' be the corresponding MSP-formula.
We may assume without loss of generality that the span program labeling eachinternal node of' depends
on all of its inputs, and has at least two inputs; otherwise� could be simplified into a quasi-linear scheme�0
whose MSP-formula'0 satisfies this property. As the number of leaves in such a' is a lower bound on the
complexity of� (and the degree of each internal node of' is at least 2),' must be of size poly(n). It also
follows that each nodev of ' must be labeled by apolynomial-sizemonotone span programMv over a field
GF(qv) such thatlog qv = poly(n).14 By Lemma 2.7, the functionfv computed byMv can be simulated by
a Boolean circuit of size poly(n) and depthO(log3 n). The theorem follows by applying Lemma 5.4 to'
and replacing each node in̂' by a correspondingNC3 circuit. 2

We conclude this section by showing an application of quasi-linear schemes for the construction of
secret-sharing schemes efficiently realizing monotone span programs over a ringZu, whereu is a square-
free composite.15

Theorem 5.6 Let
M = hM;�;~vi be a monotone span program overZu, whereu is the product ofk distinct
primesp1; : : : ; pk. Then, there exists a quasi-linear scheme�M realizing the access structure defined byM , whose share-complexity issize(M) �Pkj=1 dlog pje = O(size(M) � log u).
Proof: The scheme�M is defined by the following depth-2 MSP-formula'M . The root contains an AND
gate with fan-ink (represented by a size-k monotone span program over GF(2)). Thejth leave,1 � j � k,
contains a monotone span program
Mj = hMj ; �; ~vji over GF(pj), obtained from
M by reducing each ofM
and~v entries modulopj. By Proposition 5.3, to prove that�M indeed realizes the access structure defined
by 
M it suffices to show that'M computes the same function as
M . Indeed, ifM(x) = 1, then clearlyMj(x) = 1 for all j (as witnessed by the same linear combination, modulopj). The converse follows by
applying the Chinese Remainder Theorem to thek linear combination vectors witnessing thatMj(x) = 1,
where1 � j � k.16 2
Example 5.7 Figure 2 shows an efficient span program overZu for testing whether the inputx (viewed as
an integer) is co-prime tou. Replacing each negative literal with a new variable, we geta monotonespan
program for an access structure whose complexity is equivalent to deciding whetherx is co-prime to some
fixed integeru.17 Using Theorem 5.6, we get a very efficient quasi-linear scheme for this access structure.
We note that the scheme from Section 4.2 is stronger in the sense that it efficiently applies to the standard co-
primality problem (with no fixed inputs). However, this scheme only realizes the relaxed notion of statistical
secret-sharing.

14The converse does not hold. It is easy to construct a polynomial-size MSP-formula (even a shallow one) which is efficient in
this sense, but whose corresponding quasi-linear scheme isinefficient.

15Span programs over rings are defined in a completely analogous way to span programs over fields.
16If ~vj = ~0 for somej, then
Mj should accept every input (as witnessed by the trivial combination of rows). However, in the

definition of span programs we require that the target vectoris a non-zero vector. Thus,�M has a leaf for everyj such that~vj 6= ~0.
17Whetherx is co-prime tou can be tested inNC1 given an advice depending onu (namely, its factorization). Hence, there exist

efficient linear secret-sharing schemes for this access structure. Still, the exact efficiency of the quasi-linear scheme is much better.
See Example A.2 for an efficient nonlinear realization whichdoes not rely on the factorization ofu.
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�x0 0 1 0 0 � � � 0 0 0x0 1 1 0 0 � � � 0 0 0�x1 0 -1 1 0 � � � 0 0 0x1 2 -1 1 0 � � � 0 0 0
...

...
. . .

...�xn�2 0 0 0 0 � � � 0 -1 1xn�2 2n�2 0 0 0 � � � 0 -1 1�xn�1 0 0 0 0 � � � 0 0 -1xn�1 2n�1 0 0 0 � � � 0 0 -1
target 1 0 0 0 � � � 0 0 0

Figure 2: A span program overZu testing whetherg
d(x; u) = 1.
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A A Generalization of the Scheme from Section 3

In this section we show how to generalize the scheme forNQRP to similar access structures. This gener-
alization will uncover what algebraic properties we use in our construction, and will supply us with a few
more examples.

LetR = hA;+; �i be a finite ring andB � Anf0g be such thatG = hB; �i is a group.18 In the sequence
all arithmetic operations involving ring elements are performed in the ring. We assume that2 � a 6= 0 for
everya 2 R n f0g. We Define the access structureAR;G in a similar way toNQRP.

Definition A.1 (The access structureAR;G) Let m def= blog jRj
. We define then-party access structureAR;G, wheren def= 2m, by specifying its collection of minimal sets. With an integer w 2 f0; 1gm we
naturally associate a setBw of sizem defined by:Bw def= fPwii : 0 � i < mg :
A setB is a minimal set ofAR;G if:� B = �P 0i ; P 1i 	 for some0 � i < m, or:� B = Bw for somew 2 f0; 1gm such thatw =2 G.

We next show haw to generalize the scheme forNQRP to a scheme forAR;G.

Distribution. The dealer chooses at randomm � 1 random elementsz0; z1; : : : ; zm�2 2 R and an ad-
ditional random elementr 2 G. Definezm�1 def= �Pm�2i=0 zi. The shares of the parties are specified in
Table 4. s = 0 s = 1P b0 ; where b 2 f0; 1g r + zi br + ziP bi ; where 1 � i < m; b 2 f0; 1g zi 2ibr + zi

Table 4: A secret-sharing scheme forAR;G.

The reconstruction is similar to the scheme forNQRP, where ifB = Bw for somew =2 G, thens = 0
iff SUMw 2 G. The correctness of this rule follows from the fact that ifw =2 G andb 2 G thenw � b =2 G.

For the security, we only consider the case whereC = Bw for somew 2 G. (The first case is identical
to the scheme forNQRP.) In this case we claim that, regardless of the value of the secret, the vector-share
of the parties inC is a random vector such that SUMw 2 G. This is clearly true whens = 0. Whens = 1,
the sum SUMw is rPm�1i=0 wi2i = rw, and sincer is a random element ofG andw has an inverse inG, the
product is a random element ofG.

We next show a few examples of access structures.

18We even do not need all the properties of these algebraic structures.
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Example A.2 Let N be a positive integer,R = hZN ;+; �i, andG = hZ�N ; �i. In this case, an efficient
linear scheme forAR;G exists (see Footnote 17). A quasi-linear scheme for this access structure is described
in Example 5.7. However, both the linear and the quasi-linear schemes require knowing the factorization ofN . The nonlinear scheme does not require knowledge of the factorization, and all the computations involved
are efficient.

Example A.3 Let p be a prime,R = hZp2 ;+; �i, B = �w 2 Zp2 : wp�1 � 1 mod p2	, andG = hB; �i.
In this case we do not know if there is a quasi-linear scheme for AR;G, or even ifAR;G is in NC.

B Explicit Estimates implied by ERH

The next theorem gives explicit bounds on the error term in the approximation of the distribution of the
primes.

Theorem B.1 Let li(x) def= R x2 dtlog t . If the ERH holds then forx � 2657:xlog x+ 2 < �(x) < xlog x� 4 [3, Theorem 8.8.1] (7)

and j�(x)� li(x)j � px log x=8� [3, Page 249] (8)

Moreover, if ERH holds,u � x, andg
d(w; u) = 1 then�����(x; u;w) � li(x)'(u) ���� � px(log x+ 2 log u) � 3px log x [3, Theorem 8.8.18]: (9)

We next show how we derive Theorem 4.9 from Theorem B.1. That is, we prove that if the ERH holds
andg
d(w; u) = 1 then for largex andx0, whereu � x0 � px,�����(x; u;w) � �(x0; u; w)�(x)� �(x0) � 1'(u) ���� = O� log2 xpx � :
First, by (7) and since�(x0) � x0 � px,�(x)� �(x0) > xlog x+ 2 �px > x2 log x: (10)

Second, by (9), by (8), and since�(x0) � x0 � px,�(x; u;w) < li(x)'(u) +O(px log x) < �(x)� �(x0)'(u) +O(px log x): (11)

Therefore, by (11) and by (10),�(x; u;w) � �(x0; u; w)�(x)� �(x0) < �(x; u;w)�(x)� �(x0) � 1'(u) +O� px log x�(x)� �(x0)� � 1'(u) +O� log2 xpx � :
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On the other hand, by (9), since�(x0; u; w) < x0 � px, and by (8), and by (7)�(x; u;w) � �(x0; u; w) > li(x)'(u) �O(px log x)�px> �(x)�px log x=8� � �(x0)'(u) �O(px log x)> �(x)� �(x0)'(u) �O(px log x): (12)

Thus, by (12) and by (10)�(x; u;w) � �(x0; u; w)�(x)� �(x0) > 1'(u) �O� px log x�(x)� �(x0)� � 1'(u) �O� log2 xpx � :
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