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Abstract—This paper addresses the problem of detecting
salient areas within natural images. We shall mainly study he
problem under unsupervised setting, nhamely saliency detéon
without learning from labeled images. A solution of multi-task
sparsity pursuit is proposed to integrate multiple types offeatures
for detecting saliency collaboratively. Given an image desibed
by multiple features, its saliency map is inferred by seekig
the consistently sparse elements from the joint decomposins
of multiple feature matrices into pairs of low-rank and sparse
matrices. The inference process is formulated as a constraéd
nuclear norm and ¢2;-norm minimization problem, which is

convex and can be solved efficiently with augmented Lagrange

multiplier method. Compared to previous methods, which usu
ally make use of multiple features by combining the saliency
maps obtained from individual features, the proposed methd
seamlessly integrates multiple features to jointly produe the
saliency map with a single inference step, and thus producesore
accurate and reliable results. Besides the unsupervisedttiag, the
proposed method can be also generalized to incorporate thep-
down priors obtained from supervised environment. Extensie
experiments well validate its superiority over other stateof-the-
art methods.

Index Terms—saliency detection, multi-feature modeling,
multi-task learning, sparse and low-rank.
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Fig. 1. For a given image, first, we extrakt types of features, resulting in
K types of feature matriceX, X»,--- , Xk, with eachX; corresponding

to a certain type of feature. Second, its saliency map ignefieby seeking
the consistently sparse elemeifsfrom the joint decompositions of multiple
feature matricesX; into pairs of low-rank and sparse matrices. Note here that
our method can also handle the saliency detection problesadban a single
feature (i.e., K = 1).

images is taken into account. Then, it will be shown that the

ISUAL attention is crucial in determining visual experiproposed model can be naturally generalized to incorporate

ence, leading to the challenging problemsafiency de-

the top-down priors obtained from supervised environment.

tectionthat is an important function for image processing and Saliency detection is to automatically select the sensory
understanding [1], [2], [3], [4]. Saliency detection isated to information that is notable to human vision system. From
many applications, such as automatic image cropping [5], ithe perspective of computer vision, the goal is to find the
age thumbnailing [6], image/video compressing [7] and ienagmage regions where one or more of their features differ from
collection browsing [8]. Therefore saliency detectionlgemn those in the surroundings. As a comprehensive task, it tenta
has been extensively studied in signal processing, compidte several issues, such as how to extract effective featurés an
sion, machine learning and even biological literature.(¢9J, what is the optimal criterion for measuring saliency. Thgu
[10], [11], [12], [13], [14], [15], [16], [17], [18]). Accoding to  |ots of efforts, researchers have found several effectatuire
whether the detection procedure requires human interaotio descriptors, mainly including color, texture and orieiatat

not, existing methods are divided into two categories:dmit as surveyed in [17]. For a certain feature schema, many
up (unsupervised) and top-down (supervised). In this papesmputational methods have been established for measuring
for ease of presentation, we shall firstly study the probleghd detecting saliency (e.g., [2], [6], [19], [20]). Howeve
under the first setting, namely no learning process fromi¢abe the salient regions can seldom be well described by only a
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single feature, and generally it is hard for such methods to
handle well a wide range of images. This is because a single
feature descriptor usually only captures one aspect of the
visual information. For example, the color based descripto
may not handle well the images with rich textures. Therefore
in this paper we study a basic problem as follows:

e Provided that each image is described by several types
of features, how to integrate these multiple features for
accurate and reliable saliency detection?

In fact, it is generally accepted that saliency detection
may benefit from the integration of multiple visual features
Unfortunately, most existing literature on this directfoouses



on the “naive” combination frameworks. Typically, aftereth is used to combine the visual features and the saliency is
saliency maps are computed for each of the featimeisid- computed using a contrast sensitivity function. The saljen
ually, they are normalized and then combined in a linear atso computed by a discriminant center-surround hypaghesi
non-linear fashion for producing a final saliency map [2]][2 using mutual information [13]. The saliency value at each
[22], [23]. The cross-feature information is not well utdéid location is essentially explained as the local contrastne o
in the inference process and it is often difficult for suchveai feature or more. There lacks of global measurement and so
approaches to produce reliable results. these methods may not produce satisfactory results, agegoin
To make effective use of multiple features, in this papaut by [10]: “Although this approach may be biologically
we propose anulti-task sparsity pursuiftMTSP) model for plausible, it is suboptimal for computer vision”.
saliency detection. Figure 1 outlines the proposed methodMore recently, the vast majority of saliency detection meth
which differs significantly from the previous methods in it®ds attempt to detect saliency based on more mathematically
motivation and methodology. We treat saliency detection asotivated principles. Hou et al. [28] computed visual satie
a sparsity pursuit problem and integrate multiple types bfy extracting spectral residuals in the amplitude spectodim
features for detecting saliency collaboratively. Sinae¢hoss- Fourier transform. The recent trends on estimating salienc
feature information has been well considered, such a joimte emphasizing on utilizing graph model [19], maximum
inference schema can produce more accurate and reliabfermation sampling [11] and subspace analysis [20]. €hes
results than the models of producing the saliency maps indiethods suffer from the limitation that cluttered backgrdsi
vidually. The inference process is formulated as a conmstthi may yield higher saliency as such backgrounds possess high
nuclear norm ands ;-norm minimization problem, which is global exception in the cases with complex scenes. Mearwhil
convex and can be solved efficiently with augmented Lagrantdee object borders are often assigned with high saliency tha
multiplier (ALM) [24] method. Besides the ability of modefi the salient regions, even if the neighborhood size paramnete
multiple features, as will be seen, another advantage of R T&ell tuned. In order to overcome these issues, several mdgtho
is that it can be naturally generalized to incorporate th&], [10] incorporated the image segmentation or pixel €lus
top-down priors so as to produce more accurate results. téming into saliency detection. However, the good perfarcea
summary, the contributions of this work mainly include: heavily relies on the quality of image segmentation, which

1. We propose a sparsity pursuit framework for saliendigelf is a challenging problem.
detection. Compared to existing models, the proposedAs the salient target is usually small which implies spgysit
framework seamlessly integrates multiple types of fe&aliency detection can benefit from sparse signal anakysis t
tures into a unified inference procedure, which is formdtiques. In particular, the recently established Robustdial
lated as a convex optimization problem. With some mil§omponent Analysis (RPCA) [29] and its variations may fit
modifications, the proposed model can also handle th&ll to the saliency detection problem [30]. Given a matrix
top-down priors from supervised environment. Xo, RPCA aims at decomposing it into a low-rank matrix

2. Based on the proposed framework, we establish effect@@d a sparse ong, by minimizing
algorithms for saliency detection. Experimental results .
show that our algorithms remarkably outperform other AoBo 1 4oll- + AllEoll,
state-of-the-art algorithms. Our algorithms are also com- st. X =Ay+ Ey,
putationally efficient. _

3. The proposed MTSP is a general multi-task method ffhere || - ||. denotes the matrixuclear norm(sum of the

achieving sparsity jointly. It may be useful for othegingular values of a matrix) [31], which is a convex relaaati
related problems. of the rank function|| - ||; is the/;-normand the parameter

. . . . M,} > 0 is used to balance the effects of the two parts. The
follows. X X . . o .
The remainder of this paper is organized as follows tgchnlque used in this paper is a variation of RPCA, with

discuss and analyze the related work in Section Il. We pr@qu . h bl £ sall detect
in Section 1l the multi-task sparsity pursuit algorithmdan etter connections to t.e problem space of saliency detecti
its extension for saliency detection. Experimental resalte As a patt(_ern analysis problem, §allency detection perfor-
given in Section IV. Finally, we give the concluding remark§1aNce hz_aa_vny depem_js on the choice of featurg space. What
in Section V. Is more, it is hard to find a single feature descriptor that can
generally work well for various images with diverse propesst
So, the importance of combining multiple features has been
Il. RELATED WORK widely discussed (e.g., [2], [21], [22], [23]). However, as
The major difference among different saliency detectiatiscussed in Section I, existing methods may not fully captu
models is the mechanism to measure saliency. Many of tthee advantages of multiple features, because the comtamati
saliency approaches [2], [18], [25] construct biologigall is performed on the saliency maps inferred individuallyniro
plausible mechanisms based on the findings from psychologgch feature. The cross-feature information is not welizet
or neurobiology [26]. As one of the earliest methods, Itti éh the inference process and thus it is often difficult for
al. [2] proposed a center-surround operation as local featthese methods to produce generally reliable results. OUBRT
contrast in color, intensity and orientation of an image. Lmethod provides an effective solution for this issue: ttadifee
Meur et al. [25], [27] modeled the bottom-up visual attentiofusion is performed during the saliency map inference @esce
using a coherent computational approach. Psycho-visaakespsuch that the cross-feature information is well utilized.



The prior knowledge on scene context or specific objects1) Single-Feature Case (Formulation 1)The task de-
is also helpful for identifying saliency regions, leadirgythe scribed by Formulation 1 is to find a criterion for measur-
exploration of combining bottom-up and top-down inforroati ing and detecting saliency. In human vision system, usu-
[17], [22], [23], [32] for saliency detection. A straightimard ally, only the distinctive sensory information is selected for
way is to integrate the bottom-up and top-down componeritgther processing. From this perspective, the saliergetar
obtained individually, as done in [33]. Since the inferencghould be different from the background (non-salient) pasc
process does not benefit from the integration, this simpldoreover, there usually exists strong correlation amorgy th
approach may not produce satisfactory results. Therefowst background patches, i.e., the background patches arelyusual
researchers choose to modify their bottom-up models feelf-representedrhis analysis suggests that the matkixnay
including available top-down priors [34], [35]. The propds be decomposed into a salient part and a non-salient part as
MTSP method, as will be seen, can be naturally generalizédlows:
to incorporate some top-down priors.

X =XZo+ Eo, (1)
[1l. M ULTI-TASK SPARSITY PURSUIT FORSALIENCY where X Z, denotes the non-salient part which can be recon-
DETECTION structed by itself,Z, denotes the reconstruction coefficients,

and E, denotes the rest parkf = X — X Zy) corresponding
In this section, we elaborate on the proposed MTSP modg.the salient targets.
For easy of presentation, we shall focus on the unsupervisedyithout imposing any restrictions, there are infinite numbe
setting, i.e., bottom-up saliency detection. The gereatibn of solutions (with respect t&Z, and E;) to (1). To seek a
for handling the top-down priors will be discussed at the engbjution that is useful for saliency detection, we need some
of this section. criteria for characterizing the matrice%, and Ey. To this
end, we have two basic principles. On one hand, as adopted
by most approaches in computer vision (e.g., [2], [10]), we
A. Problem Formulation assume that only a small fraction of patches are salient, i.e
the matrix E is sparse The connection between sparsity and
ﬁliency is also consistent with the fact that only a smaiksti
'fesensory information is selected for further processing i
human vision system. On the other hand, the strong cowelati

Then a pixel is salient if and only if the patch containin%mong the background patches suggests that the magrix

this pixel is judged to be salient. By choosing an approqaria;nay have the property dbw-ranknessIn summary, for a
feature descriptor to describe each patch, saliency detect ..+ _ 21,20, ,xy] With eacha; representiné the

problem can be formulated as follows. th patch, it is appropriate to infer the salient patches lilsg
the following low-rank representation (LRR) [36] problem:

For efficiency, we use image patches other than pix
as basic image elements. Namely, for a given image,
partition it into non-overlapping patches of sige< ¢ pixels.

Formulation 1: Let X = [z1,22, - ,2xNn] With size

d x N be a feature matrix, eac_h column of which is a feature min 1 Zoll+ + Al Bollz.1, )
vectorz; corresponding to an image patéh. Then the task Zo,Eo

is to find an assignment functio$i( P;) € [0, 1]. The function st. X =XZy+ Ey,

S(F;) is referred to as saliency map, where the higher value

indicates higher salient location. where || - || denotes the matrixiuclear norm(sum of the

singular values of a matrix) [31], which is a convex relagati

A weak point of the above formulation is that only one typef the rank function [29], the parametér > 0 is used to
of feature is considered. For better performance, we censighglance the effects of the two parts, aid||,,; is the £y -

the following multiple features based problem formulation norm [36] defined as the sum df norms of the columns of

a matrix:
Formulation 2: Let X, X5, , Xk be K feature matrices
for K types of features, where the columns in different [Eollaa =Y > (Eo(j,4))>.
matrices with the same index correspond to the same image i J

patch. The size of eacK; is d; x N, whered; is the feature . o ) o
dimension andV is the number of patches. Then the task i§€'€ Eo(J; ) is the (j,i)-th entry of . Since the minimiza-

to find an assignment functioi(P,) € [0,1] by integrating ton of ¢21-norm encourages the columns A&} to be zero
the feature matriceX;. - -- . Xx (i.e., have sparse columns), it fits well our saliency detect
? ? -

problem. For a column corresponding to thth patch, larger
(smaller) magnitude implies that the patch is more salient
(non-salient), i.e., the sparse matri, naturally measures
visual saliency.

For better understanding, we explore Formulation 1 at first,Let Ej be the optimal solution (with respect tB)) to
then we shall establish an algorithm for the multi-featuasec problem (2). To obtain a saliency score for thtéh patchP;,
(Formulation 2) accordingly. we only need a simple post-processing step to quantify the

B. Multi-Task Sparsity Pursuit



Algorithm 1 Saliency Detection by MTSP
Input: An image and the required parameters.
1. Compute K feature matrices by extracting types of
features to describe each image patch.
2. Obtain the sparsity matrices;, Es, - - - , Ex by solv-
ing problem (4).
3. Compute the saliency map by (5).
Output: A map that encodes the saliency value of each
image patch.

RGB space

Fig. 2. An example of using LRR to perform saliency detectieor the given gccurate and reliable results. Here, we propose a hew aoluti

image represented by the feature mafXixit can be seen that the non-salient i ; ; ; ; ;
and salient targets are naturally identified Xy/; and E;, respectively. Here, of multi-task sparsity pursuit (MTSP)’ which is a multixas

by solving the following convex optimization problem:

K
= min Zills + A||E 4
- i, 34 A @

& = Ei,,Ex
= S.t. X’i:XiZi"i_Ei,i:l,"',K,

where E = [Ey; Es;--- ; Ex] is formed by vertically con-
E, - catenatingE, Es, - - - , Ex together along column. The in-
tegration of multiple features is “seamlessly” performed b
minimizing the ¢, ;-norm of E. Namely, this technique will
enforce the columns of, FEs, - - - , Ex to have jointly con-

* sistent magnitudes, i.e., they are all large or they arenadills
as shown in Figure 3.

- Let{ES,---, E}} be the optimal solution (with respect to
E;’s) to problem (4). To obtain a saliency score for thth
patch P;, similar as the single-feature case, we quantify the
- response of the sparse matrices as follows:

Fig. 3. lllustrating the minimization of thé; 1-norm defined onE. Gener- K

ally, this technique is to enforce the entries of the masriee, Es, - , Ex N *(. g

to have jointly consistent columns. Since the columns ifedéht matrices S(R) Z ”EJ (" Z)HQ ®)
with the same index correspond to the same image patchettiaitjue is also Jj=1

to encourage different features to produce consisten¢reali maps. In this . .

way, the cross-feature information is naturally modelechsthhat the multiple where ”E]*(a Z)H2 denotes the,-norm of thei-th column of
features will take effects collaboratively. E%. The large score of(P;) means that the patck; has

high probability to be salient. Whildl = 1 (i.e., single-
feature case), it can be seen that the formulation (4) falls

response of the sparse matrix: back to (2). The saliency function defined by (5) is also a
generalization of (3). Hence, the proposed MTSP model can
S(P) = | EL(:,0)||2 = Z(Eg (G, )2, (3) actually handle both cases for single-feature and musitie.

7 Algorithm 1 summarizes the whole procedure of MTSP based
saliency detection.

where||E§(:,4)||2 denotes théz-norm of thei-th column of

E§ andEf(j,1) is its (4, 4)-th entry. The large score &(F;) L

means that the patck, has high probability to be salient,C: OPtimization Procedure

In this way, the task of saliency detection is performed by Problem (4) is convex and can be optimized efficiently. We
solving the LRR problem (2). Figure 2 exemplifies how thérst convert it into the following equivalent problem:

salient targets are found.

K
2) Multi-Feature Cas_e (Formula_tlon 2)The abov_e LRR min Z 1l + AIE 2.1 (6)
can only model a certain type of visual feature, which cannot 271,::: ,éK = ’
be directly used for multi-feature cases. To combine togreth By B
multiple features, as adopted by existing methods (e.§)., [2 s.t. X = X;Z; + E;,
an intuitive approach is to directly combine the saliencypma Zi=Jii=1,--- K.

obtained from individual features. However, the inferente
the individual saliency map does not well utilize the crosshis problem can be solved with the augmented Lagrange
feature information, and thus it is often difficult to pro@uc multiplier (ALM) method [24], which minimizes the followipn



Algorithm 2 Solving Problem (4) by Inexact ALM Fortunately, there actually exist some guarantees foriegur

Input: Data matrice§ X}, parameten. the convergence of Algorithm 2. According to the theordtica
while not convergedlo results in [41], two conditions areufficient (but may not
1. Fix the others and updaté, - - - , Jx by necessary) for Algorithm 2 to converge: the first conditien i
1 1 w; that the feature matriceX; (: = 1, -- , K) are of full column
Ji = argm}n—IlJII* + §||Ji —(Zi + —)Ip- rank; the second one is that the optimality gap produced in
_ s K each iteration step is monotonically decreasing, namedy th
2. Fix the others and updaté,,--- , Zx by error
Xy, - w; .
Z; = ]\/[()(171()(Z — EZ) + Ji + ZT), € = ”(Zia aZé(v‘]{a"' 7‘]}() - arng{r:gl{gEH%
where M = (I + Zfl XTx;)~ L. is monotonically decreasing, wher®! (resp. J!) denotes

3. Fix the others and updatl = [E1; Fy;--- ; Ex| by .the. solution produced at thieth it.eration,argr_nipz_gsws L
indicates the “ideal” solution obtained by minimizing tha-L

E = argmin i||E||271 + 1||E - Gl|%, grange functiorC with respectto allZy,--- , Zg, J1,- -+ , Jk
Eop 2 simultaneously. The first condition is easy to obey, since
whereG is formed by vertically concatenating the matrifroblem (4) can be converted into an equivalent problem
cesX,— X, Z; + Y. j=1,---, K together along column. where the full column rank condition is always satisfied (we
4. Update the multlpllers will show this in the next subsection). For the monotonicall
decreasing condition, although it is difficult sirictly prove
Yi = Yit+ulXi-XiZ; - Ey), it, the convexity of the Lagrange function could guarantee
Wi = Wi+wu(Z; —Jy). its validity to some extend. So, it could be well expected
that Algorithm 2 has good convergence properties. Moreover
inexact ALM is known togenerally perform well in reality,
p = min(pp, 10'9), as illustrated in [40].
2) Computational Complexitytet the size ofX; be d; x
N. Without loss of generality, supposg = do = --- =
dx = d, then the computation complexity of Algorithm 2 is
O(N3), which is inefficient when the number of image patches
is large (i.e., the image is large). However, the complexity
can be further reduced t®(d® + d>N) (assumed < N)
by utilizing the theories established by Liu et al. [42]. Fro
Theorem 4.3 of [42], the optimal solutior® (with respect to
the variableZ;) always lies within the subspace spanned by
augmented Lagrange function: the rows ofX;. So, Problem (4) can be equivalently converted
into a simpler problem by replacing; with @Q,5;:

5. Update the parameter by

where the parameter takes the role of controlling the
convergence speed. It is set@s- 1.1 in all experiments.
6. Check the convergence conditioki; — X, Z;, — E; — 0
andzzszﬂo,li]., ,K.

end while

Output: The optimal solutionE*.

K
L=MElza+ D (il + (Ye, Xi — XiZi — Ei) +

K
-1 o i > 1Sl + Al Ell2.1 ()
<Wi;Zi*Ji>+gHXi*XiZi*Ei”%Jrg”Zi*JiH%‘)v By Ex =

s.t. XL:AISI—FE“Z:L,K,
whereYy,--- Y and Wy, --- ,Wg are Lagrange multipli-
ers, andu > 0 is a penalty parameter. The inexact ALM
method, also called alternating direction method, is nadi
in Algorithm 2. Notice that the sub-problems of the algarith
are convex and they all have closed-form solutions. Step 1
solved via the singular value thresholding operator [3 Hilev

Step 3 is solved via Lemma 3.2 of [36]. d < 13 in our experiments. Thus computational complexity is
1) On the Convergence Propertiead¥hen the objective reduced taO(N), where N is the number of patches.

function is smooth, the convergence of the exact ALM algo-
rithm has been proven in [38]. For inexact ALM, which is a

variation of exact ALM and also called as alternating dieet D- Generalized to Handle Top-down Priors

method (ADM), its convergence has also been well studiedSaliency detection may also benefit from the labeled data,
when the number of blocks is not more than two [24], [39from which some kinds of object-specific or global-specific
Up to present, it is still difficult to ensure the convergente information can be inferred for identifying salient target
inexact ALM with three or more blocks [40]. Since there ar§82], [43], [44]. Up to present, MTSP has only considered the
2K + 1 (K = 3 in this work) blocks in Algorithm 2 and the low-level visual features, i.e., bottom-up saliency détec
objective function in (4) is not smooth, it would be difficultwithout learning from labeled images. Fortunately, it is
to strictly prove the convergence in theory. actually natural for MTSP to handle the top-down priors

whereA; = X;Q; and@; is computed by orthogonalizing the
columns ofX!'. The above problem can be solved in a similar
way as that for problem (4). As the number of the columns of
/}é is at mostd (assumel < N), the computational complexity
is O(d® + d?N), which is quite efficient because the feature
dimensiond is generally small compared with For example,



represented by a label vector. In this subsection, we furthe
describe the generalized MTSP (G-MTSP) to incorporate the
top-down priors obtained from supervised environment. o b
more precisely, G-MTSP is to address the saliency detection :
problem formulated as follows: ‘

Formulation 3: Besides the feature matrices,,--- , Xk, i
suppose there is also a label vecfor= (7, - ,7y) that & = | -;‘e | D

roughly assigns each patch, a probability m; € [0,1] of Original luage 4=0.0001 0,001 1—0.01 o
being salient. Then the task is to find an assignment function
S(P;) € [0,1] by making use of both the_wsual featur(.-:‘,s_ig. 4. Saliency maps obtained under different parameter settings
encoded byXy,--- , Xk and the top-down priors encoded inhe Bruce dataset.

the label vectoK).

The label vectof? can be computed from existing top-down

saliency detection or object detection algorithms. To hand R
the priors encoded by such a label vector, we only need to g V.
generalize the/; ;-norm defined onE, namely aweighted §078$
5 1-norm as follows: & o7

N 0.74

HEH;l = Z ¢Z ||E(, ’L) H27 (8) 077 002 004 006 0.08 ’0.1

=1 The Parameter A

\;V:S?gif aZV\(/qeﬁllg;I'q:; ’ for ,tf(févz) t%egoeltjarlr:{] %?%Ot?s alveCtOIr(thatﬁig. 5. The ROC area change curve as a function of parameter
i - s e st .

. There results are from the Bruce dataset.
When ¢, = 1,i = 1,---,K, the above weighted ;-

norm identifies the traditiondh ; -norm. While minimizing the

weighted(s,,-norm, a larger weight means stronger penal%gnce, problem (9) is solved by replacing Step 3 of Algorithm

on the corresponding column, leading to smaller responge . . .
on that column. So, the saliency detection task described%lnWlth (10). The same as the analysis in Section lII-C,

Formulation 3 may be handled by modifying our formulatio% € corr_1pIeX|ty of the opt|m|z§1t|or_1 procedure is alSgN)
assuming the feature dimension is small).

(4):
K
. _ IV. EXPERIMENTS AND RESULTS
jmin S Zi AL ©) _ _
BB i=l A. Experimental Settings

st. Xs=XiZ;+E,i=1,--- K, 1) Datasets: We tested the proposed algorithm on four
. . public image datasets: MIT [17], Bruce [11], FiFa [34] and
where ) is a given label vector. Whef2 = 0, the above MSRA [32]. The MIT, Bruce and FiFa datasets consist of

formulation falls back to (4) anc_j SO (9). Is a generaliz_aticbn %ye tracking data from several different users across image
(‘P' Actgzlly, the LR(F; formulation (2) Is also a special CaS|l fixation patterns for a given image are added together for

of (9) with K =1 an 1=0. _ providing a spatial distribution of human fixation. The fthur
Sincer; € [0,1], i, problem (9) is always convex. To SOVeyaaset ysed in our experiments is the subset [9] of MSRA
problem (9), we only need to replace Step 3 of Algorithm Zajient opject dataset [32]. This dataset contains aceurat

with object-contour based ground truth for quantitative evidna
A _ 1 2) Baselines: To show the advantages of the proposed

E = ZNEITE + SIIE - G%. 10 : :

arngmuH 22" + 2” Gl (10) MTSP model, we implemented eight state-of-the-art unsu-

)%ervised modelsfor comparison, which are Itti model (IT)

The solution to the above problem can be found by followin! . .
the same way as Lemma 3.2 of [36]. First, notice that t . graph _based wsua! saliency (GBVS) [15.]’ conte>_<t aware
above problem can be solved column-by-column: ased saliency .detectlon (CSD) [14], self-mformgﬂon)(S!
P y [11], sparse coding based method (SCSP) [30], saliencygusin
N ML =) 1 PN natural statistics (SUN) [46] and other two methods using
E(:, 1) = argmin L lel2 + 3lle = GG Dz, frequency domain features: spectral residual (SR) [28] and

Whe_reE(5v i) is thei-th COlumn_ Ova i=1--,N. Then, it 155urce codes of these baseline algorithms are availablegstitab.usc.
is simple to see that the solution is given by edu/toolkit, http://www.klab.caltech.eduharel/share/gbvs.php, http://bcmi.
sjtu.edu.cnthouxiaodi, http://www-sop.inria.ffmembers/Neil.Bruce/, http://
I\G(:,i)l\z—h(l—m)G(. D), A< IGCGii)ll2 cseweb.ucsd.edw/l6zhang, http://webee.technion.ac.il/labs/cgm/Coerput
E(:0) = GGz R =m0 Graphics-Multimedia/Software/, and http:/ivrg.epffsiipplementarymaterial
0, otherwise. /RK_CVPROY/.
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To show the advantages of MTSP, we apply the proposegestask saliency detection by solving (2) for color, Lb&mnergy [45], and Local

Contrast [2] feature individually (denoted as “C-Map”, Nrap” and “LC-Map”). Also, we use a naive approach (denotedNmive”) to combine multiple
features by simply averaging the saliency maps obtaineitiéhually.

TABLE |

PERFORMANCE OFMTSP ON CONTAMINATED IMAGES (MSRA DATASET) MTSP

Image F-Map C-Map LC-Map

WITH 5 X 5 PATCH NOISE(O‘ RANGES FROM0.05TO 0.45).
o 005 015 025 035 045 =
AUC MTSP  0.8922 08824 0.8565 08262 0.7898
C-MAP 08104 0.7892 0.7384 0.7155 0.6913 i
F-MAP 07921 0.7759 0.6965 0.6046 0.5748 ¥ dReas
LC-MAP  0.8092 0.7821 0.7719 0.7332 0.7037 | Ban
Naive  0.8318 0.8130 0.7850 0.7501 0.7175 i
CC  MTSP 06232 06068 05536 05151 0.4831
C-MAP  0.6055 0.5419 0.4811 0.3945 0.3656
F-MAP 05114 04175 0.2616 0.1528 0.1347
LC-MAP 05763 0.5449 0.4552 0.4442 0.3801
Nave  0.6092 05564 0.4861 0.4645 0.3884

frequency-tuned method (FT) [9]. All baseline algorithnsgu
default parameter settings given by the authors. Each irisage
resized to 256*256 pixels and regularly partitioned int® 8*
patches. Then features are extracted from each patch. Gince
method does not utilize segmentation, the image segmentati
based methods are not chosen for comparison.

To evaluate the effectiveness of our model in combing
bottom-up features and top-down priors (Section IlI-Dygth Fig. 7. Some examples for showing the advantages of intagratultiple
algorithms that also integrate bottom-up and top-downrprio/c2Wres by MTSP. From left to right: the input image; theiesaly map
are used for comparison.

obtained from the feature of local energy; the saliency mapioed from the
feature of color; the saliency map obtained from local asttrthe saliency
- SMV. Face detection is considered as a semantic cue e[ﬁiﬂfcrgfjgﬁgfg;y C":')LSrZ;Zafo'gﬁgcﬁffag?ether all typesatifes, including
added into the bottom-up model [34]. (The code source
is available at the page http://www.klab.caltech.edu/
~moran/fifadb/)
OptW: Optimal combination weights for each feature ma|
generated individually are learned from training imag
in a supervised manner [22].
SVM Several low, middle and high level image feature
are used to train a support vector machine (SVM) cla
sifier that could predict salient regions [17]. The ratio o
negative to positive samples is 1 for all the datasets.

3) Evaluation Metrics: All the algorithms are evaluated
based on the following widely-used criteria. The receiver
operator characteristic (ROC) is used to evaluate the aiityil
between the predicted and the ground-truth saliency map#erey, andy, are the mean values of the two map§ ()

The ROC curve is obtained by trying all possible thresho®nd M, (z), andx indexes the pixels in the two maps.

values, and for each value, plotting the true positives rate4) Feature Extraction: The main target of our MTSP
(TPR) on the Y-axis against the false positive rate (FPR)odel is to integrate multiple visual features for jointisaty
value on the X-axis. For the convenience of evaluation, thliketection. According to the survey in [17], which summasize
area under ROC curve, denoted as AUC, is used to evaluatel evaluates various features for saliency detection, we

the performance of various algorithms. We also compute the
Borrelation coefficients (CC) [47] between he ground truipm
€hd the predicted saliency map for evaluation. L&t(x) and

(x) (x generally denotes a position of a map) respectively
the ground-truth map and the predicted saliency maps, CC
5 defined as follows:

;(Mg(x) - Mg)(Mp(x) - Mp)
O L S

T

Mp
Be




Original Image Similar to [2], we calculate the three conspicuity maps far t

] color, intensity, and orientation contrasts. Each conspjic
map is obtained by center-surround difference [2] between a

"center” fine scale and a "surround” coarser scale.

5) On Choosing the Parameter. The trade-off parameter
- A in (4) has notable influence on the detection performance.
5 Generally, the choice of this parameter depends on priors

about the area of salient target. The smaller thés, the
more patches may be identified as salient target, as shown in
Figure 4. Nevertheless, the proposed method (MTSP) could
work well under a range of parameter settings, as shown in
Figure 5. While\ is ranging from 0.005 to 0.05, the ROC
area is varying from 0.8075 to 0.8144, which demonstrates th
model is insensitive to the parameter. For all experiments,

we setA = 0.01.

Saliency Map

Predicted ROI

B. Results and Analysis

In this subsection, we systematically evaluate the pragpose
model on the saliency detection task. The evaluation ctmnsis
of three aspects: 1) Investigating the performance imprzre
brought by integrating multiple features for detectingesaty
collaboratively. 2) Comparing MTSP to the state-of-the-ar
Fig. 8. Examples of using MTSP to detect saliency in imagesarninated bottom-up saliency algorithms. 3) Examining the effects of
by noise. incorporating the top-down priors.

1) Advantages of Joint InferencéiVe first evaluate the
proposed MTSP model performance (Section 111-B2) for in-
tegrating multiple types of features to collaborativelyopr
duce saliency map. In order to perform saliency detection

. by utilizing multiple features, we consider a naive apptoac
Color: We construct6D color features by concatenating enoted as “Naive”) that computes an average map of the
:Eg'r vrz]a_lut((e)s raz: _R]%dr’ trirﬁz;n ?r;? B.tlt:e RéhBannzllse Aidividual maps learnt from each feature by using the single
Ir_nistograms: cth pIxel: wi Values faature model presented in Section I11-B1. For comparigsan,
(R;,Gi,B;), its corresponding feature vector

is . o
computed  as {Ry, Gy, B, H(R:), H(G:), H(Bi)}, where also consider the performance of individual features based

- : the single-feature model in Section 11I-B1, resulting ime&
H(R;) = —log(Pr(Ry)) (resp. H(Gi) and H(B:)) with | opinac. C-Map (color), F-Map (local energy) and LC-Map
Pr(-) being the estimated probability of a pixel value. In Oukglocal contrast)
I .

experiments.’ the estimation of the probabilities iS_ done_ igure 6 shows the comparison results of the ROC curves
using 100_b|ns, and the fegture .vector of a patch is obtamg three datasets. It can be seen that the proposed model
by averaging over all the pixels in the patch. leads to better performance than the individually inferoed
naively combined methods. Figure 7 presents some examples

Loca_l energy. The steerable filter _(_jecomposition [45] f the produced saliency maps, where the brighter areas
provides a finer frequency decomposition that more Closei%rrespond to the more salient regions of the image. It can

corresponds to human visual processing. The basis furscti seen that the proposed MTSP performs reliably, while the

?rf tthe steera.ble dp%/framut:i are Idlrectlogal d.er|§[/att_|ve OFIIIEEEattha proaches based on a single feature may fail sometimes. Mos
al come n dilierent scales and - orientations. in our performance is gained from the consistent sparsexmatr

ext;?]edrflmgnt?, t_vve uz;é-scar:e stleerat()jle flltetr tqecﬁrr:]pps.'t'orbenerally learned for multiple feature spaces. In summary,
Wi orentations. At €ach scale and orientation, In€ B89 o0 regyits well verify the advantages of our formulation

convolved by using the corresponding filter and decompos for integrating the information of multiple visual feaes.

I_PF:O ltWO parts, ”aT“ef'y ﬁ low-pass pé"r; anq hlgrr:-pass ?? “We also apply MTSP on the images contaminated by noise.
€ low-pass part is further processed by using the next filig, ¢, image, its pixel values are corrupted by additive

at another scale and orientation. In this way, 12D features @ <cian noise with zero mean and standard deviation

produce_d by3 x 4 high-pass par_ts a_”d one feature is giVe\r/]vherea ranges from 0.05 to 0.35. Table | shows that MTSP
by the final low-pass part, resulting in 13D feature vectors.

perform much better than the single-feature model for Hagd|

. noise. Figure 8 further provides some results by applying

Local contrast. The local gontrast IS represen'Fed_ as thI@ITSP for detecting salient targets on the images contaedhat

three channels corresponding to these conspicuity maB?'Gaussian noise. These results illustrate that the mésrhan
2Source codes of these features are available at http:igpesail. mit.edu of joint inference (multi-task) is more robust to noise tlhe

Iljudd//WherePeopleLook//index.html. approach based on individual inference (single-task).

choose three effective featuré&scolor, local energy{45] and
local contrast[2].
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Fig. 9. The ROC curves of the proposed MTSP model and other eigla-sfahe-art methods on MIT (a), Bruce (b) and MSRA (c) detss

TABLE Il
THE AUC AND CC (CORRELATION COEFFICIENTY COMPARISON ON THEMIT, BRUCE AND MSRA DATASETS.

Criteria  Datasets IT GBVS CSD SR SI SCSP SUN FT MTSP

AUC MIT 0.7050 0.7234 0.8123 0.7936 0.7418 0.7513 0.7156 2@b5 0.8462
Bruce 0.7291 0.7592 0.8594 0.82270.8767 0.8138 0.7745 0.5208 0.8708
MSRA  0.7137 0.8765 0.8848 0.7377 0.8566 0.8314 0.7919 0.869.9247

CcC MIT 0.2177 0.2497 0.3196 0.2793 0.2418 0.2813 0.2551 35.140.3467

Bruce 0.2873 0.3205 0.4489 0.3753 0.4337 0.3866 0.3264 0.1966 0.4422
MSRA  0.3284 0.5742 0.5615 0.3232 0.4975 0.4972 0.4543 6.568.7044

TABLE Il
TO COMPENSATE THE CENTER BIAS EFFECT FOR HUMAN FIXATION DATATHE MAUC COMPARISON IS ALSO PERFORMED ON THIMIT AND BRUCE
DATASETS.
Dataset IT GBVS CSD SR Sl SCSP SUN FT MTSP

MIT 0.6161 0.6455 0.6518 0.6506 0.6258 0.6226 0.6349 0.52706603
Bruce  0.6307 0.6613 0.6725 0.6554 0.6696 0.6574 0.6547 0.5240 0.6721

(a) Bruce Dataset (b) MSRA Dataset

Fig. 10. (a) Some examples from the Bruce dataset. The rows from tbpttom are: original images, saliency maps produced by G3D,
SCSP, and MTSP, respectively. The last row is the human dixatiap as ground truth. Note here that we only consider CSRN&ISCSP,
since the other competing algorithms are outperformed byMUSP distinctly (see Figure 9).(b) Saliency results corgmm on images
from MSRA dataset. The rows for top to bottom are: originaadgres, saliency maps produced by GBVS, CSD, FT, and MTSReatagly.
The last row is the ground truth. Note here that we do not ciemsihe methods (e.g, IT) which have been outperformed byMLBP
greatly (see Figure 9).
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Fig. 11. The ROC curves of the proposed G-MTSP and state-of-the-atfiads on the four datasets.
. TABLE IV
2) Comparlsor_1_to state-of-the-art method® further eval- 11, AUC AND CC (CORRELATION COEFFICIENY COMPARISON ON THE
uate the competitiveness of the proposed model, we compare FOUR DATASETS

its results with the ones from existing eight state-of-#ne- -
methods (Section 1V-A2) on bottom-up saliency detection.Criteria  Dataset SMVJ SVM__ OptW _ MTSP _ G-MTSP

i i AUC FiFa  0.7953 0.8407 0./517 0.6884 0.8512
Figure 9 and Table Il show the comparison results. On the MIT " 08494 07443 0846 0.9083

MIT, Bruce and MSRA datasets, especially the MSRA dataset, Bruce _ 0.8752 07819 0.8708 0.8989
the proposed MTSP outperforms the other competing methods. MSRA - 0.8582 0.8277 0.9247 0.9165
Figure 10 shows some examples. It can be seen that MTSPCC FiFa  0.2623 0.3089 0.2556 0.1431 0.4164
exhibits stronger consistence with human eye fixationss&he E;‘fl'le - 063435155 06223;5‘0 °d3ff272 8-3222
results illustrate that our MTSP is a competitive tool for MSRA - 0.4578 0.4651 0.7044  0.6799

saliency detection. The effectiveness of MTSP is mainly due
to its ability of capturing information from multiple feats in

a unified inference procedure. This is achieved by seekiag th
consistent sparse components in order to encourage differe

05

features to produce consistent saliency maps. In this way, §
the cross-feature information is naturally modeled suct th |
the multiple features will take effects collaborativelyndwe O o4}
emphasize that the proposed MTSP does not need to segment (_% 0351
objects and no learning process from labeled images is taken g
into account. o 03 04 015 02 025 03 035
As discussed in [46], [48], generally, for eye tracking Low Entropy it

dataset, there is a bias toward making early fixations nesar th
center of an image, known as center bias [48]. To avoid this % 1

issue, we further adopt the evaluation framework described - . .:

by [49], which involves modified ROC metrics for computing |

the area under the ROC curve, denoted as mAUC. Instead afriginal el = |

using the non-fixed regions as negative samples, in mAUC'mage . | /3 :

the false positive fixations are fixations of a differentimag ‘- - ——---"-"--"-"-"-"-"-"-"-"-"-"-————— -

For a given image, we choose all the other images in tnh-e Analysis of performance with respect to the entropy of

dataset and calculate their averaged fixations as final fa}ﬁﬁnan fixation map. We plot the performance of MTSP (in terfns o
positive fixations for the given image. The mAUC results ogcC) as a function of the entropy. It can be seen that MTSP eehie

the MIT and Bruce datasets are reported in Tablelll, whidpetter performance on the images with lower entropy. Thesalts
shows that the performance of MTSP is competitive. Notirfj€ collected from the Bruce and MIT datasets.

here that the mAUC measure generally underestimates the

model performance if the ground truth saliency has centaal b

by itself, as pointed out by [48], [50]. Nevertheless, iti#l s gbject while images with high entropy are often rich in saver
a useful measure as a lower bound assessment of predicHgiferent textures. We note that the images in Bruce dataset
ability of saliency detection model. have relatively higher entropy: the MIT dataset has an @eera
One may have noticed that MTSP does not outperform tleatropy of 0.10 and a standard deviation of 0.04, while the
most effective methods (S and CSD) on the Bruce dataset. deerage entropy of the Bruce dataset is 0.15 (the standard
explore the underlying reason of this phenomena, like [&/@], deviation is 0.07). Also, as shown in Figure 12, MTSP tends
analyze the consistency of human fixations over an image toy perform better on the images with lower entropy. This is
measuring theentropy of the smoothed fixation map acrosshe reason why the MTSP performs less improvements on the
viewers. Images with low entropy tend to contain one centrBtuce dataset than the other two datasets.




11

V. CONCLUSION

This paper introduced Multi-Task Sparsity Pursuit (MTSP),
which is a generic model for saliency detection. First, we
proposed that the recently established LRR [36] approach ca
fit well the single-feature based saliency detection. Sécon
we established a generalized formulation (4), so called RITS
for integrating multiple visual features. Finally, we foer
generalize MTSP to incorporate the top-down priors encoded
by a label vector, resulting in a general method that can leand
the saliency detection problem under various settingglein
feature case, multi-feature case and the combination of top
down and bottom-up information. Experimental results well
verified the effectiveness of the proposed method.

A key aspect of MTSP is its ability of integrating multiple
visual features. In contrast with existing multi-featurased
methods, MTSP integrates the information of multiple feagu
into a unified inference procedure, which can be efficiently
performed by solving a convex optimization problem. The
proposed method seamlessly integrates multiple features t
jointly produce the saliency map within a single inference
step, and thus produces more accurate and reliable reBaés.
proposed method may have general appealing for multi-task
learning.

Fig. 13. Examples of the saliency maps produced by G-MTSPfand
competing methods. Note here that MTSP is a pure bottom-upadgwhile
all the others use top-down information.
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