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1. Introduction. We introduce a new approach to discounted continuous-time jump
Markov decision processes (CTJIMDPs). This approach is based on the fact that strategies
that change actions between jumps yield the same performance as strategies that select
actions only at jump epochs. The latter strategies are the strategies in the corresponding
semi-Markov decision processes (SMDPs). Because a discounted SMDP can be reduced to a
discounted discrete-time Markov decision process (MDP), our approach reduces discounted
CTJMDPs to discounted MDPs. This reduction takes place both for one-criterion problems
and for problems with multiple criteria and constraints.

In addition, we prove in this paper that solutions for constrained discounted CTIMDPs
can be found in a more natural form than solutions for constrained discounted MDPs. For
constrained discounted MDPs, nonrandomized optimal strategies may not exist. However,
for infinite-horizon problems there exist optimal randomized stationary policies for which
the number of additional randomization procedures is limited by the number of constraints;
see, e.g., Altman (1999, p. 34) or Feinberg and Shwartz (1996). In this paper, we show
that optimal solutions for constrained discounted CTJMDPs can be found among the non-
randomized strategies that switch decisions between jumps, and the number of switching
points is limited by the number of constraints.

The classical approach to the analysis of infinite-horizon CTIMDP (Miller 1968, 1968a
and Yushkevich 1977, 1980a) is to consider a finite-horizon problem on an interval [0, T'],
derive optimality equations in a form of differential equations, and then take 7 — oo. Instead
of fixing the horizon [0, 7], we fix the maximum number of jumps N and consider the
problem when the process stops at the Nth jump epoch. For infinite-horizon problems, we
consider N = oco. Our approach is based on Feinberg (1994), where the horizon was the
interval between time 0 and the first jump epoch. For any strategy that changes actions over
time, Corollary 1 in Feinberg (1994) provides a probability distribution to select constant
actions in such a way that the following two characteristics remain unchanged: (i) the
expected rewards until the first jump, and (ii) the probability distribution of an action at
the first jump epoch. This paper extends this result to the discounted problems with the
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total number of jumps N being any positive integer including N = oo and this extension is
accomplished by using occupation measures; see Theorem 4.5.

At least three reductions of CTJIMDPs to MDPs have been developed in the litera-
ture. Lippman (1975) introduced uniformization to CTIMDPs; see also Cassandras (1993),
Puterman (1994), and Bertsekas (1995). By considering fictitious jumps, uniformization
relates the performance of (nonrandomized) stationary policies in CTIMDPs to the per-
formance of the corresponding policies in MDPs. Kakumanu (1977) and Serfozo (1979)
observed that optimality equations for one-criterion infinite-horizon CTJMDPs coincide with
the optimality equations for the corresponding MDPs. Therefore, algorithms for discrete
time one-criterion problems also find optimal policies for the corresponding continuous-time
problems. Yushkevich (1980) considered a reduction of CTIMDPs to MDPs with control
actions equal to functions that select actions in CTIMDPs between jump epochs.

Our reduction is different from the above reductions. First, unlike uniformization, it is
applicable to all strategies in CTIMDPs. Second, it establishes the correspondence between
occupation measures, which is a deeper result than the correspondence between optimality
equations. In particular, our reduction is applicable to problems with multiple criteria and
constraints. Third, compared to the reduction in Yushkevich (1980), the corresponding MDP
has the same state and action sets as the original CTJIMDP, while the action sets of the
MDP considered by Yushkevich (1980) were much more complicated objects: functions on
[0, 00) with the values in the sets of actions.

In fact, our reduction of a CTJMDP consists of two steps. First, we reduce a CTJIMDP
to an SMDP. An SMDP is a generalization of an MDP to continuous time when sojourn
times are random variables, while in MDPs all sojourn times are equal to 1. If the strategies
are allowed to select actions only at jump epochs in a CTIMDP, this CTIMDP becomes
a special case of an SMDP with all sojourn times having exponential distributions. Such
SMDPs, called exponential continuous-time jump Markov decision processes (ESMDPs) in
this paper, are much simpler objects than CTIMDPs. In fact, because of this simplicity, the
material on CTJMDPs in almost all textbooks (Bertsekas 1995, Cassandras 1993, Sennott
1999) is limited to ESMDPs. Second, discounted SMDPs can be reduced to discounted
MDPs; see Appendix A for details.

Section 2 introduces CTJMDPs. Section 3, which was written for the reader’s conve-
nience, provides informal description of models and strategies considered in this paper.

Section 4 reduces discounted CTIMDPs to discounted ESMDPs. We introduce occupa-
tion measures for CTJMDPs, and for a strategy in a CTJIMDP we construct in Theorem 4.5
a randomized Markov policy in the corresponding ESMDP such that their occupation mea-
sures coincide. For a randomized Markov policy in an ESMDP, the decisions are selected
only at jump epochs and depend only on the current states and on the current jump numbers.
In our opinion, Theorem 4.5 is the central statement of this paper. This theorem is similar
to Lemma A .2, which, for a discounted criterion, generalizes from MDPs to SMDPs the
well-known result by Derman and Strauch (1966).

Section 5 establishes the converse of Theorem 4.5. Under certain conditions, Theorem 5.2
constructs an equivalent switching Markov policy for a randomized Markov policy in the
corresponding ESMDP. For switching Markov policies, decisions depend on the current
state, the jump number, and the time passed since the last jump. If the decisions depend
only on two parameters—the current state and the time passed since the last jump—the
strategy is called a switching stationary policy. Thus, §§4 and 5 establish the equivalence
between the switching stationary (or Markov) policies in a CTJMDP and the randomized
stationary (respectively, Markov) policies in the corresponding ESMDP.

Section 6 deals with the optimization problems. Because the theory of constrained opti-
mization is better developed for countable MDPs than for Borel state MDPs, we restrict our
attention to countable state problems in §6. We establish the existence of optimal switch-
ing stationary policies, and in addition, the number of switching points is bounded by the
number of constraints. We discuss linear programs for finding such policies.
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In §§2 and 4-6 we limit our consideration to only nonrandomized strategies. In fact,
even in these sections we consider more general classes of strategies than is usually done
in the literature on CTIMDPs, because early papers on CTIMDPs (Miller 1968, 1968a, and
Kakumanu 1971) and almost all later papers considered (nonrandomized) Markov strategies
as the most general class of strategies. For a Markov strategy, decisions are functions of
the current state and time. Yushkevich (1977) introduced past-dependent strategies, and
Kitaev (1985) gave an equivalent definition of past-dependent strategies based on the paper
by Jacod (1975); see also Chapter 4 in Kitaev and Rykov (1995).

Section 7 deals with randomized strategies for CTIMDPs. We prove that switching sta-
tionary (and Markov) policies are optimal within the larger class of randomized strategies.
Randomized Markov strategies for CTIMDPs were introduced by Hordijk and van der Duyn
Schouten (1979) and general randomized strategies were introduced by Kitaev (1985). In §8
we prove in Theorem 8.3 the existence of optimal randomized policies for CTIMDPs such
that the number of randomization procedures is not greater than the number of constraints.
We also prove in Theorem 8.4 that a randomized policy for an ESMDP can be imple-
mented as a randomized policy for the corresponding CTIMDP. Thus, for infinite-horizon
constrained discounted CTJMDPs, there exist three types of optimal strategies: (i) switching
stationary policies, (ii) randomized stationary policies for ESMDPs, and (iii) randomized
stationary policies for CTIMDPs. The number of switching points in (i) and the number of
randomization procedures in (ii) and (iii) is less than or equal to the number of constraints.
In our opinion, switching policies are the most natural among (i)—(iii). Appendix A contains
all necessary results for SMDPs and their reduction to MDPs.

2. Definitions. The probability structure of a CTIMDP is defined by {X, A, D(x),
q(Y|x, a)}, where
(i) X is a Borel state space (a measurable space (X, %) for which there exists a one-to-
one measurable correspondence onto a Borel subset of a separable complete metric space.
The o-field % is called Borel; see Dynkin and Yushkevich 1979, Appendix 1, for details).
(ii) A is a Borel action space endowed with the Borel o-field 4.
(iii) D(x) are Borel sets of actions available at x € X. It is assumed that

graph D ={(x,a): xe X,a € D(x)}

is a Borel subset of X x A containing the graph of a Borel mapping from X to A (the Borel
o-field on X x A is the minimal o-field on X x A containing all sets ¥ x B with Y ¢ &
and B € ).

(iv) g(-|x, a) is an infinitesimal characteristic that is a nonnegative measure on (X, %)
defined for all x € X and a € A. It is assumed that g satisfies the following conditions:
(1) g({x}|x, @) =0 for all x and a, (ii) there is some constant M < oo such that ¢(X|x, a) <
M for all x and a, and (iii) g(Y|x, a) is a measurable function on X x A for all Y € 2. Let
q(x,a) = q(X|x, a). If an action a is selected at the state x and g(x, a) =0 then x is an
absorbing state. If g(x, a) > 0 then the sojourn time has an exponential distribution with the
intensity g(x, a) and the next state belongs to ¥ € % with probability ¢(Y|x, a)/q(x, a).

For CTIMDPs it is possible to change actions any time. This capability does not exist in
MDPs and SMDPs. It creates additional technical difficulties in constructions of stochastic
processes defined by strategies. Starting from the beginning (Miller 1968; Kakumanu 1971,
1977), almost all studies of CTIMDPs considered nonrandomized Markov strategies as the
most general class of strategies. For Markov strategies, the decisions are nonrandomized
and depend only on the current state and time. Each Markov strategy defines a Markov
process on the state space X.

Yushkevich (1977, 1980, 1980a) defined general nonrandomized strategies for which deci-
sions depend on: (a) the previous states and jump epochs and (b) the current state and time.
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We note that, given the knowledge of jump epochs in (a), the knowledge of the current time
is equivalent to the knowledge of the time passed since the last jump. Yushkevich (1980)
constructed appropriate stochastic processes and expectations by reducing a CTIMDP to
the SMDP with actions being Borel mappings from R, to the sets of available functions.
If an action function f is selected when the system jumps to a state x, this function defines
control actions as long as the system stays in x. If the time ¢ passed since the last jump
is ¢, the action is f(r). Kitaev (1985) gave an equivalent construction using the results by
Jacod (1975). In this section, we introduce these two constructions and explain why they
are equivalent.

We consider only nonrandomized strategies in this section. Randomized strategies will be
defined in §7 and studied in §§7 and 8. In particular, it will be shown there that nonrandom-
ized strategies are optimal within the broader class of randomized strategies for problems
with multiple criteria and constraints.

We describe the approach introduced by Yushkevich (1977, 1980) first. According to this
approach, a CTJMDP is an SMDP in which an action that the controller selects when the
system jumps to a state x is a Borel function on R, with the values in D(x). The value of
such a function at ¢ defines the action selected in the CTIMDP after time ¢ has passed since
the last jump to the current state x. In this SMDP the controller does not use information
about previous actions.

Let F, =X x (R, x X)" be the set of histories x,, &, x,, &, ..., x, up to and including
the nth jump, where x; is a state after ith jump and &, is the corresponding sojourn time. Let
F =Up<no F,, be the set of histories each of which has a finite number of jumps. A strategy
@ is a Borel mapping from F x R, to A such that ©(xy, &, x,, &, - - -, X,, 1) € D(x,). In
this definition, 7 is the time passed since the last jump epoch ¢, =&, + &, +---+§,_,. The
actual time is s =1, 4 1.

Now we construct the stochastic processes defined by strategies. Following Yushke-
vich (1980), we define an SMDP with the state space X and the actions at state x € X
being Borel functions from R, to D(x). Because the system does not change states between
jumps, D(x) is a valid range for action functions. We call this SMDP a Yushkevich SMDP
(YSMDP). Strategies for the CTIMDP are nonrandomized strategies in the corresponding
YSMDP.

We introduce formal definitions. Let B be a Borel space and ®, be the space of measur-
able functions on R, with values in B. Two functions from ®; are equal if they are equal
almost everywhere on R, with respect to the Lebesgue measure on R, . There is a metric
on ®, such that this set is Borel (Yushkevich 1980, Lemma 1).

We consider Borel sets U = ®, and U(x) = ®p,), x € X. We consider an SMDP with
the state space X, action space U, sets of available actions U(x), and transition kernel

t ¢
2.1) 01, Ylx,u) = [ (Y|, u(s))e a0 g,
0

where u € U(x), i.e., u is a Borel function from R, to D(x). Let {X, U, U(x), Q} be,
respectively, the state space, the set of all actions, the sets of actions available at x € X, and
the transition kernel for the YSMDP.

Let ¢ be a strategy for the CTIMDP. Then ¢ is also a strategy for the YSMDP defined
by @(xy, & X1, ..., x,) = u, where u(t) = @(xy, &, x,,...,x,,t), t € R,. This inter-
pretation of ¢ is correct because ¢ is a measurable mapping from F to U such that
o(xp, €,y ..., x,) € U(x,); see Yushkevich (1980, Lemma 3). Because a YSMDP is an
SMDP, we can expand in a standard way X to X and U to U; see Appendix A.l. An initial
probability measure u on X and a strategy ¢ define a probability measure P¢ on (£, F),
where O = (X x R,)™ and 7 is the Borel o-field on Q defined by the products of the Borel
o-fields on X and R, . So an initial distribution p and a policy ¢ define the probability
space (Q, 7, [P’j).
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Given (Q, 7, P#), we can define a marked point process X, for which (2, ¥) is a set of
internal histories. For w = (x,€yx,§,,...) we define 7, =0, 1, =1¢t,_,+ &, n=1,2,...,
and t,, =1lim,_, t,. Then {x,,¢,} is a marked point process and () is the set of internal
histories of the process X (w) =x,I{t, <s <t }+xI[{s>1_}, teR,.

We can also define a process of actions A (w) = @(xg, s X5 €15 -+ -5 X5 8 — 1) {2, <
s <t }+al{s>1t_}. Let a, be an action that defines transition probabilities at (n+ 1)th
jump, a, = ¢(x4, &, x1, &1, - -2, X, €,), n=0,1,.... We remark that another natural nota-

tion for a, would be A,  _.

An equivalent construction of stochastic processes defined by strategies was introduced
by Kitaev (1985). Consider the space (Q, 7). Let 7, = 0{X,}. Then A (w) is a predictable
mapping from (2 x R,) to A such that A (w) € D(X,) for all s € R,; see Jacod (1975,
Lemma 3.3). We define a predictable random measure

(2.2) v¥(w, ds, dx) = q(dx|X,, A,) ds,

where v?(w, 0, dx) = u(dx). In view of Jacod’s (1975) Theorem 3.6, an initial distribution
p and a strategy ¢ define a unique probability measure 7 on (Q, F) such that v is the
predictable projection of the random measure defined by P7. Jacod’s (1975) Proposition 3.1
implies that this measure P coincides with the measure defined by the transition probabil-
ities (2.1).

Now we define particular classes of strategies for CTIMDPs. Let w, = x4, &y, - - - »
&, 1, x,. A strategy ¢ is called a (switching) policy if ¢(w,,t) does not depend on
&os--->6,_1. A policy ¢ is called nonswitching if ¢(x,...,x,,) is constant in ¢ for
all x,,...,x,, i.e., actions cannot be changed between jumps. In this case, we con-
sider @(xy, ..., x,) =@(xy,...,x,, 1) A nonswitching policy ¢ is called a Markov policy
if (xg,...,x,) =¢(x,,n) for all w, € Q. A Markov policy ¢ is called a stationary pol-
icy if ¢(x,,n) = ¢(x,). We remark that Markov policies differ from Markov strategies
considered in many papers on CTIMDPs as the most general class of possible strategies.
For a Markov policy, decisions depend on the current state and the number of jumps that
occurred. For a Markov strategy, decisions depend on the current state and time; ¢(w,,, 1) =
o(x,,t, + 1) = ¢(X,,s). However, we do not consider Markov strategies in this paper
because, following Yushkevich (1977, 1980, 1980a) and Kitaev (1985), we have defined
stochastic processes for general strategies.

Markov policies do not change actions between jumps. A (switching) policy ¢ is called
a switching Markov policy if ¢(x,, . . ., x,,t) = ¢(x,, n, t). For a switching Markov policy,
decisions depend on the current state, the number of prior jumps, and the time passed since
the last jump. For a switching Markov policy ¢ and for each couple (x,n) € X x {0, 1,...},
we denote by R?(x, n) the subset of R, on which this function ¢(x, n, r) is discontinuous
in ¢ with (x, n) being fixed (we follow the convention that a function defined on R, is
continuous at 0 if it is right-continuous at 0).

Let Z¢ be the sets of all couples (x, n) such that the function ¢(x, n, t) is not constant
in ¢ for a switching Markov policy ¢. If Z¢ is not finite, we say that a switching Markov
policy ¢ has an infinite order. If Z¢ is finite, we define

N¢= > [|R®(x,n)|

(x,n)ez¢

as a number of switching times for the switching Markov policy ¢, where |E| denotes the
cardinality of the set E. We say that a switching Markov policy ¢ is a switching Markov
policy of order | if N® <[. A switching Markov policy of order 0 is a Markov policy.

A switching Markov policy ¢ is called a switching stationary policy if ¢(x,,n,t) =
¢(x,,1). Let ¢ be a switching stationary policy. If ¢ is a switching stationary policy,
R¢(x,n) = R®(x,m) for any x € X and for any m,n =0, 1,.... Therefore, a switching
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stationary policy is either a (nonswitching) stationary policy or has an infinite order. For
a switching stationary policy ¢ and for x € X we define R¢(x) as a subset of R, where the
function ¢(x, r) is discontinuous in ¢ for a fixed x. Let X¢ = {x € X| R?(x) # @}. If X? is
infinite we say that the policy ¢ is an co-switching stationary policy. If X¢ is finite, we say
that the policy is k-switching stationary if Y, _y. |[R?(x)| < k.

A switching Markov policy 7 of order m is called an (m, n)-policy if there exists a
stationary policy ¢ such that 7(x, [, 1) = ¢(x) for all x€ X, [>n, and t € R,. An (m, n)-
policy is called a strong (m, n)-policy if there exists an m-switching stationary policy ¢*
such that U,_y U,er, {@(x, 1, 1)} = U, {¢*(x, 1)} for all x € X.

We observe that a switching Markov policy is a switching stationary policy in the
CTIMDP with the state space X x {0, 1,...}. Also, a Markov policy of order k in the
original CTIMDP is a k-randomized stationary policy in that CTIMDP and vice versa.

A reward structure of a discounted CTJMDP is defined by the following four objects:

(i) positive discount rate «;

(i) number of constraints K;

(iii) reward rates 7, (x, a), k=0,...,K; and

(iv) instantaneous rewards R;(x, a, y) earned if the process jumps from state x to state y
and action a was chosen at x at jump epoch, k=0, ..., K.
The functions r, and R}, k=0,1,...,K, are assumed to be measurable and uniformly
bounded above.

For an initial distribution u, a policy ¢, and k =0, . .., K, the expected total discounted

rewards are

03 W) =B X R+ [ RO A )|

n=0

The expected total discounted rewards can be interpreted as the expected total reward for
the YSMDP with the rewards

&o
(2.4) r(x, u) = [E{e’“gURz(xO, u(&y), x,) +/0 e Y F (xg, u(?)) dt|x, = x}.

A strategy 7 is called optimal for a one-criterion CTIMDP if W (u, 7) > W(u, o) for
all initial distributions p and for all strategies o. For a CTJIMDP with (K + 1) criteria,
we fix an initial distribution w and numbers C,, ..., Cx. A strategy 7 is called feasible if
W, (w, m)>C,, k=1,...,K. If a feasible strategy exists, the CTIMDP is called feasible.
A feasible strategy 7 is called optimal if W,(w, ) > W,(u, o) for all feasible strategies o.

We sometimes omit indices k =0, 1, ..., K for one criterion problems and for multiple
criterion problems if the formula holds for all criteria. We assume throughout this paper
that 0 x oo = 0. If an initial distribution w is concentrated at one point x, we substitute
p with x. Thus, we write W(x, 7), P7, and ET instead of W(u, 7), P7, and E] when
p(x)=1.

REMARK 2.1.  We can consider a nonhomogeneous CTIMDP for which the sets of avail-
able actions D, infinitesimal characteristics ¢, and rewards 7, R}, k=0, ..., K, depend on
the jump number. The formal definitions are similar to the homogeneous CTIMDPs but the
state parameter x should be replaced with (x,n), n=0,1,..., in the definitions of D, g,
7y, and R;. A nonhomogeneous CTJMDP is equivalent to a homogeneous CTIMDP with
the state space X x {0, 1,...}. Therefore, the existence of optimal K-switching policies
for homogeneous CTIMDPs implies the existence of optimal switching Markov policies
of order K for nonhomogeneous CTJMDPs. An important example of a nonhomogeneous
CTIMDRP is a model with a finite number of jumps (or steps). If Q(X|x, N,a) =0 and
7(x,N,a) =0 for all a € D(x,N), x€ X, and k =0,...,K, then we deal with an
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N-jump CTJMDP. In this case, the equivalent homogeneous model has the state space
X x {0, ..., N}. Then (2.3) transforms into

N—1 .
Wi, ¢) = [Eii[Z e R (X, 1,y X)) /0 e i (X, N, A,) dr},
n=0

and the terminal rewards Rj(x, N — 1, a, y) typically do not depend on x and a.

3. Informal descriptions of models and strategies. In this section, written for the
reader’s convenience, we provide informal descriptions of the major models and major types
of strategies considered in this paper.

SMDP, semi-Markov decision process: a generalization of a discrete-time MDP when
sojourn times are not identical to 1. Actions are selected immediately following state transi-
tions. After an action is selected, the sojourn time has a given arbitrary distribution. Though
the state of an SMDP remains unchanged between the decision epochs, SMDPs consid-
ered in this paper can model the situations when the “underlying state” of the system may
change between jumps, as it can take place in control of M/G/1 and GI/M/1 systems; see
the paragraph following the definition of rewards r, in Appendix A.l.

CTJMDP, continuous time Markov decision process: a continuous time version of an
MDP in which actions may change any time. However, if the selected actions are constant
between jumps, the sojourn times have exponential distributions. The cumulative reward at
a state is the sum of two components: a discrete component collected at jump epochs and
a continuous component defined by the reward rate that depends only on the current state
and action.

ESMDP, exponential semi-Markov decision process: a simplified version of a CTIMDP
when actions cannot be changed between jumps and all primitive data are the same as in a
CTIJMPD. An ESMDP is an SMDP in which the sojourn times, defined by all state-action
pairs (x, a), are exponential.

YSMDP, Yushkevich semi-Markov decision process: a construction introduced by
Yushkevich (1980). In fact, it is an SMDP with the actions being action-valued functions
f(1), t € R, that control a CTJMDP between jumps, where ¢ is the time passed since the
last transition.

[CTJMDP], a CTJIMDP with the sets of actions being the sets of probability distributions
on the sets of actions of the original CTJMDPs. The infinitesimal characteristics and reward
rates are the corresponding convex combinations of the appropriate values for the CTIMDP;
the rewards collected at jump epochs can be set equal to O without loss of generality. It is
natural to call [CTJMDP] a convex hull of the original CTIMDP.

[ESMDP], an ESMDP for the [CTIMDP]. It is natural to call [ESMDP] a convex hull
of the original ESMDP.

Strategies for SMDPs. A history is a finite sequence x,a,&,. - - X,_1d,_1&,_1%, of
states, actions, and sojourn times. For a known history, a strategy selects an action. In gen-
eral, actions can be selected randomly and a strategy can be randomized. If each trajectory
defines an action deterministically then a strategy is called nonrandomized.

Policies for SMDPs. If instead of trajectories xya,&,. - - x,_14,_1€,_,x, the decision
maker observes only x,ay. . . Xx,_;a,_,X,, a strategy is called a policy. In other words, the
decision maker does not use the information about sojourn times. In particular, if a strategy
is a policy, the current time s is unknown to the decision maker. However, the number of
jumps that occurred may be known. Similar to strategies, policies can be randomized. We
also may consider nonrandomized policies.

Because policies ignore the continuous time parameter s, a strategy is a policy if and only
if it is a policy in an MDP with the same state and action spaces as in the given SMDP.
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In this paper we follow the notation used in Feinberg and Shwartz (1996) for MDPs. Similar
to MDPs, we consider randomized Markov policies, for which action selections depend only
on the current state and the current jump number, and randomized stationary policies for
which actions depend only on current states. If these policies are nonrandomized, they are
called Markov or stationary, respectively.

A randomized stationary policy is called m-randomized stationary, m =0, 1, ..., if the
number of additional actions used by randomization procedures is limited by m. A ran-
domized Markov policy is called a randomized Markov policy of the order m if the total
number of additional actions required by randomization procedures in all state-jump num-
ber pairs (x, n) is limited by m. A randomized Markov policy of order m is called an
(m, n)-policy if it is (nonrandomized) stationary from jump n onwards. An (m, n)-policy
is called a strong (m, n)-policy if the total number of additional actions used in all states
because of its nonstationarity is limited by m. The details on SMDPs can be found in
Appendix A.

Strategies for CTJMDPs. A history at the moment of the nth jump is w, =
x0éy- - - x,_1€,_1x,, Where x,, x,, ..., x, are the states and &, &, . .., §,_, are the sojourn
times. If n jumps have occurred prior to the current time, the history is (w,, t), where r >0
is the time passed since the last jump. A (nonrandomized) strategy selects for any history
(w,, t) an action from the set of actions available at the current state x,. A strategy is called
a policy if these selections do not depend on the past sojourn times &, &, ..., &,_,. A pol-
icy is called nonswitching if it does not change actions between jumps. Thus, nonswitching
policies are in fact nonrandomized policies in the corresponding ESMDP and MDP. The only
minor difference is that the nonrandomized policies in SMDPs and MDPs know the history
of selected actions. However, this additional information is unimportant because nonrandom-
ized policies for MDPs in fact do not use it. Indeed, for any nonrandomized policy ¢ for
an MDP that uses the information about the past actions, one can consider a policy ¢ that
does not, ¥(xy, X;, - . ., X,) = @(x0, ©(xg), X1, ¢(x9, @(x0)5 X,)s - - - » x,). The policies ¢ and
¢ always select the same actions.

A nonswitching policy is called Markov if the selected action is a function of the
current state and the number of jumps (x,,n). A (switching) policy is called switching
Markov if the action selection depends only on the current state, the number of jumps,
and the time passed since the last jump (x,, n, ). If the above functions do not depend
on the number of jumps n, then the corresponding policies are called stationary and
switching stationary.

Similar to m-randomized stationary policies for SMDPs, we consider m-switching sta-
tionary policies for CTIMDPs. In fact, m-switching stationary policies are simpler objects
that m-randomized stationary policies. For an m-switching stationary policy ¢, the number
of points (x,¢) in which the function ¢(x, t) is discontinuous in ¢ is not greater than m.
A switching Markov policy ¢ is called Markov switching of order m if the number of points
(x, n,t) where the function ¢ is discontinuous in ¢ is not greater than m. If a switching
Markov policy of order m is (nonswitching) stationary from jump »n onward, it is called an
(m, n)-policy. An (m, n)-policy ¢ is called a strong (m, n)-policy it (X, {0,1,...},R,) =
Y (X,R,) for some m-switching stationary policy .

Randomized strategies for CTJMDPs. The definition of randomized strategies uses
the convention that convex combinations of actions can be implemented as actions with the
infinitesimal characteristics and reward rates being the convex combinations of the original
characteristics. In addition, rewards during jumps should be defined for randomized actions.
Though this can be done, it is easier to define randomized policies for the models with zero
rewards/costs incurred during jumps. Fortunately, in view of Corollary 4.4, by changing
reward rates, it is possible to reduce the model with rewards incurred at jumps to the
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model without rewards incurred at jumps. The answer to the question, whether randomized
strategies can be indeed implemented, depends on a particular application. Fortunately,
randomized strategies do not outperform nonrandomized strategies and therefore there is no
need to consider them in applications when they are not natural; see §7.

A randomized strategy for a CTIMDP is a strategy for [CTIMDP]. Similarly, (nonswitch-
ing) randomized Markov policies are (nonswitching) Markov policies for [CTJIMDP]. The
same is true for randomized stationary policies.

Randomized stationary and randomized Markov policies for a CTJMPD are the same
objects as, respectively, stationary and randomized Markov policies for the correspond-
ing ESMDP. They are defined by the same transition probabilities but they have different
impacts on the transition mechanisms in the corresponding models. Because they are the
same objects, we shall keep for these policies the same definitions we use for them in
SMDPs, but we shall indicate that we deal with randomized policies for a CTIMDP. Thus,
we shall consider m-randomized stationary policies for a CTIMDP, randomized Markov
policies of order m for a CTIMDP, randomized (m, n)-policies for a CTIMDP, and ran-
domized strong (m, n)-policies for a CTIMDP.

For example, let two actions a and b be selected at state x. The jump intensities are
q(x,a) =1 and g(x, b) =2. If a randomized stationary policy for the ESMDP selects these
actions with the probabilities 0.5, the sojourn time is a mixture of two exponential distri-
butions and its expectation is 3/4 =0.5/¢g(x, a) +0.5/q(x, b). If a randomized stationary
policy for the CTIMDP selects these actions at each time with the probabilities 0.5, the
sojourn time is exponential with the intensity 3/2 = 0.5 % g(x, a) + 0.5 * g(x, b), and its
expectation is 2/3. We remark that, as the former example illustrates, the word “exponential”
in the abbreviation ESMDP means that sojourn times are exponential for nonrandomized
policies. In general, for randomized policies in an ESMDP, these sojourn times are not
exponential. They are mixtures of exponential distributions. Contrary to this, the sojourn
times are exponential for randomized policies in CTJIMDPs.

Figure 1 represents some of the major classes of strategies considered in this paper.
Several important classes of policies are not included in Figure 1. For example, K-switching
and K-randomized stationary policies (for the ESMDP and for the CTIMDP) are subclasses
of switching stationary and appropriate randomized Markov policies; (K, n)-policies for
CTIMDPs are subclasses of switching Markov policies; randomized (K, n)-policies are
subclasses of randomized Markov policies in CTIMDPs, and (K, n)-policies for ESMDPs
are subclasses of randomized Markov policies in ESMDPs. In addition, Markov policies
are subsets of each of the following three classes: switching Markov policies, randomized
Markov policies in CTJMDPs, and randomized Markov policies in ESMDPs.

4. Reduction of CTJMDPs to SMDPs. As explained above, a CTIMDP is in fact a
YSMDP. YSMDPs are complicated objects. For example, if a CTIMDP contains finite state
and action sets, the corresponding YSMDP contains function-valued action sets. For each
state x, this action set is infinite if the original action set D(x) is not a singleton. For a
CTIMDP we define the Exponential SMDP (ESMDP), which is an SMDP with the state
space X, action space A, sets of available actions D(x), transition kernels

0, if ¢(x,a) =0,
(41) Q(ts Y|x7 a):
q(Y|x,a)(1 —e 19 /q(x,a), otherwise,

discount factor «, and reward functions

Fk(x’ a) +fX R:(x’ a, y)Q(dy|x’ a)
a+q(x,a)

(4.2) r.(x,a)=

s
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1c4c7c10c13c14
2

Stationary policies

Switching stationary policies

Randomized stationary policies in the ESMDP
Randomized stationary policies in the CTJIMDP
Switching Markov policies

Randomized Markov policies in the ESMDP
Randomized Markov policies in the CTIMDP

All (nonrandomized) switching policies

All randomized policies in the ESMDP

10. All randomized nonswitching policies in the CTIMDP
11. All (nonrandomized) switching strategies

12. All randomized strategies in the ESMDP

13. All randomized nonswitching strategies in the CTIMDP
14. All (randomized switching) strategies

PRIAANE W

FIGURE 1. Some of the Classes of Strategies for CTIMPDs (class 1 is optimal for one-criterion problems; 2, 3,
and 4 are optimal for constrained problems; 5, 6, and 7 are optimal for constrained finite-step problems).

where k=0,1,...,K, x € X, and a € D(x); see Appendix A for all necessary definitions
and facts for SMDPs. We remark that an ESMDP is a much simpler object than a YSMDP.
The action sets in a CTIMDP and in the corresponding ESMDP are the same and (2.1, 2.4)
transform into (4.1, 4.2) when u(t) = a = const. The only difference between a CTIMDP
and the corresponding ESMDP is in the way these processes can be controlled. For exam-
ple, it is not possible to change actions between jumps in an ESMDP because it is an
SMDP.

In this section, for an arbitrary strategy 7 in a CTIMDP we construct a policy o in the
corresponding ESMDP such that the occupation measures are equal for 7 and o. Therefore,
the expected total rewards for the corresponding criteria k =0,...,K are equal for m
and o as well, because reward rates do not depend on occupancy times in states.

We use the same symbol W to denote both the expected total discounted rewards in a
CTIMDP and in the corresponding ESMDP. Thus, the interpretation of W(u, 7) depends
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on whether 7 is a strategy for a CTJMDP or a policy for an ESMDP. This convention is
consistent with the following two facts:

(i) A nonswitching policy for a CTJMDP is a nonrandomized policy for the correspond-
ing ESMDP; in addition, the expected total rewards are equal in these two models for the
corresponding criteria; and

(ii) Strategies for a CTIMDP as well as randomized strategies for the corresponding
ESMDP are particular cases of randomized strategies for CTIMDPs defined in §7 (the
former is obvious, and the latter follows from (8.6) with x, replaced by w,).

For a CTJMDP, we define occupation measures

(4.3) g (Y,B)=E e I{x,eY,a,eB}, n=0,1,...,Ye¥, Besl.

Then for a bounded above (or below) measurable f

(4.4) Ere e f(x,, a, )—/ / f(x,a)g; ,(dx, da),

where (4.3) implies (4.4) for indicator functions and therefore for f. We also define occu-
pation measures

(4.5) G, ,(Y,B,Z)=E e I{x,€Y,a,€B,x,,, €Z},
(4.6) HT,(Y,B)=E7 [ e™I{X, €Y, A, €B}di,
where n=0,1,...,Y,Ze%, Be . Similar to (4.4),
(4.7) E7e " f(x,, ay, Xy 1) =/ / / f(x,a,2)G™ (dx, da, dz).
® xJAa/x pon
[Vl
(4.8) E7 / Y p(X,, A)dt = / / f(x, a)HT (dx, da)
Iy XJA ’
for bounded above (or below) functions f.
Lemma 4.1, If g7, =g, , and Hy ,=H7,, n=0,1,..., for two strategies o and

then W(w, o) =W (w, 7
ProOF. We have from (4.7) and (4.8) that

4.9) W(x,77)=”§0|:/X/AfXR*(x,a,z)Gl’Z,n(dx,da,dz)—i—/X/AF(x,a)HlZn(dx,da)i|.

Therefore, if G, ,=Gy ,and H] ,=H7 ,n=0,1,..., then W(u, o) =W(u, 7). We
have
(4.10)  G7 (Y,B.Z) =ETe “I{x, €Y, a,€B}(x,, €Z)

mon
=EE [e " I{x, €Y, a, € BH{x,,, € Z}|a,, x,, t,,1]

VA
= Ege’“"’“l{xn c Y,an EB} Q( |)C
q(x,, n)
VA
_/ 9Z1x.a) T (dx. da).
B q(x a)

where 9 is equal to O by definition and the last equality follows from (4.4). Thus, 8un=28un
1mphes G, ,=6G;,. 0O
The followmg lemma describes the relationship between measures g7, and H .

LEMMA 4.2.  For every strategy T, initial distribution w, and n=0,1,...,

g;;n(y,B)=/Y/Bq(x,a)H;n(dx,da), Ye¥, Bedl
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To prove Lemma 4.2, we consider the following auxiliary result, which was proved in
Feinberg (1994) for a = 0.

LEMMA 4.3. Let g be a nonnegative measurable function on A. Let ¢ be a random
variable with a distribution P{& <t} =1 — e~ 0944 where a(t) is a measurable mapping
Sfrom [0, 00[ to (A, ). Let g and H be two measures on A defined by

g(B) = Ee *I{a(£) € B}, Bed,
H(B) = E/g e“I{a(r) € BYdt, Bes.
0

Then g(B) = [, q(a)H (da) for all B € si.

ProoOF. The proof is similar to the proof of Theorem 1 in Feinberg (1994). Let f(t) =

fof e *I{a(s) € B}ds. This function is nondecreasing and (almost everywhere) differen-

tiable. Therefore, Ef (§) = fooo f'(t)P{¢ > t}dr. We have that

(4.11) H(B) = Ef(£) =/0°°efm1{a(,) € Bje~fiatanas gy
Straightforward computations imply that

(4.12) §(B) = /Ooo q(a(t))e “I{a(t) € Bye™ o 1@ ds gy

Formulas (4.11) and (4.12) imply the statement of the lemma. O
PrOOF OF LEMMA 4.2. From (4.8) we have

(OS]
(4.13) /Y/Bq(x, a)HT (dx, da) =E;;/t e ¥g(x,, A){x, €Y, A, €B)dt.
This equality implies

(4.14) /Y/Bq(x, a)H7 ,(dxda)

£
— [E:Iefal,ll{xn e Y}[E,Z I:/(; e*mq(xr” At,l-H)I{Atn-H (S B} dt|(l),l]
— 7o~ T[ o= %n —
=E e " I{x, e Y}E [e *I{a, € B}|w,] =g(Y, B),

where the second equality follows from Lemma 4.3 and the third equality follows from
4.3). O

COROLLARY 4.4. For any initial distribution w and for any strategy T,

(4.15) W(x,7)= Z/ / |:/ R*(x, a, z)q(dz|x, a) + 7(x, a)]H: ,(dx, da).
o’x/al/x

Therefore, if Hli"n = H;; » n=0,1,..., for two strategies o and mw then W(u,o) =

W (w, ).

PrOOF. (4.15) follows from (4.9), (4.10), and Lemma 4.2. O
For a strategy 7 in a CTIMDP and an initial distribution w, we define for n =0, 1, ...,
the occupation measures

(4.16) M:n(Y,B)://H:n(dx,da)(a+q(x,a)), Ye#, Bed,
, L HL

and

(4.17) mT (V) =MT (Y, A).
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For the corresponding ESMDP, we define a randomized Markov policy o such that

dx,
4.18) a,,(B|x)_L Besl, xeX.

my ,(dx)

We remark that o, are defined by (4.18) 171: .-a.€. We select regular transition probabili-
ties o, such that o (D(x)|x) =1 for all x € X. Formula (A .2.5) defines occupation measures
My, for the ESMDP.

THEOREM 4.5. Let an initial distribution  be fixed. Let m be an arbitrary strategy for
a CTIMDP. Then

(4.19) M =M"., n=01,...,

M, n o, n
for a randomized Markov policy o defined by (4.18) for the corresponding ESMDP and
therefore W(w, o) = W(w, 7).

ProoF. As follows from (4.15), (4.16), and (4.2),
(4.20) W(w, 7) = Z/ / r(x, a)M:n(dx, da).
ne0’X /A ’

This formula, the similar formula for SMDPs (A.3.11), and (4.19) imply the second state-
ment of the theorem.
Now we prove (4.19). We observe that for any n =0, 1, ...

(4.21) /yAH;n(dx,da)(a+q(x,a)) — aHT (Y, A)+g7 (Y, A)

(OS]
= a7 /, e I{X,eY)di+ETe " I{x, €Y}

_ [T ,—at,

=[Eje I{x,eY},
where the first equality follows from Lemma 4.2, the second equality follows from defini-
tions (4.6) and (4.3) of H and g, and the third equality is straightforward.

First we show that mj , = "Nﬂf,o- The definition of M7, implies that m} , = u for any
policy o in any SMDP. We also have that

(4.22) no(Y)= ff(a—i—q(x a))H; (dx, da) = u(Y),

where the first equality follows from definition (4.17) of m; the second one follows from
(4.21) and t, =0.
Assume that for some n=0,1,. ..

n

(4.23) AT =m .
Then
M n(dx da) ~
(4.24) LB = [ [ m7 ()= B,

where the first equality follows from (A.2.9) and (4.18); the second equality follows from
(4.23).
Now let (4.19) hold for some n=0, 1,.... Then (A.2.7) and (4.1) imply that

(425 my ., (Y) = /X/ q(Y]x, a)/ e~ latabe )t gy My (dx, da)

alx.a)
/ aa+q(x,a) a) o, da) = // 9(Y|x, )H, (dx, da),

where the last equality follows from (4.19) and (4.16).
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We have that

(4.26) W70 = [ [ B, (dx da)(@+q(x, )
=ETe " {x,,, €Y} =GT (X,A,Y),

where the first equality is (4.16, 4.17), the second equality is (4.21), and the last is (4.5).
We also have from (4.10) and Lemma 4.2 that

q(Y|x,. a,)
i qGa,)
Therefore, from (4.25-4.27) we have m?

427) GT (X, A, Y):/X g7 (dx, da)_/ / g(Y|x, )HT (dx, da).

mon+l m[.L n+1° U

CoROLLARY 4.6. Consider a strategy 1 in a CTJIMDP. (i) For a one-criterion problem,
if for any initial state distribution w a randomized Markov policy o, defined by (4.18), is
optimal for the corresponding ESMDP with the initial state distribution [, then the strategy
7 is optimal for the CTIMDP when . is the initial state distribution. (ii) For a constrained
problem with multiple criteria, if a randomized Markov policy o defined by (4.18) is optimal
in the corresponding ESMDP, then the strategy T is optimal in the CTIMDP.

We remark that if 7 is stationary or Markov then o = 7 satisfies (4.19) with any w. In
particular, Corollary 4.6 implies the existence of stationary optimal policies in one-criterion
problems; see Theorem 6.1(i) below.

5. Equivalent switching policies for CTJMDPs. As established in the previous
section, for each strategy in a CTIMDP there is a policy in the corresponding ESMDP with
the same performance vector. We recall that an ESMDP is a particular case of an SMDP
when, for nonrandomized strategies, all sojourn times are exponential and transition proba-
bilities do not depend on sojourn times. In view of Theorem 4.5, if for an optimal policy o
for an ESMDP we can construct a policy 7 in the corresponding CTJMDP such that (4.5)
holds (it should hold for all u for a one-criterion problem), the policy 7 is optimal for the
CTIMDP.

For one-criterion problems, Theorem A.8 and Corollary A.11 imply the existence of
optimal stationary and Markov policies. In this case the construction is trivial: we set m = o
In this section we provide such constructions for constrained problems. We do not know
how to construct 7 for an arbitrary o or for an arbitrary optimal o. Fortunately, according
to Theorems A.8—-A.10, A.12, and Corollary A.11, among optimal policies for SMDPs
there exist policies satisfying certain additional properties; e.g., they could be K-randomized
stationary. We formulate a weaker form of these properties in Condition 5.1 and provide
the construction of 7 for policies o that satisfy this condition. In particular, K-randomized
stationary policies, strong (K, n)-randomized policies, and Markov policies of order K
satisfy Condition 5.1. For a randomized Markov policy o in an SMDP, we consider the
following condition.

ConpiITION 5.1. (i) for each x € X and for each n=0,1, ... there is a countable or
finite subset A’ (x, n) of D(x) such that o,(A(x, n)|x) =1,
(i) there exists a finite or countable set X such that for each n =0, 1, ... and for each

x € X\X? the distribution o,(-|x) is concentrated at one point.

For an initial distribution w and for a randomized Markov policy o, defined for the cor-
responding ESMDP and satisfying Condition 5.1, we construct in this section a switching
Markov policy 7 for the CTJIMDP such that W, (u, m) = W,(u, o), k=0, ..., K. There-
fore, if o is an optimal randomized Markov policy for the corresponding ESMDP then 7 is
an optimal switching Markov policy for the original CTIMDP. In addition, this construction
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implies that policies o and 7 have the same orders and indices and, if o is randomized
stationary, then 7 is switching stationary.

We consider a CTJMDP and the corresponding ESMDP. Let o be a randomized Markov
policy defined for this ESMDP and let o satisfy Condition 5.1. Because we can add deci-
sions that have zero probabilities to A?(x, n), we can write, without loss of generality, that
A%(x,n)={a(x,n,1),a(x,n,2),...},i=1,2,...,xeX,and n=0,1,....

We set Sy(x,n) =0,

(5.1) si(x’”)=—(a+q(x,a(x,n,i)))—11n(1 a,(a(x, n,i)|x) >

Y o(a(x, n, k)|x)

where g =0and In0= —oo. Let S;(x,n) =S,_,(x,n)+s;,(x,n),i=1,2,... . We define a
switching Markov policy 7 for the CTIMDP by

(5.2) w(x,n,t)=a(x,n,i) forxeX,n=0,1,....8_,(x,n)<t<S;(x,n), i=1,2,....

Condition 5.1 implies that 7(x, n, t) = ¢, (x) for x € X\ X7 for a measurable function ¢, .
Because the set X7 is countable and the function 7 (x, n, t) is measurable in 7 for x € X7,
the function 7 (x, n, t) is measurable in (x, ). We remark that if o is a randomized sta-
tionary policy then a(x,n, i), s;(x,n), S;(x,n), and 7(x, n, t) do not depend on n, and
therefore 7 is a switching stationary policy.

THEOREM 5.2. For a CTIMDP, consider the corresponding ESMDP. Let o be a ran-
domized Markov policy in this ESMDP such that o satisfies Condition 5.1. Consider the
switching Markov policy  in the CTIMDP defined by (5.2). Then equality (4.18) holds
foralln=0,1,....

PrOOF. We fix some n =0, 1,....Let Y be a measurable subset of X\X“. From (4.21)
we have
(5.3) nﬁzyn(Y) = [E:[e’“"ll{x,, eY}.

Because A, = ¢,(x,) when 7, <t <1,,,, we have, similar to (4.21),
(5.4) M7 (Y.B)=Ele “"I{x, e Y}I{g,(x,) € B}.

Then for any bounded above measurable function f,

(53) ELe™ £ (5,) = [ Q)T (d).

From (5.4) and (5.5) we have

(5.6) M7 (Y, B)= f I{g,(x,) € BYAT (dx).

Let x € X7 and mj ,(x) > 0. If (4.18) holds for any x satisfying these two conditions, then
the proof is completed.
The definition of ¢ implies that for all i=1,2,. ..

(57) g:,n(x’ a(x’ n, l)) = [E:e_atn+ll{xn =4, Si—l = gn < Sl}
= EZe*ant{xn = x}ﬂig[eiaaxl{sifl = gn < Si}|xn = X].

We observe that for 1 € [S,_,, S;[

i—1
(58) I]:Dw{é'_-n - t|xn — X} — e—q(x,a(x,n,i))(t—si,l) 1_[ e—q(x, a(x,n, k))Sg
n s
k=1
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and

Si
(5:9) Erle 1S, <&, <S)x,=x]= [ e ™dF (),

Sic1
where F(t1) =1—P7{{, > t|x, = x}. Straightforward calculations imply that
q(x,a(x,n,i))
a+q(x,a(x,n,i))
From Lemma 4.2, (4.16), (5.7), and (5.10) we have that

(5.10) [E:Z[e"’g"I{Si,1 <¢,<S}Hx,=x]= o(a(x,n,i)|x,n).

(5.11) M7 (x,a(x,n,i)) =0o,(a(x, n,i)|x)E e """ [{x, = x},
and
(5.12) my (x) =E e " I{x, = x}.

Formulas (5.11) and (5.12) imply (4.18). O

COROLLARY 5.3.  Consider a CTIMDP. Let  be an initial measure and o be a ran-
domized Markov in the corresponding ESMDP. If o satisfies Condition 5.1, then
M7, =M;,. n=01,...,
for the switching Markov policy 1 defined by (5.2), and therefore W, (u, m) = W, (u, 0),
k=0,...,K.

ProOOF. The corollary follows from Theorems 5.2 and 4.5. O

6. Optimization of CTJMDPs. In this section we describe the structure of optimal
strategies for CTIMDPs and algorithms for their computation. We assume in this section
that the state space X is finite or countable. We prove the existence of optimal strategies
for CTIMDPs that have a structure similar to the structure of optimal policies for SMDPs
described in Appendix A. The only significant difference between optimal strategies in
CTIMDPs and SMDPs is that switching Markov (or stationary) policies play the same role
in CTJMDPs as randomized Markov (or stationary) policies in SMDPs.

The results of this section follow from the results of §§4 and 5 and Appendix A.3.
In §4 we proved that for each strategy in a CTJIMDP there exists a policy in the corre-
sponding ESMDP such that the corresponding expected total discounted rewards are equal.
Appendix A.3 describes the structure of optimal strategies and algorithms for SMDPs.
Because an ESMDP is a particular case of an SMDP, Appendix A.3 also describes optimal
strategies for ESMDPs.

According to the results presented in Appendix A.3, optimal policies for SMDPs can be
selected in a way that they are either randomized stationary or randomized Markov. For
a problem with a single criterion, these policies are nonrandomized. For a problem with
a finite number of constraints, an optimal randomized stationary policy uses randomized
decisions only on a finite subset of states, and an optimal randomized Markov policy does
it only on a finite subset of pairs (x, n), where x is a state and n is a jump number. In
addition, in each state such an optimal policies uses a finite numbers of actions. The total
number of such states or state-jump pairs is limited by the number of constraints. Thus,
these optimal policies satisfy Condition 5.1. Theorem 5.2 relates an optimal randomized
Markov (or stationary) policy in an ESMDP to a switching Markov (stationary) policy in
the corresponding CTJIMDP with the same performance vector. Therefore, this policy is
optimal for the CTIMDP. In addition, the number of switching points is limited by the
number of constraints.
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For an ESMDP, formulas (4.1) and (4.2) express the transition kernel Q and expected
cumulative discounted rewards r,. We also have from (A.2.4) and (4.1) that

(6.1) B(Y|x, a) =q(Y|x,a)/(a+q(Y|x, a)).

In particular, B(x, a) = q(x, a)/ (¢ +q(x, @), B(y|x, a) = q(y|x, a)/(a + q(x, a)).

In this section, we consider a CTIMDP that satisfies the compactness and conti-
nuity assumptions similar to Assumption A.7 from Appendix A.3. These assumptions
are formulated in Theorem 6.1 and they imply that the corresponding ESMDP satisfies
Assumption A.7. Corollaries 4.6 and 5.3 correspond the appropriate strategies in CTIMDPs
and ESMDPs. Theorems A .8 and A.9 and Corollary A.11 describe the structure of optimal
policies in SMDPs and therefore in ESMDPs. These statements imply the following.

THEOREM 6.1. Let a CTJMDP with a finite or countable state space X satisfy the fol-
lowing compactness and continuity assumptions: (1) the sets D(x), x € X, are compact,
(2) for all x,y € X the functions q(y|x, a) and q(x, a) are continuous in a € D(x), and
(3) the functions 1,(x,a) and R (x,a,y) are upper semi-continuous in a € D(x) and
bounded above. Then

(i) there exists an optimal stationary policy for a one-criterion CTIMDP and there is
an optimal Markov policy for a one-criterion nonhomogeneous (in particular, finite-step)
CTIMDP;

(ii) for an infinite horizon problem with multiple criteria and K constraints, there exists
a K-switching stationary optimal policy and for some n =0, 1, ... there exists an optimal
strong (K, n)-policy;

(iii) for a nonhomogeneous problem (in particular, for a finite-step problem) with multi-
ple criteria and K constraints, there exists an optimal switching Markov policy of order K
(in this case x should be replaced with (x,n), n=0,1, ..., in continuity conditions (1-3)
of this theorem).

Now we discuss how to compute optimal policies. Let X and A be finite. Theorem A.10
describes the computation of an optimal K randomized stationary policy for an infinite
horizon SMDP with K constraints. Theorem A.12 describes the computation of an optimal
randomized Markov policy of order K for a finite-step SMDP with K constraints. For a
CTIMDP we can consider the corresponding ESMDP. For this ESMDP, Theorems A .10 and
A .12 describe the computation of optimal policies. Formula (6.1) provides explicit expres-
sions for functions B that participate in the LP (A.3.25-A.3.28) and in the LP (A.3.30-
A.3.34). Theorem 5.2 describes the transformation of a randomized policy for a ESMDP
into an optimal switching Markov policy. However, if we have a CTIMDP, we do not need
to compute an optimal policy for the ESMDP to get an optimal policy for the CTJIMDP.

For a CTIMDP with finite state and action spaces, we consider the LP (A.3.25-A.3.28)
for N = oo and the LP (A.3.30-A.3.34) for N < oc. In view of Theorems A.10 and A.12,
a CTIMDP is feasible if and only if the corresponding LP is feasible and, if this LP is
feasible, it has an optimal solution. Let u be the optimal basic solution. If N = oo then
u="{u,,}. f N <oothen u={u,,,}. In both cases u defines an optimal switching
strategy. Let N < oo. We provide explicit formulas (6.2) and (6.3) for an optimal solution
that follow from (A.3.35) and (5.2). We consider sets D,(x,n) ={a € D(x,n)|u, , , >0,
xeX,n=0,1,...}. If D,(x,n) =9 we let m(x,n,t) =a for all ¢t >0, where a is an
arbitrary element of D(x). If D,(x, n) # @& we order elements D, (x, n) in an arbitrary way,
D,(x,n)={a(l),...,a(j(x,n))} and consider 7 defined by (5.2). In particular, (5.1) can
be rewritten as

J(x, n)
62) sxm ==t g a@) (1= i/ 3 )

i=1,...,j(x,n)—1,



Feinberg: Continuous Time Discounted Jump Markov Decision Processes
Mathematics of Operations Research 29(3), pp. 492-524, © 2004 INFORMS 509

and S, , (x,n) = s ,(x,n) =oo. Thus, (5.2) transforms into
(6.3) m(x,n,t)=a(x,n,i) forS,_,(x,n)<t<S(x,n), i=1,...,jx,n),

where 7 is an optimal switching Markov policy of order K.

If N = oo, formulas (6.2) and (6.3) define an optimal K-switching stationary policy. In
this case, u is a solution of the LP (A.3.25-A.3.28) and all objects defined in the previous
paragraph, including variables in formulas (6.2) and (6.3), do not depend on n.

7. Randomized strategies in CTJMDPs. In this section we define randomized strate-
gies for CTJIMDPs and prove that the optimal switching stationary and Markov policies,
the existence and structure of which are described in Theorem 6.1, are optimal within the
broader class of randomized strategies (Corollary 7.3).

For discrete time MDPs, randomized policies can select actions randomly at each epoch.
For example, if a system consists of one state and two actions 0 and 1, a decision maker
can select actions 0 and 1 at each epoch t =0, 1, ... independently with probabilities 0.5.

For continuous time ¢ € R, this definition is not applicable. For example, again let the
system consist of one state and two actions 0 and 1. At each epoch r € R, we want to
select 0 or 1 independently and with probabilities 0.5 and 0.5. If this can be done, con-
sider a stochastic process a, with independent and identically distributed values and with
P(a,=0)=P(a,=1)=0.5, ¢t > 0. This process is not measurable (Kallianpur 1980, Exam-
ple 1.2.5). However, to compute appropriate rewards and transition probabilities, we need
to integrate functions of a,. This example shows that actions cannot be selected randomly
and independently at each epoch r e R .

To avoid these obstacles, another definition of randomized strategies has been devel-
oped for CTIMDPs in the literature. We observe that in discrete time, if at a state x we
select an action a with probability g and an action b with probability 1 — ¢, the transition
probabilities and one-step expected rewards will be the same as if we select an action ¢
that defines transition probabilities p(-|x, ¢) = gp(:|x,a) + (1 — q)p(-|x, b) and rewards
r(x,c)=qr(x,a)+ (1 —q)r(x, b). In other words, a randomized action is an action with
the transition probabilities, and one-step rewards equal the expectations of the correspond-
ing transition probabilities and one-step rewards. These properties can be considered as
the definition of randomized actions in discrete time. This definition can be carried over
to CTIMDPs. According to this definition of randomized strategies, if at epoch t e R, a
probability measure on the action set is selected in a CTIMDP, it means that the decision
maker selects an action with the transition intensities, reward intensities, and rewards equal
to expectations of the corresponding values with respect to this measure. Hordijk and van
der Duyn Schouten (1979) introduced this approach for a particular class of strategies, and
Kitaev (1984) expanded it to all strategies.

Now we give formal definitions. For a Borel set B we denote by %(B) the set of proba-
bility measures on B. If one considers the weak topology on %(B), then this set is Borel as
well (Parthasarathy 1967, Chapter 11, Theorems 6.2 and 6.5). If B, is a measurable subset of
B, then p € 2(B,) can be interpreted as an element of %(B) with p(B\B,) = 0. Therefore,
%(B,) € %(B). If B is compact then 2(B) is compact in the weak topology (Parthasarathy
1967, Chapter II, Theorem 6.4). For convenience, if a symbol denotes a generic element of
a Borel set, we shall use the bold version of this symbol to denote a probability distribu-
tion on this set. For example, we use the notation b € B and b € %(B). For a measurable
function f on B we define

(7.1) f(b) = / £(b)b(db), beP(B).

This function is measurable (Bertsekas and Shreve 1978, Corollary 7.29.1).
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Consider a CTIMDP defined in §2 by objects {X, A, D, q, o, K, 1, R;}. Corollary 4.4
implies that the objective function remains the same if we set R} to be identically equal to
zero and add | « R*(x, a, 2)q(dz|x, a) to the reward rates 7. Therefore, without loss of gen-
erality we assume that R} =0 for all k. Thus, we consider a CTIMDP defined by the objects
{X,A,D,q,a, K,i.}. We define a CTIMDP defined by the objects {X,A,D, q, «, K, I, },
where A =2(A) , D(x) =2(D(x)),

a¥lx.a)= [ q(¥|x, aja(da),
D(x)

q(x,a) =q(X|x,a), and

(72) f.k (x, a) = /D

We call the new CTIMDP a convex hull of the original CTJIMDP. We denote this new
CTIMDP by [CTIMDP]. We remark that if u € 9(P(E)) for a Borel set E then we can
consider a measure v € P(E) such that v(B) = f@(E> p(E)u(dp). In view of this remark, it
is easy to observe that, if we consider the convex hull of the convex hull of a CTIMDP, it
coincides with the convex hull of a CTIMDP. In other words, [[CTIMDP]] = [CTIMDP].

Any strategy in a [CTIMDP] is called a randomized strategy in the original CTIMDP. In
other words, a randomized strategy 7 is defined by a measurable mapping 7 from F x R,
to A such that w(D(x,)|w,,t) =1 for all w, = x,, &y, x1, &5+ ..%x, €F, n=0,1,....
This function can be viewed as a predictable mapping from Q x R, to A; Jacod (1975,
Lemma 3.3). Similar to (2.2), a randomized strategy 7r and an initial distribution w define
a predictable random measure »™ on {) x R, by

r(x,a)a(da), k=0,....K.
)

(x

(7.3) v"(w, ds, dx) = ds/( )q(dx|Xs, a)m(da|w, s),

D(X,
and v"(w,0,dx) = u(dx), where w(da|lw,s) = w(da|w,,s — t,)I{t, <s < t,.,} +
o(da)I{s >t} and o is an arbitrary probability distribution on A. Then P7 is a unique
probability measure on (£, F) such that »7 is a predictable projection of the random mea-
sure defined by P/

We say that 7r is a randomized stationary (Markov) policy in a CTIMDP if 7 is a
stationary (Markov) policy in the [CTJMDP]. In other words, a strategy 7 is a randomized
Markov policy if w(da|w,,t) = m(da|x,,n), n=0,.... A strategy 7 is a randomized
stationary policy if 7(da|w,, t) = m(da|x,).

Because CTIMDPs and ESMDPs are defined by the same objects, there is a natural
one-to-one correspondence between CTIMDPs and ESMDPs. We denote by [ESMDP] the
ESMDP that corresponds to the [CTIMDP].

Let 77 be a randomized Markov policy in the [ESMDP]. We define a randomized Markov
policy o in the ESMDP by

(7.4) o,(dalx) =/ a(da)(a+4(x, a)) m,(da|x).

b  a+q(x,a)

We consider the measures my, , and my , on X, measure M7 , on X x A, and measure M,
on X x P(A) defined for the [ESMDP] and ESMDP, respectively, in (A.2.6) and (A.2.5).

THEOREM 7.1. For a randomized Markov policy  in the [ESMDP] consider a ran-
domized Markov policy o in the ESMDP defined by (7.4). Then

(7.5) mz = mZ n
for any initial distribution p and for any n=0, 1, . ... Furthermore,

(7.6) W, (. ) = W, (n, o), k=0,...,K.
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Proor.  First, mj , =mj, ;= p. Let (7.5) hold for some n. The definition of measure M
implies that

(7.7) My, (dx,da) = o,(dalx)m; ,(dx),
and
(7.8) M, (dx,da) =m,(da|x)m;  (dx).

We have that for any ¥ € &

(7.9)  mZ ey (¥) = /

o,(dalx)m; ,(dx)

xJa a+q(x, )
_ q(Y|x, a) a(da)(a+q(x,a)) _
a /X aa+q(x,a) Joa a+q(x,a) m,(da)my ,(dx)

:/XLD(A)(OZ-G-q(x,a))—lAq(Y|x,a)a(da)wn(da)mz’n(dx)

q(Y|x,a) .
/ [ﬂ(A) a+q(x,a) m,(dajx)m , (dx) =mp ) (Y),

where the first equality follows from (A.2.7) applied to the ESMDP, (6.1), and (7.7); the
second equality follows from (7.4); the third equality follows from the change of integration;
in the forth equality we use (7.1), the definition of q, and the induction assumption; the
last equality follows from (A.2.7) applied to the [ESMDP], (6.1), and (7.8). Thus (7.5) is
proved.

We fix some k=0, ..., K. To simplify the notation, we omit index k everywhere in the
remainder of this proof. For the ESMDP, if an action a is selected in a state x, the expected
total rewards between jumps are described in formula (4.2). Similarly, the expected total
rewards for the [ESMDP] are

r(x,a)
a+q(x,a)
Because 7 is a policy in the [ESMDP], formula (A.3.11) implies that

(7.11) W(x, w)sz/r(x,a)M;n(dx, da).
n=0"X A

We have that

(7.12) /X/;‘r(x,a)M;;n(dx,da):/X/Ar(x,a) o,(da|x)my ,(dx)

_// 7(x,a) a(da)(a+q(x,a))
~Ixiatq(x.a) oy a+q(x.a)

m,(da|x)my  (dx)

- / / (a+q(x,a))" / F(x,a)a(da)m, (dalx)m?  (dx)
P(A)

(7.10) r(x,a)=

= /XL r(x,a)m,(da|x)m] ,(dx)
- /x[/’n(A)r(x’a)M/:n(dx’da),

where the first equality follows from (7.7) and (7.5); the second equality follows from (4.2)
and (7.4); the third equality follows from the change of integration; the fourth equality
follows from the definition of r, (7.2); and the last equality follows from (7.8). Formula
(A.3.11) for W(u, ) applied to the policy o and formulas (7.11), (7.12) implies the second
statement of the theorem. O
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We consider single and multiple objective problems for a CTIMDP with the set of strate-
gies expanded to the set of all randomized strategies. For a multiple objective problem, the
constants Cy, . .., Cg in constraints remain the same as in the original CTJMDP but the set
of feasible strategies is expanded.

CoROLLARY 7.2. Consider a countable state CTJIMDP satisfying conditions (1)-(3)
from Theorem 6.1. Let u be an initial state distribution on X. For any feasible random-
ized strategy T there exists a feasible switching stationary policy o such that Wy(u, o) >

WO(M’ 77)

PrOOF. A randomized strategy 7 in the CTJMDP is a (nonrandomized) strategy in the
[CTIMDP]. Theorem 4.5 implies that there exists a randomized Markov policy 7! in the
[ESMDP] such that W, (w, 7') = W, (u, ), k=0, ..., K. Theorem 7.1 implies that there
is a randomized Markov policy 7* in the ESMDP such that W, (w, 7%) = W, (u, 7'), k =
0,...,K. Theorem A.9 implies the existence of a K-randomized stationary policy 7> such
that Wy(w, 7%) > Wy(w, 7%) and W, (u, 7*) > C,, k=1,...,K. Theorem 5.2 constructs
in the CTJMDP a feasible switching stationary policy o with the required properties. [

We remark that Corollary 7.2 is also applicable to one-criteria problems. In this case, any
policy is feasible. Thus, Corollary 7.2 states that for any randomized strategy in a CTIMDP
there exists a better or equal regular strategy. Corollary 7.2 and Theorem 6.1 imply the
following result.

COROLLARY 7.3. Optimal policies, whose existence is stated in Theorem 6.1, are also
optimal within the broader class of randomized strategies.

8. More on randomized policies in CTJMDPs. In this section we prove the optimality
of randomized stationary and Markov policies for a CTJIMDP with multiple criteria and
constraints (Theorem 8.3). We also prove that optimal policies for an ESMDP with multiple
criteria and constraints, the existence and structure of which are stated in Theorem A.9 and
Corollary A.11, can be implemented as randomized policies in the corresponding CTIMDP.
Therefore, these policies are also optimal for the CTJMDP (Theorem 8.4).

We observe that randomized Markov (stationary) policies for a CTIMDP and for the
corresponding ESMDP are defined by the same objects. These objects are transition
probabilities from X x {0,1,...} to A (from X to A) such that 7,(D(x)|x) =1, n=
0,1,... (m(D(x)|x) =1). The major difference between a randomized Markov policy for
a CTIMDP and the corresponding randomized Markov policy for the ESMDP is that they
define different transition mechanisms described above (e.g., if a randomized Markov policy
for an ESMDP selects an action a with probability p and action b with probability (1 — p),
then the corresponding sojourn time & has the distribution defined by

P{g > [} :pe*‘I(X,a)t + (l _p)efq(x,b)t.

If a randomized Markov policy for a CTIMDP makes the similar selection then the sojourn

time £ is defined by
Plé>t)= e~ (Palx, a)+(1=p)q(x, b))t

Because randomized Markov policies for CTIMDPs and the corresponding ESMDPs
are defined by the same transition probabilities, we shall apply the definitions intro-
duced for randomized Markov policies for SMDPs to randomized Markov policies for
CTJMDPs. In particular, we shall apply definitions of K-randomized stationary, randomized
Markov policies of order K, and strong (K, n)-policies to CTIMDPs. So we shall consider
K-randomized stationary policies and randomized Markov policies of order K for
CTIMDPs. To distinguish from switching policies, we keep “randomized” in the descrip-
tion of randomized strong (K, n)-policies in CTIMDPs. So, we shall consider randomized
strong (K, n)-policies for CTIMDPs.
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Let 7 be a randomized Markov policy in the CTIMDP. Then 7 is also a (nonrandomized)
Markov policy in the [ESMDP]. Formula (7.4) transforms into

(8.1) o,(dalx) = m,(da|x)(a +q(x, a))/(a+q(x, m,(-[x))).
Theorem 7.1 implies the following statement.

CoROLLARY 8.1.  For a randomized Markov policy 1 in a CTIMDP (or, equivalently, a
Markov policy in the corresponding [ESMDPY)), consider a randomized Markov policy o
defined by (8.1) for the ESMDP. Then equalities (7.5) and (7.6) hold.

Let o be a randomized Markov policy for the ESMDP. We define a randomized Markov
policy 7 for the CTIMDP by

_ 0,(dalx) o,(dalx) \
52 o) = SN () )

COROLLARY 8.2. Consider a CTIMDP. For a randomized Markov policy o for the cor-
responding ESMDP consider a randomized Markov policy m for the CTIMDP defined by
(8.2). Then W,.(w, m) =W, (u, o), k=0,...,K.

ProoF. We multiply the both sides of (8.2) by (a + g(x, a)) and integrate. We get

0, (dalx) >_1 _ m(dalx)(a+q(x, a))
watqlxa)) o,(dalx) ’

83)  atqm ()= ( [

where the second equality follows from (8.2). Since (8.3) implies (8.1), Corollary 8.1 implies
Corollary 8.2. O

In particular, when for some x € X the measure o, (-|x) is concentrated on a finite set
D*(x)={a', % ..., a'}, (8.2) has the following form:

_ O-n(ai|x) ! O-n(aj|x) -
(3.4) m (o) = - ( Yt a_,,)> .

Corollary 7.5, Theorem A.9, and Corollary A.11 applied to the ESMDP imply the fol-
lowing result.

THEOREM 8.3. (i) Consider a countable state CTIMDP with K constraints satisfy-
ing conditions (1)—(3) from Theorem 6.1. If there exists a feasible strategy then for this
CTJMDP there exists an optimal K-randomized stationary policy and for some finite n =
0,1,... there exists an optimal randomized strong (K, n)-policy. If there exists a feasible
strategy for a nonhomogeneous CTIMDP with K constraints then there exists an optimal
randomized Markov policy of order K for this CTIMDP.

Proor. We apply formula (8.4) to an optimal policy o for the ESMDP described
in Theorem A.9. The statement for nonhomogeneous CTIMDPs follows from Corollary
All. O

We remark that if X and A are finite, we can apply (8.4) to the optimal policies com-
puted in formulas (A.3.29) and (A.3.35). This provides us with the explicit algorithm
that computes optimal randomized Markov policies of order K when N < oo and optimal
K-randomized stationary policies for homogeneous problems when N = co.

In conclusion, we consider a CTJMDP and the corresponding ESMDP. We shall show
that any randomized Markov policy for the ESMDP can be represented as a randomized
policy for the CTIMDP. This implies that optimal policies for the ESMDP described in
Theorem A.9 and Corollary A.11 can be viewed as optimal randomized policies for the
CTIMDP.
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Let o be a randomized Markov policy for the ESMDP. Then Jacod’s (1975) Proposi-
tion 3.1 implies that the predictable projection of the random measure of the process defined
by o and by an initial distribution u has the following form: v (0, dx) = u(dx) and

Jo,) €1 " g(dx|x,, a)o,(dalx,)
fD(x,,) e—4(xy, “)(f—fn)o'n (da|xn)

85) 17 (dtdx)=Y

n=>0

I, <t<t,.,}dt.

n

We define by

e~ 1) g (dalx, )

(8.6) m,(da|x,, t —t,) =
n n n ‘/'D(Xn) efq(x”,a)(tft,,)o-n(dalxn)

a randomized policy 7 for the CTIMDP for which the choice of an action depends on the
following factors: the current state, the number of jumps, and the time passed after the last
jump. We remark that formula (8.6) defines a switching Markov policy in the [CTIMDP].

Formula (7.3) implies that v™ = v”. Therefore, P7 = P for any initial distribution p.
It is easy to see that also W, (w, 7) = W, (n,0), k=0,...,K. So, optimal randomized
policies for the ESMDP, described in Theorem (A.9), can be implemented as randomized
policies for the CTIMDP. Thus, we have the following statement.

THEOREM 8.4. Consider a countable state CTJMDP with K constraints satisfying con-
ditions (1)—(3) from Theorem 6.1. If this problem is feasible then optimal policies for the
corresponding ESMDP, whose existence is stated in Theorem A.9 and Corollary A.11, can
be implemented by formula (8.6) as optimal randomized policies in the original CTIMDP.

So, we have described three forms of optimal strategies for constrained CTIMDPs:
(i) switching policies (Theorem 6.1 and Corollary 7.3), (ii) randomized policies
(Corollary 8.2), and (iii) randomized policies which implement optimal randomized poli-
cies for the ESMDP (Theorem 8.4). In our opinion, switching policies are the most natural
among the described classes of optimal strategies.

9. Conclusion. In this paper, we developed the techniques that reduce discounted
CTJMDPs with multiple criteria and constraints to SMDPs and eventually to MDPs. By
using these techniques, we have developed the theory of discounted CTIMDPs with mul-
tiple criteria and constraints. For feasible problems, the optimal policies can be founded
in each of the following three forms: (i) randomized policies for ESMDPs (this is similar
to constrained discrete time MDPs), (ii) switching policies for CTJMDPs (this is the most
natural form of optimal policies), and (iii) randomized policies for CTIMDPs. The latter
may not be natural for some applications.

By considering occupation measures, for an arbitrary strategy for a CTJMDP that changes
actions between jumps, Theorem 4.5 constructs an equivalent randomized Markov policy
for the ESMDP that does not change actions between jumps. Theorem 5.2 is essentially
a converse of Theorem 4.5. However, it constructs equivalent switching policies only for
randomized Markov policies that (i) are randomized on at most a countable subset of states
and (ii) for each state select actions from a countable subset of actions. We do not know
how to construct in a CTIMDP an equivalent switching policy for an arbitrary randomized
Markov (or stationary) policy in the ESMDP. For countable state constrained discounted
MDPs, Feinberg and Shwartz (1996) proved optimality of K-randomized stationary policies
and strong (K, n)-policies, where K is the number of constraints and »n is a finite inte-
ger. These policies satisfy conditions (i) and (ii). This result and its extension to SMDPs,
Theorem A .9, allow us to reduce countable constrained ESMDPs to CTIMDPs. If the exis-
tence of optimal K-randomized stationary policies or optimal strong (K, n)-policies were
known for constrained discounted MDPs with uncountable state spaces, it would extend
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Theorem 6.1 to CTJMDPs with Borel state spaces. The existence of such policies is an
open question.

Another important question is what kind of results hold for average rewards per unit time
and for undiscounted total rewards. In our opinion, the approach, developed in this paper,
is applicable to these criteria under the additional assumption that inf,.p,) g(x, a) > 0
for each x € X. For discounted CTJMDPs, the discount rate a > 0 plays the role of this
assumption. If this assumption fails, the statement similar to Theorem 4.5 does not hold
and switching strategies can outperform strategies that change actions between jumps. For
example, if & =0 and inf ,.p(,) q(x, @) =0, it is possible that g, (¥, A) < u(A) and (4.21)
does not hold.

In particular, Feinberg (2002a) considered an average reward CTIMDP with K constraints
and with finite state and action sets. The standard unichain condition, that every stationary
policy defines a Markov chain with one ergodic class, was assumed there. According to
Feinberg (2002a), if g(x, a) > 0 for all x and a then optimal policies can be selected either
among K-randomized stationary policies for ESMDPs or among K-switching stationary
policies. If g(x, a) =0 for some x and a then there exists an optimal K-switching stationary
policy for a feasible problem and this policy can be better than any K-randomized policy
for the ESMDP; Feinberg (2002a, Example 3.1).

Appendix. Semi-Markov decision processes. This appendix contains the results on
SMDPs used in this paper. The proofs and additional details can be found in Feinberg
(2002).

A.1. Definitions. A probability structure of an SMDP is specified by the four objects
{X,A, D(x), Q(t, Y|x, a)} where X, A, and D are the same objects as in an CTIMDP and
the transition mechanism is defined by a regular transition measure Q(-|x, a) from X x A
into R, x X. It is assumed that (a) Q(B|x, a) is a Borel function on X x A for any Borel
subset B C R, x X and (b) Q(-|x, a) is a measure on R, x X with Q(R, x X|x, a) <1 for
any (x,a) € X x A. We denote Q(¢, Y|x, a) = Q([0, t] x Y|x, a) for any 0 <t < oo and for
any Borel Y C X. If action a is selected in state x then Q(¢, Y|x, a) is the joint probability
that the sojourn time is not greater than r € R, and the next state y is in Y (it is possible
that y = x with positive probability).

Let £ be the sojourn time. Then P{& <t} = Q(¢, X|x, a). In this appendix, we make
the following standard assumption that implies that the system does not have accumulation
points:

ASSUMPTION A.l. There exist € >0 and t > 0 such that Q(f, X|x,a) < 1 — € for all
x € X and for all a € A.

Let H, =X x (AxR, xX)", n=0,1,...,00, be the set of all histories up to and
including the nth jump. Then H = (... H, is the set of all histories that contain a
finite number of jumps. The sets H,, n =0,1,...,00, and H are endowed with the
o-fields generated by the o-fields %, ¢, and %B(R,). A (possibly randomized) strategy 7
is defined as a regular transition probability from H to A such that 7(D(x,) | ®,) =1 for
each w, = xyay&,. .. x,_1a,_1&,_1x,€H, n=0,1,....

To define a sample space that includes trajectories that have a finite number of jumps
over R, , we add an additional point X X to X and an additional point @ ¢ A to A. Let X =
XU{x} and A = AU{a}. We also define D(x) = {a}, Q((o, ¥)|x,a) = 1 — Q(R, x X|x, a)
for x € X, a € A, and Q((o0, X)|x, a) =1 when either x = x or a = a. We have that Q is a
regular transition probability from X x A to R L X X, where R + =10, o0].

Let H = X x (A x R, xX)", n=0,1,...,00. We also consider BH,) =X x (51 x
B(R,) x X)", where ¥ = o(¥, {x}), s = a(s4, {a}). According to the Ionescu Tulcea
theorem (Neveu 1965, Section 5.1), any initial distribution u on X and any strategy
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define a probability measure on the set (H,, (H,)). We denote this measure by P and
we denote the expectation operator with respect to this measure by Ej.

Let h, = (xgayépx,a,&,...). We set ty=0and t,=1¢, ,+&,,, n=0,1,.... Let
N(t) =sup{n >0: t, <t}. Assumption A.l implies that N(#) < oo, (P7-a.s.) for all 7 € R,
and 1, — oo (P7-a.s.) as n — oo for all w and 7.

We may consider an SMDP as an object that has two time parameters:

(i) first time parameter is the actual continuous time ¢, t = ¢, at an nth jump epoch;

(ii) the second parameter is the jump number n.

We say that a strategy is a policy if at each epoch 7,, n=0,1,..., the decision does not
depend on the times ¢,,...,?,. Now we give a formal definition of a policy. Let H, =
Xx(AxX)',n=0,1,...,00, and H = Jy,-o H,- A policy 7 is defined as a transition
probability from H to A such that 7(D(x,) | h,) = 1 for each h, = xyay. . . x,_,a, ,x, € H,
n=0,1,.... A randomized Markov policy  is defined by a sequence of transition proba-
bilities {77,: n=0, 1, ...} from X into A such that 7,(D(x)|x)=1,x€e X, n=0,1,....
A Markov policy is defined by a sequence of mappings ¢,: X — A such that ¢,(x) € D(x),
xeX,n=0,1,....A randomized stationary policy  is defined by a transition probabil-
ity 7 from X into A such that 7 (D(x) | x) =1, x € X. A stationary policy is defined by a
mapping ¢: X — A such that ¢(x) € D(x), x € X.

The reward structure of an SMDP is specified by the three objects {«, K, r,(x, a)}, where

(a) a >0 is a discount rate;

(b) K=0,1,... is a number of constraints. We omit the index 0 when K =0; and

(¢) r.(x,a) is the expected discounted cumulative reward at state x for criterion k =
0,...,K if action a is selected. We assume that r, are bounded above Borel functions on
X x A. We set r.(x,a)=0, k=0,...,K.

We remark that in many applications, a reward in a state is defined via cumulative rewards
collected in a state over the period of time passed since the system moved to this state.
This reward also includes the reward collected when the system jumps into or out of the
state. Then the functions r, can be computed as the corresponding expectation. Here we
are not concerned with a particular form of the primitive entries that define the reward
functions because for natural models this form is unimportant for infinite horizon and finite-
step horizon problems considered in this paper. In fact, the cumulative rewards can be
random variables. In addition, the “underlying state” can change between decision epochs
and these changes may affect actual reward rates. For example, in admission control to
GI/M/1 queues and in control of service modes of M/G/1 queues, the actual state of the
system may change between decision epochs. These decision epochs are arrivals to GI/M/1
queues and departures from M/G/1 queues as well as arrivals to empty M/G/1 queues.
However, if the controller cannot react to state changes (departures from GI/M/1 queues
and arrivals to M/G/1 queues) between decision epochs, these problems can be models as
SMDPs.

Given an initial state distribution w and a strategy 7, the expected total discounted
rewards over the infinite horizon are

(A.1.1) Wlw, m) =E] Y e “"r(x,,a,), k=0,...,K.
n=0

Similar to CTJMDPs, if an initial distribution w is concentrated at one point x, we
substitute w with x in various objective functions W, measures [P, and expectations E. If
we consider one criterion or what we write is true for all criteria, we may omit indices k =
0,1,..., K. The definitions of optimal policies are similar to the definitions for CTIMDPs
in §2.

We have defined a homogeneous SMDP. In addition, we can consider a nonhomogeneous
SMDP when the action sets D, rewards r,, and transition kernels O depend on the step
number. Such an SMDP can be viewed as a particular case of the definitions given above
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when the state space X is replaced with the state space X x {0, 1,...} of pairs (x, n),
where x is a state and n is a jump number. An important particular case is an N-step model
with the criterion

N
(A.12) We(w, m, N) =E; > e " r(x,,n,a,), k=0,...,K,

n=0
where r, are measurable bounded above functions. For finite-step models, the rewards
hi(x) =r.(x, N, a) are usually called final or terminal. An important application of finite-

step SMDPs is scheduling of a finite number of jobs with random durations; Ross (1983),
Pinedo (1995).

A.2. Reduction of SMDPs to MDPs. A discrete time MDP is a particular case of an
SMDP when all sojourn times §; are deterministic and equal to 1. In this case, the transition
mechanism is defined by transition probabilities p(dy|x, a) instead of transition kernels Q;
p(X|x, a) = 1. In other words, Q(t, Y|x, a) = p(Y|x, a)I{t > 1}. Because all sojourn times
are equal to 1, each strategy in an MDP is a policy and strategic measures are defined on
(H,%(H,)). For MDPs formula (A.1.1) can be written in a simpler form:

(A.2.3) W, (w, W):[EZZB”rk(xn,an), k=0,...,K,
n=0
where 8 =e~“ is a discount factor.

It is well known that for a one-criterion discounted SMDP can be reduced to a discounted
MDPs; see Heyman and Sobel (1984, p. 202). Here we provide the reduction for problems
with multiple criteria.

We define the regular nonnegative conditional measures on X

(A.2.4) B(Y|x, a) =/we*“’Q(dz, Y|x, a).
0

Let B(x,a) = B(X|x,a). Assumption A.l implies that B(x,a) <1 — é(l — e ) < 1.
We can interpret « as an intensity with which the process dies. Then B(x, a) is the prob-
ability that the process does not die before the next jump. We observe that 3(x,a) =0
implies that state x is absorbing under action a.

For a strategy mr, initial distribution p, and jumps n =0,1,..., we define bounded
non-negative measures M7, on X x A and mj , on X,
(A.2.5) M7, (Y,B)=E] e*"I{x,€Y,a,€B}
(A.2.6) my (V) =E; e~*I{x, e Y},

where Y € %(X) and B € %(A). According to formula (3.5) in Feinberg (2002),

(A.2.7) M iy (¥) = /X /A B(Y|x,a)M? (dx, da).

Because my ,(Y) = MJ (Y, A), we have that m is a projection of M on X. In view
of Corollary 7.27.2 in Bertsekas and Shreve (1978), there is a (m] ,-a.e.) unique regular
transition probability from X to A such that

M7, (dx, da)
(A.2.8) o,(da|x) = ————=
m;{ﬁn(dx)
By definition, (A.2.8) is equivalent to

won

(A.2.9) M;n(Y,B)=f o (Blx)m™ (dx)
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for all Y € B(X), B € B(A). Since M, is concentrated on graph D then for every n =
0,1,... we can select a version of ¢, such that ¢,(D(x)|x) =1 for all x € X. Then

o={o,n=0,1,...} is a randomized Markov policy. Let R, (u, 7) =E] e *"r(x,, a,).

LEMMA A.2. Consider an SMDP. Let m be a strategy and i be an initial distribution.
Then for a randomized Markov policy o defined by (A.2.8)
(A.2.10) M7, =M7,, n=01,....
In addition, R,(u, 0) =R, (u, ) for all n=0,1, ... and therefore W(u, o) = W(u, m)
for any bounded above Borel reward function r.

COROLLARY A.3. Consider an SMDP. Let w be an initial distribution. Then for any
strategy 7 there exists a policy o such that (A.2.10) holds and therefore W(u, o) =
W (., ) for any bounded above Borel reward function r.

We notice that Lemma A.2 generalizes to SMDPs the result established for MDPs by
Derman and Strauch (1966). According to Derman and Strauch (1966), given an initial
distribution, for any policy in an MDP there exists a randomized Markov policy with the
equal performance. However, the major difference is that formula (A.2.8) defines different
Markov policies o for different discount rates o while the equivalent policy for MDPs is
the same for all discount factors because &, = 1.

Given an SMDP, we shall construct an equivalent MDP. Corollary A.3 implies that, in
order to establish an equivalency, it is sufficient to compare the performances of policies.

We fix an arbitrary 8 € [1 — (1 — e~*), 1] and define the transition probabilities j from
XxAtoA

B(Y|x,a)/B, if ¥ e B(X),xeX;
p(Y|x,a)={1—-B(Y|x,a)/B, if Y={x},xeX;
1, if ¥ ={x},x=1x.

Then we consider an MDP with the state set X, action set A, sets of available actions
D(x), reward functions r,, k =0,..., K, discount factor f}, and transition probabilities
p. Let P and W respectively denote the strategic measures and expected total discounted
rewards for this MDP. The sets of all policies for the original SMDP and this MDP coincide.
The following statement demonstrates that this MDP is equivalent to the original SMDP
(statement (iii) follows from statement (ii) and Corollary A .4).

COROLLARY A 4. Consider an SMDP and let an initial distribution p and a policy mw
be given. Then the following statements hold:
(i) M7 ,(Y,B)=B'P,(x,€Y,a,€B), wheren=0,1,...,Y € B(X), and B € B(A);
(i) W (u, m) =W, (u, 7) for all k=0, ...,K;
(iii) A policy is optimal for an SMDP if and only if it is optimal for the MDP obtained
from that SMDP by adding an absorbing state X to the state space and by replacing the
transition kernel Q and discount rate o with the transition probabilities p and discount

factor B.

A.3. Optimization of SMDPs. Corollary A.4 implies that the optimization of an
SMDP is equivalent to the optimization of the MDP introduced before the formulation of
Corollary A.4. Dynamic programming and linear programming are two major tools used
for MDPs. Though the parameters of an MDP in Corollary A .4 depend on the selection
of B, the corresponding dynamic programming and the corresponding linear programming
equations do not depend on the selected value of 8. For example, the optimality (dynamic
programming) operator is T f (x) = r(x, a)+ [, f(y)B(dy|x, a); see, e.g., Puterman (1994,
§11.3.3) for the discrete state space.
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For constrained MDPs, the linear programming approach is natural. The main idea of
this approach is to replace the finding of an optimal policy with the finding of an optimal
occupation measure; see, e.g., Altman (1999), Borkar (2002), and Piunovskiy (1997). This
approach can be easily extended to SMDPs.

For an MDP from Corollary A .4, the occupation measure is a measure on (X x A, % x ()
defined by Ml‘f =", ,é”ﬁ;f for a policy 7 and for an initial distribution p. For an SMDP,
we define an occupation measures M = > M7 ,, where m is a strategy and u is an
initial distribution.

For a policy 7, Corollary A.4 implies that M = M;[ and

(A3.11) W, (1, 7) = W, (., 7T)=/X/Ar(x, a)M7 (dx, da).

Let /. be the set of all measures on (X x A, % x 3f). For M € J/l, we denote by m its
projection on (X, %), m(Y) =M (Y x A) for Y € .

We fix an initial distribution w. Lemma 4.6 in Gonzédlez-Herndndez and Herndndez-
Lerma (1999) provides the necessary and sufficient condition for a measure M € /(. to be
an occupation measure. This result and Corollaries A.3 and A .4 imply that the set of all
occupation measures for a given initial distribution w is the set of all measures satisfying
the following two conditions:

(A.3.12) m(Y):;L(Y)+//B(Y|x, a)M(dx, da) forall Y € %,
(A3.13) Med,.

In addition, Lemma 4.6 in Gonzdlez-Herndndez (1999) and Corollaries A.3 and A .4 imply
that if M is a strategic measure for a given initial distribution p then M (X x A) =1/ and
M = M} for a randomized stationary policy ¢ that satisfies

M(dx, B
(A.3.14) ¢(Blx) = g m-a.e., Bedd.
m(dx)
Thus, we have the following result which is similar to Lemma 3.3 in Gonzéilez-Herndndez
(1999) where MDPs were studied.

THEOREM A.5. (i) A constrained SMDP is feasible if and only if the following LP is
feasible:

(A.3.15) maximize //ro(x, a)M(dx, da),
XJA
subject to (A.3.12, A.3.13) and
(A.3.16) //rk(x,a)M(dx,da)ZCk, k=1,....K.
X JA

(i) An optimal policy exists for a constrained SMDP if and only if the LP (A.3.12),
(A.3.13), (A.3.15), and (A.3.16) has a solution.

(iii) If M is a solution of this LP then a randomized stationary policy defined in (A.3.14)
is optimal.

For MDPs, Corollary 5.1 in Feinberg and Piunovskiy (2002) provides a sufficient condition
for the existence of an optimal policy (see there also explanations at the bottom of p. 107 that
one of the conditions listed there always holds for the discounted criterion; see also earlier
sufficient conditions by Gonzdlez-Herndndez and Herndndez-Lerma 2000). For an SMDP,
the conditions are almost the same. The only difference is that we need an assumption that
Q(+|x, a) is weakly continuous in (x, a). This assumption implies the weak continuity of
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transition probabilities for an MDP considered in Corollary A .4. This weak continuity is
required for MDPs to ensure the existence of optimal policies; see Gonzdlez-Herndndez
and Herndndez-Lerma (2000) and Feinberg and Piunovskiy (2002). For finite-step SMDPs,
Theorem A.5 implies the following.

COROLLARY A.6. Let N be a finite integer.
(i) A constrained N-step SMDP is feasible if and only if the following LP:

N-
(A.3.17) maximize Z/ / ro(x, n, a)M,(dx, da),
n=0"X’A
subject to
(A.3.18) mn(Y)z,u(Y)—l—//B(Y|x,a)M,,_1(dx,da) forall Y €%,
xJa

with M_,(B)=0 and m_, = u,
(A.3.19) M,eM, and m,(Y)=M,(Y,A), n=0,...,N—1,

N-1
(A.3.20) Z/ / r(x,n, )M (dx, da)>C,, k=1,....K
n=0 XA
is feasible.
(ii) An optimal policy exists for a constrained N-step SMDP if and only if the LP
(A.3.17)-(A.3.20) has a solution. In addition, if M is a solution of this LP then a ran-
domized Markov policy

M, (dx, B) _
——— m,ae., n=1,...,N, Bed,

(A3.21) eu(Bl) = =L m,

is optimal.

For countable state MDPs, Feinberg and Shwartz (1996) proved that the number of ran-
domization procedures that an optimal policy may use is limited by the number of con-
straints. This result, which is still open for uncountable MDPs, is important for CTIMDPs
because it implies that the number of switching points may be limited by the number of con-
straints in CTJIMDPs. Therefore, until the end of the appendix, we shall consider countable
models. We shall assume that the following conditions hold.

AssumPTION A.7. (a) X is countable or finite;

(b) D(x) is compact for each x € X ;

(c) for all x,y € X, functions B(y|x,a) and B(x,a) are continuous in a € D(x) (the
latter condition is not needed if X is finite);

(d) functions r,(x, a) are uniformly bounded above and for each x € X they are upper
semi-continuous in a € D(x).

We remark that if Q(-|x, a) are weakly continuous in a € D(x) and Assumption A.1 holds,
then Assumption A.7(c) holds.

For nonhomogeneous SMDPs considered in the end of §A.1, we also assume
Assumption A.7 with x being replaced by (x, n) in conditions (b)—(d). For finite-step homo-
geneous models, conditions (b)—(d) imply the corresponding conditions when the states x
are replaced with (x, n).

First we consider an SMDP with one criterion (K = 0). Let IT be the set of all strate-
gies, v(x) = sup{W(x, m)|m € I1} be the value function and A°(x) = {a € D(x)|v(x) =
r(x,a)+ T*v(x)}, x € X, be the sets of conserving actions. Similar to Theorem 4.2(i) in
Feinberg and Shwartz (1996), A°(x) are nonempty and compact. Theorem A.8 follows
from Corollary A .4 and from the results for discounted MDPs (Feinberg and Shwartz 1996,
Theorem 4.2).
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THEOREM A .8. Consider a one-criterion SMDP with a finite or countable state space X.
A randomized stationary policy  is optimal if and only if w(A°(x)|x) =1 for all x € X.
Therefore, if Assumption A.7 holds then there exists an optimal stationary policy.

To compute an optimal policy, one can apply the standard techniques, such as policy
iteration, value iteration, and linear programming algorithms, to the MDP described in
Corollary A .4. For a finite-step SMDP, an optimal policy can be computed by the standard
value iteration (dynamic programming) algorithm.

Now we consider a discounted SMDP with multiple criteria. To characterize optimal
policies, we need additional definitions similar to those introduced in Feinberg and Shwartz
(1996) for MDPs.

We say that a policy is discrete if for each history h, = xya,. . . x, the measure 7 (-|h,)
is concentrated on a countable set. We say that a randomized Markov policy 7 has index
m if it is discrete and

(A322) Z[

xeX

U{a e D(x)|m,(alx) > O}‘ - 1:| <m.
n=0

If a randomized stationary policy has an index m, then this policy is called m-randomized
stationary. For a randomized stationary policy , (4.1) is equivalent to

(A.3.23) > [l{a € D(x)|m(alx) > 0} — 1] <m.
xeX
We say that a randomized Markov policy 7 is a randomized Markov policy of order m
if it is discrete and

(A.3.24) > > [l{a € D(x)|m,(alx) > 0} — 1] < m.
n=0xeX
For N-step models, oo should be replaced by (N — 1) in (A.3.22) and (A.3.24).

If a randomized Markov policy has the index m, it uses no more than m additional actions
than a stationary policy. A randomized Markov policy of the order m uses no more than m
additional actions than a Markov policy.

A randomized Markov policy 7 is called an (m, n)-policy if it is of the order m, and
from the step n onwards it coincides with a stationary policy. The last property means that
there is a stationary policy ¢ such that 7, (¢(x)|x) =1 for all x € X and for all i > n. If
an (m, n)-policy has the index m then it is called a strong (m, n)-policy. The following
theorem follows from Theorem 2.1 in Feinberg and Shwartz (1996) and Corollary A 4.

THEOREM A .9. Let the state space X be finite or countable and let Assumption A.7
holds. If an SMDP is feasible, then

(i) there exists an optimal K-randomized stationary policy; and

(ii) for some finite n =0, 1, ... there exists an optimal strong (K, n)-policy.

If A is finite or countable, the LP (A.3.12), (A.3.13), (A.3.15), and (A.3.16) can be
rewritten in the following form

(A.3.25) maximize Y Y ro(y, a)u, ,»
yeX aeD(y)
subject to
(A.3.26) > U=, > BOk@u, ,=p(). yeX,
aeD(y) z€X aeD(z)
(A.3.27) Z Z (v, au, ,>C, k=1,...,K,
yeX aeD(y)
(A.3.28) u, ,20, yeX, aeD(y).
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Theorem A.5 and the results on discounted MDPs (Feinberg and Shwartz 1995, Theorem
4.2) imply the following statement.

THEOREM A.10. (i) Let the state space X be finite or countable and Assumption A.7
holds. If the LP (A.3.25)—(A.3.28) is feasible, it has an optimal solution.

(ii) Let X and A be finite. If u is an optimal basic solution of the LP (A.3.25)—(A.3.28)
then the formula

Uy 4 .
Sy 2
(A.3.29) o(aly) = beD() Py, b beD(y)

H{a=a(y)}, otherwise,
where y € X and a(y) is an arbitrary element of D(y), defines an optimal K -randomized
stationary policy ¢.
Consider a nonhomogeneous SMDP. Theorem A .9 implies the following.

CorOLLARY A.11. (i) For a one-criterion nonhomogeneous SMDP there exists an
optimal Markov policy. (i) If a nonhomogeneous SMDP with K criteria is feasible, then
there exists an optimal randomized Markov policy of order K.

Now we consider a finite-step SMDP. If X and A are finite or countable, the LP (A.3.17)-
(A .3.20) can be rewritten in the following form:

N-1
(A.3.30) maximize Y Y > ry(y, n, au,, ,.
yeX n=0 yeD(y)
subject to
(A331) Z uy,O,azlu’(y)’ yEX7
aeD(y)

(A332) > wu,,,—> > BOlz.nawu,,,=0, n=0,....N—-1, yeX,

aeD(y) z€X aeD(z)

N-1
(A.3.33) >3 Y nnau,,,>C, k=1,...,K,
yeX n=0 aeD(y)

(A.3.34) Uy, o>0, yeX, n=0,...,N—1, a e D(y).

Corollary A .6 and the results on finite horizon MDPs (Feinberg and Shwartz 1995, §4.1)
imply the following result.

THEOREM A.12. Let the state space be finite or countable and let Assumption A.7 holds.
Consider a finite-step SMDP. (i) If this LP is feasible, it has an optimal solution. (ii) If
the state and action sets X and A are finite and u is an optimal basic solution of the LP

(4.21)—(4.25), then the formula

u
L > lf Z uy,n,b>o’
(A335) ®, (a|y) — Z”ED()') Uy n.b beD(y)

H{a=a(y)}, otherwise,

where n=0,1,...,N —1, ye X, and a(y) € D(y) are arbitrary, defines an optimal ran-
domized Markov policy ¢ of order K.
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