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Abstract

A secret-sharing schenemables a dealer to distribute a secret amompgrties such that only some
predefined authorized sets of parties will be able to recoosthe secret from their shares. The (mono-
tone) collection of authorized sets is calledamtess structureand is freely identified with its charac-
teristic monotone functiorf : {0,1}" — {0,1}. A family of secret-sharing schemes is calkfticient
if the total length of then shares is polynomial im. Most previously known secret-sharing schemes
belonged to a class ofinear schemes, whose complexity coincides with thenotone span program
size of their access structure. Prior to this work there wagvidence that nonlinear schemes can be
significantly more efficient than linear schemes, and inipaldr there were no candidates for schemes
efficiently realizing access structures which do not lié&Ni@.

The main contribution of this work is the construction of tefiicient nonlinear schemes: (1) A
scheme with perfect privacy whose access structure is ctum@d not to lie inNC; (2) A scheme with
statistical privacy whose access structure is conjectaredo lie in P/poly. Another contribution is
the study of a class of nonlinear schemes, teropeaki-linearschemes, obtained lomposindinear
schemes over different fields. While these schemes arertpapmomially) more powerful than linear
schemes, we show that they cannot efficiently realize astasstures outsidadC.

Keywords. secret-sharing, nonlinear secret-sharing, monotone grmyrams, quadratic residuosity.

1 Introduction

Secret-sharing schemes enable a dealer, holding a sesretgfiinformation, to distribute this secret among
n parties such that only some predefined authorized subsetsids can reconstruct the secret from their
shares and others learn nothing about it. The (monoton&atioin of authorized sets that can reconstruct
the secret is called aaccess structuteand is freely identified with its characteristic monotonmdtion
f:4{0,1}" — {0, 1}.

The first secret-sharing schemes were introduced by Blgkklyand Shamir [52]. They constructed
thresholdschemes, in which the access structure is defined by a thdelslmtion. General secret-sharing
schemes, realizing non-threshold access structures,imezduced by Ito, Saito, and Nishizeki [43], where
it was shown that every monotone access structure can bediewtly) realized by a secret-sharing scheme.

*A preliminary version of this paper appeared in the procegsiiof the 16th Annu. IEEE Conf. on Computational Complexity
pages 188-202, 2001.
fwork done while at AT&T Labs — Research, and DIMACS.



More efficient schemes for specific types of access strustwere presented, e.g., in [10, 54, 18, 45]. We
refer the reader to [53, 58] for extensive surveys on sesitating literature.

Originally motivated by the problem of secure informatidarage, secret-sharing schemes have found
numerous other applications in cryptography and distetutomputing (cf. [50, 9, 23, 27, 30]). However,
secret-sharing is independently interesting as a pure ity question. The default complexity measure
of secret-sharing schemes is thalirare sizei.e., the total length of all shares distributed by the dedlhis
is a measure of the amount of communication (or storage)inejéor sharing a secrét.One of the most
interesting open questions in this area is to charactertziehnaccess structures can éficientlyrealized,
i.e., with shares of polynomial size in the number of partied-or most access structures, the best known
upper bound on the share size is exponential. However,aipliker concrete complexity measures such as
circuit complexity, one cannot apply simple counting argums to show that this must indeed be the case.
In fact, given the current knowledge, one cannot even rutdlmipossibility thatll access structures can
be efficiently realized.

Several lower bounds on the share size of secret-sharingattained [22, 15, 32, 29, 28]. The strongest
current bound i€2(n?/logn) [28]. This bound applies to aexplicit access structure. However, as noted
above, there is a huge gap between these lower bounds anestienown upper bounds.

1.1 Linear vs. Nonlinear Secret-Sharing

Most previously known secret-sharing schemes Wiaar. In a linear scheme, the secret is viewed as
an element of a finite field’, and the shares are obtained by applying a linear mappingetsdcret and
several independent random field elements. Linear scheragmequivalently defined by requiring that
each authorized set reconstructs the secret by applyingearlifunction to its shares [6]. For example, the
schemes of [52, 14, 43, 10, 54, 18, 13, 45, 33] are all linear.

The share size in linear schemes o¥erealizing a monotone functiolfi is proportional to thanono-
tone span prograrsize of f over F'. (Span programs are a linear-algebraic model of computatiooduced
in [45].) In fact, there is a one-to-one correspondence betwinear secret-sharing schemes and monotone
span programs. The class of functions that have polynonz@lmsonotone span programs, which coincides
with those admitting efficient linear secret-sharing scasnis fairly well understood: (1) it contains mono-
toneNC'! and even monotone symmetric logspace [10, 11, 45]; (2) ibigained in algebraitNC? (as
follows from [12, 17, 49, 21]), implying that it is containéa NC?* whenlog | F| is polynomially bounded;
and (3) there are explicit monotone functions that are gstyvaot in this class [7, 2, 37] (this is proved
without any complexity assumptions).

As opposed to linear secret-sharing schemes, nearly mpihknown for general (i.e., possibly nonlin-
ear) schemes. Several constructions of nonlinear selcaging schemes have been suggested, both for the
threshold case [61, 31, 51] and for general access strsciB52 The question of basing verifiable secret-
sharing and secure multi-party computation on nonlinearetesharing has been recently studied in [26].
However, none of these works provides evidence that nalisehemes are significantly more powerful
than their linear counterparts.

The relation between linear and nonlinear complexity hantstudied in other contexts, such as coding
and randomness extraction (cf. [60]). While in some of thes®exts the margins of possible improvement
obtained by relaxing the linearity restriction are prowabmall, this is not the case for our problem. As
discussed above, it is not even known if there exists an atascture thatannotbe efficiently realized

1Similarly to almost all of the vast literature on secretsihg, this work is concerned with thieformation-theoretiosariant of
the problem. A relaxed notion @omputationallysecure secret-sharing has been considered in [63, 46].4, 62

’By default, we ignore theomputationalcomplexity of the scheme. However, most of our efficient tamsions are also
computationally efficient. We explicitly indicate whenghs not the case.

3A nonlinear construction of [19] has been shown to be inarg [55].



by a nonlinear scheme. On the other hand, prior to this waeketlivas no evidence that nonlinear schemes
are significantly more efficient than linear schemes. Inipaldr, there were no explicit candidates for
secret-sharing schemes realizing access structures whiobt lie inNC.

1.2 Our Results

We attempt to remedy the above state of affairs. To this eedake two different approaches.

Specific candidates. The main contribution of this work is the construction of eifie efficient nonlinear
secret-sharing schemes, whose access structures aretacggeto be hard. We present two main schemes,
whose access structures are related to two variants of thératic residuosity problerh.A third scheme,
which is a simplified version of the second, realizes an acstacture related to the co-primality problém.

The first scheme realizes an access structure whose coipatatomplexity is equivalent to that of
deciding quadratic residuosity modulcdfized prime, where the prime modulus may depend only on the
number of partie$. This problem is not known to be INC. In particular, assuming that it is indeed not in
NC, a separation of efficient nonlinear schemes from efficierr schemes follows.

The second scheme realizes a presumably much harder ateedars, whose computational com-
plexity is equivalent to the general quadratic residuopityblem. The latter is widely conjectured to re-
quire super-polynomial (or even exponential) size ciuiind its intractability is implied by the so-called
Quadratic Residuosity Assumptif89], which is commonly relied on in cryptography. In corgtr¢o the first
construction, the second construction only meets a maeedimotion of secret-sharing (with a statistical re-
laxation of the perfect correctness and privacy requirdsjesee Section 2), and its reconstruction procedure
is computationally inefficient. Yet, the second scheme destrates that the share size in a secret-sharing
scheme may be super-polynomially smaller than the cirdzdt of its access structure.

As a variant of the second scheme described above, we obtstheae whose access structure is
equivalent to the co-primality problem. Similarly to quatic residuosity modulo a (fixed) prime, the co-
primality problem is inP but is not known to be itNC. As the second scheme, the third scheme meets only
the more liberal notion of security. However, unlike them®t scheme it is also computationally efficient.
Compared to the first scheme, the co-primality problem isersiandard than the problem of deciding
guadratic residuosity modulofexedprime. The main properties of the three schemes describedeadre
summarized in Table 1.

section| perfect/ access structure computational. Hardness of Access Structure
statistical related to. .. efficient?

guadratic residuosity

83 perfect , : yes in P, not known to be ilNC
modulo a fixed prime

84 statistical| quadratic residuosity no in NP, conjectured not to be iR /poly

§4.2 | statistical co-primality yes in P, not known to be ilNC

Table 1: Summary of Our Main Schemes.

Our constructions were inspired by a non-interactive pevaotocol for the quadratic residuosity prob-
lem from [36]. In fact, every protocol in the model of [36, 4@3dn be transformed into a secret-sharing
scheme for a related access structure.

4The quadratic residuosity problem is that of deciding, gigepair of integerss, u, whetherw is a square module.

The co-primality problem is that of deciding, given u, whetherged (w, u) = 1.

®While a generalization to quadratic residuosity modufixadcomposite is possible, this problem is essentially eqaiviaih a
non-uniform setting to deciding quadratic residuosity mloch fixed prime.

3



Quasi-linear schemes. In addition to the above specific candidates, we study a ofagsnlinear schemes,
which we termguasi-linearschemes, obtained lmpmposindinear schemes over (possibly) different fields.
Composition of secret-sharing schemes has been used iogsavorks (cf. [10, 20, 59, 47, 27]). However,
to the best of our knowledge this is the first work to explicifiscuss compositions of linear schemes over
different fields. We characterize the complexity of quasgér schemes in terms of Boolean formulas over
the basis of monotone span programs. We prove that quasirlsthemes cannot realize any access structure
outsideNC. Specifically, we show that the class of structures whicly tteen efficiently realize is contained
in NC*. Thus, quasi-linear schemes do not provide the strong gcturied) results implied by the specific
candidates described above. On a positive note, we showmitaon of quasi-linear schemes for the
construction of secret-sharing schemes efficiently remjimonotone span programs over a rifig, where

u is a square-free composite. A naive generalization of tmstraction for monotone span programs over
fields[45] fails to achieve this godl.Following our work, it was shown in [8] that quasi-linear sohes are
strictly more powerful than linear schemes, that is, theesexplicit functions that have small quasi-linear
schemes, however require super-polynomial linear schemes

ORGANIZATION. In Section 2 we present some definitions and background. etiéhs 3 and 4 we
describe our two main constructions of efficient nonlineetiesnes, and discuss the complexity of their
access structures. Finally, in Section 5 we introduce amdlyshe class of quasi-linear schemes.

2 Preliminaries

In this section we define secret-sharing schemes, lineansed, and span programs, and briefly discuss
the connections between these notions. We end this sectibre@me definitions related to the quadratic
residuosity problem.

Definition 2.1 (Access Structure)Let { P, ..., P,_;} be a set of parties. A collectiad C 2{#0-Fn-1}

is monotoneif B € Aand B C C imply C € A. Anaccess structurés a monotone collectiod of non-
empty subsets 4fP, ..., P, 1} (thatis, A C 2{f0-Fr1}\ {(}). The sets in4 are called theauthorized
sets A setB is called aminimal setof A if B € A, andC ¢ A for everyC C B. The minimal sets
of an access structure uniquely define it. Finally, we fréggntify an access structure with its monotone
characteristic functiory 4 : {0,1}" — {0, 1}, whose variables are denoteg, ..., z, 1.

Definition 2.2 (Secret-Sharing) Let S be a finite set of secrets, wherg > 2. Ann-party secret-sharing
schemdlT with secret-domairb is a randomized mapping frodto a set ofn-tuplesSy x S7 x ... x S, 1,
where S; is called theshare-domairof P;. A dealer distributes a secrat € S according tolIl by first
sampling a vector ofhareq(sg, ..., s, 1) fromII(s), and then privately communicating each shayeo
the party P;. We say thafl realizesan access structurgl C 2{70-~P»-1} (or the corresponding monotone
functionf 4 : {0,1}" — {0, 1}) if the following two requirements hold:

Correctness. The secret can be reconstructed by any authorized subset of partiest i$hfor any subset
B € A (whereB = {F,,..., P, }), there exists aeconstruction functioRecp : S;, x ... x
Si ., — S such that for every € S,

|B]

Pr[Recg(Il(s)p) =s] =1,

wherell(s) 5 denotes the restriction dfi(s) to its B-entries.

"This result does not follow from [35], who impose strongejuigements in their definition of span programs over rings.



Privacy. Every unauthorized subset cannot learn anything about ¢oees (in the information theoretic
sense) from their shares. Formally, for any sub&etz A, for every two secrets, b € S, and for
every possible shar€s;)p cc:

Pr{(a)c = (si)pec] = Pr[lI(b)c = (si)pec |-
Theshare complexityf the scheme (axomplexityfor short) is defined aij?;ol log|.S;|.

As the mutual information between the secret and the sham@set of parties can only grow when we add
parties to the set, it suffices to prove the correctness foimal authorized sets and the privacy for maximal
unauthorized sets.

The above correctness and privacy requirements captusgrtbienotion ofperfectsecret-sharing, which
is the one most commonly referred to in the secret-shariegaliure. We will also consider a relaxed but
natural notion oftatisticalsecret-sharing, in whicl accepts an additional arguméntcalled thesecurity
parametey and the perfect correctness and privacy requirementsetaged tostatistical correctnesand
statistical privacy defined as follows.

Statistical correctness. Any authorized subset of parties can reconstruct the se@etept witmegligible
probability (k). That is, for every authorize® € A there exists a reconstruction functid@ecp
such that

Pr[Recp(Il(s)p) = s] > 1 —€(k) (1)

for somee(k) € k),

Statistical privacy. Any unauthorized subset of parties learns only a negligdteount of information
about the secret. That is, for any unauthorizéd¢ A and two secrets, b € S,

SD(II(a, ke, (b, k)c) < (k) )

for some:(k) € k1), whereSD(Y}, Y1) denotes thetatistical distancbetween distribution}, Y;
defined asSD(Yy, Y1) = 5 X, [PYy = y] — Pr{Y; = 4|8

We next define the class tihear secret-sharing schemes. There are several equivalenttidefifor
these schemes, see [6].

Definition 2.3 (Linear Secret-Sharing) Let F' be a finite field. A secret-sharing scheiiids said to be
linearover F' if:

1. The secret-domaif is a subset of".
2. There existly, ..., d,,_, such that each share-doma#f) is a sub-space of the vector spaké .

3. The randomized mappirig can be computed as follows. First, the dealer chooses inutkp# ran-
dom variables, denoted,, . . . , r4, each uniformly distributed over. Then, each coordinate of each
of then shares is obtained by takinglimear combinatiorof rq, ..., r, and the secret.

We remark that the notions of perfect secret-sharing aridstal secret-sharing coincide in the case of
linear schemes: Any linear scheme that satisfies the weakelittons of statistical correctness and privacy
satisfies the stronger requirements of perfect correctaegprivacy.

8Equivalently, the statistical distance betwdénandY; may be defined as the maximum, over all functiohsof the distin-
guishing advantagePriA(Yo) = 1] — P{A(Y1) = 1]].



Remark 2.4 Van Dijk [32] describes a generalization of linear schemdéscty, following [55], we call
multi-linear schemes. In a multi-linear scheme the se@eatiewed as a collection of elements from a
finite field #', and the shares are obtained by applying a linear mappingetelements of the secret and
several independent random field elements. Simonis andkstin [55] show that multi-linear schemes
can be somewhat more efficient than linear schemes. Howiéwveg, require that the length of the secret
is polynomial in the number of parties, then multi-lineahemes can only be polynomially more efficient
than linear schemes.

As for any other concrete complexity measure, we will ofterplicitly use the term “scheme” for
referring to an infinitefamily of schemes{II,, },,cAr, parameterized by the number of parties In the
statistical case, we require the same negligible funetiéinto apply in Equations (1) and (2) for all,, in the
family. In the linear case, such a family can have a diffetertterlying field for eactu. A family {I1,, },,cn
is efficientif the complexity ofll,, is polynomial inn (or the complexity ofil,, (k) is polynomial inn andk
in the statistical case). Note that the above definition datsnake any requirement on the computational
complexity of the scheme. We say that the scheneemputationally efficierif both sharing the secret and
reconstructing it can be done in time polyk,log |.S|). Finally, the family of access structurésl,, } realized
by a scheme familyI1,, } is naturally identified with a monotone Boolean functipn {0,1}* — {0,1} or
its characteristic language.

We next define span programs — a linear algebraic model of atatipn whose monotone version is
equivalent to linear secret-sharing.

Definition 2.5 (Span Program [45]) A span progranover a fieldF' is a triplet]\/I = (M, p,v), whereM
is anr x ¢ matrix overF, the vectord’ € F° is a non-zero row vector called thtarget vectorandp is
a labeling of the rows oM by literals from{zg, z¢, ..., 2,1, %,—1} (€Very row is labeled by one literal,
and the same literal can label many rows). A span proglﬂnis said to bemonotonef all of its rows are
labeled by positive literals.

A span program accepts or rejects an input by the followirigedon. For every inputy € {0,1}" let
M, denote the sub-matrix @ff consisting of those rows whose labels are satisfied by thgramenty. The
span programM\ acceptgy if and only if 7' is in the row-span ofi/, (where each row o is viewed as a
vector inF¢). A span prograntomputesa Boolean functiory : {0,1}" — {0,1} if it accepts exactly those
inputsy such thatf(y) = 1. Note that monotone span programs compute monotone faactiénally, the
sizeof M is the number ofowsin M.

The complexity of realizing a given access structure by @dirsecret-sharing scheme overs propor-
tional to the minimal size of a monotone span program dveomputingf. Specifically,

Lemma 2.6 ([45, 6]) An access structure can be realized by a linear secret-sgatheme ovel' in which
the shares include a total affield elements if and only if it can be computed by a monotoar pppgram
over F of sized.

It follows from [12, 17, 49, 21] that all functions that hauwaall span programs are MC. Specifically,

Lemma 2.7 If a function f has a span program ovdr = GF(q) of size/, thenf has an arithmetic circuit
of sizepoly(#) and depthO(log? ¢) over F', implying that it has a Boolean circuit of sigely(Z, log ¢) and
depthO(log? ¢log log q).



Quadratic Residues. Let Z, be the ring of integers module, whose elements are identified with the
integers{0, 1,...,u — 1}. Let Z; denote the multiplicative group of the elementsZfthat are relatively
prime tow, that is, the elements & are{l < w < v : ged(w,u) = 1}. The number of element & is
denoted byp(u), and is referred to as the Euler function:of

An integerw is said to be ajuadratic residuemodulow if ged(w,u) = 1 and there exists an integer
such thatw = b mod . It is said to be ajuadratic non-residuenodulow if ged(w,u) = 1 and there is
no integerb such thatw = b? mod u. We will pay particular attention to the case where the moslig an
odd primep; thus,w andb may be viewed as elements of the figgl. In this casew € Z; = 2, \ {0} is
said to be a quadratic residue if it is a square of some fieliett, and ajuadratic non-residuetherwise.
(The elemen® is neither a quadratic residue nor a quadratic non-regidliee quadratic residues form a
subgroup of the multiplicative groug,;. Thequadratic residuosity problens that of deciding, givems and
u, Whetherw is a quadratic residue modulo Whenu is restricted to be a prime (or given the factorization
of ) this problem can be solved in polynomial time, but is notkndo have an efficiemarallel algorithm.
Whenu is arbitrary, this problem is widely assumed to be intraktaBee Section 3.1 for more details.

3 An Efficient Nonlinear Scheme: The Perfect Case

In this section we construct an efficient nonlinear sednaring scheme whose access structure is conjec-
tured not to lie INNC. The scheme constructed in this sectiopesfectlyprivate and correct. Atatistical
scheme realizing a computationally harder access steugtilfbe given in the next section.

Definition 3.1 (The Access StructureNQRP,) Letp be an odd prime andh 4 |log p|. We define the

n-party access structu®QRP,, wheren £ om, by specifying its collection of minimal sets. The parties

of the access structure are denotedfy where0 < i < m andb € {0,1}. With eachw € {0,1}" (also

viewed as am:-bit integer) we naturally associate a s, of sizem defined by:B,, = {P¥ : 0 < i < m}.

A setB is a minimal set ofNQRP,, if:
e B={P), P!} for some) <i < m,or:

e B = B, for somew such thatw is not a quadratic residue modulp. (That is, it is either0 or a
quadratic non-residue.)

We letNQRP denote a family of access structures such thatittestructure iSNQRP,, for somep such
that |log p| = |n/2] (say, the least sugh).®

We next construct a secret-sharing schemeN@QRP.

Theorem 3.2 For every odd prime there exists a perfect secret-sharing schemeN@R P, in which the
secret-domain ig0, 1} and the share-domain of each party4s.

Proof:  We prove this theorem by describing the secret-sharingrsehe
The dealer chooses at randem-— 1 random elementsy, z1, . .., z,,—2 € Z, and an additional random
elementr € Z7. Define

m—2

Zm—1 = Z Ziy (3)

=0

°To make the access structure ZPP-unifopnean be chosen to be the least prime in the intej@d/21 2"/21 4 ], or 3 if
none exists. However, as for other number-theoretic fonstia random choice gfmay be safer when assuming tMQRP is
not inNC.



where here and in the following all arithmetic operationgiring ring elements are performed £),. The
shares of the parties are specified in Table 2. We turn to pitmtethis secret-sharing scheme satisfies the

‘ ‘ s=0 ‘ s=1 ‘
P}, where b € {0,1} 2+ 20 | br? + 2
PP, where 1 <i<m, be{0,1} 2 2'br? + 2

Table 2: A secret-sharing scheme NQRP,,.

correctness and privacy properties with respecNiQRP,,. Let SUM, denote the sum of the: shares
held by parties inB,,. Both the correctness and the privacy proofs will rely onftiilowing lemma.

Lemma 3.3 SUM,, = w®r?.
Proof: By (3) we get:
- If s =0then

SUM,, = Z 2+ 12 =rk
- If s =1then

SUM,, = Z(z7;+w7;2ir2)
i=0

Correctness. We separately consider two types of minimal authorized Bets

e B={P). P} for somel < i < m. In this cases = 0 iff the shares of?? and P! are equal. This
follows from the fact tha2ir? # 0 mod p for everyi.

e B = B, for somew such thatw is not a quadratic residue. In this case, it follows from Lean8a3
thats = 0 iff SUM,, is a quadratic residue (since the product of a quadratiduesand a non quadratic
residue is a non quadratic residue).

Privacy. We need to prove that every unauthorized subs¢t NQRP,, has no information on the secret.

It suffices to prove this claim for evemnaximal C' not in the access structure. There are two cases to
consider.

e C = B, for somew € {0,1}" such thatw is a quadratic residue. In this case we claim that,
regardless of the value of the secret, the share-vectoregbalties inC' is uniformly distributed over
them-tuples of field elements whose sum is a quadratic residukeelth, by Lemma 3.3, i = 0 then
SUM,, = 72, which is a uniformly random quadratic residue. Furtherdixing the choice of, the
choices ofz; induce a uniformly random share vector among all those whigh tor?. Similarly,
if s = 1 then SUM, = r?w. Sincew is a quadratic residue, SUMis again a uniformly random
quadratic residue determined byand the same argument as above applies.
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e C =B, )\ {P;”J} for somew € {0,1}"™ and0 < j < m. Thatis,C is a set of sizen — 1 such

that for exactly ong it contains neithe} nor P;. We claim that in this case the share-vector of
the parties irC' is uniformly distributed inZI’)"*], regardless of the secret. It suffices to show that for
every secret € {0, 1}, every possible value of the share-vector frtZt,?i*l, and every fixed, € Z7,
there exists a unique choice g, .. ., z,, 2 generating this value with = r,. This can be verified
by inspection of the corresponding system of linear equatmverz,,.

|
A generalization of our construction N QRP is described in Appendix A. This generalization will
uncover what algebraic properties we use in our constmcdad will supply us with a few more examples.

3.1 DoesNQRP Have an Efficient Linear Secret-Sharing Scheme?

The access structuld QRP we have realized above is related to the problem of decidiraglgatic residu-
osity modulo a prime. We would like to argue tfQRP is likely not to be inNC, which would imply in
particular thalNQRP cannot be efficiently realized by linear schemes. We staddsgribing some known
facts about the complexity of the quadratic residuositybfem.

Unlike quadratic residuosity modulo a composite, whoseaatability is commonly assumed in cryp-
tography (see [39]), quadratic residuosity modulo a prirae be decided in polynomial time. All known
algorithms for this problem are sequential. It is not knowefficient parallel algorithms for this prob-
lem exist; that is, the situation is similar to the exponatitin function and the gcd function. There are
two types of known algorithms. The first uses Euler’s craariwhich states thav is a quadratic residue
modulo an odd prime iff w®~1/2 = 1 mod p. Thus, this algorithm requires modular exponentiation.
For a survey of algorithms for exponentiation see [40]. Téeosid type of algorithm computes the Jacobi
symbol in a way similar to Euclid’s algorithm for computiniget gcd. For more details see, e.g., [3, Chap-
ter 5]. “Weak” parallel algorithms for checking quadratesiduosity follow from the algorithms of [34]
for computing the Jacobi symbol and the algorithm of [1] fepenentiation. More precisely, there is (1)
an algorithm that runs i (n/ log log n) time usingO(n'*¢) processors [34]; (2) an algorithm that runs
in O(log? nloglogn) time using29(™/°gn) processors [34]; (3) an algorithm that runsGxlog® n) time
using20(vrlogn) processors [1].

The best known polynomial-size circuit for the quadratisideosity problem has depth(n/ log log n)
wheren = logp [34]. Thus, given the current state of knowledge on this f@mwband the related modular
exponentiation problem, it is reasonable to assume thgtateenot inNC. In fact, this assumption (for the
exponentiation problem) has been explicitly relied on i@][1

Itis easy to see that deciding quadratic residuosity mogalmn be very efficiently reduced to computing
the monotone function defined BYQRP,,. However, there is a major difference between the “staridard
algorithmic setting for this problem and our setting. Outiag is highly non-uniform, in the sense that with
each input length (or number of parties) we associate $ixadprimep. Hence, when computing this access
structure one may use a non-uniform polynomial-size “aglviiepending om. In algorithmic terms, we
allow unlimited preprocessing which depends on the pgirbat not on the other input. Nevertheless, we
do not know how to use this type of preprocessing to obtainffazient parallel algorithm for the quadratic
residuosity problem® (It is interesting to note, however, that deciding quadragéisiduosity modulo a
compositds no more difficult in our setting than deciding quadratisideiosity modulo a prime, since the
factorization of the composite may be used as advice.) Tolada, the assumption thliQRP ¢ NC is

0preprocessing can parallelize the algorithms for expoaton when the field size and the exponentiation base aengiv
advance (see [40]). However, in our case we know in advarecééld size and the exponentiation power.



stronger than the assumption that the standard quadratducesity problem (or modular exponentiation) is
not in NC, although still seems very reasonable given the curretd sfaknowledge.

In light of the uncertain situation described above, onddathape for an unconditional super-polynomial
lower bound on a size offmaonotone span progracomputingN QRP. This would be sufficient for proving
that NQRP cannot be efficiently realized by linear schemes and, agirniatéhe introduction, there are
explicit monotone functions for which such bounds are knowtowever, as we argue next, such lower
bounds are impossible to prove for ttleQRP structure, as well as for the access structures considered
in Section 4, without proving tha¥C' # P. For a fixed(m + 1)-bit prime p, the quadratic residuosity
function (modulop) is defined as:f,(zo,...,zm-1) = 1 iff Z;’;’Ol x;2" is a quadratic residue modulo
p. This function is not monotone. To define the monotone acsgssture NQRP we replaced each
literal by two parties, obtaining an access structure &ithparties. (This is a standard transformation, e.g.,
when proving that monotone circuit evaluationHscomplete [38].) For technical reasons we also added
m minterms of size two. It follows that the monotone formulzesof NQRP,, is equal up to an additive
O(n) difference, to the (non-monotone) formula size of the fiorcyf,. Thus, one cannot expect to prove
super-polynomial lower bounds on the size of a monotone gpagram (or even a monotone formula)
for NQRP, since they will imply, in particular, super polynomial lewwbounds on the (non-monotone)
formula size of the quadratic residuosity functith.

4 An Efficient Nonlinear Scheme: The Statistical Case

In this section we construct an efficient nonlinear sednering scheme whose access structure is as hard
as the general quadratic residuosity function. Unlike thevipus construction, the scheme we construct
below is only statistically private and correct, and itsaestruction procedure is computationally ineffi-
cient. In Section 4.1 we show that perfect correctness (bufparfect privacy) can be achieved under a
number-theoretic assumption, namely the extended Riemmgmothesis. We end this section by discussing
a generalization of our construction which applies to theaied ¢-residuosity problem. As a special
case, we obtain an efficient scheme whose access structomzitationally equivalent to the co-primality
problem.

Definition 4.1 (The Access StructurdNQR,,,) Letm be a positive integer. We define theparty access
structureNQR,,,, wheren = 4m, by specifying its collection of minimal sets. It will be genient in
the following to denote the firm parties byW? and the las2m parties byU?, whereb € {0,1} and
0 <14 < m. With each pair(w, u), wherew,u € {0,1}"", we naturally associate a subset of partigg ,,
of size2m, defined by:

def

Buw E{W2 - 0<i<m}U{UY : 0<i<m}.

We will freely identify stringsv, . as above with integers in the interv@, 2 — 1]. A setB is a minimal
set of NQR,, if:

1. B={W), w}!}orB={U> U}!} for somed <i < m,or:

2. B = B,,, for somew, u such thatw is nota quadratic residue module. (For technical reasons, we
assume here that this condition never holds whea 1, and always holds whem = 0 except when
w=1.)

We letNQR denote the family of access structures in whichvttiestructure iSNQR |, 4.

The best known lower bound on the formula size for an exgiigittion isQ(n®~°(1)) [41].
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We start by observing that the computational complexityh&f &ccess structu® QR is essentially the
same as that of the general quadratic residuosity problem.

Claim 4.2 The circuit complexity oNQR is the same, up to a@(n) difference, as that of the language
{(w,u) : |w| = |u|] and w is a quadratic residue modulo u}.

It follows that, under the Quadratic Residuosity Assumptjg9], computingNQR requires circuits of
super-polynomial size. The remainder of this section wélldevoted to proving the existence of an efficient
nonlinear secret-sharing scheme MQR.. Specifically, we show:

Theorem 4.3 There exists a statistical secret-sharing scheméN@R,,, in which:
e the secret-domain i§0,1};
e the share size of each partyk? + km) (wherek is the security parameter);
e the reconstruction error probability i8—*;
e the privacy level is(k) = O(k/2F).

Our secret-sharing scheme fYQR,,, proceeds as follows. Leb £ 24m+3k+1 |n the following,
all arithmetic operations will be performed #y. The dealer chooses, 21, ..., 20m_1 € Zp at random
subject to the restriction that they sum(toln addition, it chooses two random integérs: r < 2+* and
1 < ' < 23(m+k) Each party receives a single elementf, as specified in Table 3. For amplifying the

‘ ‘ s=0 ‘ s=1 ‘
We, whereb e {0,1} % + 2 br? + 2z
WP, where 1 <i<m, be{0,1} Zi 2'br? + z;
U, where 0 <i <m,be {0,1}, | 2°r' + zi1m | 200" + 2iim

Table 3: A secret-sharing scheme NQR,,,.

correctness probability, the above distribution procedshrould be independently repeatetimes, so that
each party receivek elements ofZp. In addition, the minimal authorized sets of size 2 shouldaben
care of separately, by independently sharregnong each such authorized pair (that is, for each such pair
choose an independent randomditand givex to the first party andx @ s to the second}? This only adds

a single bit to the size of each share. The following analydisnostly focus on the core of the scheme, as
described in Table 3.

Statistical correctness. The minimal authorized sets of size 2 were explicitly takarecof in the above

construction. It thus remains to prove the correctness frteetB,, ,,, wherew is not a quadratic residue
modulo«. The following lemma, which can be verified by inspection able 3, is used to show how to
reconstruct the secret.

Lemma 4.4 LetSUM,, ,, be the sum of them shares held by parties i, ,. ThenSUM,, ,, = r2w® +r'u
for any0 < w,u < 2™ and secret € {0, 1}.

?In fact, as in the previous construction this additionalrstgais unnecessary for sets of the fofi, W} }.

11



Let SUM,, , be the sum of them shares held by parties i, ,,.
If ged(w,u) = 1then (*w is a quadratic non-residue moduld)

If SUM,, ,, is a quadratic residue modulothens = 0 elses = 1
If ged(w,u) # 1then

Letc = ged(w, u)

If ¢ divides SUM, ,, thens =1 elses = 0

Figure 1: Reconstruction Procedure 8y, , in NQR,,.

Note that by our choice of parameters, the expresstart + ' in Lemma 4.4 is always less thdh We
will therefore treat this expression as being evaluated thesintegers.

If » was chosen such thgtd(r,u) = 1 then the correctness would follow from similar arguments
to those of the proof foONQRP (that is, the secret is reconstructed by checking if the stishares is
a quadratic residue modul@). However, since here is not fixed, we cannot guarantee that the above
condition always holds. Nevertheless, this already ingptleat the secret can be correctly reconstructed
from the shares in Table 3 with a one-sided error probabdityt mostl — ¢(u)/u, which is bounded
away from 1 (that is, itid — O(1/loglogu)). The following tighter analysis, which does not assumé tha
ged(r,u) = 1, shows that the one-sided error probability of reconstomcts at mostl /2. Hence, with
k independent repetitions the error probability is at nst. In Figure 1 we present the reconstruction
procedure and then prove its correctness.

From now on, we assume that> 2 (the case that = 0 andw # 1 can be verified separately). Suppose
first thatged(w, u) = ¢ > 1, and let¢’ > 1 be a prime dividing:. In this case¢ always divides-?w + r'u,
whereas: dividesr? + r'v implies thatc’ dividesr. Thus, with probability at least — 1/¢’ > 1/2, the gcd
c does not divide? + r'u. It follows that whernged(w, u) > 1 the cases = 0 can be distinguished from the
cases = 1 with a one-sided error probability of at mast2, as described above.

Now suppose thab is a quadratic non-residue modulo In this caser? + r'u = r? mod u is always
a square modula. This implies that SUM , is a quadratic residue when= 0. The following lemma
shows that with probability at leasy' 2, this is not the case forPw + r'u, i.e., whens = 1.

Lemma 4.5 Suppose that) is a quadratic non-residue modulo(in particular, gcd(w, u) = 1). Then, the
probability thatr?w is a quadratic residue modute is at mostl /2.

Proof: By the Chinese Remainder Theorem, a number is a quadraiibse modula: if and only if it

is a quadratic-residue modulo each prime power dividingrhus, there exists a prime powgt dividing

u such thatw is a quadratic non-residue moduydd. Now, if wr? is a square modula, then it is also a
square modulg®, and so there exisissuch that/?> = wr? mod p®. We argue that it must be the case that
p dividesr. Otherwisey has an inverse modujg® andw = (d/r)? mod p® contradicting the fact thab is

a quadratic non-residue moduyd§. The lemma follows by noting that the probability thatlividesr is at
mostl/p < 1/2, as required. O

This concludes the analysis of the reconstruction proeedescribed above. Note that this reconstruc-
tion procedure is computationally inefficient if the fadiation ofw is unknown.

Statistical privacy. We now prove the privacy of our construction. As before, iffisas to consider
maximal unauthorized sets of two types. The first type ctsmsissetsC such thaiC| < 2m andC does
not contain a paitv, W,! or a pairU?, U;'. For such a sef, it can be verified that the shares received by
its parties are uniformly and independently distributeéra¥,,, regardless of the secret

12



We turn to the more interesting case of a éet= B, , such thatu > 2 andw is a quadratic residue
modulou. (The cases = 1 andu = 0,w = 1 can be verified separately.) When= 0 the shares are
random subject to the restriction that their sumis- r'u, and whers = 1 the shares are random subject to
the restriction that their sum i$w-+7"u. Thus, it suffices to show that in this case @b+ r'u, r?w+r'u) =
O(27%). We prove this using the following lemmas. In the lemmas weotke byr andr’ the random
variables used in the scheme (taking uniform integral \&@foem the intervalg1, 2 t*] and[1, 23(m+4)],
respectively). For the proof we also use an additional ramgariabler,, which is a uniformly distributed
integer in[0, v — 1].

Lemma 4.6 If w is a quadratic residue module, then the distribution ofwr2) mod u is identical to that

of r2 mod w.

Proof:  Sincew is a quadratic residue modulg there exist$ such thaged (b, u) = 1 andb? = w mod w.
Sincewr? = (bry)? mod u, it suffices to show thathr,,) mod v is identically distributed to, mod u =

r,. Finally, sinceged(b, u) = 1, i.e.,b has an inverse modulg, thenPr[br,, = ] = Pr[r, = (8/b)] = 1/u
for every values. O

Lemma 4.7 SD(r? mod u, r2 mod u) < 27K,

Proof:  Recall that- is chosen uniformly from the interval, 2™+*]. If u divides2™** then the above
two distributions are identical. Otherwise, the contribatof eachy € [0, — 1] to this distance is at most
1/2m*k and sinces < 2™ the total contribution is at mogt™ /2m+k = 2=k, O

From the previous two lemmas, we may conclude that
SD(wr? mod u,r* mod u) = O(27F). 4)
Now, define the multisets
V= {wr2 mod u : 1§r§2m+k}
and
Z:{r2 : 1§r§2m+k}.

Let Z' be a maximal multiset such tha& C Z andZ’ mod v £ {zmodu : z € Z'} C V. It follows
from Eq. (4) thalZ’| = (1-0(27%))|Z|. DefineS = Z'U(V'\ (Z' mod u)). Note that S| = |V | = 2m+F,
We will denote the elements &f by v, ..., ysm+x and the uniform distribution ove$ by Y. It follows
from the above that” satisfies: (1) SOV, r?) = O(27*); (2) the distribution ofY’ mod « is identical to
that of wr? mod u; and (3)Y < 22(m+k),

We would like to conclude that SBr? + r'u,r? + r'u) = O(27%). To this end, we use the following
lemma.

Lemma 4.8 Lety, z be two integers in some intervidl, M| such thaty = z mod «, and letR be uniformly
distributed in the intervall, M K]. Then,SD(y + Ru, z + Ru) < 1/K.

Proof:  The statistical distance is bounded |py- z|/(uM K) < M/(uMK) < 1/K. O

We are now ready to complete the proof of privacy. From Prigpir) of Y it follows that
SD(Y + r'u,r? 4+ r'u) = O(27F). (5)

From Property (2) oft’, we may assume thagt = wr? mod u for everyl < r < 2m+k_ Letting M =
23m+2k and K = 2%, bothY andwr? are no larger thad/, andr’ is uniform in[1, M K. Since

SD(Y + 7'u, wr? + r'u) < E,[SD(y, + r'u, wr? + r'u)]
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it follows from Lemma 4.8 that
SD(Y + r'u, wr? + r'u) <27 (6)

Combining Eq. (5) and Eq. (6) we get that 8D + r'u, r% + r'u) = O(27%), as required.

As explained above, to reduce the error probability in theonstruction froml/2 to 2=% we share
the secret independentlytimes. By standard arguments, this can only increase thiststal distance to
O(k/2%), which is still negligible ink.

4.1 A Perfectly Correct Scheme

In this section we show that under the Extended Riemann s (abbreviated ERH), one can obtain a
variant of the above scheme whichgsrfectlycorrect, though still only statistically private. (It is ep if
there is a scheme with perfect correctness and privacy wafiatiently realizeNQR..) The only required
modification is the choice of: instead of choosing it uniformly from the intervil, 2 **], it is chosen

as a randonprime from the interval[2™, 2™+*]. Sinceu < 2™, this guarantees thatis relatively prime

to «, and this in turn is sufficient to guarantee perfect corressn We next argue that under the ERH, the
resulting scheme is statistically private.

We will need the following results on the distribution of pes. For more information on this subject
the reader might consult, e.g., [3, Chapter 8]. For an integket 7(z) be the number of primes in the
interval [1, z], and for integers:, w andwu let w(x, u, w) be the number of primes in the intenjal z] that
are congruent ta mod u. Itis known thatr(z) =~ z/logz. If ged(w,u) > 1 then every number that is
congruent tow mod u is a composite. It turns out that the primes are nearly umfprdistributed among
the other residue classes moduloThat is, ifged(w, u) = 1 thenw(z, u, w) =~ ﬁfr/ log x, whereyp(u)
is the Euler function of.

We will need good bounds on the error terms in the above appations. The bounds that can be
proved unconditionally are too crude for our purpose, andwilleneed bounds based on the the Extended
Riemann Hypothesis. Proving this famous hypothesis is btteeanost important open questions in mathe-
matics. We will not formulate the statement of this hypoisiesnd only state the following conclusion from
the ERH. The estimations that are used to derive the nexteheare presented in Appendix B, where it is
also shown how to derive Theorem 4.9 from these estimations.

Theorem 4.9 If the ERH holds angcd(w, u) = 1 then for everyr andx’, whereu < z’ </,

_0 log? z ’
Nz

where the constant in the “O” notation is an absolute constadependent ofv, u, andzx.

m(z,u,w) — w(z', u,w) 1

(@) — () (1)

Notice that“(w’j’(fggj;fgfsw is the probability that a uniformly random prime in the ik [z’, z] is
congruent ta: modulow. Thus, the above theorem states that this probability seclo the probability that
a uniformly random element frorg; is equal tow.

Corollary 4.10 Letu < 2™, U be a random variable distributed uniformly i, andr be a uniformly
chosen prime in the interva2™, 2], If ERH holds ther8D(U, r mod u) < 2~ %) for everyk andm
such thatk > 3m, and in particularSD(U? mod u, r*> mod u) < 2~ k),

Proof:

1
SD(U,r mod u) = 3 Z |Pr[U = y] — Pr[r mod u = y]
yeZ;
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_ 2 (m +k)*\ _ . _om
- O( 90.5(m+k) ) =2 )

The last equality holds sinde> 3m. O

To guarantee that the statistical distance decreases exjally with the security parameténdepen-
dently ofm, we execute the scheme with = max(k,3m). Closely following the privacy proof of the
previous protocol (and replacing Lemma 4.7 with Corollar¥3), one can show that the scheme is statisti-
cally private withe(k) = 2°2(-%), The next theorem summarizes the properties of this scheme.

Theorem 4.11 If ERH holds, then there exists a statistical secret-shasdgeme foNNQR,,, with perfect
correctness in which:

e the secret-domain i§0,1};
e the share size of each party( & + m);

e the privacy level ig(k) = 2~9F),

4.2 Schemes for-Residuosity

The quadratic residuosity problem naturally generalipethét-residuosity problem defined as follows. An
integerw is at-residue modula: if ged(w,u) = 1 and there exists an integesuch thatw = b’ mod w.
The access structuilNzR. is defined as the access structiN@R., with quadratic residuosity replaced by
tth residuosity.

A scheme folN¢R. can be obtained by the following small modification to theesnk forNQR.: the
ring size D is changed t@(!+2)m+(+1)k+1 the random string’ is chosen with uniform distribution from
[1,241(+K)]  and in the dealer’s distribution procedure we replat®y ‘. The correctness and privacy
of the modified scheme are argued similarly to the origindlesece. These modification also work in the
scheme based on the ERH.

An interesting special case of the general scheme is whenl. In the resultant schemé,, ,, can
reconstruct the secret iff the integarsand« are not co-primes (i.eged(w,u) > 1). Hence, its access
structure is computationally equivalent to the co-prittyatiroblem. Checking if two integers are co-primes
is clearly inP, and it is not known to be itNC. The best parallel algorithms for the co-primality problem
compute the gcd. The question if the gcd can be computed all@athat is, with polylogarithmic time and
polynomial number of processors, was first raised by Cook §2i! is still open. Parallel algorithms with
sub-linear time, namely(n/logn) time, and polynomial number of processors where presentdd4
24, 56]. Parallel algorithms with polylogarithmic time asdb-exponential number of processors where
presented by [1]. Animportant feature of this instance efglneral construction is that itis computationally
efficient: indeed, reconstruction only requires checkingci(w, u) divides SUN, ,,.

5 Quasi-Linear Secret-Sharing

In this section we study a natural extension of the classnefali secret-sharing schemes to what we call
quasi-linearschemes. Quasi-linear schemes are obtainedobyposinga finite number of linear secret-
sharing schemes, possibly over different fields.

Towards defining quasi-linear schemes, it will be conveniemise the following notation for extending
the secret-domain of a given secret-sharing scheme to &reaitp large finite domain.
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Definition 5.1 Let1I be a secret-sharing scheme with secret-donfaigind share-domainsy, ..., S, 1,
let7 = {0,1,...,|T| — 1} be any finite secret-domain, and kt= [log|s [T'|]. Then, byil; we denote
the randomized mapping froifito S§ x --- x S% | defined as follows. For a secree T, let (¢4, ..., )
denote its baséS| representation, wherg € S for all i. The output oflIy(t) is obtained by independently
applyingII to eacht; and letting theith entry of the output be the concatenation of itheentries from the
¢ outputs of I1.

As can be easily seeii]; defines a secret-sharing scheme realizing the same acoessiIg asll,
whose secret-domain [5 and whose share-complexity ds= [log s |7'/] times that ofll. We are now
ready to formally define the notion of quasi-linear schemes.

Definition 5.2 Ann-party quasi-linear secret-sharing scheme is recursiviiined as follows:
1. Anyn-party linear secret-sharing scheme is arparty quasi-linear scheme.

2. Suppose thdi is ann’-party linear scheme over a field with share-domainsy, ..., S, _1, and let
11°, ..., 1" ~! ben-party quasi-linear schemes. Then, definenaparty quasi-linear secret-sharing
schemdI(I1°,..., II"' ') with secret-domair¥ as follows. To share € F, first applyII(s) to
obtain sharesy, . .., s, —1. Then, identifying each share-domaihwith the set{0, 1,...,|S;| — 1},
independently share eaghamong then parties usingﬁgi.

It is convenient to view an-party quasi-linear scheni¢ as a tree, in which every node contains a linear
secret-sharing scheme. Associating each linear scherhdtsvitorresponding monotone span program, we
may view this tree as a Boolean formulg over the basis of all monotone span programs (over all finite
fields)!® that is, each gate in the formula computes the Boolean fumaomputed by a monotone span
program. For brevity we refer to such a formula asd8P-formula

The following proposition establishes the corresponddratereen a quasi-linear scheme and its associ-
ated MSP-formula. Its proof is a generalizing the proof fog AND-OR-Threshold formula construction
from [10].

Proposition 5.3 LetII be a quasi-linear secret-sharing scheme andbe the corresponding MSP-formula.
Then,II realizes the access structure computedohy

The schemdI(11°, ..., 11" ~') from Case (2) in Definition 5.2 is just the standard definitidrcom-
position of IT with I1°, ..., II"' ', thus, a formal proof of Proposition 5.3 follows, by indwtj from,
e.g., [47, 48].

Beimel and Weinreb [8] proved that quasi-linear schemestaictly stronger than linear schemes. More
precisely, they proved that there are explicit functioret ttave small quasi-linear schemes, however require
linear schemes of size”(°¢™), However, as we show next, quasi-linear schemes cannobheoteerful.
More specifically, if there is an efficient quasi-linear saieefor f then f can be computed by a shallow
circuit. The idea of the proof is to consider the correspongdvSP-formulap. We use a result of [5]
showing that a formulg over a general basis can be “balanced” to obtain an equivdemula whose
depth is small and its size is not too big (this is a generédimaof the well-known result from [57] for
bounded fan-in formulae over the standard basis). An itistiéon of this result which is useful for our
purposes is quoted in the following lemma.

BAn input variable is viewed as a size-1 monotone span progmathe variablesco, . . ., z,,_1 returning its value.
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Lemma 5.4 (Beigel and Fu [5]) Let ¢ be a MSP-formula. Then, there exists a MSP-formaikuch that:
(1) ¢ computes the same functiongs(2) the depth o is O (log(size(y))); (3) the size of is size(w)°1);
and (4) each node af is either labeled by some span program appearingjror is labeled by an AND,
OR, or NOT gate.

Theorem 5.5 Suppose thaf is efficiently realized by quasi-linear schemes. Thfea, NC*.

Proof: LetII be an efficient quasi-linear scheme realizjfiygnd letp be the corresponding MSP-formula.
We may assume without loss of generality that the span pno¢mbeling eaclinternal node ofy depends
on all of its inputs, and has at least two inputs; othendlseuld be simplified into a quasi-linear schehi'e
whose MSP-formulg’ satisfies this property. As the number of leaves in sughisaa lower bound on the
complexity ofII (and the degree of each internal nodeyaé at least 2),o must be of size poky). It also
follows that each node of ¢ must be labeled by polynomial-sizenonotone span prograi¥,, over a field
GF(g,) such thalog ¢, = poly(n).1* By Lemma 2.7, the functiorf, computed byM,, can be simulated by
a Boolean circuit of size poly.) and depthO(log® n). The theorem follows by applying Lemma 5.4 0
and replacing each node jnby a correspondinglC? circuit. O

We conclude this section by showing an application of glinsar schemes for the construction of
secret-sharing schemes efficiently realizing monotona gpagrams over a ring,,, whereu is a square-
free composité?

Theorem 5.6 LetM = (M, p, 7) be amonotone span program ov&g, whereu is the product of: distinct
primespq,...,pg. Then, there exists a quasi-linear schelhg realizing the access structure defined by
M, whose share-complexity 4&.e(M ) - Z";:l [log pj| = O(size(M) - logu).

Proof: The schemél,, is defined by the following depth-2 MSP-formuta,. The root contains an AND
gate with fan-ink (represented by a sizemonotone span program over &F). Thejth leave,l < j < &,
contains a monotone span progra/ﬂ\f; = (Mj, p, v;) over GHp;), obtained fromM by reducing each o/
andv entries modulg;. By Proposition 5.3, to prove thaf,, indeed realizes the access structure defined
by M it suffices to show thap,, computes the same function a$. Indeed, ifM(x) = 1, then clearly
M;(z) = 1 for all j (as witnessed by the same linear combination, mogyjo The converse follows by
applying the Chinese Remainder Theorem toAHmear combination vectors witnessing theftj(z) = 1,
wherel < j < k.16 O

Example 5.7 Figure 2 shows an efficient span program oggrfor testing whether the input (viewed as
an integer) is co-prime ta. Replacing each negative literal with a new variable, weagmbnotonespan
program for an access structure whose complexity is eqntvdb deciding whethet is co-prime to some
fixedintegeru.t’ Using Theorem 5.6, we get a very efficient quasi-linear sehénthis access structure.
We note that the scheme from Section 4.2 is stronger in theedbiat it efficiently applies to the standard co-
primality problem (with no fixed inputs). However, this saimeonly realizes the relaxed notion of statistical
secret-sharing.

¥The converse does not hold. It is easy to construct a polyalesiie MSP-formula (even a shallow one) which is efficient i
this sense, but whose corresponding quasi-linear schemmefiient.

153pan programs over rings are defined in a completely anatogay to span programs over fields.

f 7, = 0 for somej, then]\/f\j should accept every input (as witnessed by the trivial comtion of rows). However, in the
definition of span programs we require that the target vastamon-zero vector. Thusl ;s has a leaf for every such that; # 0.

MWhetherz is co-prime tou can be tested iNNC' given an advice depending an(namely, its factorization). Hence, there exist
efficient linear secret-sharing schemes for this accesstsite. Still, the exact efficiency of the quasi-linear sokds much better.
See Example A.2 for an efficient nonlinear realization whdoles not rely on the factorization af
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Zo 0 1 0 O 0O 0 O
T 1 1 0O 0O 0 O
Z 0 -1 1 0 0O 0 O
1 2 -1 1 0 0O 0 O
Tp_9 0 0O 0 O 0 -1 1
Tpho |22 0 0 O 0 -1 1
Tn_1 0 0O 0 O 0O 0 -1
Tp,_1 |21 0 0 O 0O 0 -1
target| 1 0O 0 O 0O 0 O

Figure 2: A span program oveZ,, testing whetheged(z, u) = 1.
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A A Generalization of the Scheme from Section 3

In this section we show how to generalize the schem@&FfQR P to similar access structures. This gener-
alization will uncover what algebraic properties we use im construction, and will supply us with a few
more examples.

Let R = (A, +, ¥) be afinite ring and3 C A\ {0} be such tha€’ = (B, ) is a group*® In the sequence
all arithmetic operations involving ring elements are paried in the ring. We assume thak a # 0 for
everya € R\ {0}. We Define the access structutlg; ¢; in a similar way taNQRP.

def

Definition A.1 (The access structuredr ) Letm = |log|R|]. We define the-party access structure

Ar.c, wheren £ 2m, by specifying its collection of minimal sets. With an ietegy € {0,1}™ we
naturally associate a sd8,, of sizem defined by:

def

By ={P" :0<1i<m}.
A setB is a minimal set ofd g ¢ if:
e B={P? P!} for some) <i < m,or:
e B = B, for somew € {0,1}" such thatw ¢ G.

We next show haw to generalize the schemeN@RP to a scheme fod .

Distribution. The dealer chooses at randem— 1 random elementsy, z1, ..., 2z,_2 € R and an ad-
ditional random element € G. Definez, 1 £ — Y7 >z. The shares of the parties are specified in
Table 4.
‘ ‘ s=0 ‘ s=1 ‘
P}, where b € {0,1} T4z | br+ oz

Pl wherel <i<m, be{0,1} | =z |2%br+z

Table 4: A secret-sharing scheme #éf, ;.

The reconstruction is similar to the schemeMQRP, where if B = B,, for somew ¢ G, thens = 0
iff SUM,, € G. The correctness of this rule follows from the fact thabi# G andb € G thenw x b ¢ G.

For the security, we only consider the case wheére: B,, for somew € G. (The first case is identical
to the scheme faNQRP.) In this case we claim that, regardless of the value of theesethe vector-share
of the parties inC' is a random vector such that SUMe G. This is clearly true when = 0. Whens = 1,
the sum SUN,, isr Zf’;ﬁl w;2" = rw, and since- is a random element @ andw has an inverse i, the
product is a random element 6f.

We next show a few examples of access structures.

8We even do not need all the properties of these algebraictstas.
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Example A.2 Let N be a positive integetR = (Zn, +, ), andG = (23, ). In this case, an efficient
linear scheme for ;  exists (see Footnote 17). A quasi-linear scheme for thiesacstructure is described
in Example 5.7. However, both the linear and the quasi-tisehemes require knowing the factorization of
N. The nonlinear scheme does not require knowledge of therfaation, and all the computations involved
are efficient.

Example A.3 Letp be a prime,R = (2,2, +,%), B = {w € Zp: wP~! =1 mod pQ}, andG = (B, x).
In this case we do not know if there is a quasi-linear schemelfg, or even ifAg  is in NC.
B Explicit Estimates implied by ERH

The next theorem gives explicit bounds on the error term éapproximation of the distribution of the
primes.

Theorem B.1 Letli(z) £ [ 4L If the ERH holds then far > 2657:

2 logt-”
T () < T [3, Theorem 8.8.1] @)
logz + 2 i logz —4 = o
and
n(z) —li(z)] < +Vazlogz/8m [3, Page 249] (8)
Moreover, if ERH holdsy < z, andged(w, u) = 1 then
li(z
(%, u, w) — IET)) < Vz(logz +2logu) < 3v/xlogx [3, Theorem 8.8.18] 9
p(u

We next show how we derive Theorem 4.9 from Theorem B.1. Taté prove that if the ERH holds
andgced(w,w) = 1 then for larger andz’, whereu < z’ < /z,

m(z,u,w) —w(z’,u,w) 1 | 0 log? z
i e e O\ )
First, by (7) and since(z') < 2/ < /z,
o T B x
m(w) —w() logz + 2 Ve > 2log (10)
Second, by (9), by (8), and sineéz’) < z' < \/z,
. o /
(z,u,w) < li(z) +O0(Vzlogz) < W(T)(p(“gr(x) + O(vzlogz). (12)

o(u)
Therefore, by (11) and by (10),

m(z,u,w) — w(z' u,w) (%, u, w) 1

m(z) — m(z') @) —w@) © plw) | ¢ (W(:v) — (')
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On the other hand, by (9), sineéx’, v, w) < z’' < y/z, and by (8), and by (7)

—

E; ~ O(Vzloga) — Va
n(z) — Valogz/8m —m(a') O(vz log )
o(w) o
m(z) — (') z log x
> T o toga) (2

m(z,u,w) — m(z' u,w) >

S

>

Thus, by (12) and by (10)

tesrgen) 5 b -o(R2) > oo ().
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