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Saliency Detection by Multi-Task Sparsity Pursuit
Congyan Lang, Guangcan Liu,Member, IEEE,Jian Yu, and Shuicheng Yan,Senior Member, IEEE,

Abstract—This paper addresses the problem of detecting
salient areas within natural images. We shall mainly study the
problem under unsupervised setting, namely saliency detection
without learning from labeled images. A solution of multi-task
sparsity pursuit is proposed to integrate multiple types offeatures
for detecting saliency collaboratively. Given an image described
by multiple features, its saliency map is inferred by seeking
the consistently sparse elements from the joint decompositions
of multiple feature matrices into pairs of low-rank and sparse
matrices. The inference process is formulated as a constrained
nuclear norm and ℓ2,1-norm minimization problem, which is
convex and can be solved efficiently with augmented Lagrange
multiplier method. Compared to previous methods, which usu-
ally make use of multiple features by combining the saliency
maps obtained from individual features, the proposed method
seamlessly integrates multiple features to jointly produce the
saliency map with a single inference step, and thus producesmore
accurate and reliable results. Besides the unsupervised setting, the
proposed method can be also generalized to incorporate the top-
down priors obtained from supervised environment. Extensive
experiments well validate its superiority over other state-of-the-
art methods.

Index Terms—saliency detection, multi-feature modeling,
multi-task learning, sparse and low-rank.

I. I NTRODUCTION

V ISUAL attention is crucial in determining visual experi-
ence, leading to the challenging problem ofsaliency de-

tectionthat is an important function for image processing and
understanding [1], [2], [3], [4]. Saliency detection is related to
many applications, such as automatic image cropping [5], im-
age thumbnailing [6], image/video compressing [7] and image
collection browsing [8]. Therefore saliency detection problem
has been extensively studied in signal processing, computer vi-
sion, machine learning and even biological literature (e.g., [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18]). According to
whether the detection procedure requires human interaction or
not, existing methods are divided into two categories: bottom-
up (unsupervised) and top-down (supervised). In this paper,
for ease of presentation, we shall firstly study the problem
under the first setting, namely no learning process from labeled
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Fig. 1. For a given image, first, we extractK types of features, resulting in
K types of feature matricesX1, X2, · · · , XK , with eachXi corresponding
to a certain type of feature. Second, its saliency map is inferred by seeking
the consistently sparse elementsE from the joint decompositions of multiple
feature matricesXi into pairs of low-rank and sparse matrices. Note here that
our method can also handle the saliency detection problem based on a single
feature (i.e.,K = 1).

images is taken into account. Then, it will be shown that the
proposed model can be naturally generalized to incorporate
the top-down priors obtained from supervised environment.

Saliency detection is to automatically select the sensory
information that is notable to human vision system. From
the perspective of computer vision, the goal is to find the
image regions where one or more of their features differ from
those in the surroundings. As a comprehensive task, it contains
several issues, such as how to extract effective features and
what is the optimal criterion for measuring saliency. Through
lots of efforts, researchers have found several effective feature
descriptors, mainly including color, texture and orientation,
as surveyed in [17]. For a certain feature schema, many
computational methods have been established for measuring
and detecting saliency (e.g., [2], [6], [19], [20]). However,
the salient regions can seldom be well described by only a
single feature, and generally it is hard for such methods to
handle well a wide range of images. This is because a single
feature descriptor usually only captures one aspect of the
visual information. For example, the color based descriptors
may not handle well the images with rich textures. Therefore
in this paper we study a basic problem as follows:

• Provided that each image is described by several types
of features, how to integrate these multiple features for
accurate and reliable saliency detection?

In fact, it is generally accepted that saliency detection
may benefit from the integration of multiple visual features.
Unfortunately, most existing literature on this directionfocuses
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on the “naive” combination frameworks. Typically, after the
saliency maps are computed for each of the featuresindivid-
ually, they are normalized and then combined in a linear or
non-linear fashion for producing a final saliency map [2], [21],
[22], [23]. The cross-feature information is not well utilized
in the inference process and it is often difficult for such naive
approaches to produce reliable results.

To make effective use of multiple features, in this paper
we propose amulti-task sparsity pursuit(MTSP) model for
saliency detection. Figure 1 outlines the proposed method,
which differs significantly from the previous methods in its
motivation and methodology. We treat saliency detection as
a sparsity pursuit problem and integrate multiple types of
features for detecting saliency collaboratively. Since the cross-
feature information has been well considered, such a joint
inference schema can produce more accurate and reliable
results than the models of producing the saliency maps indi-
vidually. The inference process is formulated as a constrained
nuclear norm andℓ2,1-norm minimization problem, which is
convex and can be solved efficiently with augmented Lagrange
multiplier (ALM) [24] method. Besides the ability of modeling
multiple features, as will be seen, another advantage of MTSP
is that it can be naturally generalized to incorporate the
top-down priors so as to produce more accurate results. In
summary, the contributions of this work mainly include:

1. We propose a sparsity pursuit framework for saliency
detection. Compared to existing models, the proposed
framework seamlessly integrates multiple types of fea-
tures into a unified inference procedure, which is formu-
lated as a convex optimization problem. With some mild
modifications, the proposed model can also handle the
top-down priors from supervised environment.

2. Based on the proposed framework, we establish effective
algorithms for saliency detection. Experimental results
show that our algorithms remarkably outperform other
state-of-the-art algorithms. Our algorithms are also com-
putationally efficient.

3. The proposed MTSP is a general multi-task method for
achieving sparsity jointly. It may be useful for other
related problems.

The remainder of this paper is organized as follows. We
discuss and analyze the related work in Section II. We propose
in Section III the multi-task sparsity pursuit algorithm and
its extension for saliency detection. Experimental results are
given in Section IV. Finally, we give the concluding remarks
in Section V.

II. RELATED WORK

The major difference among different saliency detection
models is the mechanism to measure saliency. Many of the
saliency approaches [2], [18], [25] construct biologically-
plausible mechanisms based on the findings from psychology
or neurobiology [26]. As one of the earliest methods, Itti et
al. [2] proposed a center-surround operation as local feature
contrast in color, intensity and orientation of an image. Le
Meur et al. [25], [27] modeled the bottom-up visual attention
using a coherent computational approach. Psycho-visual space

is used to combine the visual features and the saliency is
computed using a contrast sensitivity function. The saliency is
also computed by a discriminant center-surround hypothesis
using mutual information [13]. The saliency value at each
location is essentially explained as the local contrast in one
feature or more. There lacks of global measurement and so
these methods may not produce satisfactory results, as pointed
out by [10]: “Although this approach may be biologically
plausible, it is suboptimal for computer vision”.

More recently, the vast majority of saliency detection meth-
ods attempt to detect saliency based on more mathematically
motivated principles. Hou et al. [28] computed visual saliency
by extracting spectral residuals in the amplitude spectrumof
Fourier transform. The recent trends on estimating saliency
are emphasizing on utilizing graph model [19], maximum
information sampling [11] and subspace analysis [20]. These
methods suffer from the limitation that cluttered backgrounds
may yield higher saliency as such backgrounds possess high
global exception in the cases with complex scenes. Meanwhile,
the object borders are often assigned with high saliency than
the salient regions, even if the neighborhood size parameter is
well tuned. In order to overcome these issues, several methods
[1], [10] incorporated the image segmentation or pixel clus-
tering into saliency detection. However, the good performance
heavily relies on the quality of image segmentation, which
itself is a challenging problem.

As the salient target is usually small which implies sparsity,
saliency detection can benefit from sparse signal analysis tech-
niques. In particular, the recently established Robust Principal
Component Analysis (RPCA) [29] and its variations may fit
well to the saliency detection problem [30]. Given a matrix
X0, RPCA aims at decomposing it into a low-rank matrixA0

and a sparse oneE0 by minimizing

min
A0,E0

‖A0‖∗ + λ‖E0‖1,

s.t. X = A0 + E0,

where ‖ · ‖∗ denotes the matrixnuclear norm(sum of the
singular values of a matrix) [31], which is a convex relaxation
of the rank function,‖ · ‖1 is the ℓ1-norm and the parameter
λ > 0 is used to balance the effects of the two parts. The
technique used in this paper is a variation of RPCA, with
better connections to the problem space of saliency detection.

As a pattern analysis problem, saliency detection perfor-
mance heavily depends on the choice of feature space. What
is more, it is hard to find a single feature descriptor that can
generally work well for various images with diverse properties.
So, the importance of combining multiple features has been
widely discussed (e.g., [2], [21], [22], [23]). However, as
discussed in Section I, existing methods may not fully capture
the advantages of multiple features, because the combination
is performed on the saliency maps inferred individually from
each feature. The cross-feature information is not well utilized
in the inference process and thus it is often difficult for
these methods to produce generally reliable results. Our MTSP
method provides an effective solution for this issue: the feature
fusion is performed during the saliency map inference process
such that the cross-feature information is well utilized.
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The prior knowledge on scene context or specific objects
is also helpful for identifying saliency regions, leading to the
exploration of combining bottom-up and top-down information
[17], [22], [23], [32] for saliency detection. A straightforward
way is to integrate the bottom-up and top-down components
obtained individually, as done in [33]. Since the inference
process does not benefit from the integration, this simple
approach may not produce satisfactory results. Therefore,most
researchers choose to modify their bottom-up models for
including available top-down priors [34], [35]. The proposed
MTSP method, as will be seen, can be naturally generalized
to incorporate some top-down priors.

III. M ULTI -TASK SPARSITY PURSUIT FORSALIENCY

DETECTION

In this section, we elaborate on the proposed MTSP model.
For easy of presentation, we shall focus on the unsupervised
setting, i.e., bottom-up saliency detection. The generalization
for handling the top-down priors will be discussed at the end
of this section.

A. Problem Formulation

For efficiency, we use image patches other than pixels
as basic image elements. Namely, for a given image, we
partition it into non-overlapping patches of sizep × q pixels.
Then a pixel is salient if and only if the patch containing
this pixel is judged to be salient. By choosing an appropriate
feature descriptor to describe each patch, saliency detection
problem can be formulated as follows.

Formulation 1: Let X = [x1, x2, · · · , xN ] with size
d×N be a feature matrix, each column of which is a feature
vectorxi corresponding to an image patchPi. Then the task
is to find an assignment functionS(Pi) ∈ [0, 1]. The function
S(Pi) is referred to as saliency map, where the higher value
indicates higher salient location.

A weak point of the above formulation is that only one type
of feature is considered. For better performance, we consider
the following multiple features based problem formulation.

Formulation 2: Let X1, X2, · · · , XK be K feature matrices
for K types of features, where the columns in different
matrices with the same index correspond to the same image
patch. The size of eachXi is di ×N , wheredi is the feature
dimension andN is the number of patches. Then the task is
to find an assignment functionS(Pi) ∈ [0, 1] by integrating
the feature matricesX1, · · · , XK .

B. Multi-Task Sparsity Pursuit

For better understanding, we explore Formulation 1 at first,
then we shall establish an algorithm for the multi-feature case
(Formulation 2) accordingly.

1) Single-Feature Case (Formulation 1):The task de-
scribed by Formulation 1 is to find a criterion for measur-
ing and detecting saliency. In human vision system, usu-
ally, only the distinctive sensory information is selected for
further processing. From this perspective, the salient targets
should be different from the background (non-salient) patches.
Moreover, there usually exists strong correlation among the
background patches, i.e., the background patches are usually
self-represented. This analysis suggests that the matrixX may
be decomposed into a salient part and a non-salient part as
follows:

X = XZ0 + E0, (1)

whereXZ0 denotes the non-salient part which can be recon-
structed by itself,Z0 denotes the reconstruction coefficients,
andE0 denotes the rest part (E0 = X −XZ0) corresponding
to the salient targets.

Without imposing any restrictions, there are infinite number
of solutions (with respect toZ0 and E0) to (1). To seek a
solution that is useful for saliency detection, we need some
criteria for characterizing the matricesZ0 and E0. To this
end, we have two basic principles. On one hand, as adopted
by most approaches in computer vision (e.g., [2], [10]), we
assume that only a small fraction of patches are salient, i.e.,
the matrixE0 is sparse. The connection between sparsity and
saliency is also consistent with the fact that only a small subset
of sensory information is selected for further processing in
human vision system. On the other hand, the strong correlation
among the background patches suggests that the matrixZ0

may have the property oflow-rankness. In summary, for a
matrix X = [x1, x2, · · · , xN ] with eachxi representing thei-
th patch, it is appropriate to infer the salient patches by solving
the following low-rank representation (LRR) [36] problem:

min
Z0,E0

‖Z0‖∗ + λ‖E0‖2,1, (2)

s.t. X = XZ0 + E0,

where ‖ · ‖∗ denotes the matrixnuclear norm(sum of the
singular values of a matrix) [31], which is a convex relaxation
of the rank function [29], the parameterλ > 0 is used to
balance the effects of the two parts, and‖ · ‖2,1 is the ℓ2,1-
norm [36] defined as the sum ofℓ2 norms of the columns of
a matrix:

‖E0‖2,1 =
∑

i

√

∑

j

(E0(j, i))2.

HereE0(j, i) is the(j, i)-th entry ofE0. Since the minimiza-
tion of ℓ2,1-norm encourages the columns ofE0 to be zero
(i.e., have sparse columns), it fits well our saliency detection
problem. For a column corresponding to thei-th patch, larger
(smaller) magnitude implies that the patch is more salient
(non-salient), i.e., the sparse matrixE0 naturally measures
visual saliency.

Let E∗
0 be the optimal solution (with respect toE0) to

problem (2). To obtain a saliency score for thei-th patchPi,
we only need a simple post-processing step to quantify the
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Fig. 2. An example of using LRR to perform saliency detection. For the given
image represented by the feature matrixX, it can be seen that the non-salient
and salient targets are naturally identified byXZ∗

0
andE∗

0
, respectively. Here,

Z∗

0
andE∗

0
are obtained by solving problem (2).
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Fig. 3. Illustrating the minimization of theℓ2,1-norm defined onE. Gener-
ally, this technique is to enforce the entries of the matrices E1, E2, · · · , EK

to have jointly consistent columns. Since the columns in different matrices
with the same index correspond to the same image patch, this technique is also
to encourage different features to produce consistent saliency maps. In this
way, the cross-feature information is naturally modeled such that the multiple
features will take effects collaboratively.

response of the sparse matrix:

S(Pi) = ‖E∗
0 (:, i)‖2 =

√

∑

j

(E∗
0 (j, i))2, (3)

where‖E∗
0 (:, i)‖2 denotes theℓ2-norm of thei-th column of

E∗
0 andE∗

0 (j, i) is its (j, i)-th entry. The large score ofS(Pi)
means that the patchPi has high probability to be salient.
In this way, the task of saliency detection is performed by
solving the LRR problem (2). Figure 2 exemplifies how the
salient targets are found.

2) Multi-Feature Case (Formulation 2):The above LRR
can only model a certain type of visual feature, which cannot
be directly used for multi-feature cases. To combine together
multiple features, as adopted by existing methods (e.g., [2]),
an intuitive approach is to directly combine the saliency maps
obtained from individual features. However, the inferenceof
the individual saliency map does not well utilize the cross-
feature information, and thus it is often difficult to produce

Algorithm 1 Saliency Detection by MTSP
Input: An image and the required parameters.

1. ComputeK feature matrices by extractingk types of
features to describe each image patch.

2. Obtain the sparsity matricesE1, E2, · · · , EK by solv-
ing problem (4).

3. Compute the saliency map by (5).
Output: A map that encodes the saliency value of each
image patch.

accurate and reliable results. Here, we propose a new solution
of multi-task sparsity pursuit (MTSP), which is a multi-task
generalization of LRR. MTSP seeks a jointly sparse matrixE

by solving the following convex optimization problem:

min
Z1,··· ,ZK

E1,··· ,EK

K
∑

i=1

‖Zi‖∗ + λ‖E‖2,1 (4)

s.t. Xi = XiZi + Ei, i = 1, · · · , K,

where E = [E1; E2; · · · ; EK ] is formed by vertically con-
catenatingE1, E2, · · · , EK together along column. The in-
tegration of multiple features is “seamlessly” performed by
minimizing the ℓ2,1-norm of E. Namely, this technique will
enforce the columns ofE1, E2, · · · , EK to have jointly con-
sistent magnitudes, i.e., they are all large or they are all small,
as shown in Figure 3.

Let {E∗
1 , · · · , E∗

K} be the optimal solution (with respect to
Ei’s) to problem (4). To obtain a saliency score for thei-th
patchPi, similar as the single-feature case, we quantify the
response of the sparse matrices as follows:

S(Pi) =

K
∑

j=1

‖E∗
j (:, i)‖2 (5)

where‖E∗
j (:, i)‖2 denotes theℓ2-norm of thei-th column of

E∗
j . The large score ofS(Pi) means that the patchPi has

high probability to be salient. WhileK = 1 (i.e., single-
feature case), it can be seen that the formulation (4) falls
back to (2). The saliency function defined by (5) is also a
generalization of (3). Hence, the proposed MTSP model can
actually handle both cases for single-feature and multi-feature.
Algorithm 1 summarizes the whole procedure of MTSP based
saliency detection.

C. Optimization Procedure

Problem (4) is convex and can be optimized efficiently. We
first convert it into the following equivalent problem:

min
J1,··· ,JK

Z1,··· ,ZK

E1,··· ,EK

K
∑

i=1

‖Ji‖∗ + λ‖E‖2,1 (6)

s.t. Xi = XiZi + Ei,

Zi = Ji, i = 1, · · · , K.

This problem can be solved with the augmented Lagrange
multiplier (ALM) method [24], which minimizes the following
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Algorithm 2 Solving Problem (4) by Inexact ALM

Input: Data matrices{Xi}, parameterλ.
while not convergeddo

1. Fix the others and updateJ1, · · · , JK by

Ji = arg min
J

1

µ
||J ||∗ +

1

2
||Ji − (Zi +

Wi

µ
)||2F .

2. Fix the others and updateZ1, · · · , ZK by

Zi = M(XT
i (Xi − Ei) + Ji +

XT
i Yi − Wi

µ
),

whereM = (I +
∑K

i=1 XT
i Xi)

−1.
3. Fix the others and updateE = [E1; E2; · · · ; EK ] by

E = argmin
E

λ

µ
||E||2,1 +

1

2
||E − G||2F ,

whereG is formed by vertically concatenating the matri-
cesXi−XiZi+

Yi

µ
, i = 1, · · · , K together along column.

4. Update the multipliers

Yi = Yi + µ(Xi − XiZi − Ei),

Wi = Wi + µ(Zi − Ji).

5. Update the parameterµ by

µ = min(ρµ, 1010),

where the parameterρ takes the role of controlling the
convergence speed. It is set asρ = 1.1 in all experiments.
6. Check the convergence condition:Xi−XiZi−Ei → 0
andZi − Ji → 0, i = 1, · · · , K.

end while
Output: The optimal solutionE∗.

augmented Lagrange function:

L = λ‖E‖2,1 +

K
∑

i=1

(‖Ji‖∗ + 〈Yi, Xi − XiZi − Ei〉 +

〈Wi, Zi − Ji〉 +
µ

2
‖Xi − XiZi − Ei‖

2
F +

µ

2
‖Zi − Ji‖

2
F ),

whereY1, · · · , YK and W1, · · · , WK are Lagrange multipli-
ers, andµ > 0 is a penalty parameter. The inexact ALM
method, also called alternating direction method, is outlined
in Algorithm 2. Notice that the sub-problems of the algorithm
are convex and they all have closed-form solutions. Step 1 is
solved via the singular value thresholding operator [37], while
Step 3 is solved via Lemma 3.2 of [36].

1) On the Convergence Properties:When the objective
function is smooth, the convergence of the exact ALM algo-
rithm has been proven in [38]. For inexact ALM, which is a
variation of exact ALM and also called as alternating direction
method (ADM), its convergence has also been well studied
when the number of blocks is not more than two [24], [39].
Up to present, it is still difficult to ensure the convergenceof
inexact ALM with three or more blocks [40]. Since there are
2K + 1 (K = 3 in this work) blocks in Algorithm 2 and the
objective function in (4) is not smooth, it would be difficult
to strictly prove the convergence in theory.

Fortunately, there actually exist some guarantees for enuring
the convergence of Algorithm 2. According to the theoretical
results in [41], two conditions aresufficient (but may not
necessary) for Algorithm 2 to converge: the first condition is
that the feature matricesXi (i = 1, · · · , K) are of full column
rank; the second one is that the optimality gap produced in
each iteration step is monotonically decreasing, namely the
error

ǫl = ‖(Z l
1, · · · , Zl

K , J l
1, · · · , J l

K) − arg min
Z′

i
s,J′

i
s
L‖2

F

is monotonically decreasing, whereZ l
i (resp. J l

i ) denotes
the solution produced at thel-th iteration, argminZ′

i
s,J′

i
s L

indicates the “ideal” solution obtained by minimizing the La-
grange functionL with respect to allZ1, · · · , ZK , J1, · · · , JK

simultaneously. The first condition is easy to obey, since
Problem (4) can be converted into an equivalent problem
where the full column rank condition is always satisfied (we
will show this in the next subsection). For the monotonically
decreasing condition, although it is difficult tostrictly prove
it, the convexity of the Lagrange function could guarantee
its validity to some extend. So, it could be well expected
that Algorithm 2 has good convergence properties. Moreover,
inexact ALM is known togenerallyperform well in reality,
as illustrated in [40].

2) Computational Complexity:Let the size ofXi be di ×
N . Without loss of generality, supposed1 = d2 = · · · =
dK = d, then the computation complexity of Algorithm 2 is
O(N3), which is inefficient when the number of image patches
is large (i.e., the image is large). However, the complexity
can be further reduced toO(d3 + d2N) (assumed ≤ N )
by utilizing the theories established by Liu et al. [42]. From
Theorem 4.3 of [42], the optimal solutionZ∗

i (with respect to
the variableZi) always lies within the subspace spanned by
the rows ofXi. So, Problem (4) can be equivalently converted
into a simpler problem by replacingZi with QiSi:

min
S1,··· ,SK

E1,··· ,EK

K
∑

i=1

‖Si‖∗ + λ‖E‖2,1 (7)

s.t. Xi = AiSi + Ei, i = 1, · · · , K,

whereAi = XiQi andQi is computed by orthogonalizing the
columns ofXT

i . The above problem can be solved in a similar
way as that for problem (4). As the number of the columns of
Ai is at mostd (assumed ≤ N ), the computational complexity
is O(d3 + d2N), which is quite efficient because the feature
dimensiond is generally small compared withn. For example,
d ≤ 13 in our experiments. Thus computational complexity is
reduced toO(N), whereN is the number of patches.

D. Generalized to Handle Top-down Priors

Saliency detection may also benefit from the labeled data,
from which some kinds of object-specific or global-specific
information can be inferred for identifying salient targets
[32], [43], [44]. Up to present, MTSP has only considered the
low-level visual features, i.e., bottom-up saliency detection
without learning from labeled images. Fortunately, it is
actually natural for MTSP to handle the top-down priors
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represented by a label vector. In this subsection, we further
describe the generalized MTSP (G-MTSP) to incorporate the
top-down priors obtained from supervised environment. To be
more precisely, G-MTSP is to address the saliency detection
problem formulated as follows:

Formulation 3: Besides the feature matricesX1, · · · , XK ,
suppose there is also a label vectorΩ = (π1, · · · , πN ) that
roughly assigns each patchPi a probability πi ∈ [0, 1] of
being salient. Then the task is to find an assignment function
S(Pi) ∈ [0, 1] by making use of both the visual features
encoded byX1, · · · , XK and the top-down priors encoded in
the label vectorΩ.

The label vectorΩ can be computed from existing top-down
saliency detection or object detection algorithms. To handle
the priors encoded by such a label vector, we only need to
generalize theℓ2,1-norm defined onE, namely aweighted
ℓ2,1-norm as follows:

‖E‖Φ
2,1 =

N
∑

i=1

φi‖E(:, i)‖2, (8)

whereΦ = (φ1, φ2, · · · , φN ) generally denotes a vector that
assigns a weightφi for the i-th column ofE, i = 1, · · · , K.
When φi ≡ 1, i = 1, · · · , K, the above weightedℓ2,1-
norm identifies the traditionalℓ2,1-norm. While minimizing the
weightedℓ2,1-norm, a larger weight means stronger penalty
on the corresponding column, leading to smaller response
on that column. So, the saliency detection task described in
Formulation 3 may be handled by modifying our formulation
(4):

min
Z1,··· ,ZK

E1,··· ,EK

K
∑

i=1

‖Zi‖∗ + λ‖E‖1−Ω
2,1 (9)

s.t. Xi = XiZi + Ei, i = 1, · · · , K,

where Ω is a given label vector. WhenΩ = 0, the above
formulation falls back to (4) and so (9) is a generalization of
(4). Actually, the LRR formulation (2) is also a special case
of (9) with K = 1 andΩ = 0.

Sinceπi ∈ [0, 1], ∀i, problem (9) is always convex. To solve
problem (9), we only need to replace Step 3 of Algorithm 2
with

E = argmin
E

λ

µ
‖E‖1−Ω

2,1 +
1

2
‖E − G‖2

F . (10)

The solution to the above problem can be found by following
the same way as Lemma 3.2 of [36]. First, notice that the
above problem can be solved column-by-column:

E(:, i) = arg min
e

λ(1 − πi)

µ
‖e‖2 +

1

2
‖e − G(:, i)‖2

2,

whereE(:, i) is the i-th column ofE, i = 1, · · · , N . Then, it
is simple to see that the solution is given by

E(:, i) =

{

‖G(:,i)‖2−λ(1−πi)
‖G(:,i)‖2

G(:, i), if λ <
‖G(:,i)‖2

1−πi

,

0, otherwise.

0.0001λ = 0.01λ = 0.1λ =0.001λ =

Fig. 4. Saliency maps obtained under different parameter settingson
the Bruce dataset.
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Fig. 5. The ROC area change curve as a function of parameterλ.
There results are from the Bruce dataset.

Hence, problem (9) is solved by replacing Step 3 of Algorithm
2 with (10). The same as the analysis in Section III-C,
the complexity of the optimization procedure is alsoO(N)
(assuming the feature dimension is small).

IV. EXPERIMENTS AND RESULTS

A. Experimental Settings

1) Datasets: We tested the proposed algorithm on four
public image datasets: MIT [17], Bruce [11], FiFa [34] and
MSRA [32]. The MIT, Bruce and FiFa datasets consist of
eye tracking data from several different users across images.
All fixation patterns for a given image are added together for
providing a spatial distribution of human fixation. The fourth
dataset used in our experiments is the subset [9] of MSRA
salient object dataset [32]. This dataset contains accurate
object-contour based ground truth for quantitative evaluation.

2) Baselines: To show the advantages of the proposed
MTSP model, we implemented eight state-of-the-art unsu-
pervised models1 for comparison, which are Itti model (IT)
[2], graph based visual saliency (GBVS) [15], context aware
based saliency detection (CSD) [14], self-information (SI)
[11], sparse coding based method (SCSP) [30], saliency using
natural statistics (SUN) [46] and other two methods using
frequency domain features: spectral residual (SR) [28] and

1Source codes of these baseline algorithms are available at http://ilab.usc.
edu/toolkit, http://www.klab.caltech.edu/∼harel/share/gbvs.php, http://bcmi.
sjtu.edu.cn/∼houxiaodi, http://www−sop.inria.fr/members/Neil.Bruce/, http://
cseweb.ucsd.edu/∼16zhang, http://webee.technion.ac.il/labs/cgm/Computer-
Graphics-Multimedia/Software/, and http://ivrg.epfl.ch/supplementarymaterial
/RK CVPR09/.
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Fig. 6. To show the advantages of MTSP, we apply the proposed single task saliency detection by solving (2) for color, Local Energy [45], and Local
Contrast [2] feature individually (denoted as “C-Map”, “F-Map” and “LC-Map”). Also, we use a naive approach (denoted as“Naive”) to combine multiple
features by simply averaging the saliency maps obtained individually.

TABLE I
PERFORMANCE OFMTSPON CONTAMINATED IMAGES (MSRA DATASET)

WITH 5 × 5 PATCH NOISE(σ RANGES FROM0.05TO 0.45).

σ 0.05 0.15 0.25 0.35 0.45
AUC MTSP 0.8922 0.8824 0.8565 0.8262 0.7898

C-MAP 0.8104 0.7892 0.7384 0.7155 0.6913
F-MAP 0.7921 0.7759 0.6965 0.6046 0.5748

LC-MAP 0.8092 0.7821 0.7719 0.7332 0.7037
Naive 0.8318 0.8130 0.7850 0.7501 0.7175

CC MTSP 0.6232 0.6068 0.5536 0.5151 0.4831
C-MAP 0.6055 0.5419 0.4811 0.3945 0.3656
F-MAP 0.5114 0.4175 0.2616 0.1528 0.1347

LC-MAP 0.5763 0.5449 0.4552 0.4442 0.3801
Naive 0.6092 0.5564 0.4861 0.4645 0.3884

frequency-tuned method (FT) [9]. All baseline algorithms use
default parameter settings given by the authors. Each imageis
resized to 256*256 pixels and regularly partitioned into 8*8
patches. Then features are extracted from each patch. Sinceour
method does not utilize segmentation, the image segmentation
based methods are not chosen for comparison.

To evaluate the effectiveness of our model in combing
bottom-up features and top-down priors (Section III-D), three
algorithms that also integrate bottom-up and top-down priors
are used for comparison.

- SMVJ: Face detection is considered as a semantic cue and
added into the bottom-up model [34]. (The code source
is available at the page http://www.klab.caltech.edu/
∼moran/fifadb/)

- OptW: Optimal combination weights for each feature map
generated individually are learned from training images
in a supervised manner [22].

- SVM: Several low, middle and high level image features
are used to train a support vector machine (SVM) clas-
sifier that could predict salient regions [17]. The ratio of
negative to positive samples is 1 for all the datasets.

3) Evaluation Metrics: All the algorithms are evaluated
based on the following widely-used criteria. The receiver
operator characteristic (ROC) is used to evaluate the similarity
between the predicted and the ground-truth saliency maps.
The ROC curve is obtained by trying all possible threshold
values, and for each value, plotting the true positives rate
(TPR) on the Y-axis against the false positive rate (FPR)
value on the X-axis. For the convenience of evaluation, the
area under ROC curve, denoted as AUC, is used to evaluate

I m a g e F   M a p C   M a p L C   M a p M T S P

Fig. 7. Some examples for showing the advantages of integrating multiple
features by MTSP. From left to right: the input image; the saliency map
obtained from the feature of local energy; the saliency map obtained from the
feature of color; the saliency map obtained from local contrast; the saliency
map produced by MTSP that integrates together all types of features, including
the local energy, color and local contrast.

the performance of various algorithms. We also compute the
correlation coefficients (CC) [47] between he ground truth map
and the predicted saliency map for evaluation. LetMg(x) and
Mp(x) (x generally denotes a position of a map) respectively
be the ground-truth map and the predicted saliency maps, CC
is defined as follows:

CC =

∑

x

(Mg(x) − µg)(Mp(x) − µp)

√
∑

x

(Mg(x) − µg)2
∑

x

(Mp(x) − µp)2
,

whereµg andµp are the mean values of the two mapsMg(x)
andMp(x), andx indexes the pixels in the two maps.

4) Feature Extraction: The main target of our MTSP
model is to integrate multiple visual features for joint saliency
detection. According to the survey in [17], which summarizes
and evaluates various features for saliency detection, we
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Fig. 8. Examples of using MTSP to detect saliency in images contaminated
by noise.

choose three effective features2: color, local energy[45] and
local contrast[2].

Color: We construct6D color features by concatenating
the values of Red, Green and Blue channels and
their histograms: for thei-th pixel with RGB values
(Ri, Gi, Bi), its corresponding feature vector is
computed as {Ri, Gi, Bi,H(Ri),H(Gi),H(Bi)}, where
H(Ri) = − log(Pr(Ri)) (resp. H(Gi) and H(Bi)) with
Pr(·) being the estimated probability of a pixel value. In our
experiments, the estimation of the probabilities is done by
using 100 bins, and the feature vector of a patch is obtained
by averaging over all the pixels in the patch.

Local energy: The steerable filter decomposition [45]
provides a finer frequency decomposition that more closely
corresponds to human visual processing. The basis functions
of the steerable pyramid are directional derivative operators,
that come in different scales and orientations. In the
experiments, we use3-scale steerable filter decomposition
with 4 orientations. At each scale and orientation, the image is
convolved by using the corresponding filter and decomposed
into two parts, namely a low-pass part and high-pass part.
The low-pass part is further processed by using the next filter
at another scale and orientation. In this way, 12D features are
produced by3 × 4 high-pass parts and one feature is given
by the final low-pass part, resulting in 13D feature vectors.

Local contrast: The local contrast is represented as the
three channels corresponding to these conspicuity maps.

2Source codes of these features are available at http://people.csail.mit.edu
//tjudd//WherePeopleLook//index.html.

Similar to [2], we calculate the three conspicuity maps for the
color, intensity, and orientation contrasts. Each conspicuity
map is obtained by center-surround difference [2] between a
”center” fine scale and a ”surround” coarser scale.

5) On Choosing the Parameterλ: The trade-off parameter
λ in (4) has notable influence on the detection performance.
Generally, the choice of this parameter depends on priors
about the area of salient target. The smaller theλ is, the
more patches may be identified as salient target, as shown in
Figure 4. Nevertheless, the proposed method (MTSP) could
work well under a range of parameter settings, as shown in
Figure 5. Whileλ is ranging from 0.005 to 0.05, the ROC
area is varying from 0.8075 to 0.8144, which demonstrates the
model is insensitive to the parameterλ . For all experiments,
we setλ = 0.01.

B. Results and Analysis

In this subsection, we systematically evaluate the proposed
model on the saliency detection task. The evaluation consists
of three aspects: 1) Investigating the performance improvement
brought by integrating multiple features for detecting saliency
collaboratively. 2) Comparing MTSP to the state-of-the-art
bottom-up saliency algorithms. 3) Examining the effects of
incorporating the top-down priors.

1) Advantages of Joint Inference:We first evaluate the
proposed MTSP model performance (Section III-B2) for in-
tegrating multiple types of features to collaboratively pro-
duce saliency map. In order to perform saliency detection
by utilizing multiple features, we consider a naive approach
(denoted as “Naive”) that computes an average map of the
individual maps learnt from each feature by using the single-
feature model presented in Section III-B1. For comparison,we
also consider the performance of individual features basedon
the single-feature model in Section III-B1, resulting in three
baselines: C-Map (color), F-Map (local energy) and LC-Map
(local contrast).

Figure 6 shows the comparison results of the ROC curves
on three datasets. It can be seen that the proposed model
leads to better performance than the individually inferredor
naively combined methods. Figure 7 presents some examples
of the produced saliency maps, where the brighter areas
correspond to the more salient regions of the image. It can
be seen that the proposed MTSP performs reliably, while the
approaches based on a single feature may fail sometimes. Most
of our performance is gained from the consistent sparse matrix
generally learned for multiple feature spaces. In summary,
these results well verify the advantages of our formulation
(4) for integrating the information of multiple visual features.

We also apply MTSP on the images contaminated by noise.
For each image, its pixel values are corrupted by additive
Gaussian noise with zero mean and standard deviationσ,
whereσ ranges from 0.05 to 0.35. Table I shows that MTSP
perform much better than the single-feature model for handling
noise. Figure 8 further provides some results by applying
MTSP for detecting salient targets on the images contaminated
by Gaussian noise. These results illustrate that the mechanism
of joint inference (multi-task) is more robust to noise thanthe
approach based on individual inference (single-task).
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(b) Bruce Dataset
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Fig. 9. The ROC curves of the proposed MTSP model and other eight state-of-the-art methods on MIT (a), Bruce (b) and MSRA (c) datasets.

TABLE II
THE AUC AND CC (CORRELATION COEFFICIENT) COMPARISON ON THEMIT, B RUCE AND MSRA DATASETS.

Criteria Datasets IT GBVS CSD SR SI SCSP SUN FT MTSP

AUC MIT 0.7050 0.7234 0.8123 0.7936 0.7418 0.7513 0.7156 0.5265 0.8462
Bruce 0.7291 0.7592 0.8594 0.82270.8767 0.8138 0.7745 0.5208 0.8708
MSRA 0.7137 0.8765 0.8848 0.7377 0.8566 0.8314 0.7919 0.8653 0.9247

CC MIT 0.2177 0.2497 0.3196 0.2793 0.2418 0.2813 0.2551 0.1435 0.3467
Bruce 0.2873 0.3205 0.4489 0.3753 0.4337 0.3866 0.3264 0.1966 0.4422
MSRA 0.3284 0.5742 0.5615 0.3232 0.4975 0.4972 0.4543 0.5685 0.7044

TABLE III
TO COMPENSATE THE CENTER BIAS EFFECT FOR HUMAN FIXATION DATA, THE MAUC COMPARISON IS ALSO PERFORMED ON THEMIT AND BRUCE

DATASETS.

Dataset IT GBVS CSD SR SI SCSP SUN FT MTSP

MIT 0.6161 0.6455 0.6518 0.6506 0.6258 0.6226 0.6349 0.52790.6603
Bruce 0.6307 0.6613 0.6725 0.6554 0.6696 0.6574 0.6547 0.5240 0.6721

C S DS I
G TM T S PS C S P

(a) Bruce Dataset

G B V SC S DM T S PG TF T
(b) MSRA Dataset

Fig. 10. (a) Some examples from the Bruce dataset. The rows from top tobottom are: original images, saliency maps produced by CSD,SI,
SCSP, and MTSP, respectively. The last row is the human fixation map as ground truth. Note here that we only consider CSD, SIand SCSP,
since the other competing algorithms are outperformed by our MTSP distinctly (see Figure 9).(b) Saliency results comparison on images
from MSRA dataset. The rows for top to bottom are: original images, saliency maps produced by GBVS, CSD, FT, and MTSP, respectively.
The last row is the ground truth. Note here that we do not consider the methods (e.g, IT) which have been outperformed by ourMTSP
greatly (see Figure 9).
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Fig. 11. The ROC curves of the proposed G-MTSP and state-of-the-art methods on the four datasets.

2) Comparison to state-of-the-art methods:To further eval-
uate the competitiveness of the proposed model, we compare
its results with the ones from existing eight state-of-the-art
methods (Section IV-A2) on bottom-up saliency detection.
Figure 9 and Table II show the comparison results. On the
MIT, Bruce and MSRA datasets, especially the MSRA dataset,
the proposed MTSP outperforms the other competing methods.
Figure 10 shows some examples. It can be seen that MTSP
exhibits stronger consistence with human eye fixations. These
results illustrate that our MTSP is a competitive tool for
saliency detection. The effectiveness of MTSP is mainly due
to its ability of capturing information from multiple features in
a unified inference procedure. This is achieved by seeking the
consistent sparse components in order to encourage different
features to produce consistent saliency maps. In this way,
the cross-feature information is naturally modeled such that
the multiple features will take effects collaboratively. And we
emphasize that the proposed MTSP does not need to segment
objects and no learning process from labeled images is taken
into account.

As discussed in [46], [48], generally, for eye tracking
dataset, there is a bias toward making early fixations near the
center of an image, known as center bias [48]. To avoid this
issue, we further adopt the evaluation framework described
by [49], which involves modified ROC metrics for computing
the area under the ROC curve, denoted as mAUC. Instead of
using the non-fixed regions as negative samples, in mAUC
the false positive fixations are fixations of a different image.
For a given image, we choose all the other images in the
dataset and calculate their averaged fixations as final false
positive fixations for the given image. The mAUC results on
the MIT and Bruce datasets are reported in TableIII, which
shows that the performance of MTSP is competitive. Noting
here that the mAUC measure generally underestimates the
model performance if the ground truth saliency has central bias
by itself, as pointed out by [48], [50]. Nevertheless, it is still
a useful measure as a lower bound assessment of prediction
ability of saliency detection model.

One may have noticed that MTSP does not outperform the
most effective methods (SI and CSD) on the Bruce dataset. To
explore the underlying reason of this phenomena, like [17],we
analyze the consistency of human fixations over an image by
measuring theentropy of the smoothed fixation map across
viewers. Images with low entropy tend to contain one central

TABLE IV
THE AUC AND CC (CORRELATION COEFFICIENT) COMPARISON ON THE

FOUR DATASETS.

Criteria Dataset SMVJ SVM OptW MTSP G-MTSP

AUC FiFa 0.7953 0.8407 0.7517 0.6884 0.8512
MIT – 0.8494 0.7443 0.8462 0.9063
Bruce – 0.8752 0.7819 0.8708 0.8989
MSRA – 0.8582 0.8277 0.9247 0.9165

CC FiFa 0.2623 0.3089 0.2556 0.1431 0.4164
MIT – 0.3316 0.2344 0.3467 0.4535
Bruce – 0.4525 0.2890 0.4422 0.4626
MSRA – 0.4578 0.4651 0.7044 0.6799

L o w H i g hO r i g i n a lI m a g eG T M a p E n t r o p yC orrel ati onC oeffi ci ent

Fig. 12. Analysis of performance with respect to the entropy of
human fixation map. We plot the performance of MTSP (in terms of
CC) as a function of the entropy. It can be seen that MTSP achieves
better performance on the images with lower entropy. These results
are collected from the Bruce and MIT datasets.

object while images with high entropy are often rich in several
different textures. We note that the images in Bruce dataset
have relatively higher entropy: the MIT dataset has an average
entropy of 0.10 and a standard deviation of 0.04, while the
average entropy of the Bruce dataset is 0.15 (the standard
deviation is 0.07). Also, as shown in Figure 12, MTSP tends
to perform better on the images with lower entropy. This is
the reason why the MTSP performs less improvements on the
Bruce dataset than the other two datasets.
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Fig. 13. Examples of the saliency maps produced by G-MTSP andfour
competing methods. Note here that MTSP is a pure bottom-up method, while
all the others use top-down information.

3) Results of Incorporating Top-down Priors:As discussed
in section III-D, MTSP can be generalized to incorporate the
top-down priors represented by a label vector. To evaluate the
effectiveness of G-MTSP, we use the FiFa, MIT, Bruce and
MSRA datasets for experiments. Since most images of the
FiFa dataset contain faces, similar to the [34], we use face
detector to get face mask for each image as top-down priors.
For the other three datasets, we learn an initial saliency map
(i.e., a label vector) from the labeled images by using the
method based on SVM [17].

Figure 11 and Table IV show the evaluation results in term
of ROC and CC. Figure 13 exemplifies the performance of
various algorithms. It can be seen that G-MTSP consistently
outperforms the compared methods. In particular, G-MTSP
can achieve much better than MTSP (which is a pure bottom-
up model) on three datasets (FiFa, MIT and Bruce datasets).
This result well verifies the effectiveness of incorporating top-
down priors. As shown in Figure 11, G-MTSP significantly
outperforms SVM on the FiFa, MIT and Bruce datasets. Since
the top-down priors used by G-MTSP are exactly produced by
SVM, this result illustrates that the integration of both bottom-
up and top-down information is better than using top-down
priors only.

One may have noticed that G-MTSP does not gain any
improvement over MTSP on the MSRA dataset. The reason
lies on the following two facts. On one hand, as can be seen
from Table II and Table IV, SVM is outperformed by several
unsupervised algorithms on this dataset. On the other hand,
our unsupervised MTSP method has already achieved good
performance, and so there may be little room left for better
performance.

V. CONCLUSION

This paper introduced Multi-Task Sparsity Pursuit (MTSP),
which is a generic model for saliency detection. First, we
proposed that the recently established LRR [36] approach can
fit well the single-feature based saliency detection. Second,
we established a generalized formulation (4), so called MTSP,
for integrating multiple visual features. Finally, we further
generalize MTSP to incorporate the top-down priors encoded
by a label vector, resulting in a general method that can handle
the saliency detection problem under various settings: single-
feature case, multi-feature case and the combination of top-
down and bottom-up information. Experimental results well
verified the effectiveness of the proposed method.

A key aspect of MTSP is its ability of integrating multiple
visual features. In contrast with existing multi-feature based
methods, MTSP integrates the information of multiple features
into a unified inference procedure, which can be efficiently
performed by solving a convex optimization problem. The
proposed method seamlessly integrates multiple features to
jointly produce the saliency map within a single inference
step, and thus produces more accurate and reliable results.The
proposed method may have general appealing for multi-task
learning.
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