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Abstract—Data sets being managed in Grid environments today 
are growing at a rapid rate, expected to reach 100s of Petabytes 
in the near future. Managing such large data sets poses 
challenges for efficient data access, data publication and data 
discovery. In this paper we focus on the data publication and 
discovery process through the use of descriptive metadata. This 
metadata describe the properties of individual data items and 
collections. We discuss issues of metadata services in service rich 
environments, such as the Grid. We describe the requirements 
and the architecture for such services in the context of Grid and 
the available Grid services.  We present a data model that can 
capture the complexity of the data publication and discovery 
process. Based on that model we identify a set of interfaces and 
operations that need to be provided to support metadata 
management. We present a particular implementation of a Grid 
metadata service, basing it on existing Grid services technologies. 
Finally we examine alternative implementations of that service. 

I. INTRODUCTION 
Today, advances in science are made possible largely through 
the collaborative efforts of many researchers in a particular 
domain. We see collaborations of hundreds of scientists in 
areas such as gravitational-wave physics [1], high-energy 
physics [2], astronomy [3] and many others coming together 
and sharing a variety of resources within a collaboration in 
pursuit of common goals. These resources are distributed and 
can encompass people, scientific instruments, compute and 
network resources, applications, and data. Although the scale 
of the resources pooled within collaborations is increasing, 
there is a particular explosion in the size of the data that is 
made available. It is common to see datasets on the order of 
terabytes today with petabyte-scale sets coming online in the 
near future. Grid environments [4] enable efficient resource 
sharing in collaborative distributed environments, and in this 
paper we focus on the area of data management, with a 
particular emphasis on metadata management issues. We 
address the problem of discovery and manipulation of data 
objects.  
 
One of the challenges of these shared environments is to 
identify and locate the subset of the data objects that are of 
interest to any particular data analysis activity.  The standard 
solution to this problem is to describe the characteristics of 
each data object with one or more attributes, or “metadata” and 

 
 

to use this metadata as the means for identifying what data 
objects will be of use.  In this paper, we explore from a system 
perspective how to manage metadata in such a way as to make 
it accessible for discovery and access of data in a distributed, 
collaborative environment. 
 
The boundary between data and metadata is to some extent 
arbitrary and may vary during a data object’s life time.  For 
example, for some users a table of astronomic objects derived 
from images is primary data and for others it is metadata that 
indexes the primary or calibrated data.  Extensive use of human 
annotation is common in the large numbers of curated 
biomedical databases.  To some the annotation is metadata, but 
we require metadata to describe those annotations to gauge 
their quality.  A typical modern hospital will produce about 1 
petabyte of digital data per year – improved practices by 
instrument manufacturers have automated the association of 
metadata, such as instrument settings, with the primary data.  
For the maintainer of the instruments these may be primary 
data.  In any given context this ambivalence is resolved.  
Therefore, for the remainder of the paper we refer to the data 
currently being interpreted to enable the interpretation of other 
data as “metadata”. 
 
Metadata allows collaborations to publish data with enough 
information for scientists to be able to identify the desired data 
products. Metadata attributes can encompass a variety of 
information. Some metadata is application independent, such 
as the creation time, author, etc. described in Dublin Core [5], 
while other metadata is application dependent and may include 
attributes such as duration of an experiment, temperature, etc. 
Metadata may refer to raw, experimental data that has been 
collected by an instrument or to data that has been processed in 
some fashion, for example calibrated. Metadata adds value to 
scientific data.  Without metadata, the researcher is unable to 
evaluate the quality of the data. For example, it is impossible to 
conduct a correct analysis of a data set without knowing how 
the data was cleaned, calibrated, what parameters were used in 
the process, etc. Traditionally, metadata was recorded in 
laboratory notebook. More recently scientists have devised data 
formats to encode the metadata in the data files themselves (as 
in the case of the FITS-formatted files used to contain 
astronomy images). However, these mechanisms do not scale 
to large collaborative environment where there are many files. 
In this paper we focus on services that can provide sufficient 
functionality to efficiently publish and query metadata about 
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large-scale data sets. Collaborations have significant amount of 
data in multiple data bases or files. Grid technologies [4] are 
being increasingly used to provide data management 
infrastructure to access distributed resources within a 
collaboration. However, the issue of data discovery still 
remains. From the point of view of ease of use and scalability, 
the discovery need to be done based on annotations, or 
metadata.  This paper addresses the question of what services 
are needed in Grid environments to facilitate data discovery. 
We argue that although standardized database services can be 
used, specialized metadata services can greatly simplify 
metadata management. 
 
The contributions of this paper are: 

• A description of metadata services requirements.  
• An overview of an architecture for metadata services 

in service rich environments such as the Grid. 
• A description of the data model supported by the 

service and the interfaces it exposes. 
• An evaluation of the alternative implementations of 

the service, MCS (Metadata Catalog Service). 

II. REQUIREMENTS FOR METADATA MANAGEMENT ON THE 
GRID 

The astronomy community provides a good example of how 
metadata services are used in collaborative environments. 
Initially when the data, in the form of images, is collected by an 
instrument, such as a telescope, it is pre-processed and 
calibrated and stored in an archive. Metadata about the images 
describing the location in the sky, the calibration parameters, 
etc., is stored as well. Additional processing may occur to 
extract interesting features of particular regions of the sky or to 
produce images focusing on particular celestial objects. The 
information about the processing is captured in metadata 
attributes and stored as well. Once the metadata and data are 
prepared in this fashion, it is released to the group of scientists 
within the collaboration. Researchers can then pose queries on 
the metadata to discovery data of relevance to their work.  
Based on the results of the searches conducted on the metadata 
scientists may want to organize the metadata in a way that is 
most appropriate for their research. During this phase of the 
data publication process, the data may be further annotated by 
the collaborators. After a certain period of time, usually on the 
order of two years, the data and the metadata are released to the 
general public. At this time, users outside of the initial 
collaboration search the metadata based on attributes that are 
important to them. 
 
There are several requirements for managing metadata on the 
Grid. The requirements can be broadly grouped in four main 
categories: 

1. The need to store and share the metadata. 
2. The need to organize the metadata in a logical fashion 

for ease of publication and discovery. 
3. The need to customize the view of the data by 

individuals. 
4. The need to support metadata about large-scale data 

sets.  

We can refine each of these requirements further. Sharing 
metadata necessitates having well defined interfaces for storing 
and querying metadata attributes and for adding new attributes. 
In general, metadata is domain-specific, however, some 
metadata crosses many domains, such as creator and creation 
time. Metadata services thus need to be able to support generic 
as well as domain-dependent attributes. In the scenario above, 
the metadata evolved over time; thus metadata services need to 
be able to evolve as well, providing a flexible way to add and 
delete metadata attributes. Queries need to be able to support 
the discovery of the metadata attributes of the objects stored in 
the catalog as well as the discovery of attributes of a particular 
object and the discovery of objects with particular attributes. 
 
It is also useful to organize the metadata in some logical 
fashion, For example all the data relating a particular region of 
the sky may be placed within one group (collection). Attributes 
may also be associated with such groupings for ease of 
discovery.  The aggregation is useful because it allows for the 
grouping of objects that are related to each other in some 
fashion. This may facilitate data discovery, because the 
discovery can be first done at the collection level: find all 
collections that have the particular characteristics and then 
refine the search within these collections. If the search was 
performed on a flat object space, then it is possible for the 
queries to return objects that have no particular relation to each 
other. Performance of searches may also be improved, because 
in general, there will be fewer collections than individual data 
items, thus making queries for collections with particular 
attributes more efficient than queries across all data items. The 
grouping may be hierarchical, representing the aggregation of 
collections. In the case of data publication by the collaboration 
the collections are usually organized by the publishing body. 
They may also be the work of scientists using published and 
consortium data who are collecting together all of the objects 
relevant to an interest, e.g. galaxies with a recorded type 1A 
supernova, quarks with observable lensing, binaries where one 
star is a pulsar, suspected satellite tracks, etc.  These 
collections are typically dynamic, intersecting and associated 
with particular scientific interpretations. 
 
As part of this organization, the collaboration may impose 
access control on entire collections, on collection groups, or on 
individual items. A Metadata Service must thus implement 
authentication and apply policies to metadata access and 
publication. Authentication and authorization allow control 
over who is allowed to add, modify, query and delete mappings 
in the Metadata Service.  Auditing information that may be 
maintained by the Metadata Service includes information about 
creators and creation times of metadata mappings as well as a 
log of all the accesses to a particular metadata mapping, 
including the identity of the user and the action that was 
performed. Different types of users need to have different 
access to the metadata. 
 
Although collections allow the publishers to organize the 
metadata, they do not allow customization by individuals who 
are part of the collaboration. In general, scientists within a 
collaboration may have different research goals and may want 



Grid-Based Metadata Services 
 

to organize the data in a way that is most appropriate for them. 
This individual-based view of the metadata should not affect 
the structure or authorization policies imposed by the 
publisher. Rather, they should be layered on top of the existing 
collections.  
 
Data sets and their metadata are quite large today and ever 
growing in size. Often, metadata is stored independently of the 
data itself. Metadata services need to provide data handles that 
can be resolved by other services that perform the data access. 
Metadata services must provide the ability to store information 
about millions of data objects and provide good performance. 
They should provide short latencies on query and update 
operations and relatively high query and update rates. To 
support reliable access to metadata, the services may need to be 
replicated. 
 

III. ROLE OF GRID SERVICES  
Grid services are used in many application domains today to 
deliver computing power and data management capabilities 
needed by large-scale science. Grid services extend standard 
web services by providing support for associating state with 
services, managing the lifetime of service instances, and 
standard mechanisms for subscription and notification of state 
changes. Grid service interfaces are being standardized as part 
of an overall Open Grid Services Architecture (OGSA)[6] 
through the Global Grid Forum. Large scale testbeds such as 
the Teragrid [7] and iVDGL [8] are deploying Grid services 
that allow authentication [9], remote job scheduling [10], data 
access [11], data replication [12] and others. These are basic 
services available as part of the Globus Toolkit 3 (GT3) [13], 
the de-facto standard for Grid services.  

One particularly relevant Grid service is the OGSA Database 
Access and Integration (DAI) Service being developed by the 
Edinburgh Parallel Computing Center (EPCC). Service 
interfaces are being standardized through the DAIS Working 
Group of the Global Grid Forum [14]. The OGSA-DAI service 
provides a common Grid service access interface to a variety of 
data resources ranging from relational databases to XML 
databases and eventually to structured files.  The DAI service is 
intended to provide a basis for higher-level services to be 
constructed, for example, to provide federation across 
heterogeneous databases.  The OGSA-DAI service has three 
main components: a service registry for discovery of service 
instances, a data factory service for representing a data resource 
and a data service for accessing a data resource, such as a 
relational database.  The OGSA-DAI service uses an extensible 
activity framework.  These activities can be extended by other 
developers to provide additional functionality. 

There are several reasons for providing grid service-based 
metadata services: 

1. Integration with other Grid services: Resource access in 
Grids is authenticated using the Grid Security 
Infrastructure (GSI) [9] that is based on PKI.  To integrate 
databases with other services on the Grid, GSI 
authentication needs to be performed by the database 
service. OGSA-DAI supports this type of authentication 

and maps authenticated users to database roles. Integration 
with other services is also enabled by OGSA-DAI’s XML-
based communications.  

2. Service discovery: In a distributed environment, there may 
be several metadata services. Discovering the appropriate 
service in necessary. Grid services and OGSA-DAI 
support the use of service registries and the discovery of 
services based on attributes published by services (service 
elements).  

3. Federation of multiple databases: As mentioned above, 
there may several relevant metadata services. It is 
important to be able to query across them in search of 
desired data. Grid services and OGSA-DAI provide 
support for service data publication and notification of 
changes in the values of the service data, thus providing 
the basic mechanism for federating multiple OGSA-DAI-
based services. 

In this work we developed a Metadata Catalog Service (MCS) 
that builds on the existing Grid services.  Fig. 1 shows the 
software layering of the MCS. Below, we discuss the data 
management model supported by MCS. 

 
Fig. 1: Layering of Services to support Metadata Services. 

IV. DATA MANAGEMENT MODEL 
In the Requirements Section, we outlined a scenario for the use 
of metadata services for data publication and access.  It is clear 
that metadata attributes could be represented in some database 
technology, such as relational or XML, and that the discovery 
of data objects be mapped into queries.  We believe, however, 
that in many instances, it is desirable to have a more 
specialized metadata management service. We argue that in 
Grid environments, we need to have dedicated Metadata 
Services because of several concerns, such as usability and ease 
of schema discovery. Databases provide a very general and 
flexible infrastructure for data management. However, one has 
to be familiar with query languages such as SQL or XQuery to 
be able to efficiently interact with a DBMS. Many domain 
scientists in physics, astronomy, biology, etc. simply are not 
comfortable with query languages.  Users and applications also 
need to know the internal database structure to be able to pose 
appropriate queries. Our schema and API (described below) 
provide an easy way to discover attributes and interact with the 
system. 

Given the benefits of providing an extensible metadata model, 
we present a model that supports a variety of interactions, 
allowing users to describe attributes of data items and organize 
them in ways that are needed by a collaboration and by 
individual users. We also describe the  API that supports the 
data model and is used to manage objects within the Metadata 
Service. 
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The model also supports a flexible set of attributes. We define 
the basic object within a metadata service as a data item. This 
data item may for example represent an individual image. Fig. 
2 shows a UML diagram of the objects supported within MCS.  
The following sections give more details about the role of each 
of the entities. 

Collection View

Data Item

0..1

0..*

0..1 0..*

belongs to 
relationship

0..*

 
Fig. 2: A Data Model for Metadata Services. The depicted relationship refer to 

the “belongs to” relationship. 

A. Users 
In general we distinguish between three types of users: the 
collaboration, the members of the collaboration and the general 
public. The collaboration is in charge of publishing the data 
sets. Individuals or groups within a collaboration may provide 
additional attributes and annotation and may structure the 
metadata in a personalized way. Finally, members of the 
general public (or community at large) may query the metadata 
services. 

B. Structuring Data Items and Imposing Authorization 
Policies 

It is often convenient to be able to refer to a set of data items 
with a single name. This can play an important role in 
improving the scalability. For example, authorization can be 
attached to that single, without having to impose it on every 
individual item. Name sets can also be useful in the data 
publication process. They allow the data publisher (the 
collaboration) to impose a logical structure on the data items 
being published. For example, a collaboration may want to 
assign a single name to all the data collected during a particular 
run of an instrument.  For these reasons, our metadata model 
includes a concept of collections. Collections allow a name and 
attributes to be associated with an arbitrary set of data objects. 
 
Collections can aggregate a set of data items or other 
collections. The collaboration may also impose authorization 
on data items and data collections. In our model, the 
authorization on the data items and collections may be 
described through the authorization on the collection the data 
belongs to. This allows for defining authorization in a scalable 
way. To assure consistent authorization, a particular data item 
or data collection may belong to only one parent collection. If a 
data object could belong to multiple collections, then 
determining the authorization for the object would involve 
examining a set of possibly contradictory policies. 

 
In our model we view collections as being defined by the 
collaboration. However, individual members of the 
collaboration may want to organize and name the published 
metadata in a customized way. Individuals may also want to 
associated additional attributes with the named entities. The 
organization designed by individuals should not affect the 
organization and authorization imposed by the collaboration as 
a whole. To support this functionality, we introduce the notion 
of a view.  A view allows data items and collections to be 
organized by members of the collaboration into groups that are 
relevant to them. Views do not have any effect on the way that 
the metadata is published to the community or how access to 
the data is authorized. Views may be described by attributes, be 
annotated and made part of other views. Because there is no 
authorization imposed by a view, data items and collections 
may belong to several views. In general, members of the 
general public would only be able to query metadata services 
and would not be able to create views. Both collections and 
views are acyclic.  

C. Flexible Schema 
There is no common set of attributes that can describe data in a 
variety of domains. Usually, a collaboration agrees on a set of 
terms that describe their particular data set. However, metadata 
services need to span domains and collaborations and thus need 
to support a dynamic attribute set. Even within a collaboration, 
some flexibility may need to be supported. For example, 
members of the collaboration may come up with additional 
ways of describing the data, providing annotations and other 
attributes that are necessary for data interpretation.  

Flexibility in the attribute set is needed for all data objects 
managed by the metadata catalog: data items, collections and 
views. 

Metadata attributes can be divided among a set of core 
attributes, such as those described in Dublin core [5] and 
additional domain-specific attributes that can vary depending 
on the underlying application domain: astronomy, physics, etc.   

There are also attributes that are specific to the Grid 
environment, where data may be replicated. As we already 
mentioned metadata discovery is the process of mapping a set 
of attributes to one or more identifiers that locate the data 
objects that posses the specified attributes.  This location 
specification, which we call a logical name, can then be further 
resolved, using mechanism such as the Replica Location 
Service [12] to specific data object instances. 

D. Metadata Interfaces 
Fig. 3 illustrates and categorizes the range of schema models 
that can support metadata publication and discovery. One the 
left side of the graph, we show a rigid, fixed schema and the 
associated API. In the fixed schema all the metadata are known 
and encoded ahead of time. This schema does not provide a 
very flexible data model. If the collaboration wants to modify 
the attribute set, the entire schema needs to be re-worked and a 
new set of access and discovery mechanisms may need to be 
provided. This restricted model may, however, facilitate data 
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discovery, because the data model can be easily exposed 
Metadata Interfaces 
 
At the other end of the spectrum, we have a fully dynamic 
schema, where users may create data objects and attribute 
structures on the fly. This is a more general and flexible model 
that requires a very general interface. Such an interface would 
also have to expose the internal structure of the underlying 
database. This may make the process of discovery complex, 
especially for users that fall into the general public category. 
 

 

Fig. 3: Classification of Metadata Model Flexibility and Ease of Data 
Discovery.  

In our work we aimed to design an interface that hides the 
implementation details from the end user. This also provides us 
with the flexibility in how we structure the database tables, in 
order to optimize performance, for example. Section VI.D 
explores alternative table layout we designed to support a 
flexible attribute set.  We believe that with our approach we are 
combining the benefits of ease of publication and discovery of 
the fixed schema model with some of the model flexibility of 
the fully dynamic schema.  
 
We propose an API that can allow for metadata publication, 
discovery and management of authorization. Publication 
includes creating and deleting logical objects: data items, 
collections and views. Attributes can be defined, undefined and 
set on all the logical objects. As part of publication, the content 
of a collection or view can be modified. 
  
The API also supports a variety of metadata discovery 
methods. The API allows clients to discover the set of 
attributes defined within the Metadata Service and to search for 
logical objects based on attributes. The attributes of a particular 
object can be retrieved. The API also supports the discovery of 
the content of a collection or a view. Parent collections and 
views of a particular data object can be found as well.  
 
The API also provides the granting and revocation of 
authorization on data objects as well as the service itself. For 
example, the API supports authorizing users and user groups to 
define new data objects. 
 
The data model and the API we have described here are not a 
general solution. Rather, they support a set of functionality that 
can satisfy a class of applications that conform to the metadata 
publication, annotation and discovery requirements and 

scenarios we described in Section II. This model is also limited 
in the way it handles attributes. Our attribute namespace has a 
flat structure and does not support more complex attribute 
structuring schemes. 

V. RELATED WORK 
The Storage Resource Broker (SRB) from the San Diego 
Supercomputing Center [15] and its associated MCAT 
Metadata Catalog [5] provide metadata and data management 
services. SRB supports a logical name space that is 
independent of physical name space. The logical objects, 
logical files in the case of SRB, can also be aggregated into 
collections. SRB provides various authentication mechanisms 
to access metadata and data within SRB.    

However, our Metadata Catalog Service model differs from 
MCAT in significant ways.  Perhaps most significantly, the 
architectural models of the two systems are fundamentally 
different.  MCAT is implemented in tight integration with 
other components of SRB and is used to control data access 
and consistency as well as to store and query metadata.  MCAT 
cannot be used as a stand-alone component.  In addition, 
MCAT stores both logical metadata and physical metadata that 
characterizes file properties as well as attributes that describe 
resources, users and methods.  By contrast, we have designed 
our Metadata Services to be one component in a layered, 
composable Grid architecture.  We have factored this Grid 
architecture so that the Metadata Services contain only logical 
metadata attributes and appropriate handles that can be 
resolved by a data location or data access service.   

The RepMec (Replica Metadata) catalog developed by the 
European DataGrid’s Reptor project [16] is similar in its 
design and function to our metadata service.  The RepMec 
catalog is built upon the Spitfire database service.  The 
RepMec catalog stores logical and physical metadata.  Among 
other functions, this catalog is used within the EDG project to 
map from user-provided logical names for data items to unique 
identifiers called GUIDs.  RepMec is used in the Reptor system 
in cooperation with a replica location service.   

VI. IMPLEMENTATION ISSUES 
In our previous work [17] we presented an initial design of the 
Metadata Catalog Service (MCS) and reported performance 
numbers related to an implementation of the service based on 
the Apache web service[18].  The web service implementation 
lacked some of our desired functionality, including the GSI 
authentication, service element publication and notification 
mentioned in Section III.  

In our previous study we showed that layering a web service 
interface on top of a DBMS (in our case MySQL) results in an 
order of magnitude in performance degradation over accessing 
the database directly via ODBC. We measured the service 
performance in terms of add and query rates performed by 
multiple clients.  In our current study, we continue to use 
relational technologies and evaluate the use of Grid services to 
support metadata management services on the Grid. 
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We decided to use the OGSA-DAI service as the basis for the 
MCS implementation. By leveraging off the significant 
development efforts of the EPCC group as well as the OGSA 
developers of the Globus team, we are able to build upon a 
general purpose database access service with well-defined and 
extensible interfaces.  We avoid having to implement our own 
Grid service for a metadata catalog service with GSI 
authentication, lifetime management, etc.   

The success of our MCS implementation is based on the 
extensible activity scheme of the OGSA-DAI implementation  
[19]. Activities provide a way to add functionality that is not 
provided by OGSA-DAI by allowing customized functions to 
be called in response to application-specific queries passed 
through the DAI interface. In order to layer MCS on top of 
OGSA-DAI we defined an MCS-specific activity that contains 
functions corresponding to the MCS API. The activity includes 
functions that can ,add, delete and query logical items, 
collections or views and their associated attributes. 

This section describes implementation issues related to 
layering  MCS on top of the OGSA-DAI.  

A. Extending OGSA-DAI 
In order to add a new activity, an XML schema for the activity 
has to be specified and the implementation of the activity has 
to be provided. Currently the activities that can be performed 
over a data resource need to be specified in a configuration file 
prior to service initialization. The OGSA-DAI Grid Service 
instances can execute the activities. We implemented a new 
activity called mcsActivity that includes the definition and 
implementation of the MCS API.  The results returned by the 
activity are also in XML format. 
 
OGSA-DAI supports both synchronous and asynchronous 
activities. mcsActivity is implemented as a synchronous 
activity. The results are returned in the response sent to the 
client. The client blocks until the response is received.  
 

B. Support for Authorization  
OGSA-DAI supports authorization by mapping users to 
database roles. This authorization model is useful in general 
but does not provide the granularity of control required by 
MCS. Thus we have implemented an authorization model in 
MCS which provides finer grained control, at the level of 
logical objects. The following are various permissions that a 
user can have in MCS 

• MCS create permission:  this permission is required in 
order to create a logical item, collection or view. A 
user having this privilege can grant other users similar 
privilege. Initially this permission has to be granted 
out of band to one user, who can then grant 
permissions to others.  

• Write permission: A user can have write permission 
on a particular logical item, collection or view. Write 
permission on any object (logical item, collection, or 
view) allows the user to modify attributes of that 
object, to grant (or revoke) read or write permission 
on that object to (or from) other users.  In addition, 
write permission on a collection or view allows the 

user to add objects to and delete objects from that 
collection or view, and write permission on a 
collection also conveys write permission on all logical 
objects in the collection. The creator of a logical 
object is granted write permissions over it.  

• Read permission: A user can have read permissions on 
a particular logical item, collection or view. Read 
permissions allow the user to query the attributes of 
the object.  

 
One of the features of the authorization model is that 
permissions on a logical collection are also valid on the objects 
in the collection. Thus a user having write permissions over a 
collection automatically gets write permissions over the objects 
under the collection.  
 
The Distinguished Name (DN) from the certificate that the user 
presents for authentication identifies a user in MCS. If the user 
does not use any authentication in accessing the Grid Data 
Service, then the user is mapped to an anonymous DN. The 
union of the permissions granted to the anonymous DN and the 
user’s DN is considered while evaluating the authorization for 
the user.  
 

C. MCS Client-side Tools 
The OGSA-DAI client side tools can be used to access the 
MCS Grid Data Service. The OGSA-DAI client side tools take 
the perform document as an argument. New operations can be 
added under the MCS Grid Data Service. Only the schema for 
the new operations needs to be published. The user needs to 
compose the required perform document based on the new 
schema.  
 
We developed a wrapper around the OGSA-DAI client code to 
expose a simple API interface. Each operation that can be 
invoked using mcsActivity is exposed as a method call in the 
MCS-API. We have also developed command line tools. When 
using the MCS-API the user need not be aware of the syntax of 
the XML perform documents exchanged between the user and 
the MCS Grid Data Service.  
 
Using the OGSA-DAI framework provides a very convenient 
mechanism for extending the MCS schema and executing 
arbitrary SQL operations over the extended schema. The 
relationalResourceManager activity allows the users to add 
new tables in the MCS schema. The sqlQueryStatement and 
sqlUpdateStatement activites can be used to execute SQL 
statements on the newly defined tables. We have used that 
functionality to explore various alternative implementations of 
the extensible schema. 
 

D. Support for a Extensible Attribute Set 
The key to representing the metadata is to capture the common 
attributes while making it possible to add additional attributes 
that represent domain-specific metadata. One way to achieve 
this within our relational technology-based implementation,  is 
to create a basic table that contains the common attributes as 
table columns and then create additional tables for a fixed set 
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of predefined attribute types, such as integer, string, float, etc. 
In our implementation we support 6 different attribute types: 
String, Integer, Float, Date, Time, and DateTime.  Each 
attribute-type table (static attribute table) contains three 
columns: object id, attribute name and attribute value.  When 
attributes are added to an object, the name and value of the 
attribute are placed into the appropriate table along with an 
object id that identifies the row in the common attribute table 
this new attribute belongs to.  All of the attributes for an entry 
can then be found by searching all tables for entries with 
matching object identifiers.  
 
This table set up is simple and allows for an easy addition of 
new attributes by adding rows to the table. However, as the 
size of the database grows into millions, the attribute tables can 
grow large. For example, for a 5 million database size, if each 
logical item has 10 attributes, and 5 of them are of type string, 
then the string table will grow to 25 million rows. Obviously 
searching such a large table can become inefficient.  
 
An alternative implementation we considered is to represent 
the domain-specific attributes in individual tables (dynamic 
attribute tables). When a new attribute, (identified by a name 
and a type) is created, then a new table is created. 
Subsequently, if the attribute is used to describe data objects, 
the value of the attribute and the corresponding data object are 
entered in the table. This approach considerably reduces the 
size of the tables. However, it increases the number of tables 
that need to be searched to one per attribute (name, type) pair 
rather than one per attribute type.  However, this organization 
eliminates the need to do a join across multiple entries within a 
table as only one entry per object id will be found in each table.  
The drawback of this approach is that more tables will have to 
be stored in the database. Additionally there is no efficient way 
to find all the attributes of a particular object, because all the 
dynamic attribute tables may need to be searched. As a result 
we created an additional table that contains records consisting 
of the object id, attribute name and attribute type.  

VII. PERFORMANCE STUDY 
With this study we aimed to address two issues: 

1. How to most efficiently support a flexible schema 
with a variable number of attributes? Which approach: 
the static or dynamic attribute tables, provides 
efficient addition and deletion of attributes of a 
particular object as well as discovery of objects based 
on their attributes?  

2. What overheads are being imposed by grid services 
vs. web services? Obviously, adding features such as 
authentication must require additional server-side 
processing.  

 
To evaluate the alternative table designs, we performed a series 
of comparisons measuring the performance of various MCS 
APIs with the two schemas.  
 
To address the second issue of web service versus Grid service 
overheads, we compare the two MCS implementations.  We 
measured the performance of representative MCS APIs with 

both versions of MCS. In this case we used the fixed attribute 
table schema. 
 

A. Experimental Setup  
We experimented with databases of three sizes.  For each size, 
we created logical collections with 1000 data items per 
collection.  With each item, we associated 10 user-defined 
attributes of different types (string, float, integer, date and 
datetime), and in some cases we evaluated the performance of 
the system as a function of the number of attributes.  Likewise, 
we associated 10 attributes with each collection.  We loaded 
databases with a total of 100,000, 1,000,000, and 5,000,000 
data items and their associated collections and attributes.  Since 
we maintained a constant 1000 items per collection, there were 
100 collections in 100,000 entry database, 1000 collections in 
the 1 million entry database, and 5000 collections in the 5 
million entry database. 
 
In all the results below we evaluate the performance of 4 
critical metadata operations: add, simple query, complex query, 
and get user attributes.  The add operations add a logical item 
with ten associated user-defined (dynamic) attributes of various 
types.  To maintain the size of the database, we follow each 
add operation with a delete operation.  The simple query 
operation does a value match for a single static attribute 
associated with a data item. The complex query operation does 
value matches for all ten user-defined attributes associated with 
a data item. Get user attributes returns the user-defined 
attributes of a particular data item. The rates of operations per 
second are measured at the client-side. 
 
The MCS was installed on a dual-processor 2.2 GHz Intel 
Xeon workstation running RedHat Linux 8.0. The web-
services-based MCS is built upon the Apache Jakarta Tomcat 
4.1.24 server and the OGSA-DAI based implementation uses 
OGSA-Dai v. 3.0.2. Each implementation uses MySQL 3.23.49 
relational database.  We built indexes on item names, collection 
names and views (not used for these performance tests).  We 
also built indexes on the database-assigned identifiers for these 
items and on (name,ID) pairs.   

B. Optimizing and Supporting a Dynamic Attribute Set 
Before we present the performance results, we need to touch 
upon the issue of the number of different attribute names. In 
our tests, we synthetically populated the attributes for the data 
objects drawing names based on a uniform distribution over the 
set of names. The values were partially related to the names in 
case of string attributes and we used the current date and time 
for the date time attributes. In the case of the static table 
schema (a table for each attribute type and object type), the 
number of different attribute names does not affect the size or 
number of the tables. However, in the dynamic attribute tables 
implementation, the number of tables (one for each attribute 
name and type) can vary based on the number of different 
attribute names. Obviously, the size of the tables is affected 
then as well. Based on our experiences with climate modeling 
applications (ESG, [20]) we chose for our study a set of a 1,000 
and 5,000 different attribute names. Other applications such as 
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gravitational wave physics [21] usually have fewer distinct 
attribute names. 
 
In our previous work, the 5 Million database size showed the 
greatest sensitivity to complex queries. Thus for the study of 
different schema implementations we focus on that database 
size. 
 
Fig. 4 shows the performance of the add operation for the static 
and dynamic schema implementation with the 1,000 and 5,000 
attribute namespaces. We varied the number of clients 
performing the adds from 1 to 24. We measured the number of 
operations per second that could be sustained on the client-
side. We notice that the static schema is on the average 1.7 
times faster than the dynamic schema. In the latter case, each 
time a new attribute is added (up to 1,000 or 5,000 depending 
on the size of the attribute namespace) a new table is created. 
This is pure overhead on top of the operation of adding a row 
into a table. 
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Fig. 4 Performance of Add Operation. The Database Size is 5 Million Items. 

The number of client threads is varied.  
 

Fig. 5 shows the performance of simple queries, as the number 
of clients is varied from 1 to 12. The performance for both 
schemas is about the same. The static schema is on the average 
9% better for 1,000 attribute namespace, whereas the dynamic 
schema is 3.5% better on average for 5,000 namespace. 
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Fig. 5: Simple Query Performance for the Static and Dynamic Schemas. 

 
Fig. 6 shows the complex query performance for the static and 
dynamic schemas. We notice that the dynamic solution is 1.5 
times better on average than the static schema solution. This is 

because in the static schema, the operation needs to search for 
the attributes in very large attribute tables. In the dynamic case, 
there are more tables to be searched, but the tables themselves 
are smaller. 
 
Fig. 7 shows the performance of the query that returns all the 
user-defined attributes of a given data item. Because the 
complex query first needs to search the table that contains 
records consisting of the object id, attribute name and attribute 
type and then queries individual tables. As a result the static 
solution is 1.8 times better on average for the 1,000 attribute 
namespace and 2.7 times better for the 5,000 namespace. 

Complex Query rates 5Million DB size

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14

Number of Threads

Q
ue

ry
 r

at
es

 p
er

 
se

co
nd

Static (1K Attr) Dynamic (1K Attr) Static (5K Attr) Dynamic (5K Attr)
 

Fig. 6: Complex Query Performance, measured in queries per second. 
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Fig. 7: Performance of the Operation that returns all the user-defined 
attributes of a given item. 

 
In summary, it is not obvious which schema, dynamic or static, 
is better. The performance of the dynamic approach depends on 
the number of unique attribute names. Results in using 1,000 
and 5,000 different attribute names, show that the static schema 
generally performs better for add operations and for querying 
all user-defined attributes.  The dynamic schema performs 
better for complex queries that match 10 attributes for an 
increasing number of requesting threads.  The two schemes 
show similar performance for simple queries and for complex 
queries that match a varying number of attributes.  The choice 
of schema may depend on the expected operation workload for 
the MCS.  We assume that query operations will be the more 
frequent than add operations.  Additionally, we speculate that 
value matching of desired attributes will occur more frequently 
than querying the attributes a given data item. Under these 
assumptions, the dynamic schema solution would be beneficial, 
especially if there are not too many distinct attribute names. 
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C. Evaluating Grid Service versus Web Service 
Performance. 

In this section we compare the performance of the MCS 
implementation layered on top of a standard web service and 
on top of OGSA-DAI. In all the following experiments we have 
used the static schema. For this study we varied the size of the 
database from 100,000 to 1 and 5 Million. In general, because 
OGSA-DAI performs GSI-authentication and the web service 
does not, we expect to see better performance from the latter.  
 
 Table 9 compares simple query rate performance. Since simple 
queries are very efficiently handled by the native database (as 
we have seen in out previous work [17]), this experiment 
clearly exposes the overhead of the services. We can see that 
the grid service performs an order of magnitude worse than the 
web service for all the database sizes.  
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items, 
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5Million 
items, 
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DAI 

1 76.72 8.13 70.91 8.13 70.13 7.22 

2 90.05 11.81 93.19 11.81 91.36 11.20 

4 111.37 14.55 100.30 14.55 110.31 13.30 

8 91.40 13.46 98.87 13.46 98.03 14.71 

12 93.35 14.63 94.52 14.63 94.92 15.17 
Table 1: Performance of Simple Queries for Various Database 

Sizes. The table shows the number of queries per second. 
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items, 
web 
service 

1Million 
items, 
OGSA-
DAI 

5MiIlion 
items, 
web 
service 

 
5Million 
items, 
OGSA-
DAI 

1 31.79 5.38 26.97 5.04 11.06 5.55 

2 52.24 10.11 35.72 9.20 11.59 11.37 

4 62.88 12.47 40.32 11.74 11.42 12.99 

8 67.10 14.02 41.45 13.55 10.65 14.28 

12 92.82 14.76 36.67 14.59 10.53 14.67 
Table 2: Complex Query Rates for Various DB Sizes. The table 

shows the number of complex queries per second. 
 
The web-service based MCS better than OGSA-DAI-based 
MCS for all database sizes: 8 times for 100K database size, 
13.5 times for 1Million database size, and 13 times for the 
5Million database size. We plan to increase the number of 
threads further in the final version of the paper. 
 
Because complex queries are more costly than simple queries 
in terms of database performance, the differences between the 
web service and OGSA-DAI are not as significant as in the 
simple query case. Also, as the size of the database increases, 
the average performance difference decreases (Table 2). For the 

100K DB size, web-service-based MCS is over 5 times faster 
on average than the OGSA-DAI solution. Interestingly, for the 
5 Million DB, as the number of threads increases, OGSA-DAI 
outperforms the other solution by a factor of 1.4. 
 
The final set of results compares add performance. Table 3 
shows that comparative add rates do not vary much with 
database size or the number of the client threads. The web-
service-based MCS is on the average 2.6 times faster in terms 
of adds per second than the OGSA-DAI-based MCS. 
 
In summary, we see that OGSA-DAI performs worse than a 
web-service.  However, the implementations are not directly 
comparable, since OGSA-DAI performs authentication. Also, it 
is very interesting to see that OGSA-DAI performs well when 
the number of client threads is high and the database size is 
large, indicating better scalability than the web-service based 
version. Additionally, a new version of OGSA_DAI is about to 
be released. The new version promises performance 
improvements. We will evaluate the new version for the final 
version of this paper. 
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items, 
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items, 
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DAI 

1 33.96 18.45 32.75 17.00 31.18 18.30 

2 48.78 25.66 46.03 23.94 43.61 24.16 

4 59.19 26.60 55.93 26.21 54.27 25.24 

8 63.65 26.26 62.88 26.03 60.95 25.63 

12 66.22 24.19 65.14 24.75 63.39 24.76 

16 65.96 23.49 66.07 23.76 60.56 22.83 

20 69.54 21.80 68.28 22.23 61.84 21.23 

24 71.29 18.26 69.66 14.54 69.45 16.38 
Table 3: Add Rate Performance for Various DB Sizes. The 

table shows the number of adds per second. 

VIII. APPLICATION USE CASES 
We have used the web service-based MCS in a variety of 
applications. We are currently in the process of transitioning to 
the use of the OGSA-DAI implementation.  MCS has been 
used in Earth System Grid (ESG) application [22], in the 
Pegasus workflow management system [23, 24], and others. 
 
ESG is a climate modeling application. MCS was used as one 
component in an ESG demonstration that included replica 
management and storage management services as well as 
various data storage services. The ESG metadata followed the 
netCDF convention and was stored metadata in XML format.  
To store ESG metadata in MCS, we added user-defined 
attributes to the MCS to correspond to application-specific 
ESG metadata attributes as well as Dublin Core attributes.  
Then we parsed or “shredded” the XML metadata files to 
extract individual attribute values and stored these. The ESG 
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metadata included 154 user-defined attributes for data items 
and 27 attributes for collections. 
 
Pegasus [25] is a planning component developed within the 
GriPhyN project (www.griphyn.org) [21]. Pegasus is used to 
map complex application workflows onto the available Grid 
resources. One of the applications that uses Pegasus is LIGO.  
LIGO (Laser Interferometer Gravitational-Wave Observatory) 
is a project that seeks to directly detect the gravitational waves 
predicted by Einstein’s theory of relativity.  Pegasus uses MCS 
to discover existing application data products.  When the 
Pegasus planner receives a user request to retrieve data with 
particular metadata attributes, it queries the MCS to find all 
logical files with the corresponding properties. For example, a 
user might request all logical files that corresponding to a 
particular frequency band, and the MCS will return a list of 
relevant files to the Pegasus planner. When the workflow 
generated by the Pegasus planner results in creation of new 
application data products, Pegasus uses the MCS to record 
metadata attributes associated with those newly materialized 
data products.  To support LIGO application-specific metadata, 
we added 23 user-defined attributes to the pre-defined 
attributes provided by the MCS schema. 
 
MCS is also used by Pegasus to store provenance and 
performance information about the workflow components that 
have been executed on the Grid and up-to-date information 
about a workflow being executed. The information describes 
the various executables used in the workflow execution, the 
time it took to execute the workflow components, including the 
time to perform data movement. MCS can also provide users 
with various levels of detail regarding a set of workflows or 
particular workflow instances. As such MCS is used in 
conjunction with the Pegasus portal by the Montage  
application [26, 27], an astronomy application that delivers 
science grade mosaics of the sky on demand. 

IX. CONCLUSIONS AND FUTURE WORK 
In this paper we described, MCS, a metadata catalog service 
for metadata management on the Grid. We described the 
requirements that have driven the design of MCS. We 
presented the data model, the authorization model and the API 
used to interact with MCS. We discussed alternative schema 
designs that can support a dynamic user-defined attribute set. 
Finally, we evaluated the performance of two alternative 
schemas and the overhead imposed by a grid service-based 
implementation in comparison to a web service-based version. 

In this work we have focused on a centralized metadata service 
design. However, in distributed systems, it is often necessary to 
distribute services to provide reliability and good performance. 
In our future work we plan to investigate the feasibility of 
distributing MCS, exploring issues of federation of multiple 
services in a Grid environment.  
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