
Grid-Based Metadata Services

Abstract—Data sets being managed in Grid environments today
are growing at a rapid rate, expected to reach 100s of Petabytes
in the near future. Managing such large data sets poses
challenges for efficient data access, data publication and data
discovery. In this paper we focus on the data publication and
discovery process through the use of descriptive metadata. This
metadata describe the properties of individual data items and
collections. We discuss issues of metadata services in service rich
environments, such as the Grid. We describe the requirements
and the architecture for such services in the context of Grid and
the available Grid services. We present a data model that can
capture the complexity of the data publication and discovery
process. Based on that model we identify a set of interfaces and
operations that need to be provided to support metadata
management. We present a particular implementation of a Grid
metadata service, basing it on existing Grid services technologies.
Finally we examine alternative implementations of that service.

I. INTRODUCTION
Today, advances in science are made possible largely through
the collaborative efforts of many researchers in a particular
domain. We see collaborations of hundreds of scientists in
areas such as gravitational-wave physics [1], high-energy
physics [2], astronomy [3] and many others coming together
and sharing a variety of resources within a collaboration in
pursuit of common goals. These resources are distributed and
can encompass people, scientific instruments, compute and
network resources, applications, and data. Although the scale
of the resources pooled within collaborations is increasing,
there is a particular explosion in the size of the data that is
made available. It is common to see datasets on the order of
terabytes today with petabyte-scale sets coming online in the
near future. Grid environments [4] enable efficient resource
sharing in collaborative distributed environments, and in this
paper we focus on the area of data management, with a
particular emphasis on metadata management issues. We
address the problem of discovery and manipulation of data
objects.

One of the challenges of these shared environments is to
identify and locate the subset of the data objects that are of
interest to any particular data analysis activity. The standard
solution to this problem is to describe the characteristics of
each data object with one or more attributes, or “metadata” and

to use this metadata as the means for identifying what data
objects will be of use. In this paper, we explore from a system
perspective how to manage metadata in such a way as to make
it accessible for discovery and access of data in a distributed,
collaborative environment.

The boundary between data and metadata is to some extent
arbitrary and may vary during a data object’s life time. For
example, for some users a table of astronomic objects derived
from images is primary data and for others it is metadata that
indexes the primary or calibrated data. Extensive use of human
annotation is common in the large numbers of curated
biomedical databases. To some the annotation is metadata, but
we require metadata to describe those annotations to gauge
their quality. A typical modern hospital will produce about 1
petabyte of digital data per year – improved practices by
instrument manufacturers have automated the association of
metadata, such as instrument settings, with the primary data.
For the maintainer of the instruments these may be primary
data. In any given context this ambivalence is resolved.
Therefore, for the remainder of the paper we refer to the data
currently being interpreted to enable the interpretation of other
data as “metadata”.

Metadata allows collaborations to publish data with enough
information for scientists to be able to identify the desired data
products. Metadata attributes can encompass a variety of
information. Some metadata is application independent, such
as the creation time, author, etc. described in Dublin Core [5],
while other metadata is application dependent and may include
attributes such as duration of an experiment, temperature, etc.
Metadata may refer to raw, experimental data that has been
collected by an instrument or to data that has been processed in
some fashion, for example calibrated. Metadata adds value to
scientific data. Without metadata, the researcher is unable to
evaluate the quality of the data. For example, it is impossible to
conduct a correct analysis of a data set without knowing how
the data was cleaned, calibrated, what parameters were used in
the process, etc. Traditionally, metadata was recorded in
laboratory notebook. More recently scientists have devised data
formats to encode the metadata in the data files themselves (as
in the case of the FITS-formatted files used to contain
astronomy images). However, these mechanisms do not scale
to large collaborative environment where there are many files.
In this paper we focus on services that can provide sufficient
functionality to efficiently publish and query metadata about

Ewa Deelman1, Gurmeet Singh1, Malcolm P. Atkinson2, Ann Chervenak1, Neil P Chue Hong3, Carl Kesselman1,
Sonal Patil1, Laura Pearlman1, Mei-Hui Su1

1Information Sciences Institute, University of Southern California
2Department of Computing Science, University of Glasgow & Division of Informatics, University of Edinburgh

3Edinburgh Parallel Computing Centre, UK

Contact Author: Ewa Deelman (deelman@isi.edu)

Grid-Based Metadata Services

Grid-Based Metadata Services

large-scale data sets. Collaborations have significant amount of
data in multiple data bases or files. Grid technologies [4] are
being increasingly used to provide data management
infrastructure to access distributed resources within a
collaboration. However, the issue of data discovery still
remains. From the point of view of ease of use and scalability,
the discovery need to be done based on annotations, or
metadata. This paper addresses the question of what services
are needed in Grid environments to facilitate data discovery.
We argue that although standardized database services can be
used, specialized metadata services can greatly simplify
metadata management.

The contributions of this paper are:

• A description of metadata services requirements.
• An overview of an architecture for metadata services

in service rich environments such as the Grid.
• A description of the data model supported by the

service and the interfaces it exposes.
• An evaluation of the alternative implementations of

the service, MCS (Metadata Catalog Service).

II. REQUIREMENTS FOR METADATA MANAGEMENT ON THE
GRID

The astronomy community provides a good example of how
metadata services are used in collaborative environments.
Initially when the data, in the form of images, is collected by an
instrument, such as a telescope, it is pre-processed and
calibrated and stored in an archive. Metadata about the images
describing the location in the sky, the calibration parameters,
etc., is stored as well. Additional processing may occur to
extract interesting features of particular regions of the sky or to
produce images focusing on particular celestial objects. The
information about the processing is captured in metadata
attributes and stored as well. Once the metadata and data are
prepared in this fashion, it is released to the group of scientists
within the collaboration. Researchers can then pose queries on
the metadata to discovery data of relevance to their work.
Based on the results of the searches conducted on the metadata
scientists may want to organize the metadata in a way that is
most appropriate for their research. During this phase of the
data publication process, the data may be further annotated by
the collaborators. After a certain period of time, usually on the
order of two years, the data and the metadata are released to the
general public. At this time, users outside of the initial
collaboration search the metadata based on attributes that are
important to them.

There are several requirements for managing metadata on the
Grid. The requirements can be broadly grouped in four main
categories:

1. The need to store and share the metadata.
2. The need to organize the metadata in a logical fashion

for ease of publication and discovery.
3. The need to customize the view of the data by

individuals.
4. The need to support metadata about large-scale data

sets.

We can refine each of these requirements further. Sharing
metadata necessitates having well defined interfaces for storing
and querying metadata attributes and for adding new attributes.
In general, metadata is domain-specific, however, some
metadata crosses many domains, such as creator and creation
time. Metadata services thus need to be able to support generic
as well as domain-dependent attributes. In the scenario above,
the metadata evolved over time; thus metadata services need to
be able to evolve as well, providing a flexible way to add and
delete metadata attributes. Queries need to be able to support
the discovery of the metadata attributes of the objects stored in
the catalog as well as the discovery of attributes of a particular
object and the discovery of objects with particular attributes.

It is also useful to organize the metadata in some logical
fashion, For example all the data relating a particular region of
the sky may be placed within one group (collection). Attributes
may also be associated with such groupings for ease of
discovery. The aggregation is useful because it allows for the
grouping of objects that are related to each other in some
fashion. This may facilitate data discovery, because the
discovery can be first done at the collection level: find all
collections that have the particular characteristics and then
refine the search within these collections. If the search was
performed on a flat object space, then it is possible for the
queries to return objects that have no particular relation to each
other. Performance of searches may also be improved, because
in general, there will be fewer collections than individual data
items, thus making queries for collections with particular
attributes more efficient than queries across all data items. The
grouping may be hierarchical, representing the aggregation of
collections. In the case of data publication by the collaboration
the collections are usually organized by the publishing body.
They may also be the work of scientists using published and
consortium data who are collecting together all of the objects
relevant to an interest, e.g. galaxies with a recorded type 1A
supernova, quarks with observable lensing, binaries where one
star is a pulsar, suspected satellite tracks, etc. These
collections are typically dynamic, intersecting and associated
with particular scientific interpretations.

As part of this organization, the collaboration may impose
access control on entire collections, on collection groups, or on
individual items. A Metadata Service must thus implement
authentication and apply policies to metadata access and
publication. Authentication and authorization allow control
over who is allowed to add, modify, query and delete mappings
in the Metadata Service. Auditing information that may be
maintained by the Metadata Service includes information about
creators and creation times of metadata mappings as well as a
log of all the accesses to a particular metadata mapping,
including the identity of the user and the action that was
performed. Different types of users need to have different
access to the metadata.

Although collections allow the publishers to organize the
metadata, they do not allow customization by individuals who
are part of the collaboration. In general, scientists within a
collaboration may have different research goals and may want

Grid-Based Metadata Services

to organize the data in a way that is most appropriate for them.
This individual-based view of the metadata should not affect
the structure or authorization policies imposed by the
publisher. Rather, they should be layered on top of the existing
collections.

Data sets and their metadata are quite large today and ever
growing in size. Often, metadata is stored independently of the
data itself. Metadata services need to provide data handles that
can be resolved by other services that perform the data access.
Metadata services must provide the ability to store information
about millions of data objects and provide good performance.
They should provide short latencies on query and update
operations and relatively high query and update rates. To
support reliable access to metadata, the services may need to be
replicated.

III. ROLE OF GRID SERVICES
Grid services are used in many application domains today to
deliver computing power and data management capabilities
needed by large-scale science. Grid services extend standard
web services by providing support for associating state with
services, managing the lifetime of service instances, and
standard mechanisms for subscription and notification of state
changes. Grid service interfaces are being standardized as part
of an overall Open Grid Services Architecture (OGSA)[6]
through the Global Grid Forum. Large scale testbeds such as
the Teragrid [7] and iVDGL [8] are deploying Grid services
that allow authentication [9], remote job scheduling [10], data
access [11], data replication [12] and others. These are basic
services available as part of the Globus Toolkit 3 (GT3) [13],
the de-facto standard for Grid services.

One particularly relevant Grid service is the OGSA Database
Access and Integration (DAI) Service being developed by the
Edinburgh Parallel Computing Center (EPCC). Service
interfaces are being standardized through the DAIS Working
Group of the Global Grid Forum [14]. The OGSA-DAI service
provides a common Grid service access interface to a variety of
data resources ranging from relational databases to XML
databases and eventually to structured files. The DAI service is
intended to provide a basis for higher-level services to be
constructed, for example, to provide federation across
heterogeneous databases. The OGSA-DAI service has three
main components: a service registry for discovery of service
instances, a data factory service for representing a data resource
and a data service for accessing a data resource, such as a
relational database. The OGSA-DAI service uses an extensible
activity framework. These activities can be extended by other
developers to provide additional functionality.

There are several reasons for providing grid service-based
metadata services:

1. Integration with other Grid services: Resource access in
Grids is authenticated using the Grid Security
Infrastructure (GSI) [9] that is based on PKI. To integrate
databases with other services on the Grid, GSI
authentication needs to be performed by the database
service. OGSA-DAI supports this type of authentication

and maps authenticated users to database roles. Integration
with other services is also enabled by OGSA-DAI’s XML-
based communications.

2. Service discovery: In a distributed environment, there may
be several metadata services. Discovering the appropriate
service in necessary. Grid services and OGSA-DAI
support the use of service registries and the discovery of
services based on attributes published by services (service
elements).

3. Federation of multiple databases: As mentioned above,
there may several relevant metadata services. It is
important to be able to query across them in search of
desired data. Grid services and OGSA-DAI provide
support for service data publication and notification of
changes in the values of the service data, thus providing
the basic mechanism for federating multiple OGSA-DAI-
based services.

In this work we developed a Metadata Catalog Service (MCS)
that builds on the existing Grid services. Fig. 1 shows the
software layering of the MCS. Below, we discuss the data
management model supported by MCS.

Fig. 1: Layering of Services to support Metadata Services.

IV. DATA MANAGEMENT MODEL
In the Requirements Section, we outlined a scenario for the use
of metadata services for data publication and access. It is clear
that metadata attributes could be represented in some database
technology, such as relational or XML, and that the discovery
of data objects be mapped into queries. We believe, however,
that in many instances, it is desirable to have a more
specialized metadata management service. We argue that in
Grid environments, we need to have dedicated Metadata
Services because of several concerns, such as usability and ease
of schema discovery. Databases provide a very general and
flexible infrastructure for data management. However, one has
to be familiar with query languages such as SQL or XQuery to
be able to efficiently interact with a DBMS. Many domain
scientists in physics, astronomy, biology, etc. simply are not
comfortable with query languages. Users and applications also
need to know the internal database structure to be able to pose
appropriate queries. Our schema and API (described below)
provide an easy way to discover attributes and interact with the
system.

Given the benefits of providing an extensible metadata model,
we present a model that supports a variety of interactions,
allowing users to describe attributes of data items and organize
them in ways that are needed by a collaboration and by
individual users. We also describe the API that supports the
data model and is used to manage objects within the Metadata
Service.

Grid-Based Metadata Services

The model also supports a flexible set of attributes. We define
the basic object within a metadata service as a data item. This
data item may for example represent an individual image. Fig.
2 shows a UML diagram of the objects supported within MCS.
The following sections give more details about the role of each
of the entities.

Collection View

Data Item

0..1

0..*

0..1 0..*

belongs to
relationship

0..*

Fig. 2: A Data Model for Metadata Services. The depicted relationship refer to

the “belongs to” relationship.

A. Users
In general we distinguish between three types of users: the
collaboration, the members of the collaboration and the general
public. The collaboration is in charge of publishing the data
sets. Individuals or groups within a collaboration may provide
additional attributes and annotation and may structure the
metadata in a personalized way. Finally, members of the
general public (or community at large) may query the metadata
services.

B. Structuring Data Items and Imposing Authorization
Policies

It is often convenient to be able to refer to a set of data items
with a single name. This can play an important role in
improving the scalability. For example, authorization can be
attached to that single, without having to impose it on every
individual item. Name sets can also be useful in the data
publication process. They allow the data publisher (the
collaboration) to impose a logical structure on the data items
being published. For example, a collaboration may want to
assign a single name to all the data collected during a particular
run of an instrument. For these reasons, our metadata model
includes a concept of collections. Collections allow a name and
attributes to be associated with an arbitrary set of data objects.

Collections can aggregate a set of data items or other
collections. The collaboration may also impose authorization
on data items and data collections. In our model, the
authorization on the data items and collections may be
described through the authorization on the collection the data
belongs to. This allows for defining authorization in a scalable
way. To assure consistent authorization, a particular data item
or data collection may belong to only one parent collection. If a
data object could belong to multiple collections, then
determining the authorization for the object would involve
examining a set of possibly contradictory policies.

In our model we view collections as being defined by the
collaboration. However, individual members of the
collaboration may want to organize and name the published
metadata in a customized way. Individuals may also want to
associated additional attributes with the named entities. The
organization designed by individuals should not affect the
organization and authorization imposed by the collaboration as
a whole. To support this functionality, we introduce the notion
of a view. A view allows data items and collections to be
organized by members of the collaboration into groups that are
relevant to them. Views do not have any effect on the way that
the metadata is published to the community or how access to
the data is authorized. Views may be described by attributes, be
annotated and made part of other views. Because there is no
authorization imposed by a view, data items and collections
may belong to several views. In general, members of the
general public would only be able to query metadata services
and would not be able to create views. Both collections and
views are acyclic.

C. Flexible Schema
There is no common set of attributes that can describe data in a
variety of domains. Usually, a collaboration agrees on a set of
terms that describe their particular data set. However, metadata
services need to span domains and collaborations and thus need
to support a dynamic attribute set. Even within a collaboration,
some flexibility may need to be supported. For example,
members of the collaboration may come up with additional
ways of describing the data, providing annotations and other
attributes that are necessary for data interpretation.

Flexibility in the attribute set is needed for all data objects
managed by the metadata catalog: data items, collections and
views.

Metadata attributes can be divided among a set of core
attributes, such as those described in Dublin core [5] and
additional domain-specific attributes that can vary depending
on the underlying application domain: astronomy, physics, etc.

There are also attributes that are specific to the Grid
environment, where data may be replicated. As we already
mentioned metadata discovery is the process of mapping a set
of attributes to one or more identifiers that locate the data
objects that posses the specified attributes. This location
specification, which we call a logical name, can then be further
resolved, using mechanism such as the Replica Location
Service [12] to specific data object instances.

D. Metadata Interfaces
Fig. 3 illustrates and categorizes the range of schema models
that can support metadata publication and discovery. One the
left side of the graph, we show a rigid, fixed schema and the
associated API. In the fixed schema all the metadata are known
and encoded ahead of time. This schema does not provide a
very flexible data model. If the collaboration wants to modify
the attribute set, the entire schema needs to be re-worked and a
new set of access and discovery mechanisms may need to be
provided. This restricted model may, however, facilitate data

Grid-Based Metadata Services

discovery, because the data model can be easily exposed
Metadata Interfaces

At the other end of the spectrum, we have a fully dynamic
schema, where users may create data objects and attribute
structures on the fly. This is a more general and flexible model
that requires a very general interface. Such an interface would
also have to expose the internal structure of the underlying
database. This may make the process of discovery complex,
especially for users that fall into the general public category.

Fig. 3: Classification of Metadata Model Flexibility and Ease of Data
Discovery.

In our work we aimed to design an interface that hides the
implementation details from the end user. This also provides us
with the flexibility in how we structure the database tables, in
order to optimize performance, for example. Section VI.D
explores alternative table layout we designed to support a
flexible attribute set. We believe that with our approach we are
combining the benefits of ease of publication and discovery of
the fixed schema model with some of the model flexibility of
the fully dynamic schema.

We propose an API that can allow for metadata publication,
discovery and management of authorization. Publication
includes creating and deleting logical objects: data items,
collections and views. Attributes can be defined, undefined and
set on all the logical objects. As part of publication, the content
of a collection or view can be modified.

The API also supports a variety of metadata discovery
methods. The API allows clients to discover the set of
attributes defined within the Metadata Service and to search for
logical objects based on attributes. The attributes of a particular
object can be retrieved. The API also supports the discovery of
the content of a collection or a view. Parent collections and
views of a particular data object can be found as well.

The API also provides the granting and revocation of
authorization on data objects as well as the service itself. For
example, the API supports authorizing users and user groups to
define new data objects.

The data model and the API we have described here are not a
general solution. Rather, they support a set of functionality that
can satisfy a class of applications that conform to the metadata
publication, annotation and discovery requirements and

scenarios we described in Section II. This model is also limited
in the way it handles attributes. Our attribute namespace has a
flat structure and does not support more complex attribute
structuring schemes.

V. RELATED WORK
The Storage Resource Broker (SRB) from the San Diego
Supercomputing Center [15] and its associated MCAT
Metadata Catalog [5] provide metadata and data management
services. SRB supports a logical name space that is
independent of physical name space. The logical objects,
logical files in the case of SRB, can also be aggregated into
collections. SRB provides various authentication mechanisms
to access metadata and data within SRB.

However, our Metadata Catalog Service model differs from
MCAT in significant ways. Perhaps most significantly, the
architectural models of the two systems are fundamentally
different. MCAT is implemented in tight integration with
other components of SRB and is used to control data access
and consistency as well as to store and query metadata. MCAT
cannot be used as a stand-alone component. In addition,
MCAT stores both logical metadata and physical metadata that
characterizes file properties as well as attributes that describe
resources, users and methods. By contrast, we have designed
our Metadata Services to be one component in a layered,
composable Grid architecture. We have factored this Grid
architecture so that the Metadata Services contain only logical
metadata attributes and appropriate handles that can be
resolved by a data location or data access service.

The RepMec (Replica Metadata) catalog developed by the
European DataGrid’s Reptor project [16] is similar in its
design and function to our metadata service. The RepMec
catalog is built upon the Spitfire database service. The
RepMec catalog stores logical and physical metadata. Among
other functions, this catalog is used within the EDG project to
map from user-provided logical names for data items to unique
identifiers called GUIDs. RepMec is used in the Reptor system
in cooperation with a replica location service.

VI. IMPLEMENTATION ISSUES
In our previous work [17] we presented an initial design of the
Metadata Catalog Service (MCS) and reported performance
numbers related to an implementation of the service based on
the Apache web service[18]. The web service implementation
lacked some of our desired functionality, including the GSI
authentication, service element publication and notification
mentioned in Section III.

In our previous study we showed that layering a web service
interface on top of a DBMS (in our case MySQL) results in an
order of magnitude in performance degradation over accessing
the database directly via ODBC. We measured the service
performance in terms of add and query rates performed by
multiple clients. In our current study, we continue to use
relational technologies and evaluate the use of Grid services to
support metadata management services on the Grid.

Grid-Based Metadata Services

We decided to use the OGSA-DAI service as the basis for the
MCS implementation. By leveraging off the significant
development efforts of the EPCC group as well as the OGSA
developers of the Globus team, we are able to build upon a
general purpose database access service with well-defined and
extensible interfaces. We avoid having to implement our own
Grid service for a metadata catalog service with GSI
authentication, lifetime management, etc.

The success of our MCS implementation is based on the
extensible activity scheme of the OGSA-DAI implementation
[19]. Activities provide a way to add functionality that is not
provided by OGSA-DAI by allowing customized functions to
be called in response to application-specific queries passed
through the DAI interface. In order to layer MCS on top of
OGSA-DAI we defined an MCS-specific activity that contains
functions corresponding to the MCS API. The activity includes
functions that can ,add, delete and query logical items,
collections or views and their associated attributes.

This section describes implementation issues related to
layering MCS on top of the OGSA-DAI.

A. Extending OGSA-DAI
In order to add a new activity, an XML schema for the activity
has to be specified and the implementation of the activity has
to be provided. Currently the activities that can be performed
over a data resource need to be specified in a configuration file
prior to service initialization. The OGSA-DAI Grid Service
instances can execute the activities. We implemented a new
activity called mcsActivity that includes the definition and
implementation of the MCS API. The results returned by the
activity are also in XML format.

OGSA-DAI supports both synchronous and asynchronous
activities. mcsActivity is implemented as a synchronous
activity. The results are returned in the response sent to the
client. The client blocks until the response is received.

B. Support for Authorization
OGSA-DAI supports authorization by mapping users to
database roles. This authorization model is useful in general
but does not provide the granularity of control required by
MCS. Thus we have implemented an authorization model in
MCS which provides finer grained control, at the level of
logical objects. The following are various permissions that a
user can have in MCS

• MCS create permission: this permission is required in
order to create a logical item, collection or view. A
user having this privilege can grant other users similar
privilege. Initially this permission has to be granted
out of band to one user, who can then grant
permissions to others.

• Write permission: A user can have write permission
on a particular logical item, collection or view. Write
permission on any object (logical item, collection, or
view) allows the user to modify attributes of that
object, to grant (or revoke) read or write permission
on that object to (or from) other users. In addition,
write permission on a collection or view allows the

user to add objects to and delete objects from that
collection or view, and write permission on a
collection also conveys write permission on all logical
objects in the collection. The creator of a logical
object is granted write permissions over it.

• Read permission: A user can have read permissions on
a particular logical item, collection or view. Read
permissions allow the user to query the attributes of
the object.

One of the features of the authorization model is that
permissions on a logical collection are also valid on the objects
in the collection. Thus a user having write permissions over a
collection automatically gets write permissions over the objects
under the collection.

The Distinguished Name (DN) from the certificate that the user
presents for authentication identifies a user in MCS. If the user
does not use any authentication in accessing the Grid Data
Service, then the user is mapped to an anonymous DN. The
union of the permissions granted to the anonymous DN and the
user’s DN is considered while evaluating the authorization for
the user.

C. MCS Client-side Tools
The OGSA-DAI client side tools can be used to access the
MCS Grid Data Service. The OGSA-DAI client side tools take
the perform document as an argument. New operations can be
added under the MCS Grid Data Service. Only the schema for
the new operations needs to be published. The user needs to
compose the required perform document based on the new
schema.

We developed a wrapper around the OGSA-DAI client code to
expose a simple API interface. Each operation that can be
invoked using mcsActivity is exposed as a method call in the
MCS-API. We have also developed command line tools. When
using the MCS-API the user need not be aware of the syntax of
the XML perform documents exchanged between the user and
the MCS Grid Data Service.

Using the OGSA-DAI framework provides a very convenient
mechanism for extending the MCS schema and executing
arbitrary SQL operations over the extended schema. The
relationalResourceManager activity allows the users to add
new tables in the MCS schema. The sqlQueryStatement and
sqlUpdateStatement activites can be used to execute SQL
statements on the newly defined tables. We have used that
functionality to explore various alternative implementations of
the extensible schema.

D. Support for a Extensible Attribute Set
The key to representing the metadata is to capture the common
attributes while making it possible to add additional attributes
that represent domain-specific metadata. One way to achieve
this within our relational technology-based implementation, is
to create a basic table that contains the common attributes as
table columns and then create additional tables for a fixed set

Grid-Based Metadata Services

of predefined attribute types, such as integer, string, float, etc.
In our implementation we support 6 different attribute types:
String, Integer, Float, Date, Time, and DateTime. Each
attribute-type table (static attribute table) contains three
columns: object id, attribute name and attribute value. When
attributes are added to an object, the name and value of the
attribute are placed into the appropriate table along with an
object id that identifies the row in the common attribute table
this new attribute belongs to. All of the attributes for an entry
can then be found by searching all tables for entries with
matching object identifiers.

This table set up is simple and allows for an easy addition of
new attributes by adding rows to the table. However, as the
size of the database grows into millions, the attribute tables can
grow large. For example, for a 5 million database size, if each
logical item has 10 attributes, and 5 of them are of type string,
then the string table will grow to 25 million rows. Obviously
searching such a large table can become inefficient.

An alternative implementation we considered is to represent
the domain-specific attributes in individual tables (dynamic
attribute tables). When a new attribute, (identified by a name
and a type) is created, then a new table is created.
Subsequently, if the attribute is used to describe data objects,
the value of the attribute and the corresponding data object are
entered in the table. This approach considerably reduces the
size of the tables. However, it increases the number of tables
that need to be searched to one per attribute (name, type) pair
rather than one per attribute type. However, this organization
eliminates the need to do a join across multiple entries within a
table as only one entry per object id will be found in each table.
The drawback of this approach is that more tables will have to
be stored in the database. Additionally there is no efficient way
to find all the attributes of a particular object, because all the
dynamic attribute tables may need to be searched. As a result
we created an additional table that contains records consisting
of the object id, attribute name and attribute type.

VII. PERFORMANCE STUDY
With this study we aimed to address two issues:

1. How to most efficiently support a flexible schema
with a variable number of attributes? Which approach:
the static or dynamic attribute tables, provides
efficient addition and deletion of attributes of a
particular object as well as discovery of objects based
on their attributes?

2. What overheads are being imposed by grid services
vs. web services? Obviously, adding features such as
authentication must require additional server-side
processing.

To evaluate the alternative table designs, we performed a series
of comparisons measuring the performance of various MCS
APIs with the two schemas.

To address the second issue of web service versus Grid service
overheads, we compare the two MCS implementations. We
measured the performance of representative MCS APIs with

both versions of MCS. In this case we used the fixed attribute
table schema.

A. Experimental Setup
We experimented with databases of three sizes. For each size,
we created logical collections with 1000 data items per
collection. With each item, we associated 10 user-defined
attributes of different types (string, float, integer, date and
datetime), and in some cases we evaluated the performance of
the system as a function of the number of attributes. Likewise,
we associated 10 attributes with each collection. We loaded
databases with a total of 100,000, 1,000,000, and 5,000,000
data items and their associated collections and attributes. Since
we maintained a constant 1000 items per collection, there were
100 collections in 100,000 entry database, 1000 collections in
the 1 million entry database, and 5000 collections in the 5
million entry database.

In all the results below we evaluate the performance of 4
critical metadata operations: add, simple query, complex query,
and get user attributes. The add operations add a logical item
with ten associated user-defined (dynamic) attributes of various
types. To maintain the size of the database, we follow each
add operation with a delete operation. The simple query
operation does a value match for a single static attribute
associated with a data item. The complex query operation does
value matches for all ten user-defined attributes associated with
a data item. Get user attributes returns the user-defined
attributes of a particular data item. The rates of operations per
second are measured at the client-side.

The MCS was installed on a dual-processor 2.2 GHz Intel
Xeon workstation running RedHat Linux 8.0. The web-
services-based MCS is built upon the Apache Jakarta Tomcat
4.1.24 server and the OGSA-DAI based implementation uses
OGSA-Dai v. 3.0.2. Each implementation uses MySQL 3.23.49
relational database. We built indexes on item names, collection
names and views (not used for these performance tests). We
also built indexes on the database-assigned identifiers for these
items and on (name,ID) pairs.

B. Optimizing and Supporting a Dynamic Attribute Set
Before we present the performance results, we need to touch
upon the issue of the number of different attribute names. In
our tests, we synthetically populated the attributes for the data
objects drawing names based on a uniform distribution over the
set of names. The values were partially related to the names in
case of string attributes and we used the current date and time
for the date time attributes. In the case of the static table
schema (a table for each attribute type and object type), the
number of different attribute names does not affect the size or
number of the tables. However, in the dynamic attribute tables
implementation, the number of tables (one for each attribute
name and type) can vary based on the number of different
attribute names. Obviously, the size of the tables is affected
then as well. Based on our experiences with climate modeling
applications (ESG, [20]) we chose for our study a set of a 1,000
and 5,000 different attribute names. Other applications such as

Grid-Based Metadata Services

gravitational wave physics [21] usually have fewer distinct
attribute names.

In our previous work, the 5 Million database size showed the
greatest sensitivity to complex queries. Thus for the study of
different schema implementations we focus on that database
size.

Fig. 4 shows the performance of the add operation for the static
and dynamic schema implementation with the 1,000 and 5,000
attribute namespaces. We varied the number of clients
performing the adds from 1 to 24. We measured the number of
operations per second that could be sustained on the client-
side. We notice that the static schema is on the average 1.7
times faster than the dynamic schema. In the latter case, each
time a new attribute is added (up to 1,000 or 5,000 depending
on the size of the attribute namespace) a new table is created.
This is pure overhead on top of the operation of adding a row
into a table.

Add rate for 5Million DB size

0

50

100

150

200

250

300

350

0 5 10 15 20 25

Number of Threads

Q
ue

rie
s

pe
r s

ec
on

d

Static (1K Attr) Dynamic (1K Attr)
Static (5K Attr) Dynamic (5K Attr)

Fig. 4 Performance of Add Operation. The Database Size is 5 Million Items.

The number of client threads is varied.

Fig. 5 shows the performance of simple queries, as the number
of clients is varied from 1 to 12. The performance for both
schemas is about the same. The static schema is on the average
9% better for 1,000 attribute namespace, whereas the dynamic
schema is 3.5% better on average for 5,000 namespace.

Simple Query Rates, 5 Million DB Size

0

50

100

150

200

0 2 4 6 8 10 12 14

Number of Threads

Q
ue

ry
 R

at
es

 p
er

Se

co
nd

Static (1K Attr) Dynamic (1K Attr)
Static (5K Attr) Dynamic (5K Attr)

Fig. 5: Simple Query Performance for the Static and Dynamic Schemas.

Fig. 6 shows the complex query performance for the static and
dynamic schemas. We notice that the dynamic solution is 1.5
times better on average than the static schema solution. This is

because in the static schema, the operation needs to search for
the attributes in very large attribute tables. In the dynamic case,
there are more tables to be searched, but the tables themselves
are smaller.

Fig. 7 shows the performance of the query that returns all the
user-defined attributes of a given data item. Because the
complex query first needs to search the table that contains
records consisting of the object id, attribute name and attribute
type and then queries individual tables. As a result the static
solution is 1.8 times better on average for the 1,000 attribute
namespace and 2.7 times better for the 5,000 namespace.

Complex Query rates 5Million DB size

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14

Number of Threads

Q
ue

ry
 r

at
es

 p
er

se

co
nd

Static (1K Attr) Dynamic (1K Attr) Static (5K Attr) Dynamic (5K Attr)

Fig. 6: Complex Query Performance, measured in queries per second.

GetUserAttributes for 5 Million DB Size

0
2
4
6
8

10
12
14

0 2 4 6 8 10 12 14

Number of threads

G
et

Us
er

At
tri

bu
te

s
Ra

te
s

pe
r

se
co

nd

Static (1K Attr) Dynamic (1K Attr) Static (5K Attr) Dynamic (5K Attr)

Fig. 7: Performance of the Operation that returns all the user-defined
attributes of a given item.

In summary, it is not obvious which schema, dynamic or static,
is better. The performance of the dynamic approach depends on
the number of unique attribute names. Results in using 1,000
and 5,000 different attribute names, show that the static schema
generally performs better for add operations and for querying
all user-defined attributes. The dynamic schema performs
better for complex queries that match 10 attributes for an
increasing number of requesting threads. The two schemes
show similar performance for simple queries and for complex
queries that match a varying number of attributes. The choice
of schema may depend on the expected operation workload for
the MCS. We assume that query operations will be the more
frequent than add operations. Additionally, we speculate that
value matching of desired attributes will occur more frequently
than querying the attributes a given data item. Under these
assumptions, the dynamic schema solution would be beneficial,
especially if there are not too many distinct attribute names.

Grid-Based Metadata Services

C. Evaluating Grid Service versus Web Service
Performance.

In this section we compare the performance of the MCS
implementation layered on top of a standard web service and
on top of OGSA-DAI. In all the following experiments we have
used the static schema. For this study we varied the size of the
database from 100,000 to 1 and 5 Million. In general, because
OGSA-DAI performs GSI-authentication and the web service
does not, we expect to see better performance from the latter.

 Table 9 compares simple query rate performance. Since simple
queries are very efficiently handled by the native database (as
we have seen in out previous work [17]), this experiment
clearly exposes the overhead of the services. We can see that
the grid service performs an order of magnitude worse than the
web service for all the database sizes.

of

 T
hr

ea
ds

100K
items,
web
service

 100K
items,
OGSA
-DAI

1Million
items,
web
service

1Million
items,
OGSA-
DAI

5MiIlion
items,
web
service

5Million
items,
OGSA-
DAI

1 76.72 8.13 70.91 8.13 70.13 7.22

2 90.05 11.81 93.19 11.81 91.36 11.20

4 111.37 14.55 100.30 14.55 110.31 13.30

8 91.40 13.46 98.87 13.46 98.03 14.71

12 93.35 14.63 94.52 14.63 94.92 15.17
Table 1: Performance of Simple Queries for Various Database

Sizes. The table shows the number of queries per second.

of

 T
hr

ea
ds

100K
items,
web
service

 100K
items,
OGSA
-DAI

1Million
items,
web
service

1Million
items,
OGSA-
DAI

5MiIlion
items,
web
service

5Million
items,
OGSA-
DAI

1 31.79 5.38 26.97 5.04 11.06 5.55

2 52.24 10.11 35.72 9.20 11.59 11.37

4 62.88 12.47 40.32 11.74 11.42 12.99

8 67.10 14.02 41.45 13.55 10.65 14.28

12 92.82 14.76 36.67 14.59 10.53 14.67
Table 2: Complex Query Rates for Various DB Sizes. The table

shows the number of complex queries per second.

The web-service based MCS better than OGSA-DAI-based
MCS for all database sizes: 8 times for 100K database size,
13.5 times for 1Million database size, and 13 times for the
5Million database size. We plan to increase the number of
threads further in the final version of the paper.

Because complex queries are more costly than simple queries
in terms of database performance, the differences between the
web service and OGSA-DAI are not as significant as in the
simple query case. Also, as the size of the database increases,
the average performance difference decreases (Table 2). For the

100K DB size, web-service-based MCS is over 5 times faster
on average than the OGSA-DAI solution. Interestingly, for the
5 Million DB, as the number of threads increases, OGSA-DAI
outperforms the other solution by a factor of 1.4.

The final set of results compares add performance. Table 3
shows that comparative add rates do not vary much with
database size or the number of the client threads. The web-
service-based MCS is on the average 2.6 times faster in terms
of adds per second than the OGSA-DAI-based MCS.

In summary, we see that OGSA-DAI performs worse than a
web-service. However, the implementations are not directly
comparable, since OGSA-DAI performs authentication. Also, it
is very interesting to see that OGSA-DAI performs well when
the number of client threads is high and the database size is
large, indicating better scalability than the web-service based
version. Additionally, a new version of OGSA_DAI is about to
be released. The new version promises performance
improvements. We will evaluate the new version for the final
version of this paper.

of

 T
hr

ea
ds

100K
items,
web
service

 100K
items,
OGSA
-DAI

1Million
items,
web
service

1Million
items,
OGSA-
DAI

5MiIlion
items,
web
service

5Million
items,
OGSA-
DAI

1 33.96 18.45 32.75 17.00 31.18 18.30

2 48.78 25.66 46.03 23.94 43.61 24.16

4 59.19 26.60 55.93 26.21 54.27 25.24

8 63.65 26.26 62.88 26.03 60.95 25.63

12 66.22 24.19 65.14 24.75 63.39 24.76

16 65.96 23.49 66.07 23.76 60.56 22.83

20 69.54 21.80 68.28 22.23 61.84 21.23

24 71.29 18.26 69.66 14.54 69.45 16.38
Table 3: Add Rate Performance for Various DB Sizes. The

table shows the number of adds per second.

VIII. APPLICATION USE CASES
We have used the web service-based MCS in a variety of
applications. We are currently in the process of transitioning to
the use of the OGSA-DAI implementation. MCS has been
used in Earth System Grid (ESG) application [22], in the
Pegasus workflow management system [23, 24], and others.

ESG is a climate modeling application. MCS was used as one
component in an ESG demonstration that included replica
management and storage management services as well as
various data storage services. The ESG metadata followed the
netCDF convention and was stored metadata in XML format.
To store ESG metadata in MCS, we added user-defined
attributes to the MCS to correspond to application-specific
ESG metadata attributes as well as Dublin Core attributes.
Then we parsed or “shredded” the XML metadata files to
extract individual attribute values and stored these. The ESG

Grid-Based Metadata Services

metadata included 154 user-defined attributes for data items
and 27 attributes for collections.

Pegasus [25] is a planning component developed within the
GriPhyN project (www.griphyn.org) [21]. Pegasus is used to
map complex application workflows onto the available Grid
resources. One of the applications that uses Pegasus is LIGO.
LIGO (Laser Interferometer Gravitational-Wave Observatory)
is a project that seeks to directly detect the gravitational waves
predicted by Einstein’s theory of relativity. Pegasus uses MCS
to discover existing application data products. When the
Pegasus planner receives a user request to retrieve data with
particular metadata attributes, it queries the MCS to find all
logical files with the corresponding properties. For example, a
user might request all logical files that corresponding to a
particular frequency band, and the MCS will return a list of
relevant files to the Pegasus planner. When the workflow
generated by the Pegasus planner results in creation of new
application data products, Pegasus uses the MCS to record
metadata attributes associated with those newly materialized
data products. To support LIGO application-specific metadata,
we added 23 user-defined attributes to the pre-defined
attributes provided by the MCS schema.

MCS is also used by Pegasus to store provenance and
performance information about the workflow components that
have been executed on the Grid and up-to-date information
about a workflow being executed. The information describes
the various executables used in the workflow execution, the
time it took to execute the workflow components, including the
time to perform data movement. MCS can also provide users
with various levels of detail regarding a set of workflows or
particular workflow instances. As such MCS is used in
conjunction with the Pegasus portal by the Montage
application [26, 27], an astronomy application that delivers
science grade mosaics of the sky on demand.

IX. CONCLUSIONS AND FUTURE WORK
In this paper we described, MCS, a metadata catalog service
for metadata management on the Grid. We described the
requirements that have driven the design of MCS. We
presented the data model, the authorization model and the API
used to interact with MCS. We discussed alternative schema
designs that can support a dynamic user-defined attribute set.
Finally, we evaluated the performance of two alternative
schemas and the overhead imposed by a grid service-based
implementation in comparison to a web service-based version.

In this work we have focused on a centralized metadata service
design. However, in distributed systems, it is often necessary to
distribute services to provide reliability and good performance.
In our future work we plan to investigate the feasibility of
distributing MCS, exploring issues of federation of multiple
services in a Grid environment.

ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation under grants ITR-0086044(GriPhyN) and ITR
AST0122449 (NVO) and the DOE Cooperative Agreements:

DE-FC02-01ER25449 (SciDAC-DATA) and DE-FC02-
01ER25453 (SciDAC-ESG.)

REFERENCES
[1] B. C. Barish and R. Weiss, "LIGO and the Detection of

Gravitational Waves," Physics Today, vol. 52, pp. 44, 1999.
[2] C.-E. Wulz, "CMS - Concept and Physics Potential," Proceedings

of Second Latin American Symposium on High Energy Physics
(II-SILAFAE), San Juan, Puerto Rico, 1998.

[3] "NVO," 2004. http://www.us-vo.org/
[4] I. Foster, et al., "The Anatomy of the Grid: Enabling Scalable

Virtual Organizations," International Journal of High
Performance Computing Applications, vol. 15, pp. 200-222, 2001.

[5] MCAT, "MCAT - A Meta Information Catalog (Version 1.1)."
http://www.npaci.edu/DICE/SRB/mcat.html

[6] I. Foster, et al., "The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration.," Open
Grid Service Infrastructure WG, Global Grid Forum 2002.

[7] "TeraGrid." http://www.teragrid.org/
[8] "International Virtual Data Grid Laboratory (iVDGL)."

http://www.ivdgl.org
[9] V. Welch, et al., "Security for Grid Services.," Proceedings of

Twelfth International Symposium on High Performance
Distributed Computing (HPDC-12), 2003.

[10] K. Czajkowski, et al., "A Resource Management Architecture for
Metacomputing Systems," in 4th Workshop on Job Scheduling
Strategies for Parallel Processing: Springer-Verlag, 1998, pp. 62-
82.

[11] W. Allcock, et al., "Data Management and Transfer in High-
Performance Computational Grid Environments," Parallel
Computing, 2001.

[12] A. Chervenak, et al., "Giggle: A Framework for Constructing
Sclable Replica Location Services.," Proceedings of Proceedings
of Supercomputing 2002 (SC2002), 2002.

[13] "Globus Toolkit 3." http://www.globus.org/ogsa/
[14] V. Raman, et al., "Data Access and Management Services on

Grid," GGF, DAIS group 2002.
[15] C. Baru, et al., "The SDSC Storage Resource Broker," Proceedings

of Proc. CASCON'98 Conference, 1998.
[16] I. Foster, et al., "Giggle: A Framework for Constructing Scalable

Replica Location Services.," Proceedings of SC 2002, to appear,
2002.

[17] G. Singh, et al., "A Metadata Catalog Service for Data Intensive
Applications," Proceedings of Supercomputing (SC), 2003.

[18] "Apache." http://xml.apache.org/
[19] N. Hardman, et al., "OGSA-DAI: A look under the hood: Part 2:

Activities and results," 2004. http://www-
106.ibm.com/developerworks/grid/library/gr-ogsadai2/

[20] I. Foster, et al., "The Earth System Grid II: Turning Climate
Datasets Into Community Resources," Proceedings of Annual
Meeting of the American Meteorological Society, 2002.

[21] E. Deelman, et al., "GriPhyN and LIGO, Building a Virtual Data
Grid for Gravitational Wave Scientists," Proceedings of 11th Intl
Symposium on High Performance Distributed Computing, 2002.

[22] ESG, "The Earth Systems Grid." http://www.earthsystemsgrid.org
[23] E. Deelman, et al., "Pegasus : Mapping Scientific Workflows onto

the Grid," Proceedings of 2nd EUROPEAN ACROSS GRIDS
CONFERENCE, Nicosia, Cyprus, 2004.

[24] E. Deelman, et al., "Workflow Management in GriPhyN," in Grid
Resource Management, J. Nabrzyski, J. Schopf, and J. Weglarz,
Eds., 2003.

[25] E. Deelman, et al., "Pegasus: Planning for Execution in Grids,"
GriPhyN 2002-20, 2002.

[26] R. Williams, et al., "Multi-wavelength image space: another Grid-
enabled science," Concurrency and Computation: Practice and
Experience, vol. 15, pp. 539-549, 2003.

[27] B. Berriman, et al., "Montage: A Grid-Enabled Image Mosaic
Service for the NVO," Proceedings of Astronomical Data Analysis
Software & Systems (ADASS) XIII, 2003.

