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Abstract—The capability of a network is ultimately bounded
by limitations of the devices that compose it. In this paper
we argue that Software-Defined Networking (SDN) can increase
the importance of certain limitations, such as the size and the
flexibility of switches forwarding tables. In particular we focus
on the implications of reactive installation of flow entries in the
switch fabric: by analyzing traffic traces captured in different
scenarios we show the existence of a trade-off between the size
of the flow table and the rate of dynamic installation of a missing
or expired rule. We leverage on this finding to further show that
reactive flow (re-)configuration is a promising mechanism for
improving the traffic engineering flexibility with no additional
requirement in terms of flow table size. We examine links located
in various parts of the network and we consider different flow
definitions to evaluate the feasibility of using SDN controllers in
both access and core network scenarios.

Keywords-Network communications, Software-Defined-

Networking, network measurements.

I. INTRODUCTION

In software-defined networking (SDN), the network is in-
troduced with a software control plane, usually implemented
as a centralized controller and separated from the actual
switching hardware. The control plane monitors the state of
the network over time by interacting with the switches to
determine their load and availability: by reacting on such mea-
surements, the controller dynamically instruments the switches
to optimize the packet forwarding process, balance the network
load and reduce the overall end-to-end delay.

The ability to dynamically reconfigure the network behavior
allows for faster response to emerging applications or require-
ments that the network has to support, and ultimately for fine-
grained traffic engineering, e.g., by considering more packet
fields in the routing decision other than the destination IP
address alone.

A SDN control plane, e.g., as implemented in the OpenFlow
architecture [1], is based on the concept of flow, where a
flow is described by a combination of packet header fields.
A SDN control application selects the network path followed
by a flow by installing flow table entries (FTEs), i.e., couples
of flow match rule and forward action, into the flow table
(FT) of every network device. OpenFlow further assigns two
timeouts to each entry. The idle timeout specifies the time after
which the entry is removed if no new packets of the flow have
come. The hard timeout indicates the absolute life-time of an
entry, after which the entry is anyway removed. This flexibility,
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however, impacts on the granularity at which a given network
device has to handle incoming flows and on the frequency new
FTEs must be installed or updated. Both factors in turn affect
the number of entries that must be accommodated within a
device’s flow table.

Despite their flexibility, current SDN controller applications
primarily rely on a proactive control logic [2], [3], which may
require the switches to accommodate a number of flow table
entries that exceed the capabilities of their Ternary Content-
Addressable Memories (TCAMs): providing SDN switches
with bigger TCAMs is possible, at the expense of raising
operational and power consumption costs. The use of a re-
active control logic, where resources are allocated and freed
depending on the network load and on the effective behavior of
the flows, their granularity and their inter-packet arrival time,
has been so far overlooked.

The goal of this paper is to show how (i) the flow definition,
and (ii) the FTE timeout affect the flow table of the switch:
while the former impacts the granularity of the switch for-
warding policies, the latter ultimately impacts the delay that
the switch introduces to the flows.

We investigate those factors by analysing actual traces
collected on links located both in access and core points of
the network, which reproduce real scenarios where SDN is
deployed. By varying the flow definition and the timeout of
the FTEs, we show that current access networks may require
small flow tables in the switch fabric (in the order of few
thousands, which is an order of magnitude lower than what
a proactive control logic requires), with a table update rate
in line with the limit of today’s technology (about 250 up-
dates/s). Although we show that current generation switches
can potentially implement a reactive flow installation logic to
improve the routing decision in access-network scenarios, i.e.,
by considering several packet-header fields to assign the output
interface, current flow update technology seems not yet ready
to handle the traffic of a 10Gb/s core link by using a reactive
logic. We point out the requirements that would satisfy this
improved flexibility.

The rest of the paper is organised as follows. In Section II
we discuss related work. In Section III we describe the
methodology we used to evaluate the requirements needed
on a given switch in terms of flow table size and flow
installation rate, to handle the traffic that traverses the switch.
In Section IV we report our dataset, which we used to
represent actual SDN scenarios. In Section V we discuss the



experimental results when applying our methodology to the
dataset. Finally, Section VI concludes the paper.

II. RELATED WORK

Limitations on FT size as well as FTE installation rate
in SDN networks have been reported before in the research
community in several fields, e.g., in network virtualization [2],
network programming [4] and participatory networking [5].

Works such as [3], [6], [7] address the problem by solely
considering the FT size, and suggesting ad-hoc solutions for
a limited set of applications, mainly based on aggregation of
flows. For instance, Mogul et al. [8] propose to keep legacy
network control protocols in operation at the switches while
exposing a full view of the forwarding configuration as well
as the current traffic to the controller. Therefore, the controller
can focus on controlling only certain “important” flows.

FT sizes obviously depend on the switch model. HP
switches are reported to hold 1500 flow entries (5406z1 [8]
and J9451A [9]), NEC reports 64k+ flows [10].

Huang er al. [9] recognize the need to account for the
specific resource constrains at the level of the single switch,
and propose an approach to model such constraints into emu-
lation systems specifically for SDN. They find that hardware
switches support around 40 flow updates per second, while
software switches (OVS) supports around 400/sec on their
Xeon X3210.

Apart from providing solutions to specific applications, none
of the above works actually quantifies the requirements for FT
size and update rate of flow entries on actual traces, for a given
flow definition. Our work explores these requirements and the
trade-off between them, shedding some light on the viability
of proactive and reactive control logic on a SDN network. A
preliminary work supporting our thesis can be found in [11].

III. METHODOLOGY

We performed this study with the following model in
mind: a SDN controller interacts with a given switch by
instrumenting it with new FT entries, in response to network
events. This means that the switch is not aware of any devices
other than the controller within the network, and we ignore any
other type of interaction which may take place between the
control plane and the switch. To the switch’s point of view, the
SDN control application solely provides the FTEs to populate
and update its flow table.

Starting from this model of interaction between the con-
troller and the switch, we develop a simulator' that analyzes
the traffic traversing the switch and keeps track of each flow.
The traffic is provided either in form of an off-line trace or
live packets, while the definition of the flow, including also
the entry’s timeout value, is configurable and is based on
the header fields of, e.g., the IP addresses and the transport
protocol. As output, the simulator returns the number of flows
being created (i.e., an entry is added to the table), being active
(i.e., the table has an entry related to the flow and its timeout
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has not expired), or being missed (i.e., the entry of a previously
expired flow is added again in the table) over time. In the
remainder of this paper we will use the term flow table size
to indicate the number of flows active in a given point in time
in a switch’s FT.

Note that the statistical characterization of the traffic travers-
ing the switch — e.g., first and second moments of the
distribution of packets’ inter-arrival time — would not enable
us in getting any insight about, e.g., the amount of flow table
space occupied in the switch at a given point in time. In fact,
by considering only such statistics for every flow we would
miss on one side the information related to the flows as defined
by the control plane, and on the other side the information
about the aggregated resources usage of such flows over time
— due for instance to the relation between inactivity of the
flow and its timeout expiration as configured in the switch’s
TCAM.

IV. SDN SCENARIOS AND DATASETS

In this section we present SDN scenarios that motivate
our study and use actual traffic traces to reproduce them.
In particular, we use datasets collected in different parts of
the Internet and different flow definitions to investigate the
interactions between the SDN controller and the switch and
indeed the requirements in terms of flow table size and flow
entry churn on the single switch.

A. Firewalling and QoS policy in access networks

We start by considering the scenario where SDN is used
to implement firewalling and quality-of-service policies to
flows traversing a switch located in an access network. To
that purpose, we assume a fine-grained flow definition, that
is, the flow entries in the forwarding table of the switch can
be as specific as a /32 IP source and destination addresses,
and a port number. We consider two traffic traces that were
collected on two geographically different access network links:
the first trace was collected at the DSLAM of an European
customer ISP, and it lasts one day long of 2007. Due to non-
disclosure agreement, we cannot release the trace; the second
trace, UniBS2009, was instead collected on the edge router
of the campus network of the University of Brescia, Italy on
three consecutive working days of 2009. The trace together
with its full details are available upon request [12].

B. Forwarding policy in core networks

We then consider the scenario where SDN is used to
implement forwarding policies to flows traversing a core-
network switch. To that purpose, we assume a coarse-grained
flow definition, e.g., the flow entries in the forwarding table
of the switch relate to a class of /24 and /16 IP source and
destination addresses.

In this case, we exploit traffic traces that were collected
on geographically different backbone links and across several
time windows in 2005 and 2013. In particular, we consider
the TCP and UDP traffic on the following traces: PAIX 2005-
01-21, collected on a OC48 trunk of an US Commercial Tierl



Access Network

Flow definition Flow table size
UniBS2009 [ DSLAM
/24 dst 27664 38964
/24 dst 4 /24 src 56669 164501
/32 dst 31213 61613
/32 dst 4 dst port 84597 237718
/32 dst 4 /32 src 64430 182356
/32 dst + /32 src
+ dst port 107025 336599

Core Network

Flow definition Flow table size
PAIX2005 [ CAIDA2013
/16 dst 29014 1979
/16 src 1720 5662
/16 src + /16 dst 127039 293384
/24 dst 74152 97152
124 src + /24 dst 1267187 1094808
/32 dst 739376 389636
/32 src + /32 dst 1933482 1578977
TABLE I

PROACTIVE CONTROL LOGIC IN SDN NETWORKS: NUMBER OF
FLOW-TABLE ENTRIES IN AN ACCESS-NETWORK (TOP) AND
CORE-NETWORK (BOTTOM) SWITCH FOR DIFFERENT FLOW DEFINITIONS.

backbone link connecting San Jose and Seattle, and CAIDA
2013-08-15, collected on a OC192 link of a Tierl ISP between
Chicago and Seattle. The traces with their details are made
publicly available by CAIDA [13].

V. EXPERIMENTAL ANALYSIS

In this section we investigate the feasibility of using SDN
controllers in core and access networks with different flow
definition: the goal is to provide an insight of the granularity at
which rules can be installed within a SDN network at different
locations.

We first consider the case in which the SDN controller
exploits a proactive control logic, and analyze the requirements
of the switch in terms of flow table size. We then consider
SDN controllers which implement a reactive control logic, and
evaluate the requirements in terms of flow table size and flow
updates when varying the timeout value of the entries in the
table of the switch.

A. Proactive Control Logic in SDN: access and core networks

Table I reports the number of flow-table entries required by
a switch located on an access-network link and on a core-
network link, with different flow definitions and considering
ten minutes of traffic.

Numerical results on an access network (DSLAM) reveal
that a proactive control logic would require at least 39K
entries for forwarding rules that are based on /24 classes of IP
addresses (Table I[top], row no.1), up to around 240K in case
we are to implement fine-grained rules that take into account
the destination IP address and the transport port, such as when
implementing firewalling policies (Table I[top], row no.4).
Whereas some switches would be able to fulfill the forwarding
based on /24 subnets [9], having finer-grained entries would
be too costly in a proactive control logic (over 300K entries

according to the DSLAM trace and over 100K entries in the
UniBS trace, in case we consider both IP addresses and the
destination transport port, (the last row in Table I[top]).

On the CAIDA2013 core network link, instead, the number
of entries is below 6K in case the forwarding is performed
based on /16 subnets (first two rows of Table I[bottom]).
In case the forwarding is based on /24 subnets, the number
of entries increases by a factor >15 (Table I[bottom], row
no.4). Even assuming that future SDN switches, designed for
core networks, will be able to support the same number of
entries available in today’s BGP routers (e.g., the flow table
size may exceed 450K entries [14]), SDN controllers cannot
manage a flow definition of /24 source and /24 destination
IP addresses (Table I[bottom], row no.5): even with a ten-
minute traffic trace, it doubles the capacity of today’s routers.
Similar considerations hold also on the other core network
trace, PAIX2005. On the other side, this analysis reveals that
today’s routers can handle a flow definition which includes
/16 source and /16 destination IP address (Table I[bottom],
row no.3).

B. Reactive Control Logic in SDN: access and core networks

In a reactive control logic, the entries in the flow table of the
switch are installed only when a packet for the corresponding
flow is first seen; on the other side, the entry is removed if
a time interval has elapsed since last reception of a packet
belonging to that flow. The value of this timeout is crucial as
it allows to trade the number of entries to be kept in the flow
table with the number of interactions between the switch and
the controller for re-installing expired rules, i.e., the flow-table
update.

To understand the nature of this trade off, in Figure 1 and
in Figure 2 we show the requirements in terms of flow table
size and flow table update as we increase the timeout values
from 1 to 1000 seconds, with a logarithmic step. Figure 1
refers to the DSLAM access network trace, while Figure 2
refers to the CAIDA2013 core network trace. We observe
similar trends for the other two traces, i.e., UNIBS2009 and
PAIX2005, respectively (not shown here). In the following we
show graphs related to the same core and access network links,
i.e., CAIDA2013 and DSLAM: unless otherwise reported,
same considerations hold for the other traces collected on the
same logical links, respectively.

For a given flow definition, the graphs show the average
value of the flow table size (flow table update), computed over
the entire traffic trace. As expected, the timeout value has a
positive correlation with the flow table size, and a negative
correlation with the number of updates, that is, the longer we
allow flows to be kept into the table, the more space we need,
and fewer interactions are needed with the controller. This is
particularly true with fine-grained flow definitions, e.g. with
rules that deal with /32 addresses, as the probability of hitting
a timeout expiration is higher due to the less flow aggregation.

We repeated the analysis by varying the timeout value
between 1 and 10 seconds, with a linear step. This zoom-
in allows us to investigate the presence of any threshold effect
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above which the flow table size tends to explode. In other
words, by doing this analysis we try to find out timeouts that
allow for values of flow table size and flow updates which
can be handled by a SDN scenario represented by a switch
interacting with a controller.

Figure 3 shows the results of this analysis for the DSLAM
trace, with flow definition based on /32 source and /32 desti-
nation IP addresses, and for the CAIDA2013 trace, with flow
definition based on /24 source and /24 destination IP addresses.
Apart for a normalization factor, in both cases the number
of flow table updates sensibly decreases when increasing the
timeout from 1 to 5 seconds, and it slows down from 5 to 10
seconds, following a hyperbolic trend. Instead, the size of the
flow table follows a linearly increasing trend.

The selection of a timeout value can be driven by the results
shown in this paper, jointly with the hardware constraints of
the switches. Here we show the effects on flow table size
and update requirements when varying the flow definition,
for a fixed timeout value set to 10 seconds. We report the

results in Figure 4 and Figure 5. The graphs report as bars the
maximum values while the dots displayed on the bars represent
the average values.

The first effect of introducing a reactive logic with this
timeout value is that the requirements in the flow table size
are lowered, regardless of the flow definition. In particular,
a flow definition based on the destination IP address would
lower its requirement on the FT size from 60 thousand entries
(see Table I) to less than 5 thousand (Figure 4a), for the
DSLAM trace, while still maintaining a reasonable average
flow update rate of 250 updates per second (the dotted line in
Figure 4b shows the average flow update rate). Please note that
the DSLAM usually observes asymmetric traffic, given that it
is the connection point between home users and the rest of the
Internet. Hence, we decided to show both the average values
when considering only the network traffic in the home user-to-
Internet direction (the bottom connected dots on the bars) and
when considering traffic in both directions (the top connected
dots on the bars).



In the CAIDA2013 case, the same flow definition would
lead to reduce the flow table size of 350K entries, going
down to 40K, with a number of flow updates around 2K,
that today’s technology struggle to support. Particularly for the
update rates, the maximum is much bigger than the average.
The analysis of the time series of the values reported by our
simulator explains these results: during the initialization of the
simulation, i.e., when the switch flow table is still empty, each
new flow requires to create an entry, leading to a spike in the
required number of flow table updates, which is related to the
maximum value observed.

VI. CONCLUSIONS

In this paper we studied the feasibility of dynamically
configuring forwarding policies through a SDN controller. By
analyzing traffic traces collected on different network links,
from the access to the core of the network, we investigated
the requirements in terms of flow table size and flow table
updates, for different flow definitions and varying the timeout
value. This study is also meant to provide insights on the
granularity at which the controller can install rules on today’s
switches. Our data reveals that current technology can already
cope with the traffic flowing on access network links with
granularity up to /32 IP destination addresses: for instance,
on the DSLAM trace, the number of table updates are around
200 on average, with a flow table size of around 4500 entries.
On core network links, we observe values of flow table size
supported by today’s switch with timeout of 10 seconds, even
though the required updates represent a limiting factor and
current SDN controllers cannot handle it. As future work, we
plan to extend our analysis and find out values of timeout able
to cope with today’s update capabilities: we expect that the
resulting flow table size will be anyway smaller than the size
required by a proactive control logic, even when considering
fine-grained flow definition. Finally, we plan to quantify the
effects of the flow table updates such as the delay introduced
by the interaction between the switch and the controller.
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