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Abstract

The field of mesh generation concerns the development of efficient algorithmic techniques

to construct high-quality tessellations of complex geometrical objects. In this thesis, I

investigate the problem of unstructured simplicial mesh generation for problems in R2

and R3, in which meshes consist of collections of triangular and tetrahedral elements.

I focus on the development of efficient algorithms and computer programs to produce

high-quality meshes for planar, surface and volumetric objects of arbitrary complexity. I

develop and implement a number of new algorithms for mesh construction based on the

Frontal-Delaunay paradigm – a hybridisation of conventional Delaunay-refinement and

advancing-front techniques. I show that the proposed algorithms are a significant im-

provement on existing approaches, typically outperforming the Delaunay-refinement tech-

nique in terms of element shape- and size-quality, while offering significantly improved

theoretical robustness compared to advancing-front techniques. I verify experimentally

that the proposed methods achieve the same theoretical element shape- and size-bounds

typically associated with conventional Delaunay-refinement techniques. An implemen-

tation of the new Frontal-Delaunay algorithms, in addition to conventional Delaunay-

refinement techniques, are provided in the new mesh generation package JIGSAW. In

addition to mesh construction, methods for mesh improvement are also investigated. I

develop and implement a family of techniques to improve the element shape quality of

existing simplicial meshes, using a combination of optimisation-based vertex smoothing,

local topological transformation and vertex insertion. These operations are interleaved

according to a new priority-based schedule, and I show that the resulting algorithms

are competitive with existing state-of-the-art approaches in terms of mesh quality, while

offering significant improvements in computational efficiency. An implementation of the

suite of new mesh optimisation algorithms for the improvement of planar, surface and

volumetric meshes are provided in the JITTERBUG package.
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Chapter 1

Introduction

Computational modelling and simulation is a critical aspect of modern scientific research

and industrial design, underpinning a diverse range of applications – from computer

graphics and animation to complex numerical simulations of physical phenomena, such

as fluid dynamics and structural mechanics. These computational techniques are based

on a discrete representation of the underlying geometry, in which the objects and domains

of interest are tessellated into meshes of simple elements. The study of the properties,

construction and maintenance of these tessellated models is spanned by the field of mesh-

generation.

Modern mesh generation is concerned with the development of efficient and auto-

matic algorithms to construct and maintain high-quality meshes for complex objects and

domains. Meshes are expected to conform to a number of often divergent requirements

– adherence to complex geometrical features, support for high spatial resolution in areas

of interest and maximum sparsity elsewhere, facilitation of adaptive and incremental re-

finement and, significantly, preservation of optimal element geometry. The development

of efficient techniques and algorithms that offer provable guarantees on the worst-case

element quality and optimality represents a major challenge in contemporary mesh gen-

eration research.

This dissertation concerns the problem of unstructured simplicial mesh generation for

two- and three-dimensional problems, in which meshes consist of collections of triangular

and tetrahedral elements embedded in Euclidean space. I focus on the development of

efficient algorithms and computer programs to produce high-quality meshes for planar,

surface and volumetric objects of arbitrary complexity, suitable for subsequent mod-

elling and numerical simulation. In this work, I concentrate on two key areas: (i) the

development of fundamental meshing algorithms based on the Delaunay tessellation, and

(ii) the development of techniques for mesh improvement, utilising local geometrical and

topological optimisation operations.

In the remainder of this chapter I offer a brief introduction to the notion of meshes,

and discuss the manner in which the optimality of these structures can be assessed and

measured. Additionally, I briefly review the development of a range of methods for

mesh generation, contrasting the various advantages and disadvantages associated with
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existing techniques. Finally, I outline the structure and objectives of this dissertation,

summarising the major results and contributions to be presented in subsequent chapters.

1.1 Meshes

Meshes are collections of simple geometrical elements that tessellate a set of vertices in

space. In this work, I am interested only in geometrical problems, in which the vertices lie

in two- or three-dimensional Euclidean space, such that X ⊂ R2 or X ⊂ R3. Meshes can

be broadly categorised according to their underlying character, examining the structure

of their topology, the choice of underlying element type and the nature of their inter-

element adjacencies.

Meshes are classed as being of either the structured or unstructured variety, referring

to the regularity of their underlying topology. Structured meshes consist of highly regular

configurations, in which the adjacency of all vertices and elements is represented in

terms of a uniform template. Due to their simplicity, structured meshes support implicit

adjacency queries, where connectivity is calculated using simple arithmetic operations.

Conventional ‘grids’, based on a uniform subdivision of Cartesian space, are illustrative

of common structured mesh types. Unstructured meshes, in contrast, do not incorporate

regular vertex or element connectivities, requiring the explicit storage of vertex and

element adjacency information for each entity in the mesh. Such meshes are typified by

triangle-based structures, in which a domain is decomposed into a collection of irregular

triangle or tetrahedral elements, although generalised unstructured meshes can also be

formulated in terms of arbitrary polygonal or polyhedral element types.

Due to the regularity of their indexing and connectivity, structured meshes impose

low computational storage requirements and can facilitate the development of highly ef-

ficient numerical methods. On the downside, their stringent requirements on topological

regularity can cause serious problems when dealing with complex geometrical constraints

or variable spatial resolution, typically restricting the use of such meshes to problems

specified on simple geometrical domains. Unstructured meshes, on the other hand, offer

far greater geometrical flexibility, and are generally preferred when tessellating the com-

plex objects and domains that arise when modelling problems deriving from industrial or

naturally occurring processes. Despite the additional computational cost that unstruc-

tured formulations may impose on a per-element basis, the flexibility of variable and

adaptive spatial resolution can often lead to significant overall computational savings,

due to a reduction in total element count.

Meshes are also classified according to their inter-element connectivities, with so-

called conforming meshes requiring that adjacent elements intersect along a common

edge or face. Conversely, non-conforming mesh types support adjacency amongst multi-

element ‘patches’, in which neighbouring elements share only partial edge- or face-based

connectivity. While non-conforming strategies offer clear advantages in terms of geo-

metrical and topological flexibility, the resulting fractional element connectivities dictate

that only sophisticated and potentially computationally expensive numerical methods

can be supported. In this study, in the interests of general applicability, I pursue the
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development of conforming unstructured meshing techniques only.

Unstructured meshes can be built using a variety of polygonal and polyhedral ele-

ment types, including triangles, quadrilaterals, tetrahedrons, pyramids, wedges and hex-

ahedrons. Meshes are often homogeneous, consisting of a single element type, although

it’s possible to consider mixed-element meshes incorporating various combinations of the

basic types. In this work, I restrict my attention to so-called simplicial meshing tech-

niques, in which the basic element of a mesh in Rd is the d-simplex – the simplest convex

full-dimensional polyhedron that can be constructed from a minimal set of points in

Rd. In two- and three-dimensions these elements are simply the well known triangle and

tetrahedron, respectively. Simplicial tessellations exhibit a number of convenient theo-

retical properties that facilitate the development of high-quality meshing techniques. A

formal discussion of these properties is deferred until Chapter 2. The development of

theorems and techniques supporting provable guarantees for general non-simplicial mesh

generation remains a significant open problem in computational geometry and is not

pursued further in this study.

Beyond definitions of the basic geometrical and topological characteristics of meshes,

it is necessary to discuss the mechanisms through which the quality and optimality of an

unstructured mesh can be measured. The problem of constructing optimal meshes and

tessellations has been studied by a number of authors, including, for example, Cheng, Dey

and Shewchuk [13, 52], Freitag, Ollivier-Gooch and Knupp [23, 24], and Alliez, Cohen-

Steiner, Yvinec, and Desbrun [1]. In general, it is noted that a high-quality mesh satisfies

demands on both the size and shape of the underlying elements. In [13, Chapter 1] Cheng,

Dey and Shewchuk provide a broad summary of the effects of element shape and size,

making the following observations:

• Elements with large dihedral angles introduce correspondingly large errors in numerical

approximations of differential operators. It is noted that as the worst-case element-wise

dihedral angles approaches 180◦ the errors in the gradients computed using piece-wise

linear interpolants becomes unbounded. See Synge [53] and Babuška and Aziz [2] for a

discussion of this effect for triangular elements and Kř́ıžek [31] for tetrahedral elements.

• Elements with small dihedral angles lead to poorly conditioned numerical integration

schemes, in turn compromising the conditioning of the large linear systems that arise

in many finite-volume and finite-element methods. This behaviour has been explored

extensively within the numerical methods community – see, for example, studies by

Fried [26].

• Highly skewed elements enclosing relatively small volumes can place severe restrictions

on the maximum allowable time-step when solving time-dependent problems using

explicit integration techniques. The nature of the restrictions are a function of the

characteristics of the underlying differential equations and are particularly troublesome

for some non-linear hyperbolic systems, such as the Navier-Stokes equations of fluid

dynamics – see the Courant-Friedrichs-Lewy constraints [15] discussed by, for example,

Lax and Wendroff [32] and LeVeque [33].

• Adaptation of local mesh resolution based on solution behaviour is desirable for optimal
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results, providing high resolution and accuracy in areas of interest, while minimising

overall computational costs through the adoption of sparse representations in smooth

regions.

These considerations show that high-quality meshes are required to strike a balance

between a number of competing criteria – supporting strong variability in spatial reso-

lution while also preserving a range of constraints on element shape.

1.2 Methods for Mesh Generation

Interest in mesh generation coincided with early developments in numerical modelling

and simulation in the 1970’s and often focused on the application of the finite-element

method to problems in structural mechanics. The field of mesh generation has evolved

rapidly over the intervening decades, seeing the development of a number of impor-

tant techniques and algorithms. The vast majority of modern meshing techniques fall

into one of three basic categories: advancing-front methods, grid-overlay techniques and

Delaunay-based approaches. Significant research has also focused on the development of

mesh-improvement techniques, designed to enhance the quality of existing tessellations.

1.2.1 Grid-overlay Techniques

Grid-overlay techniques are arguably the simplest form of mesh generation, being based

on an underlying structured mesh. While a number of variations exist in the literature,

a typical approach seeks to trim and warp the elements of a structured ‘overlay’ grid

to conform to the geometry of the domain to be meshed. While such methods can

be based on simple uniform Cartesian meshes, superior techniques supporting spatial

adaptivity can be realised through the use of non-uniform overlay meshes. Commonly, a

semi-structured mesh, such as a quadtree or octree is used to construct the overlay mesh

– recursively decomposing the axis-aligned bounding-box of the domain into a series

of rectangular elements. These tree-based structures will be discussed in further detail

in Chapter 2. See Figure 1.1 for an illustration of a quadtree-based overlay meshing

algorithm in action.

The simplicity, and corresponding efficiency of grid-overlay meshing techniques are

the main advantages of these methods, which are beset by a number of issues stemming

from the potential incompatibilities and misalignment between the underlying structured

grid and the geometry of the domain to be meshed. Typically, elements of sub-optimal

shape are introduced near geometrical constraints, depending on alignment with the

overlay mesh. Further alignment issues also often arise when attempting to refine these

meshes along solution contours or other internal features. These techniques are also

reported to often result in significant over-refinement, producing meshes that include

too many elements. Grid-overlay techniques, based on quadtree or octree overlays, have

been used in a number of meshing studies, including the early work of Yerry and Shephard

[55, 56]. These methods also led to the development of the first provably-good meshing

algorithm for general polygonal domains, due to Bern, Eppstein and Gilbert [3], in which
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guarantees on the worst-case element angles were achieved, such that 18.4◦ ≤ θ(τ) ≤
153.2◦, where θ(τ) is the distribution of element-wise plane-angles in a triangulation

T. Mitchell and Vavasis also used tree-based overlay methods to construct size-optimal

meshing algorithms for the three-dimensional [37] and d -dimensional cases [38].

1.2.2 Advancing-front Strategies

Advancing-front meshing strategies are based on an incremental paradigm, in which

elements are created one-by-one, starting from a a set of frontal facets, initialised on

the boundary of the domain to be meshed. The mesh is marched inwards layer-by-layer,

with new elements created by carefully positioning vertices adjacent to the facets in the

frontal set. Following the placement of new elements, the set of frontal facets is updated to

incorporate the updated mesh topology. Elements are added incrementally in this fashion

until a complete tessellation of the domain is obtained. For two-dimensional problems,

advancing-front methods are known to often produce meshes with very high shape quality

in practice, especially near the boundaries of the domain, where highly structured layer-

wise configurations are typically achieved. The worst elements are typically generated

where multiple fronts coalesce. See Figure 1.1 for an illustration of the frontal meshing

procedure.

Despite excellent practical performance, conventional advancing-front methods are

heuristic in nature and, as a result, have so-far resisted attempts to demonstrate mean-

ingful theoretical guarantees. This lack of theoretical robustness becomes especially

obvious when dealing with problems in higher dimensions, where, due to a number of

topological constraints that will be outlined in Chapter 2, it is not necessarily possible

to ensure that a valid tessellation can be constructed at each iteration of the frontal

procedure for all inputs. Advancing-front methods are especially popular in the Com-

putational Fluid Dynamics (cfd) community, where the preservation of element quality

adjacent to boundary surfaces is a core consideration. An early frontal method was

introduced by Alan George in his dissertation [27] leading to the development of a num-

ber of high-quality algorithms, such as those introduced by Peraire, Peiró and Morgan

[40] and Löhner and Parikh [34]. A number of authors, including Schöberl [48] and

Rypl [45, 46], have generalised the advancing-front method to tackle surface and vol-

umetric meshing problems in three-dimensions. Schreiner, Scheidegger, Fleishman and

Silva [49] have developed frontal methods for surface meshing applications in computer

graphics. Blacker and Stephenson [4] and Rypl [47], amongst others, have also shown

that advancing-front methods can be used to construct high-quality quadrilateral and

mixed-element triangular-quadrilateral meshes for planar and surface geometries.

1.2.3 Delaunay-based Methods

In order to discuss Delaunay-based meshing techniques, I must first briefly introduce the

Delaunay tessellation itself. Discovered by Boris Delaunay in the 1930’s, the Delaunay

triangulation [17] is an optimal topological structure for the triangulation of points in the

plane. Generalisations to higher-dimensions are possible, with a d -dimensional Delaunay
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Figure 1.1: Example meshes for an airfoil geometry, illustrating the behaviour of the quadtree,
advancing-front and Delaunay-refinement meshing strategies. In (i)-(iii) an axis-aligned
quadtree-overlay is constructed, triangulated and warped to conform to the geometry. In (iv)-
(vi) a conventional advancing-front technique marches the mesh outward from the boundaries,
incrementally positioning new vertices until the fronts coalesce. In (vii)-(ix) Ruppert’s Delaunay-
refinement algorithm iteratively refines a coarse mesh of the domain until all element shape and
size constraints are satisfied. Meshes in all cases were generated using equivalent input param-
eters.

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)
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structure tessellating points in Rd as a collection of d -simplex elements. The Delaunay

tessellation is used extensively throughout this dissertation and its formal definition and a

discussion of its properties is presented in Chapter 2. At this stage it suffices to know that

the Delaunay tessellation is imbued with a number of convenient theoretical attributes

and that, especially in R2, this type of tessellation is provably optimal.

Delaunay-refinement based methods for mesh generation typically start with the con-

struction of a constrained Delaunay tessellation that conforms to the geometry of the

domain to be meshed. New vertices are incrementally added to the interior of the domain

until a suitable triangulation is formed. Vertices are added via a refinement strategy, in

which their position is carefully chosen to eliminate elements that do not conform to a

series of shape and/or size constraints. Throughout this refinement process, the topology

of the underlying Delaunay tessellation is also updated, ensuring that the new mesh is

also always a Delaunay tessellation. The method terminates when the set of constraints

for all elements are satisfied. See Figure 1.1 for an illustration of the Delaunay-refinement

process.

Delaunay-based methods for mesh generation facilitate the development of robust and

provably-good meshing algorithms, in which the strong theoretical guarantees deriving

from the properties of the Delaunay tessellation itself ensure that a number of worst-case

element shape constraints can be satisfied, even for pathologically difficult inputs that

may cause issues for heuristic methods like the advancing-front technique. Despite these

theoretical assurances, for well-posed inputs, it is known that frontal methods typically

outperform Delaunay-based techniques in terms of element shape quality and output

size. Delaunay-based meshing techniques have become popular over the past decade,

both with the computational geometers who study their theoretical properties, and with

computational researchers and numericists drawn to their rich mathematical robustness.

Early work on provably-good Delaunay based meshing was introduced by Chew, with

his first refinement algorithm [14], dealing with uniform meshes for polygonal domains.

Ruppert [43, 44] presented the first Delaunay-refinement scheme that ensured provably

good shape- and size-optimality for general planar meshes, achieving angle bounds of

20.7◦ ≤ θ(τ) ≤ 138.6◦ for polygonal domains without small acute angles. Variations

on his algorithm are still widely used today. Subsequent developments in Delaunay-

based meshing were realised by a number of authors, with Shewchuk [50, 51], Cheng,

Dey, Ramos, Levine [10, 11, 12], Edelsbrunner and Shah [19], Boissonnat and Oudot

[5, 6], and Oudot, Rineau and Yvinec [39], amongst others, responsible for a number

of innovations, including generalisations to surface and volumetric meshing in three-

dimensions. A significant portion of this work is summarised in [13]. Further detail is

provided in Chapters 2, 3, 4 and 5, where additional references are given.

1.2.4 Frontal-Delaunay Schemes

I also briefly mention the Frontal-Delaunay meshing technique, which is a hybridisa-

tion of the advancing-front and Delaunay-based strategies discussed previously. Frontal-

Delaunay methods insert new vertices into the interior of the domain in a manner con-
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sistent with the advancing-front technique. On the other hand, the topology of the mesh

is maintained via a Delaunay tessellation – incrementally updated as new vertices are in-

serted. The resulting methods exhibit many of the good qualities of the advancing-front

and Delaunay-based methods they derive from, inheriting both the high-quality practi-

cal performance of frontal methods and the robust theoretical framework of Delaunay

techniques. These hybrid methods were initially introduced by Rebay [41] and Mavriplis

[35] and have been studied by a range of authors, including Frey, Borouchaki and George

[25], Remacle, Henrotte, Carrier-Baudouin, Béchet, Marchandise, Geuzaine and Mouton

[42] and Erten and Üngör [20, 54]. Frontal-Delaunay methods form a significant part of

this dissertation and thus a detailed discussion of their characteristics is deferred until

Chapters 3, 4 and 5.

1.2.5 Mesh Improvement Procedures

In addition to techniques for genuine mesh construction, mesh improvement strategies,

designed to improve the quality of existing meshes, are an important addition to the

broader repertoire of meshing algorithms. Irrespective of the choices made concerning

the primary method of mesh construction, almost all meshes can be enhanced, sometimes

significantly, through the application of subsequent improvement techniques. Algorithms

for mesh improvement seek to enhance the shape and/or size optimality of a given mesh,

typically through the use of one or more of the following three strategies: (i) the iterative

relocation of mesh vertices, (ii) the transformation of the underlying mesh topology and

(iii) the insertion or removal of mesh vertices. Methods for mesh improvement based on

vertex relocation operations, commonly referred to as smoothing techniques, include the

well-known Laplacian smoothing method [21], schemes based on local optimisation, such

as the methods of Freitag, Knupp, Jones, Plassman and Olivier-Gooch [22, 23, 24] and a

range of methods constructed on the so-called dual-mesh, such as Centroidal Voronoi Tes-

sellation (cvt) [9, 18] and Optimal Delaunay Tessellation (odt) [8]. Laplacian smoothing

is known to impose very low computational cost, but is generally outperformed in terms

of quality by many of the other more sophisticated techniques, especially for higher-

dimensional problems. Smoothing operations are often complemented through the ad-

dition of topological transformations to the mesh improvement scheme. Typically, these

transformation are applied iteratively to local patches of elements, replacing the original

element configurations with one that improves local mesh quality. While there exists a

simple set of topological transformations for two-dimensional simplicial meshes, research

on strategies for topological improvement for non-simplicial and/or higher-dimensional

simplicial meshes is ongoing and includes, for example, the work of Rypl [47] and Joe [29]

for mixed triangular-quadrilateral meshes and a series of techniques introduced by Briére

de L’isle and George [7], de Cougny and Shephard [16], Misztal, Bærentzen, Anton and

Erleben [36] and Joe [28] for tetrahedral meshes. Klinger and Shewchuk [30] present a

state-of-the-art mesh improvement scheme for tetrahedral meshes, including techniques

for optimal vertex insertion and removal. I return to methods for mesh improvement in

Chapter 6, where additional discussions and references are included.
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1.3 Objectives and Outline

The primary objective of this dissertation is to develop a set of high-quality meshing

algorithms designed to tackle the type of complex geometrical problems often encountered

when performing large-scale computational modelling and simulation studies.

In Chapter 2, I review a number of key geometrical structures and theorems from

areas in computational geometry, with a focus on various spatial tessellations, including

Delaunay tessellations and hierarchical methods for spatial decomposition and search.

In addition to a discussion of theoretical properties, I present and review a number of

practically efficient algorithms for the construction and maintenance of these geometrical

objects.

In Chapters 3, 4 and 5, I focus on the development of methods for simplicial mesh

generation in two- and three-dimensional spaces. Building upon previous research, I

develop a new Frontal-Delaunay meshing strategy designed for planar, surface and volu-

metric problems. I show that this new approach typically outperforms the conventional

Delaunay-refinement technique in terms of element quality, often achieving output com-

petitive with advancing-front methods. I also demonstrate experimentally that the new

algorithms achieve element shape- and size-bounds consistent with those derived for ex-

isting Delaunay-refinement schemes. In addition to this new Frontal-Delaunay paradigm,

I investigate the use of alternative refinement strategies for volumetric meshing, designed

to eliminate the occurrence of low-quality sliver tetrahedrons. Results show that the new

Frontal-Delaunay method is particularly effective for planar and surface meshing prob-

lems, and that, when combined with alternative refinement strategies, leads to improved

algorithms for the generation of volumetric meshes.

I address the question of mesh improvement in Chapter 6 and develop an optimisa-

tion program for the planar, surface and volumetric meshes generated using the Frontal-

Delaunay algorithms presented in Chapters 3–5. My approach is based on a combi-

nation of optimisation-based vertex smoothing, generalised topological transformation

operations and vertex insertion. I introduce a new priority-based schedule for mesh

improvement and demonstrate experimentally that the new algorithm is an effective

tool for the improvement of two- and three-dimensional simplicial meshes. Specifically,

results show that the new technique often significantly outperforms existing state-of-the-

art approaches in terms of computational efficiency while achieving competitive levels of

optimisation quality.

I offer a final summary of results and conclusions in Chapter 7, focusing also on a

number of objectives for future research.



10 References

References

[1] Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. Variational
Tetrahedral Meshing. ACM Transactions on Graphics 24, 3 (2005), 617–625.
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Chapter 2

Elements, Tessellations &

Spatial Trees

Algorithms for mesh generation are built upon a number of important theorems and re-

sults from computational geometry. In this chapter I review the fundamental geometrical

structures that will be used throughout the remainder of this dissertation, including sim-

plicial elements, Delaunay tessellations and Voronoi diagrams. Additionally, I discuss a

number of alternate techniques for spatial subdivision and search, including hierarchical

decompositions and spatial trees. I present both an outline of the important theoretical

properties of these structures and the development of efficient and practical algorithms

for their construction and maintenance.

2.1 Preliminaries

I begin by reviewing a number of fundamental constructs and definitions, adapted from

the comprehensive presentations developed by Cheng, Dey and Shewchuk in [15, Chap-

ter 1]:

Definition 2.1 (affine hull). Given a set of points X ⊂ Rd, an affine combination of

the points in X is a point p given by the linear combination p =
∑n
i=1 wi xi, such that

the scalar weights satisfy
∑n
i=1 wi = 1. The affine hull of X, denoted Aff(X), is the set

containing all affine combinations of the points in X.

Given a set of points X, a point p is said to be affinely independent of X if it cannot

be written as an affine combination of the points in X, which implies p /∈ Aff(X). By

extension, the set X is said to be affinely independent if all points xi ∈ X are affinely

independent of the others. In Rd at most d+ 1 points can be affinely independent – sets

containing more than d+ 1 points lie on a common hyperplane.

Definition 2.2 (convex hull). Given a set of points X ⊂ Rd, a convex combination of

the points in X is a point p that can be written as a non-negative affine combination,

requiring wi ≥ 0 for all i. The convex hull of X, denoted Conv(X), is the set containing

all convex combinations of the points in X, such that Conv(X) =
{

Aff(X)
∣∣ ∀i : wi ≥ 0

}
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Geometrically, convex hulls can be visualised in terms of a ‘rubber-band’ analogy.

Given a set of points X in R2, Conv(X) is the polygon formed by an elastic band that is

stretched to minimally enclose all points in X. This analogy can be extended to higher

dimensions by considering enclosing elastic hyper-membranes. Clearly, when a set X in

Rd contains more than d+ 1 points it is not required that all points lie on the boundary

of the convex hull. Points that lie on the boundary of Conv(X) are said to be vertices of

the hull. Sets containing exactly d+1 affinely independent points support unique convex

hulls.

Definition 2.3 (simplex). A d-simplex is the convex hull of a set of d + 1 affinely

independent points in Rd.

The d-simplex is a non-degenerate convex polyhedron in Rd containing a minimal

number of vertices. Based on the properties of convex hulls discussed previously, it

is clear that such polyhedrons contain the minimal d + 1 affinely independent vertices

required to support a full-dimensional hull in Rd. In such cases, the resulting hull defines

a unique convex polyhedron. Specifically, a 0-simplex is a vertex, a 1-simplex is an

edge, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. Accordingly, it can

be seen that the boundary of a general d-simplex can be decomposed into a hierarchy

of lower dimensional simplexes, or faces, from dimension 0 to d − 1, with, for example,

the boundary of a tetrahedron consisting of a collection of triangles, edges and vertices.

Specifically, given a simplex τ , the 0-faces of τ are its vertices, the 1-faces are its edges,

and so-on. In particular the (d− 1)-faces of a simplex are called its facets. A d-simplex

has d+ 1 facets. In this study, I refer to 2- and 3-simplexes as triangular and tetrahedral

elements. These elements are the foundation of the meshing algorithms developed in

subsequent chapters.

Definition 2.4 (simplicial complex). A simplicial complex T is a finite set of simplexes,

satisfying the following constraints:

(i) T contains the faces of all simplexes ti ∈ T.

(ii) For all pairs of simplexes τi, τj ∈ T, their intersection τi ∩ τj is either empty, or a

face common to both τi and τj .

Geometrically, simplicial complexes can be visualised as structures created by ‘gluing’

collections of simplexes together. Two simplexes in a complex are said to be adjacent if

they share a common face, and disjoint otherwise. The second constraint in Definition 2.4

prohibits collections of simplexes that intersect internally, requiring that adjacent sim-

plexes intersect at a vertex (0-face), along a full-edge (1-face) or over a higher dimensional

simplicial face. The meshing algorithms developed throughout this dissertation are based

on so-called homogeneous simplicial d-complexes, in which, given a simplicial complex P,

all simplexes f ∈ P of dimension 0 through d− 1 are faces of a d-simplex τ ∈ P. Specifi-

cally, simplicial 2- and 3-complexes are conforming meshes of triangular and tetrahedral

elements, respectively. Throughout this work, I use the terminology interchangeably.

The notion of simplicial complexes can be extended to encapsulate various other geomet-

ric structures, including polyhedral complexes, piecewise linear complexes and piecewise
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smooth complexes. These complexes extend Definition 2.4 by considering collections of

non-simplicial elements, known more generally as the linear-cells of a complex, and will

be revisited in later chapters.

Definition 2.5 (underlying space). The underlying space of a complex P, denoted |P|,
is the union of its cells, |P| =

⋃
C∈P C.

The underlying space of a complex P is a formal definition of what is considered to

lie inside of P. For example, given a general point x, such that x ∈ |P|, it is known that

the point x lies in the complex P.

2.1.1 Simplex Shape

Before moving on to discussions of the Delaunay tessellation itself, it’s necessary to first

introduce a number of constructs used to measure the size, shape and quality of the

individual simplexes that make up a tessellation.

Definition 2.6 (Euclidean ball). In Rd the Euclidean ball, or closed d-ball, of radius

r > 0 and centre c, is B(c, r) =
{

x ∈ Rd
∣∣∣ ‖x− c‖ ≤ r

}
, where ‖p − q‖ is simply the

pairwise Euclidean distance between the points p,q ∈ Rd. The boundary of the d-ball is

called a (d− 1)-sphere and is the subset of B(c, r) such that ‖x− c‖ = r.

Geometrically, d-balls and d-spheres are simply generalisations of conventional spher-

ical structures to higher dimensional spaces. The 1-sphere is a circle and the 2-sphere

is simply the ‘conventional’ sphere in R3. Additionally, a d-ball is either closed or open,

depending on whether or not the ball is inclusive of its boundary.

Definition 2.7 (circumball). Given a simplex τ embedded in Rd, the circumball of τ is

any d-ball whose boundary passes through all vertices of τ exactly. The boundary of a

circumball is a (d− 1)-sphere called a circumsphere.

If a simplex has the same dimension as the space in which it is embedded, its as-

sociated circumball is unique. Full-dimensional simplexes, such as triangles in R2 and

tetrahedra in R3, are associated with unique circumballs as a consequence. If, on the

other hand, a simplex is embedded in a higher dimensional space, this uniqueness is lost,

with an infinite family of circumballs associated with the simplex instead. Consider,

for example, the common case of a triangle embedded in R3. In this case, a family of

circumballs can be placed along a vector normal to the plane of the element. For cases

such as this, the ambiguity can be resolved by selecting the smallest circumball from

the set, which is known as its diametric-ball. See the extended exposition presented by

Cheng, Dey and Shewchuk [15, Chapter 1] for additional discussions and proofs.

Definition 2.8 (diametric ball). Given a simplex τ embedded in Rd, the diametric-ball

of τ is the associated circumball of minimum radius. The centre of the diametric-ball is

called the circumcentre of τ and lies on the affine hull of the simplex τ .

Revisiting the case of a triangle embedded in R3, its diametric-ball is the circumball

whose centre lies in the plane of the triangle. The significance of the circumcentre will
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be discussed extensively in the context of the Delaunay meshing algorithms presented in

later chapters.

Definition 2.9 (min-enclosing ball). Given a simplex τ embedded in Rd, the min-

enclosing ball of τ is the d-ball of minimum radius that encloses all vertices in τ .

The min-enclosing ball for a d-simplex τ is always the diametric ball of a face of τ .

When the min-enclosing ball is equal to the diametric ball of a lower dimensional face it

is important to note that the min-enclosing ball is smaller than the diametric ball of τ .

2.1.2 Simplex Quality

An understanding of the shape-quality of simplicial elements is fundamental to the de-

velopment of the high-quality meshing algorithms pursued throughout this work. As per

the discussion presented in Section 1.1, it is known that high-quality simplicial elements

should not contain overly small or large angles and, additionally, should not be highly

skewed or distorted. Taking an isotropic definition, simplexes of ideal quality are those

that are perfectly regular – consisting of equilateral triangles and tetrahedrons for the

two- and three-dimensional problems considered in this study. These elements can be

distorted into poor -quality shapes in a range of different ways. See Figures 2.1 and 2.2

for a catalogue of the various poor-quality geometric configurations that can be achieved

by 2- and 3-simplexes.

Element quality is typically defined in terms of a scalar quality-function that assigns

simplexes a normalised score based on their geometrical configuration. Possibly the

simplest and most intuitive measure of the quality of a given simplex is based on a con-

sideration of its angles. The shape quality of a triangular element can be characterised

in terms of the plane angles between adjacent edges, while the quality of tetrahedral ele-

ments requires consideration of both the dihedral angles between adjacent triangular faces

and the plane angles between the adjacent edges on each triangular face. Importantly,

note that some of the the poor-quality tetrahedral geometries illustrated in Figure 2.2

achieve good distributions for either dihedral or plane angles, such as the sliver, which

has good plane angles, or the spear, which has good dihedral angles. It should be noted

that no poor-quality tetrahedron achieves a good distribution for both plane and dihedral

angles.

Despite their intuitive appeal, angle-based quality measures are inherently multi-

valued, consisting of three plane angles per 2-simplex and six dihedral plus twelve plane

angles per 3-simplex. While a number of strategies can be adopted to extract a single-

valued score, such as weighted sums or considerations of minimum and maximum values

[26], the high computational cost of these measures is unattractive in practice. The first

genuinely single-valued simplicial quality measure introduced is the so-called radius-edge

ratio, which is widely used in the context of Delaunay-based meshing algorithms.

Definition 2.10 (radius-edge ratio). The radius-edge ratio ρ(τ) of a d-simplex τ is

R/‖emin‖, where R is the radius of the diametric ball of τ and ‖emin‖ is the length of its

shortest edge.



2.1. Preliminaries 19

Figure 2.1: Poor quality element configurations for 2-simplex elements, showing the needle and
cap types, respectively.

needle cap

Figure 2.2: Poor quality element configurations for 3-simplex elements, showing the spade, cap,
wedge, sliver, spindle, spire, splinter, spike and spear types, respectively.

spade cap wedge

spindle sliver spire

splinter spike spear
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In R2, the radius-edge ratio is an ideal measure of element quality, detecting all poor-

quality triangular configurations illustrated in Figure 2.1. Unfortunately, in R3, this op-

timality is compromised, with the radius-edge ratio failing to detect the sliver configura-

tion, in which all edge lengths are relatively large, despite the pathologically poor dihedral

angles. The radius-edge ratio is still able to detect the remaining poor-quality tetrahedral

configurations presented in Figure 2.2. The radius-edge ratio achieves a minimum for

equilateral elements – 1/
√

3 for triangles and
√

6/4 for tetrahedrons, increasing toward +∞
as elements tend toward degeneracy. For triangles, the radius-edge ratio is robust and can

be related to the minimum plane angle θmin, such that ρ(τ) = R/‖emin‖ = 1
2 (sin(θmin))−1 .

Due to the summation of angles in a triangle, given a minimum angle θmin the largest an-

gle θmax is clearly bounded, such that θmax ≤ 180◦−2 θmin. Importantly, note that there

is no relationship between the radius-edge ratio and the dihedral angles of tetrahedral

elements. These relationships will be revisited in later chapters.

The lack of robustness associated with the radius-edge measure for higher-dimensional

problems has motivated the search for alternate formulations of element quality. First

introduced by Parthasarathy, Graichen and Hathaway [36], the so-called volume-length

measure is an alternative definition of simplex quality that is known to detect all poor-

quality configurations for both triangular and tetrahedral elements.

Definition 2.11 (volume-length ratio). The volume-length ratio v(τ) of a d-simplex τ

is V/‖erms‖d, where V is the signed volume of τ and ‖erms‖ is the root-mean-square of its

edge lengths.

Typically, the volume-length ratio v(τ) is normalised to achieve a score of +1 for

ideal elements. As an element distorts toward degeneracy v(τ) → 0, with fully inverted

elements achieving a score of −1. For triangles the ‘volume’ is simply taken as the

signed area of the element. Due to its robustness and simplicity, the volume-length

measure is widely used for a variety of meshing applications. Specifically, in [30], Klinger

and Shewchuk show that it is the best all-round quality metric for their state-of-the-art

tetrahedral mesh improvement program. This measure is used extensively throughout

subsequent sections of this thesis.

2.2 Delaunay Tessellations

The Delaunay tessellation, introduced by Boris Delaunay in 1934 [17], is one of the most

widely used geometrical structures in computational geometry and underpins much of

the work developed in the later chapters of this study.

Definition 2.12 (Simplicial tessellation). Given a finite set of points X ⊂ Rd, a simpli-

cial tessellation of X is a simplicial complex T, where the points in X are the vertices of

T and Conv(X) =
⋃
τi∈T τi.

Definition 2.13 (Delaunay tessellation). Given a finite set of points X ⊂ Rd, the

Delaunay tessellation of X, denoted Del(X), is a simplicial tessellation of X such that all

simplexes in Del(X) are Delaunay. A simplex τ is said to be Delaunay if the intersection
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Figure 2.3: An example of the Delaunay triangulation Del(X) for a set of points X ⊂ R2,
showing: (i) the distribution of points X, (ii) the topology of the Delaunay triangulation Del(X),
and (iii) the empty circumcircles associated with the triangles τ ∈ Del(X).

(i) (ii) (iii)

Figure 2.4: Illustration of the links between Delaunay tessellations, Voronoi diagrams and convex
hulls for vertices X ⊂ R2, showing (i) lifting the points X onto X+ ∈ R3 along with the
associated lower hull Conv

(
X+
)
, (ii) the Delaunay triangulation Del(X) as the projection of

Conv
(
X+
)

onto R2, and (iii) the dual Voronoi diagram Vor(X) associated with Del(X).

(i) (ii) (iii)

of its open diametric ball and the points in X is empty. A simplex τ is said to be strongly

Delaunay if the intersection of its closed diametric ball and X contains the vertices x ∈ τ
only.

The Delaunay tessellation has been widely studied in the literature and I do not intend

to review its properties in full here. I refer the reader to, for example, the comprehensive

overview presented by Cheng, Dey and Shewchuk in [15, Chapters 2–5] for additional

details. In the context of this study, it is sufficient to note that a Delaunay tessellation

Del(X) can be constructed for any finite set X ⊂ Rd and that in cases where all simplexes

in Del(X) are strongly Delaunay, such a tessellation is unique. So-called co-spherical

point-sets – those with more than d+1 points lying on the boundary of a common d-ball

– do not support tessellations that are strongly Delaunay. Though associated Delaunay

tessellations still exists for these degenerate inputs, elements that span the co-spherical

vertex subsets are not unique. In practice, algorithms for the construction of Delaunay

tessellations typically deal with these degenerate vertex distributions by simply choosing

one of the non-unique element combinations available, such that a conforming tessellation

is achieved. Many highly structured problems include co-spherical vertex configurations,

such as, for example, those based on uniform Cartesian grids.
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The Delaunay tessellation possesses a number of desirable theoretical properties.

Amongst the collection of all possible triangulations for a set of points X ⊂ R2, the

Delaunay triangulation Del(X) is known to simultaneously maximise the minimum plane

angle θmin whilst also minimising the largest circumdisk and min-enclosing disk for all

simplexes τ ∈ Del(X). Unfortunately, in higher dimensions, much of this optimally is

lost, with higher dimensional Delaunay tessellations only guaranteeing that a minimisa-

tion of the largest min-enclosing ball is achieved. The absence of bounds on the dihedral

angle for higher dimensional cases is a serious impediment to the development of vol-

umetric meshing algorithms of provable quality, and is an issue that will be revisited

extensively in later chapters. A simple example of Delaunay tessellation in the plane is

shown in Figure 2.3, illustrating the empty circumdisk property.

The Delaunay tessellation is also closely related to a number of other important

geometrical structures, namely the convex hull and the Voronoi diagram.

Definition 2.14 (Voronoi region). Given a finite set of sites X ⊂ Rd, the Voronoi region

vi associated with a site xi ∈ X is the set of all points in Rd lying at least as close to xi

as any other site xj ∈ X, ∀j 6= i.

The Voronoi regions vi are convex polyhedrons, consisting of a hierarchy of Voronoi

vertices (0-faces), Voronoi edges (1-faces), Voronoi facets ((d− 1)-faces) and Voronoi

regions (d-faces). Importantly, all Voronoi faces are convex, and all faces, other than the

vertices, can be unbounded.

Definition 2.15 (Voronoi diagram). Given a finite set of points X ⊂ Rd, the Voronoi di-

agram Vor(X) is a polyhedral complex containing the set of Voronoi regions vi associated

with the sites xi ∈ X.

Geometrically, the Delaunay tessellation and Voronoi diagram are said to be geo-

metric duals. Given a set of points X ⊂ Rd, the edges (1-faces) of the Voronoi regions

vi ∈ Vor(X) are equivalent to the line segments formed by joining the circumcentres

associated with pairs of facet-adjacent simplexes in the Delaunay tessellation Del(X).

These edges are orthogonal to the common (d− 1)-facets shared between the adjacent

simplexes τi, τj ∈ Del(X). It is important to note that the Voronoi diagram is essen-

tially a representation of the Euclidean distance function associated with a set of points.

Specifically, given a set X ⊂ Rd, the edges and vertices of the Voronoi diagram Vor(X)

correspond to local ridges and peaks associated with the closest distance map of X. This

relationship implies that points positioned faces in Vor(X) are, in some sense, locally

‘well-separated’ with respect to the points X. A number of the meshing algorithms

introduced in the later chapters of this study are based on these observations.

Additionally, it is well known that the Delaunay tessellation of a set of points X ⊂ Rd

is related to the convex hull of the associated set X+, where X+ is created by lifting

the original points X into Rd+1. This so-called lifting is achieved via a parabolic map

that associates each point xi ∈ X with its lifted companion x+
i ∈ X+, such that x+

i =(
c1, c2, ..., cd, c

2
1 + c22 + ...+ c2d

)
, where the ci’s are the coordinates of the points xi ∈ X.

The Delaunay tessellation Del(X) can be recovered by projecting the downward-facing
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facets of Conv(X+) back onto Rd. See Figure 2.4 for an illustration of the links between

Delaunay tessellations, Voronoi diagrams and convex hulls.

2.2.1 Delaunay Tessellations with Constraints

While the conventional Delaunay tessellation is a useful geometric structure in its own

right, its application to problems in mesh generation requires the consideration of ad-

ditional geometric constraints. In the context of meshing algorithms, it is clear that a

tessellation is required to conform to the geometry of the domain to be meshed.

Definition 2.16 (conformity). A complex T is said to conform to a complex P if |T| = |P|
and every cell in P can be written as a union of cells in T.

Firstly, it is typical to consider the triangulation of linear geometrical objects – those

made up of collections of lines, polygons and polyhedrons in R2 and R3. These types

of domains are encapsulated by a generalised linear geometrical structure, known as a

piecewise linear complex.

Definition 2.17 (piecewise linear complex). A piecewise linear complex (plc) P is a

finite set of linear cells satisfying the following conditions:

(i) The vertices and edges in P form a simplicial complex.

(ii) The boundary of each linear cell C ∈ P is a union of linear cells in P.

(iii) Given two distinct linear cells Ci, Cj ∈ P, their intersection Ci ∩ Cj is either empty

or a union of lower dimensional linear cells in P.

Given a general plc P, it is natural to consider whether a suitable simplicial tes-

sellation can be constructed, such that all geometric constraints are satisfied. Such a

tessellation is known as a triangulation of P, and can be considered both with and with-

out the inclusion of additional vertices.

Definition 2.18 (triangulation of a plc). Let P be a general plc. A simplicial complex

T is called a triangulation of P if T conforms to P and if T and P contain the same

vertices.

Definition 2.19 (Steiner triangulation of a plc). Let P be a general plc. A simplicial

complex T is called a Steiner triangulation of P if T conforms to P and if T contains all

vertices in P. Additionally vertices in T are called Steiner points.

It is known that every plc P in R2 supports a triangulation T, commonly also re-

ferred to as a conforming triangulation of P. Unfortunately, the same is not true in

higher dimensions; specifically, in R3, it is known that certain plc’s exist that cannot

be triangulated without the inclusion of additional vertices. A common, and disarm-

ingly simple example, is the so-called Schönhardt polyhedron – a ‘twisted’ triangular

prism that cannot be decomposed into a conforming tetrahedral complex. The meshing

process in higher dimensions is significantly complicated by the existence of plc’s that

cannot be triangulated.
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Figure 2.5: Use of a Steiner Delaunay triangulation to satisfy geometric constraints. In (i)
the original triangulation Del(X) is shown with an unsatisfied edge constraint e. Additional
Steiner points are added to Del(X) through recursive bisection in (ii)-(iii) until the constraint
is recovered such that e =

⋃
f∈Del(X) f .

(i) (ii) (iii)

In the context of mesh generation, additional vertices, known as Steiner points are

typically added to a tessellation, resulting in a so-called Steiner triangulation T of a plc

P. If each simplex τ ∈ T is also Delaunay, such a triangulation is known as a Steiner

Delaunay triangulation of P. In practice, these conforming Delaunay triangulations are

created in a two-step process, where an initial tessellation Del(X), created for the vertices

X ∈ P, is refined until all constraining faces fc ∈ P are recovered. This refinement is

typically achieved through the recursive bisection of unrecovered constraints. Given a

constraining face fc additional Steiner points xi are introduced on the surface of fc. Given

the introduction of a sufficiently large number of Steiner vertices, the constraining face is

recovered as a union of faces in the underlying complex, such that fc =
⋃
f∈Del(X) f . See

Figure 2.5 for an illustration of this process in R2. The use of Steiner triangulations also

helps to resolve the issue of conformity for plc’s in higher-dimensions. Specifically, it

is known that, in the worst-case, a Steiner triangulation of a general polyhedral domain

P can be constructed through the addition of, at most, O
(
n2
)

Steiner vertices, where

n = |X| and X is the set of vertices in P. Unfortunately, when additionally requiring

that such tessellations are also Delaunay, these guarantees are substantially degraded. It

is currently unknown whether a Steiner Delaunay triangulation can be constructed for

a general polyhedral domain P in R3 using only O
(
nk
)

additional Steiner vertices, for

some k ≥ 1.

In practice, these upper bounds are discouraging, revealing the existence of patho-

logical plc’s that require unacceptable levels of over-refinement when seeking to build

conforming tessellations. The situation is somewhat ameliorated in many practical cases,

where the required number of Steiner vertices is observed to be significantly less than

the worst-case bounds [37, 38]. A more reasonable approach can be realised through

the use of so-called constrained Delaunay triangulations, or cdt’s, which relax the De-

launay criteria for simplexes adjacent to constraining faces. Specifically, Shewchuk [46]

has shown that every edge-protected plc in R2 and R3, that is, one in which all edges

are strongly Delaunay, supports an associated cdt. Furthermore, Shewchuk [44, 45] has

presented a number of efficient polynomial-time algorithms for the construction of such

constrained triangulations in practice. I refer the reader to the expositions presented in

[15] for further details.
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Figure 2.6: Illustration of a restricted Delaunay triangulation for a curved domain in R2, show-
ing, clockwise from top-left, (i) the bounding contour Σ and enclosed area Ω, (ii) the Delaunay
triangulation Del(X) of a point-wise sampling of the contour X ∈ Σ, (iii) the associated Voronoi
diagram Vor(X) highlighting the restricted Voronoi edges that intersect with Σ, and (iv) the
restricted sub-complexes Del |Σ(X) and Del |Ω(X) approximating the contour Σ and enclosed
area Ω respectively.

(i) (ii)

(iv) (iii)

2.2.2 Restricted Delaunay Tessellations

In practice, it is often desirable to tessellate and mesh general curved domains, consisting

of collections of curves, surfaces and bounded volumes. To accommodate these structures,

it is necessary to depart from the linear framework developed for plc’s in the preceding

section and to introduce the notion of so-called restricted triangulations applicable to such

curved structures. In this study, I restrict my attention to curved domains described

by closed 2-manifolds Σ embedded in R3. Such geometries are common-place in the

computational modelling and computer graphics communities.

Definition 2.20 (restricted Delaunay). Let Σ be a closed 2-manifold embedded in R3,

enclosing a bounded volume Ω ⊂ R3. Let Del(X) be a full-dimensional Delaunay tessel-

lation of a point-set X ⊆ Σ and Vor(X) be its associated Voronoi diagram. The restricted

Delaunay surface triangulation Del |Σ(X) is a sub-complex of Del(X) including all 2-faces

f ∈ Del(X) associated with an edge vf ∈ Vor(X) that intersects the surface, such that

vf ∩ Σ 6= ∅. The restricted Delaunay volume triangulation Del |Ω(X) is a sub-complex

of Del(X) including all simplexes τ ∈ Del(X) associated with an internal circumcentre

c ∈ Ω.

First formally introduced by Edelsbrunner and Shah [22], restricted Delaunay tessel-

lations are imbued with a number of desirable theoretical properties. It has been shown

by a number of authors, including Cheng, Dey, Levine, Ramos and Ray [12, 13, 14] and
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Boissonnat and Oudot [9, 10] that given a sufficiently-dense point-wise sampling1 of the

surface X ⊆ Σ the restricted Delaunay tessellation Del |Σ(X) is guaranteed to be both

geometrically and topologically representative of the underlying surface Σ. Specifically,

it is known that, under such conditions, Del |Σ(X) is homeomorphic to the surface Σ,

that the Hausdorff distance H(Σ,Del |Σ(X)) is small and that Del |Σ(X) provides a good

piecewise approximation of the geometrical properties of Σ, including its normals, area

and curvature. Similar theoretical guarantees extend to the associated restricted volume

triangulation Del |Ω(X). The properties of restricted Delaunay tessellations are well doc-

umented in the literature, and I do not give a full account here. I refer the reader to the

full expositions presented in [15, Chapters 12,13] for further details and proofs.

2.3 Algorithms for Delaunay Tessellations

The usefulness of Delaunay tessellations in practice is tempered by the efficiency of

the algorithms used for their construction and maintenance. A number of well known

techniques have been developed, including the so-called gift-wrapping, divide & conquer

and incremental approaches.

In the gift-wrapping approach, the Delaunay tessellation Del(X) is constructed one

element at a time, with a new element τ generated about an existing base face f by

selecting a suitable apex vertex xi ∈ X. Suitable vertices are chosen to ensure that the

new element τ satisfies the Delaunay property, and that the vertex is correctly oriented

and visible from the base face f . Standard gift-wrapping is a relatively simple approach

and can be made to run in O(nt) time, where n is the number of vertices |X| and t is the

number of elements in the output |T|. Note that for problems in R3 the size of the output

can be quadratic, such that |T| = |X|2. Note also that gift-wrapping does not directly

facilitate the dynamic maintenance of Delaunay tessellations, requiring that the full set

of vertices X be available up-front. The gift-wrapping algorithm has been rediscovered

independently by a number of authors, including, for example, early investigations by

Frederick et al. [25] and McLain [34]. See also the extended discussions presented by

Cheng, Dey and Shewchuk in [15].

Divide & conquer approaches for Delaunay tessellations are based on a recursive strat-

egy, in which the set of vertices X is partitioned about a sequence of hyperplanes. Once

the vertex subsets Yi ⊂ X are small enough, a local Delaunay tessellation Del(Yi) is

constructed for each partition. The final tessellation Del(X) is built by repeatedly merg-

ing the sub-tessellations across the splitting hyperplanes, ensuring that the Delaunay

property is maintained in the merging region. Divide & conquer approaches are espe-

cially effective in R2, triangulating a set of points in O(n log(n)) time, where n = |X|.
Shewchuk [42] reports that divide & conquer methods outperform all alternative tech-

niques, although this efficiency is not necessarily replicated in higher dimensions. Note

also that divide & conquer techniques, like gift-wrapping, do not support dynamic tes-

1The point-wise sampling X ⊆ Σ is required to be a so-called γ-sample, meaning that it is sufficiently-
dense with respect to the local medial-distance induced by the enclosed volume Ω. These considerations
are discussed in detail in Chapter 4.
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Figure 2.7: Triangle-based data structures for Delaunay tessellations, showing (i) the vertex
adjacency and (ii) triangle adjacency for a tessellation embedded in R2.

(i) (ii)

sellations, requiring the full set of vertices X be specified at the outset. A number of

authors have contributed to the development of divide & conquer methods for Delaunay

tessellations, including Lee and Schachter [32], Guibas and Stolfi [27], Dwyer [20] and

Shewchuck [42].

Incremental techniques are based on a fundamentally different paradigm – seeking

to maintain the Delaunay tessellation dynamically, through the incremental insertion,

removal and update of vertices and elements. Incremental algorithms allow vertices to

be inserted into or removed from a tessellation one at a time, applying a sequence of

local transformations to ensure that the Delaunay property is preserved. In addition to

their flexibility, incremental techniques can also achieve optimal algorithmic complexity,

tessellating a set of points in the plane in O(n log(n)) time, and a set of points in R3 in

O
(
n2
)

time, where n = |X|. Incremental algorithms were first presented by Lawson in

[31], who used a sequence of edge-flip transformations to restore the Delaunay property

to a two-dimensional triangulation following an update. Bowyer [11] and Watson [47]

are responsible for the so-called Bowyer-Watson approach that will form the body of the

Delaunay tessellation framework developed in this study.

In this work, I pursue the development of incremental algorithms to build and main-

tain Delaunay tessellations in R2 and R3, since these methods best facilitate the type

of adaptive construction, spatial search and dynamic updates required by meshing algo-

rithms.

2.3.1 A Framework for Delaunay Tessellations

Adopting a so-called triangle-based data structure, the Delaunay tessellation Del(X) for

a set of points X ⊂ Rd can be represented as a collection of vertices and d-simplexes. In

this framework, the intermediate (1, ..., d− 1)-simplexes are not stored explicitly, though

they can be recovered as suitable subsets of the vertices in the d-simplexes. Adjacency

information is maintained within the framework by explicitly tracking a limited subset

of vertex and element connectivities. Each vertex x ∈ X stores a handle to a single

vertex-adjacent d-simplex τj ∩ x 6= ∅, and each d-simplex τ ∈ Del(X) stores handles to

both the vertices xi ∈ τ , and the face-adjacent d-simplexes τj ∩ τ 6= ∅. See Figure 2.7 for

an illustration of this arrangement. The use of triangle-based data structures was first

popularised by Shewchuk in [43] and is also used within the Computational Geometry
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Algorithm 2.3.1 Vertex Insertion using the Bowyer-Watson Method

1: function BowyerWatson(xi,Del(X))
2: Find a conflicting element τi ∈ Del(X), such that the open circumball of τi

contains the point xi.
3: Start a breadth-first-search from τi, accumulating the set of elements in the

conflict cavity C ⊆ Del(X), such that the vertex xi lies within the open
circumballs of all τj ∈ C.

4: Delete all elements τj ∈ C.
5: Re-triangulate the cavity C about the vertex xi. A new element τk is created

for all boundary faces f ∈ C.
6: end function

Algorithms Library (CGAL) [8]. Note also that the triangle-based data structure for

Del(X) described here can be interpreted as an undirected graph G(V,E), where each d-

simplex τ ∈ Del(X) is a graph-vertex vi ∈ V and each pair of face-adjacent d-simplexes

in Del(X) is a graph-edge ei ∈ E. This graph-based interpretation of Del(X) allows the

standard repertoire of algorithms and traversal techniques developed in graph theory to

be used directly in the discussions of the triangulation algorithms that follow.

The triangle-based data structure for Del(X) is designed to facilitate efficient im-

plementations for the various spatial and topological queries that are required in later

chapters. Specifically, note that given a d-simplex τ ∈ Del(X) the proposed framework

supports O(1) access to both the vertices of the element and its face-adjacent neighbours.

Given a vertex x ∈ X, access to an adjacent d-simplex in Del(X) is also available in O(1)

time. These operations allow for the creation of a number of schemes to efficiently walk

the triangulation from a given seed. For example, given a seed element τ ∈ Del(X)

the local-neighbourhood of τ can be traversed using standard breadth-first or depth-first

search in O(m) time and space, where m is the number of elements visited. Given a

seed vertex x ∈ X it is possible to use both vertex- and element-adjacency to traverse

the ring of m elements adjacent to x in O(m) time and space. These, and other similar

traversals, will be used extensively in the development of the triangulation and meshing

algorithms presented in this study.

2.3.2 The Bowyer-Watson Algorithm

The Bowyer-Watson algorithm is an incremental method for the insertion of a new ver-

tex into an existing Delaunay tessellation Del(X). Given a new vertex xi, inserted

into the underlying point-set, such that X ′ = X ∪ {xi}, the Bowyer-Watson algorithm

constructs an updated Delaunay tessellation Del(X ′) based on a sequence of local trans-

formations applied to the existing tessellation Del(X). The algorithm is summarised in

Algorithm 2.3.1 and a simple example of its operation in R2 is shown in Figure 2.8.

The algorithm first searches the existing tessellation Del(X) for the d-simplex τi

that encloses the new vertex xi. In this study, I simplify this process by ensuring that

the tessellation includes a large bounding simplex enclosing the full set of points to be

tessellated. Clearly, as a result, xi ∈ Conv(X) and the enclosing simplex τi ∈ Del(X)

always exists. Efficient traversal methods to locate this enclosing simplex are discussed in

further detail in subsequent sections. The aim of the insertion process is to generate a new
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Figure 2.8: Vertex insertion via the Bowyer-Watson approach, showing, clockwise from top-left:
(i) location of the enclosing triangle for the new vertex xi, (ii) identification of the conflict cavity
C ⊆ Del(X), (iii) re-triangulation of the cavity C about the new vertex xi, and (iv) updated
triangulation Del(X ′).

(i) (ii)

(iv) (iii)

Figure 2.9: Point location via the directed traversal method, showing (i) initiation of the traver-
sal from the initial guess τhint, and (ii) full traversal along the line L adjoining the element τhint

and the point xi.

(i) (ii)

tessellation Del(X ′) in which all simplexes are Delaunay. The Bowyer-Watson method

proceeds by first identifying and removing any exiting elements τj ∈ Del(X) that, due

to the position of the new vertex xi, violate the Delaunay property. This conflict cavity

C ∈ Del(X) can be found efficiently by starting a breadth-first-search about the enclosing

simplex τi and accumulating all simplexes τj ∈ Del(X) that include the vertex xi within

their open circumballs. The cavity C is known to be star-shaped, meaning that the new

vertex xi is visible from all bounding faces f ∈ C. This result suggests a simple method

for the re-triangulation of the cavity C, in which a new simplex τk is created between each

boundary facet f ∈ C and the vertex xi. It can be shown that the resulting tessellation

Del(X ′) = Del(X ∪ {xi}) is Delaunay. I refer the reader to [15, Chapter 2–5] for a full

proof of correctness. Using the triangle-based data structure discussed previously, the

Bowyer-Watson algorithm can be implemented to run in O(|C|) +P time, where P is the
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Algorithm 2.3.2 Point Location using Directed Traversal

1: function DirectedTraversal(xi,Del(X), τi)
2: Form line L from the centre of τi to xi.
3: while (τi

⋂
xi = ∅) do

4: for all (f ∈ τi) do
5: if (f

⋂
L 6= ∅) then . {‘walk’ over intersecting face}

6: Set τi to face-adjacent neighbour τj ; break
7: end if
8: end for
9: end while

10: end function

cost of locating the enclosing simplex. Excluding the cost of point location, which will

be dealt with subsequently, the remaining O(|C|) cost is optimal, considering that the

updated tessellation Del(X ′) requires the formation of O(|C|) new simplexes.

2.3.3 Directed Traversal and Point Location

Given a point xi ∈ Conv(X) the location of the enclosing simplex τi ∈ Del(X) is an

important operation required by a variety of triangulation and meshing algorithms, in-

cluding the Bowyer-Watson method for point insertion presented above. The use of a

näıve approach, in which all simplexes τi ∈ Del(X) are tested, leads to unacceptably poor

algorithmic complexity, requiring, for example, O(n) time in R2 and O
(
n2
)

time in R3,

where n = |X|. Much faster performance can typically be achieved in practice through

the use of a so-called directed traversal of Del(X). Given a target point xi and a hint

simplex τhint, a directed traversal walks through the tessellation Del(X), only visiting

simplexes τ ∈ Del(X) that overlap a path L, drawn between the starting simplex τhint

and the target point xi. It is straightforward to develop an algorithm that only checks

simplexes that intersect with the linear search path by simply walking from one simplex

to its next intersecting facet-adjacent neighbour. Such an algorithm, implemented using

the triangle-based data structure described previously, takes O(m) time per point loca-

tion query, where m is the number of simplexes visited during the traversal. Clearly, if

the hint is chosen sufficiently close to the target point xi, optimal O(1) complexity is

achieved. Many triangulation and meshing algorithms can be structured to facilitate the

proximity of these hints in practice, leading to optimal performance. The directed traver-

sal method for point location is summarised in Algorithm 2.3.2, and a simple example

illustrating its operation is presented in Figure 2.9. Walking methods for point location

have been investigated by a number of authors, including, for example, Devilliers, Pion

and Teillaud [18, 19].

2.3.4 Efficient Bulk Loading

While the Bowyer-Watson and Directed Traversal algorithms discussed thus far provide a

framework for the incremental assemblage of Delaunay tessellations, it is also commonly

required that a full tessellation Del(X) be built given a known set of points X. Clearly,

such a tessellation can be constructed incrementally, simply by inserting each vertex

xi ∈ X into Del(X) one-by-one, but a careful analysis of the expected runtime shows
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that this simple method may lead to unacceptably slow performance in some cases. When

a new vertex is inserted using the Bowyer-Watson algorithm, a conflict cavity C ⊆ Del(X)

must be re-triangulated. It is known that pathological configurations exist in which the

insertion of a single vertex xi into an existing tessellation Del(X) can result in large

cavities, such that |C| = O(|Del(X)|). In the worst case, the insertion of a vertex xi can

lead to the creation of O(n) new simplexes, where n = |X|. Clearly, a sequence of n such

insertions leads to O
(
n2
)

overall worst-case performance.

The expected performance of incremental construction can be improved through the

use of randomisation. Given a set of vertices X, the Delaunay tessellation is constructed

by applying a randomised permutation Q to the list of vertices, such that the vertex

xQi
is added to Del(X) at the i-th step of the assembly. Use of such a scheme reduces

the probability of encountering pathological configurations in practice and improves the

expected running times considerably. Specifically, for triangulations in the plane, it has

been shown by Clarkson and Shor [16] that the expected performance of the incremental

construction algorithm is improved to O(n) + P , where P is the cost of point location.

For point-sets in R3, the guarantees, unfortunately, are not as strong, with some patho-

logical point-sets X known to produce tessellations that are quadratically large, such

that |Del(X)| = O
(
n2
)
. Due to the size of the output in these cases, it is clearly not

possible to improve on the O
(
n2
)

runtime, using any method. In practice, randomisation

is still known to help reduce the occurrence of such pathological configurations, unless

they are unavoidable, and it is reported by Dwyer [21] and Amenta, Choi and Rote [2]

that optimal O(n) + P performance is often observed for a wide class of tessellations

in R3 in practice. The practical performance and theoretical complexity of incremental

schemes for vertex insertion have been a topic of extensive research in the literature, and

I refer the reader to the detailed expositions presented in [15, Chapter 3,5] for additional

information.

In addition to the performance of vertex insertion, the cost of point location is an

equally important contributor to the overall expense of incremental construction meth-

ods. In [16], Clarkson and Shor present an optimal structure for point location known

as a conflict-graph, and demonstrate that the use of such an device leads to optimal

O(n log(n)) expected performance for the construction of Delaunay tessellations in the

plane. In this study I pursue a somewhat simpler and practically efficient scheme, based

on the use of the so-called Biased Randomised Insertion Orders, or brio’s, introduced

by Amenta et al. in [2]. Recalling that the cost of traversal-based point location is O(m),

where m is the number of visited simplexes, the expense of successive point location

queries can be mitigated by ensuring that a suitable starting hint is available for each

subsequent traversal. This implies that the vertices X should be added to Del(X) ac-

cording to a schedule that furnishes their spatial-locality, such that successive vertices

are relatively close to one another in Rd. Considering such an ordering, optimal O(1)

expected time point location can be achieved for the insertion of two successive vertices

xi and xi+1, simply by ensuring that a simplex adjacent to the preceding vertex xi is

used as the starting hint when traversing to find the enclosing simplex for the new vertex

xi+1.
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In the brio framework presented in [2], Amenta et al. balance the objectives of purely

random and spatially local insertion orders by modifying an ordering designed for spatial

locality to incorporate a small random bias. Given a set of points X to tessellate, the

points are partitioned into a sequence of rounds, where the vertices in each round are

added to the tessellation successively. The rounds are constructed from the bottom-up,

such that all vertices in X are assigned to the final round with probability 1/2, with the

remaining vertices then assigned to the second-last round with probability 1/2, and so on.

In total, log2(|X|) rounds are needed. The structure of the rounds themselves provide

sufficient randomisation to preclude the occurrence of worst-case behaviour, therefore

allowing an efficient spatially-local vertex ordering to be used within each round. In this

thesis, I adopt a spatial ordering based on adaptive Hilbert curves [29], where the vertices

within each round Xi ⊆ X are first partitioned between the leaves of an associated 2d-

tree S, and then subsequently inserted into Del(X) through a traversal of S in Hilbert

order. 2d-trees are considered in detail in Section 2.4. A full review of the incremental

framework for Delaunay tessellations, including discussions of conflict graphs and brio’s,

is presented in [15, Chapter 5].

2.3.5 Implementation & Discussions

A new triangulation framework – TRIPOD – supporting the incremental construction and

maintenance of Delaunay tessellations embedded in R2 and R3 has been implemented.

Support for dynamic vertex insertion, point location and bulk construction is achieved

through use of the Bowyer-Watson, directed-traversal and brio-based bulk-loading tech-

niques outlined earlier in this chapter. The accuracy and performance of the new TRIPOD

framework is assessed through a series of comparative tests, where the Delaunay triangu-

lation routines provided in the well-known CGAL and QHULL packages, due to Boissonnat,

Devillers, Pion, Teillaud, and Yvinec [8] and Barber, Dobkin and Huhdanpaa [4] respec-

tively, are used to provide benchmark results. The CGAL package provides support for

Delaunay tessellations in R2 and R3 directly, based on an incremental paradigm similar

to that used in the present work. In contrast, the QHULL package – an implementation

of the Quickhull algorithm for convex hulls – facilitates the construction of Delaunay

tessellations in Rd indirectly, through a projection of the downward-facing facets of the

‘lifted’ hull from Rd+1 onto Rd, as per the discussions presented in Section 2.2.

I have made use of a bounding-simplex approach in the new implementation, in which

a large initial simplex is created to enclose all vertices in the point-set X ⊂ Rd to be

triangulated. This is achieved through the addition of an extra d + 1 vertices Xinit,

positioned such that their resulting tessellation Del(Xinit) is a single simplex that fully

encloses all points in X. Such a procedure simplifies the strategy used for vertex insertion,

guaranteeing that all subsequent vertices are inserted into the ‘interior’ of Del(X ∪Xinit),

alleviating the need to incrementally manage the boundary of the tessellation. CGAL,

on the other hand, explicitly maintains the associated hull, Conv(X), along with its

triangulation Del(X), and, as a result, supports fully dynamic tessellations in arbitrary

domains. QHULL, as a convex hull code, also returns Del(X) as a direct tessellation
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Figure 2.10: Comparative Delaunay tessellation results in R2, showing the newzealand, india,
australia, greenland, coastline and islands test cases. Note that the trimmed tessellations
are shown, with elements adjacent to the bounding simplex Tinit = Del(Xinit) removed.

newzealand india australia

greenland coastline islands

Table 2.1: Timing results associated with Figure 2.10, demonstrating the performance of the
methods developed in the present study, and the existing CGAL and QHULL packages.

Test Problem |X| |Del(X)| Runtime (s)

TRIPOD CGAL QHULL

newzealand 11,668 23,331 0.034 0.032 0.071

islands 7,074 14,143 0.020 0.018 0.038

australia 34,417 68,829 0.099 0.100 0.187

greenland 39,148 78,291 0.108 0.116 0.215

coast 11,002 21,999 0.035 0.031 0.061

india 14,512 29,019 0.044 0.040 0.066
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Figure 2.11: Comparative Delaunay tessellation results in R3, showing the venus, dinosaur,
hand, woodthinker, blade and bimba test cases. Note that the underlying surface models
are shown, rather than Del(X), as direct visualisations of Del(X) in R3 are difficult to interpret.

venus dinosaur hand

woodthinker blade bimba

Table 2.2: Timing results associated with Figure 2.11, demonstrating the performance of the
methods developed in the present study, and the existing CGAL and QHULL packages.

Test Problem |X| |Del(X)| Runtime (s)

TRIPOD CGAL QHULL

venus 67,184 456,883 1.000 0.872 3.040

blade 25,002 170,386 0.361 0.326 0.688

bimba 74,768 486,820 1.080 1.000 2.220

dinosaur 27,731 189,134 0.400 0.362 0.773

hand 38,222 266,489 0.621 0.544 2.140

woodthinker 14,010 98,972 0.199 0.182 0.388
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of Conv(X), though it does not support incremental modification. The algorithms in

TRIPOD have been designed to target mesh generation applications specifically, where the

full tessellation Del(X ∪Xinit) is always subsequently trimmed to conform to a particular

geometry through the removal of a set of ‘external’ simplexes. As such, there is currently

no support (or need) in TRIPOD for tessellations that conform to Conv(X) explicitly.

The use of finite numerical precision is known to lead to serious issues of robustness

and reliability when implementing Delaunay-based algorithms, and such matters are ad-

dressed in the present work through the use of adaptive floating point arithmetic, robust

geometrical predicates and direct perturbation for degenerate co-spherical vertices. Ro-

bust implementations of the necessary ‘orientation’ and ‘in-circumball’ queries, required

by the point-location and Boywer-Watson sub-routines, are realised through use of the

high-quality adaptive-precision techniques presented by Shewchuk [41]. As detailed in

Shewchuk’s original paper, these adaptive routines offer an excellent compromise be-

tween accuracy and efficiency, performing computations using efficient double-precision

arithmetic when results are unambiguous, while smoothly transitioning to an expensive

variable-precision computation when required to preserve accuracy. Shewchuk offers an

open-source implementation of these routines, and his procedures are used in the present

work without alteration.

2.3.6 Experimental Comparisons

The effectiveness of the new TRIPOD framework was assessed through a series of compara-

tive experimental studies, contrasting the performance and output of the new algorithms

with that of the CGAL and QHULL packages. Overall, a set of twelve test cases were exam-

ined, based on point-sets embedded in R2 and R3. In each case, the Delaunay tessellation

was constructed in bulk for a given set of vertices X ⊂ Rd, with the runtime measured

in each case. Additionally, following the approach introduced by Boissonnat et al. [8], a

number of geometrical and topological tests were conducted, ensuring, firstly, that the

open-circumball of each simplex τ ∈ Del(X) was empty, and secondly that each inter-

nal (d− 1)-facet was shared by exactly two simplexes τi, τj ∈ Del(X). Note that these

tests were implemented using a simple exhaustive search, providing a verification of the

triangle-based data-structures used in the new implementations. In all cases, it was found

that the algorithms in TRIPOD constructed the Delaunay tessellations correctly, passing

all geometric and topology-based tests.

Results for the two-dimensional test problems are presented in Figure 2.10, showing

both the output generated using TRIPOD in addition to a tabulation of the associated

performance metrics for the three algorithms tested. These test cases are sourced from

number of complex geo-spatial datasets, in which the point-wise representation of the

coastlines of various geographical features are triangulated. Note that the triangulations

shown are trimmed, in which elements adjacent to vertices in the bounding simplex Xinit

have been removed. The resulting trimmed triangulations are not necessarily convex as

a result. An analysis of the runtime performance of the various algorithms demonstrates

that the algorithms in TRIPOD are efficient for problems in R2, being roughly equivalent
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to the high-quality implementation provided in the CGAL package. The QHULL library,

in contrast, is found to be consistently slower than either of the incremental schemes,

and is typically outperformed by a factor of approximately 2. This slow-down is not

unexpected, considering the indirect nature of the triangulation algorithm implemented

in QHULL.

Results for the three-dimensional test problems are presented in Figure 2.11, showing

both the underlying surface models to be tessellated and a tabulation of the associated

performance metrics for the three algorithms tested. These test problems are based

on a series of triangulated surface geometries, sourced from various application areas

including computational simulation and computer graphics. An analysis of the runtime

performance of the various algorithms demonstrates that the algorithms in TRIPOD are

reasonably efficient for problems in R3, being approximately 5–15% slower than the

high-quality implementations provided in the CGAL package. The specific cause of this

slow-down is unclear, and is a topic for future investigations. Consistent with the results

in R2, the QHULL package is seen to be notably slower across the full set of test problems,

being outperformed by the incremental algorithms by a factor of 2–3.

Overall, these results confirm the effectiveness of the new TRIPOD library, showing

that the new implementation is capable of efficiently and robustly triangulating the type

of large-scale two- and three-dimensional datasets associated with meshing problems.

2.4 Spatial Subdivisions & Trees

Geometrical structures based on recursive spatial subdivisions are useful complements to

the Delaunay-based tessellations presented earlier in this chapter. Rather than seeking

to tessellate point-sets, these so-called spatial-trees are designed to store generalised

collections of geometrical entities, including, for example, points, lines, simplexes, and

even more complex compound entities such as polyhedrons and polyhedral complexes.

Spatial trees are inherently hierarchical structures, organised as ordered sets of bounding

hyper-rectangles, referred to simply as bounding rectangles in the discussions that follow.

Each bounding rectangle in the tree encloses a subset of the geometrical entities to be

represented. At its top-most level, a spatial tree consists of a root node – a large bounding

rectangle that encloses the full set of geometric entities in the collection to be stored. The

remainder of the tree is comprised of a hierarchy of nodes, each enclosing a subset of the

geometrical entities in the collection. Each node in the tree is associated with both parent

and child nodes, referring to larger and smaller bounding rectangles that immediately

precede, or succeed a given node in the hierarchy. Nodes at the bottom-most level of

the tree are those without children, and are commonly referred to as leaf nodes. See

Figure 2.12 for an example of a simple spatial tree in R2.

Due to their hierarchical nature, spatial trees facilitate efficient spatial search queries,

including, for example, finding the set of entities that lie within a given halo region or

performing various intersection tests between entities in the collection. Further elab-

oration of the specific spatial queries used throughout this study will be presented in

subsequent sections. In broad terms, spatial trees achieve their efficiency through spa-



2.4. Spatial Subdivisions & Trees 37

Figure 2.12: Illustration of a spatial tree S for a simple point-wise collection C, showing (i) the
recursive rectangular subdivision of the bounding rectangle, and (ii) the associated binary tree
hierarchy.

(i) (ii)

tial localisation – a segregationist process in which entities are partitioned according to

their relative distance to others in the collection. This localisation allows spatial queries

to be executed visiting only a local subset of the full geometrical collection, leading to

significant gains in efficiency. Spatial trees are used extensively throughout this thesis to

improve the performance of algorithms based on spatial queries and traversals.

2.4.1 Quadtrees, Octrees & 2d-trees

The simplest type of spatial trees are based on a multi-dimensional bisection strategy.

Let C be a collection of geometrical entities. Consider a spatial tree S, designed to store

the collection C, where S consists of a hierarchy of rectangular nodes Rk. Given an

axis-aligned parent rectangle Rk ∈ S, enclosing a subset Ck ⊆ C of the full collection, a

set of 2d child sub-rectangles Rk+1
i are created by simply bisecting Rk about its midpoint

using a series of splitting planes orthogonal to each axis direction. Restricting attention,

firstly, to the storage of point-wise entities only, each child rectangle Rk+1
i encloses a

sub-collection Ck+1
i ⊆ Ck, such that all entities in the set Ck+1

i are fully enclosed by the

sub-rectangle Rk+1
i . Trees based on multi-dimensional bisection are well-known, with

the classical quadtree and octree structures being specific examples in R2 and R3. In

general, these types of spatial trees are referred to as 2d-trees, referencing the number of

child nodes spawned from each parent in the tree. It is important to note that 2d-trees

represent a so-called complete decomposition of a bounding space, in which the space

enclosed by each parent node in the tree is recovered as the union of the spaces spanned

by its children, such that Rk =
⋃2d

i=1R
k+1
i .

The 2d-trees used in this study are built using a simple top-down approach, in which

a full collection of entities C is inserted into a sufficiently large bounding rectangle R0,

which constitutes the root of the tree. The tree is grown recursively, with a new set of

child rectangles created for any rectangle Rk that it too populous, such that |Ck| > γ,

where γ ∈ Z+ is a positive constant dictating the maximum allowable number of entities

enclosed by a single node in the tree. The spatial trees introduced in this study are

variants in which entities are only stored in the leaf nodes. As a consequence, when a

parent node Rk is split, its associated sub-collection Ck is directly distributed between the
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Algorithm 2.4.1 Spatial Tree Construction

1: function MakeTree(C, γ, S)
2: S, QS ← R0, C. . {initialise tree, refinement queue}
3: while ((k ← QS) 6= ∅) do
4: if (|Ck| > γ) then . {refine node if too populous}
5: Call RefineNode(Rk, Ck, Rk+1, Ck+1)

6: Update tree S← Rk+1
i .

7: Update queue QS ← Rk+1
i .

8: end if
9: end while

10: end function

1: function RefineNode(Rk, Ck, Rk+1, Ck+1) . {node refinement}
2: Split Rk into child nodes Rk+1

i .

3: Split Ck into child sub-collections Rk+1
i ← Ck+1

i .
4: end function

new sub-collections Ck+1
i associated with its children. The final tree therefore consists

of a hierarchy of empty non-leaf nodes, with the full collection of entities distributed

amongst a set of sub-collections Cli ⊆ C associated with the leaves of the tree. These final

sub-collections are small, such that |Cli | ≤ γ. A general procedure for tree construction

is summarised in Algorithm 2.4.1.

At each level in the tree, a maximum of O(|C|) work is done repartitioning the

collection C amongst the new child nodes. This implies that the full tree can be built

with a worst-case complexity of O(nh), where n = |C| and h is the height of the tree.

For collections that are well-distributed it can be shown [23, 24] that the expected tree

height is O(log(n)), leading to an efficient O(n log(n)) algorithm for tree construction. It

should be noted that, for 2d-trees, the tree height h is not bound with respect to |C| in the

worst-case, and, as such, despite the excellent expected performance described above, it

is possible to construct pathological collections for 2d-trees that lead to extremely poor

performance. While these pathological inputs are exceedingly rare in practice, mildly

sub-optimal performance is often observed, through the creation of empty sub-trees,

in which a region of the tree, including its associated leaf nodes, are bereft of entities

from the collection C. This wasteful over-refinement is a consequence of the simple

midpoint splitting strategy associated with 2d-trees and will be discussed in further detail

in subsequent sections.

2.4.2 Kd-trees and Variations

More sophisticated types of spatial trees can be built through consideration of the spatial-

distribution of the collection of entities to be stored. The well-known kd-tree, introduced

by Bentley [7], pursues this argument, utilising a median-based bisection strategy to split

nodes in the hierarchy. Such an approach ensures that the sub-collections associated

with each node in the tree are partitioned equally, regardless of their spatial distribu-

tions. Specifically, given an axis-aligned parent rectangle Rk ∈ S, enclosing a subset

Ck ⊆ C of the full collection C, a pair of sub-rectangles Rk+1
1 and Rk+1

2 are created by

bisecting the rectangle Rk about a splitting plane orthogonal to the j-th median of Ck,

where j is a coordinate direction, chosen in a cyclic fashion to ensure that subsequent
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levels in the tree are split about different axes. Following the same process outlined previ-

ously for the 2d-tree, the sub-collection Ck+1
i associated with the i-th child of Rk consists

of entities fully enclosed by the sub-rectangle Rk+1
i . Conventional kd-trees can be built

following an adaptation of the top-down procedure previously outlined for 2d-trees, where

an additional median finding step is performed each time a node is split. The result-

ing tree is guaranteed to be well-balanced and will not, as a result, contain more than

O(n) nodes. In addition to achieving an optimal expected tree height, h = O(log(n)),

consistent with the 2d-tree described previously, the kd-tree ensures that the tree height

remains bounded in the worst-case.

In this work I introduce a kd-tree variant differing from the conventional structure

of Bentley in terms of the way that node splits are treated. In the new tree, given

an axis-aligned parent rectangle Rk ∈ S, enclosing a subset Ck of the full collection

C, a pair of sub-rectangles Rk+1
1 and Rk+1

2 are created by bisecting Rk about a pivot

plane positioned along the longest dimension of the rectangle Rk, orthogonal to the axis.

Following the sliding-midpoint strategy of Mount, Arya and Maneewongvatana [33, 35]

the pivot is positioned according to a two-stage process. The pivot is first placed at

the midpoint of the longest dimension of Rk, and is accepted in this position provided

that the splitting plane intersects the sub-collection Ck, such that both Ck+1
1 6= ∅ and

Ck+1
2 6= ∅. If an empty child sub-collection is found, the pivot is repositioned by sliding

the splitting plane towards the closest entity in Ck, until a strict intersection is achieved.

Compared to the median split of the conventional kd-tree, the sliding-midpoint strategy

is cheaper to evaluate, and typically improves the aspect ratio of the resulting sub-

rectangles. Furthermore, since the sub-collections associated with the new child nodes

are guaranteed to be non-empty, the worst-case performance of the kd-tree is preserved,

ensuring that the resulting tree contains O(n) nodes and that the maximum height is

bounded.

Additionally, I employ a new node-shrinking strategy, inspired by the r-tree frame-

work of Guttman [28], in which the set of bounding sub-rectangles associated with the

tree are shrunk such that they constitute only a minimal covering of the entities in their

associated sub-collections. Specifically, when a parent rectangle Rk ∈ S is split, accord-

ing to the sliding midpoint method described previously, two new sub-collections Ck+1
1

and Ck+1
2 are induced about the splitting plane. Rather than simply constructing the

new sub-rectangles Rk+1
1 and Rk+1

2 based on a full bisection of the rectangle Rk about

the splitting plane, as per conventional kd-tree strategies, I instead form Rk+1
1 and Rk+1

2

directly, as minimal axis-aligned bounding rectangles for the new sub-collections Ck+1
1

and Ck+1
2 . Note that, following such a strategy, the new rectangles Rk+1

1 and Rk+1
2 are

typically smaller than their associated parent rectangle Rk along all axes. Importantly,

such a splitting strategy introduces void regions into the tree, in which space bounded

by a parent rectangle is excluded from any of the sub-trees associated with its children.

The use of this node-shrinking strategy often helps to further enhance spatial locality in

the tree, and, as will be discussed in subsequent sections, can improve the performance

of spatial queries by reducing the number of sub-rectangles that overlap with a given

search window. See Figure 2.13 for an illustration of this node shrinking strategy for a
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Figure 2.13: Example of the proposed node-shrinking technique showing (i) an un-split parent
rectangle Rk and associated collection Ck, (ii) new child sub-collections Ck+1

1 and Ck+1
2 induced

about the splitting plane, and (iii) new child sub-rectangles Rk+1
1 and Rk+1

2 , formed as minimal
bounding rectangles for the new sub-collections Ck+1

1 and Ck+1
2 .

(i) (ii) (iii)

Figure 2.14: Illustration of the proposed node-inflation method for collections of aabb’s, showing
(i) a set of aabb’s in a general collection C, (ii) an intermediate point-wise spatial tree, consisting
of 4 nodes {R′1, ..., R′4}, formed using the centroids of the aabb’s in C, and (iii) the final aabb-
tree, in which the nodes {R1, ..., R4} have been inflated to fully enclose all aabb’s in their
respective sub-collections.

(i) (ii) (iii)

simple node split in R2. The node shrinking strategies investigated in this work appear

to be related to the so-called box-decomposition trees of Ayra et al., introduced in [3].

Consistent with the strategy presented previously for the 2d-tree, the kd-trees developed

in this study store entities in their leaf nodes only, and are refined to satisfy a maximum

node population threshold, such that |Cli | ≤ γ for all leaf nodes l ∈ S. Construction of

kd-trees follows the general procedure summarised in Algorithm 2.4.1.

2.4.3 Storage of General Entities

The 2d- and kd-tree types presented previously can be extended to handle collections

of generalised geometrical entities, rather than the simple collections of point-wise data

addressed thus far. Noting that any general geometrical entity can be represented in

terms of a minimal axis-aligned bounding ‘box’, I extend the 2d- and kd-tree types to

store collections of such boxes. Following the typical parlance, I refer to these trees

as Axis-Aligned-Bounding-Box trees, or, more frequently, aabb-trees. Note that the

aabb’s stored in the tree are associated specifically with entities in the collection C, and
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should not be confused with the sub-rectangles R ∈ S that constitute the nodes of the

spatial tree itself. Firstly, given a spatial tree S, recall that each sub-rectangle Rk ∈ S

is required to fully enclose all entities in its associated sub-collection Ck. Considering

the case where C is a collection of aabb’s, note that each rectangle Rk is required to

fully enclose the aabb’s for all entities ci ∈ Ck, rather than simply enclosing a collection

of point-wise coordinates as has been discussed in previous sections. Importantly, this

condition implies that adjacent nodes in the tree may overlap in certain cases, occurring

if, for example, a collection of aabb’s are encountered that straddle a splitting plane. In

general, it is at times impossible to reposition the splitting planes to guarantee that a

non-overlapping subdivision is induced, requiring that a generalised type of spatial tree

incorporating such node-to-node overlap be considered. Such configurations are typical

of the r-tree framework introduced by Guttman in [28]. Clearly, the presence of node-

to-node overlap is undesirable, with overlaps reducing the degree of spatial localisation

achieved, leading to a potential degradation in the performance of spatial queries.

In this work, I introduce a simple node-inflation strategy to construct spatial trees

that are suitable for collections of aabb’s. Given a collection generalised C, a spatial

tree is built following a two-pass schedule, in which an initial tree is first constructed

based on a point-wise interpretation of the collection C, with the tree then subsequently

inflated to ensure that all aabb’s are properly enclosed. In the first step, a tree S is

built according to the top-down construction procedures outlined previously. Nodes are

split according to a point-wise interpretation of the collection C, in which each entity

ci ∈ C is represented by the centroid of its associated aabb. This approach allows the

standard point-wise node splitting techniques discussed previously to be applied without

alteration. In the second step, the tree is inflated in a bottom-up fashion, in which the

dimensions of the nodes of S are increased to ensure that each rectangle Rk ∈ S fully

encloses all aabb’s in its associated sub-collection Ck ⊆ C. This inflation is achieved by

first ensuring that each leaf node Rl ∈ S fully encloses the aabb’s within its associated

sub-collection Cl. The tree is then traversed from the leaves up, performing a minimal

inflation of the dimensions of each parent rectangle Rk, such that its children Rk+1
1 and

Rk+1
2 are fully enclosed. See Figure 2.14 for an illustration of this inflation procedure.

Since the inflation process consists of a simple traversal of the tree from leaf-to-root, it

can be implemented efficiently in O(n) time. Note that this inflation procedure can be

used to augment both the 2d- and kd-tree variants presented previously, facilitating the

storage of general geometrical entities in both tree types. The tree inflation procedure is

summarised in Algorithm 2.4.2.

As noted previously, the optimality of the resulting inflated tree can be degraded

by the presence of node overlap, and a number of pathological situations can arise.

Specifically, in cases where the dimensions of the entities in the collection C are relatively

large compared to their local distribution of centroids, unacceptably large node overlaps

can be induced. I mitigate this effect following the approach of Alliez, Tayeb and Wormser

[1], in which and ‘large’ entities in the collection C are first subdivided into a series of

sub-entities, such that the resulting collection is reasonably well distributed. Luckily, in

the context of mesh generation, collections are generally automatically well-distributed,
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Algorithm 2.4.2 Spatial Tree Inflation

1: function InflateTree(C, γ, S)
2: Form a point-wise collection C of entity centroids.
3: Call MakeTree(C, γ, S) – forming a standard point-wise

tree for the collection of entity centroids C.
4: Build a post-ordering P for the tree S.
5: for all (k ∈ P) do . {inflate tree}
6: Call InflateNode(Rk, Ck, Rk+1, Ck+1)
7: end for
8: end function

1: function InflateNode(Rk, Ck, Rk+1, Ck+1) . {node inflation}
2: if (Rk+1 = ∅) then . {leaf node}
3: Form the aabb B for the entities in Ck.
4: Inflate node Rk to enclose B.
5: else . {non-leaf node}
6: Inflate node Rk to enclose its children Rk+1

i .
7: end if
8: end function

typically consisting of small lines and polygons that are well represented by compact

axis-aligned bounding boxes. Additionally, I refer the reader to the more complex r*-

tree strategy of Beckmann et al. [5, 6], for discussions of a more costly structure designed

to find pseudo-optimal subdivisions for collections of aabb’s directly. I do not pursue

these methods further in this study, due to the excellent practical performance observed

for the inflated aabb-tree type discussed previously.

2.4.4 Spatial Queries and Tree Traversal

The primary purpose of the 2d-, kd-, and inflated aabb-tree types presented previously

is the support of efficient spatial queries targeting the underlying collection of entities C

stored in the tree. Typical queries include, for example: (i) determining the subset of

entities in a collection that are included within, or intersect with a spatial halo H, (ii)

determining the entities in a collection that are closest to a given point p ∈ Rd, and (iii)

testing the intersection of a given geometrical feature F with the entities in a collection.

A näıve implementation of these, and other, spatial queries can be achieved by simply

iterating over all entities in the collection C, explicitly evaluating the query predicates.

Clearly, such methods result in O(n) complexity per query, where n = |C|, and are thus

unacceptably slow when the collection is large, as is often the case for the large-scale

meshing problems investigated in this thesis. The performance of spatial queries can be

significantly enhanced by exploiting the spatial locality induced by hierarchical trees.

Spatial queries can be implemented efficiently through the targeted traversal of an

associated spatial tree S. For example, the subset of entities Ch ⊆ C, enclosed or

intersected by a spatial halo H can be determined efficiently via a top-down traversal

of the tree S, exploring only sub-trees that intersect with the region H. This process

exploits the bounding nature of the nodes of S – no entity within a sub-tree rooted at a

node Rk ∈ S is enclosed or intersected by the halo H unless Rk ∩H 6= ∅. Specifically,

given a node Rk ∈ S, the child nodes Rk+1
i are traversed only if they intersect with

the halo region, such that Rk+1
i ∩ H 6= ∅. The traversal terminates once all suitable
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Algorithm 2.4.3 Spatial Search

1: function SearchPred(C, S,P)
2: Form axis-aligned halo H for geometric predicate P.
3: Call SearchTree(C, S,H, QH) to form queue of intersect-

ing leaf nodes QH.
4: for all (k ∈ QH) do . {search local entities}
5: for all (ci ∈ Ck) do
6: Evaluate predicate P(ci) about local entity ci.
7: end for
8: end for
9: end function

1: function SearchTree(C, S,H, QH) . {tree traversal}
2: QS ← R0.
3: while ((k ← QS) 6= ∅) do . {search tree}
4: if (Rk

⋂
H 6= ∅) then

5: Traverse child nodes QS ← Rk+1
i .

6: if (Rk+1 = ∅) then . {reached leaf node}
7: Push onto output QH ← k.
8: end if
9: end if

10: end while

11: end function

nodes have been visited, identifying a subset of the leaf nodes Rlh ∈ S that intersect

with, or are enclosed by the halo H. A final pass then iterates through all entities in the

sub-collections Clh associated with the subset of leaf nodes Rlh, explicitly testing entities

ci ∈ Clh against the halo region H. The traversal-based search process is summarised in

Algorithm 2.4.3.

The efficiency of such a traversal-based approach is dependent on both the quality

of the spatial tree S and the relative size of the halo region H. In the best-case, in

which the halo region H is sufficiently small, the traversal is limited to explore only a

narrow sub-tree of S, resulting in complexity that approaches O(h) as |H| → 0. Further-

more, considering the high-quality spatial tree types discussed previously, logarithmic

tree height is expected, leading to optimal O(log(n)) query performance on average. In

the worst-case, in which the halo region H is large compared to the dimensions of the tree

S, the number of nodes visited during the traversal increases. Recalling that the kd-tree

variants presented previously ensure that the maximum number of nodes in the tree is

guaranteed to be no larger than O(n), such traversal based queries smoothly degenerate

to simple linear methods of O(n) complexity in the worst-case.

Tree-based algorithms designed for efficient spatial queries have been investigated

extensively by a number of authors, and, as such, I do not provide extensive discussions

here. I instead refer the reader to [39, 40] for further discussions and implementation

details.

2.4.5 Implementation & Discussions

I have implemented the 2d-, kd- and inflated aabb-tree types presented previously in a

new spatial tree library – LUMBERJACK. While I restrict my attention to problems in R2

and R3 in this thesis, the implementations in LUMBERJACK have been designed to support
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general collections of geometrical entities in Rd. A number of associated spatial queries

have also been implemented, including: (i) methods to locate the entities enclosed or

intersected by a search window H, and (ii) methods to find the intersection of a given

geometrical feature F and a collection of entities. Support for general linear, rectangular

and prismatic objects has been provided for both the search window and the intersection-

based queries. Spatial queries are implemented following the efficient tree-based traversal

methods outlined previously.

A series of comparative tests were used to assess the performance of the various spatial

tree types. In Figure 2.15, results for the two-dimensional test cases are presented. A set

of 3 point-wise geospatial data-sets were used to examine the effectiveness of both the

2d- and kd-tree types, where the kd-tree incorporates the new node-shrinking strategy

discussed in previous sections. These data-sets are derived from high-resolution coastline

imagery and consist of collections of point-wise coordinates. All trees are refined to

achieve a maximum node population threshold γ = 16. Analysis of Figure 2.15 shows that

considerable difference in structure exists when comparing the 2d- and kd-trees generated

for each test case. Clear evidence of over-refinement is observed in the structure of the 2d-

trees, where a number of nodes in the ‘interior’ of each of the collections are clearly empty

of data points. Conversely, the structure of the equivalent kd-trees shows significantly

increased spatial adaptivity, with strong clustering occurring along the ‘coastlines’ in

each data-set. Examining the size of the resulting trees, it is clear that the kd-trees

are significantly smaller than the alternative 2d-types for all test cases, with savings of

approximately 20–40% achieved in each case.

In Figure 2.16, results for the three-dimensional test cases are presented, showing

the associated 2d- and aabb-trees generated for a series of discrete surface models. The

model data is sourced from disparate application areas, including an engine rocker arm

(rocker), the Stanford bunny (bunny) and a human hip bone (hip). In each case,

the set of triangular elements defining each surface is stored in the 2d- and kd-trees

as a collection of aabb’s. All trees are refined to achieve a maximum node population

threshold γ = 32. In all cases the inflated tree variants are used, ensuring that the

simplicial entities are properly enclosed by the associated nodes in the trees. A visual

analysis of the results shown in Figure 2.16 demonstrates that significant differences in the

structure of the 2d- and aabb-trees exist, as per the results in R2 discussed previously.

It is clear that the flexible node splitting rules incorporated in the aabb-tree lead to

enhanced spatial adaptivity, with the majority of nodes in such trees clustered near the

‘surface’ of the test objects. Examination of the resulting tree sizes illustrates that the

aabb-trees significantly outperform the equivalent 2d-trees in terms of total size, with

savings of approximately 50% achieved in all cases.

2.5 Conclusions

In this chapter, I have reviewed a number of the theoretical concepts and geometrical

constructs central to the development of the algorithms presented throughout this thesis.

Specifically, I have introduced the notion of the Delaunay triangulation Del(X) – a sim-
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Figure 2.15: Comparison of spatial trees for the newzealand, coast and australia point-
sets. The associated 2d-trees are shown in the centre column, and the equivalent kd-trees are
displayed in the rightmost column. Note that node shrinking was enabled for the kd-tress. The
number of nodes in each tree, |S|, is also shown for all cases. All tress were generated using a
maximum node population threshold γ = 16.

newzealand |S| = 2, 969 |S| = 2, 199

coast |S| = 3, 605 |S| = 2, 103

australia |S| = 10, 097 |S| = 6, 621
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Figure 2.16: Comparison of spatial trees for the rocker, bunny and hip manifold complexes.
The associated 2d-trees are shown in the centre column, and the equivalent aabb-trees are
displayed in the rightmost column. Note that all trees are inflated variants. The number of
nodes in each tree, |S|, is also shown for all cases. All tress were generated using a maximum
node population threshold γ = 32.

rocker |S| = 3, 633 |S| = 1, 917

bunny |S| = 4, 185 |S| = 1, 989

hip |S| = 2, 057 |S| = 1, 079
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plicial tessellation for arbitrary point-sets X ⊂ Rd. I have reviewed the properties and

geometric optimality of such structures and have discussed their applicability to prob-

lems in mesh generation. Building upon this theoretical framework, I have implemented

a set of efficient algorithms and data-structures, designed to facilitate the construction

and incremental maintenance of such objects for problems in R2 and R3. A series of ex-

perimental studies were conducted, comparing the new Delaunay tessellation framework

TRIPOD to the state-of-the-art triangulation packages CGAL and QHULL. These numerical

experiments demonstrate that the performance of the TRIPOD framework is competitive

with the best results achieved using existing packages. Such results confirm that the new

TRIPOD library provides a high-quality basis for the development of efficient meshing

algorithms.

In addition to Delaunay-based tessellations, I have also introduced a number of geo-

metric structures based on hierarchical decompositions, whereby a collection of point-wise

entities C ⊂ Rd is stored in a spatial tree S, constructed via the recursive subdivision

of bounding hyper-rectangles. In addition to a discussion of the well-known quadtree,

octree and classical kd-tree objects, I have introduced a new kd-tree variant based on a

series of new node-splitting techniques. Additionally, I have extended the existing spatial

tree types to support the storage of generalised entities, such as lines and polyhedrons,

through a new node-inflation technique. The various 2d-, kd and aabb-tree types were

implemented in a new spatial indexing library LUMBERJACK, and their performance was

assessed using a series of comparative experimental studies. It was shown that the new

kd- and aabb-tree types typically achieve a significant reduction in overall size when

compared to conventional approaches, leading to improvements in computational effi-

ciency. These results confirm that the new LUMBERJACK framework facilitates the type

of efficient spatial search queries required when implementing high-performance meshing

algorithms.
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Chapter 3

Planar Mesh Generation

In this chapter, I present a new Frontal-Delaunay meshing algorithm for planar domains

in R2. This algorithm is an extension of previous Delaunay-refinement and Frontal-

Delaunay meshing strategies, designed to combine the high quality results achieved using

advancing-front techniques with the provable theoretical bounds of Delaunay-refinement

schemes. I review both the mechanics and theoretical guarantees associated with conven-

tional Delaunay-refinement algorithms before introducing the new strategy. Exploiting

ideas similar to those introduced by Rebay [15] and Üngör [20], I show that the use of

‘off-centre’ Steiner vertices, positioned along edges in the underlying Voronoi diagram,

typically leads to an improvement in both the shape- and size-quality of the resulting

tessellation. In addition to conventional shape-driven refinement methods, based on el-

ement radius-edge ratios, I show that a new size-optimal strategy can be realised by

positioning off-centre vertices such that a local mesh size function is satisfied. The use of

this sizing function to generate graded meshes adhering to user defined size constraints

is also explored. I use a simple theoretical model to prove termination and convergence

for the proposed algorithm. I investigate the performance of the new strategy exper-

imentally, and undertake a series of comparative studies, contrasting the behaviour of

the new algorithm with that of a typical Delaunay-refinement technique. I demonstrate

that the new Frontal-Delaunay algorithm inherits many of the benefits of both Delaunay-

refinement and advancing-front type methods, typically leading to the construction of

very high quality triangulations in practice. Experiments are conducted using a range of

complex benchmarks, verifying the robustness and practical performance of the proposed

scheme.

3.1 Delaunay Refinement

Delaunay-refinement algorithms, as the name suggests, operate by incrementally intro-

ducing new Steiner vertices into an initially coarse Delaunay triangulation of the domain

to be meshed. This refinement process continues until all elements in the mesh satisfy a

set of shape and size constraints.
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3.1.1 Ruppert’s Algorithm

The first provably-good Delaunay-refinement algorithm is due to Ruppert [16, 17], who

expanded on the earlier work of Chew [4]. Ruppert’s algorithm takes as input a planar

plc P and an upper bound ρ̄ on the maximum allowable element radius-edge ratios,

returning a conforming Delaunay triangulation T ⊆ |P|, such that for all elements τ ∈
T the radius-edge ratios are bounded, such that ρ(τ) ≤ ρ̄. Ruppert showed that his

algorithm is guaranteed to converge for ρ̄ ≥
√

2. Recalling that the radius-edge ratio

is related to the element plane angles via ρ(τ) = 1
2 (sin(θ))−1 , it is clear that Ruppert’s

algorithm guarantees a bound on element shape quality, ensuring that the plane angles

lie in the range 20.7◦ ≤ θ(τ) ≤ 138.6◦. In the original algorithm, adjacent edges in P are

required to meet at non-acute angles, although techniques to circumvent this restriction

are presented in subsequent sections of this chapter.

Ruppert’s algorithm begins by constructing a Delaunay triangulation T = Del(X)

for the vertices X ∈ P. In the next step, all edges of the plc, E ∈ P are recovered by

recursively splitting any edge e ∈ E that is encroached by a vertex in X. It is said that

an edge e is encroached if any vertex xi ∈ X, xi /∈ e lies within its closed diametric ball.

Encroached edges are split via bisection. The main loop of the algorithm proceeds to

incrementally refine any triangle τ ∈ Del(X) whose radius-edge ratio ρ(τ) exceeds the

threshold ρ̄. Triangles are typically refined by inserting their circumcentres c, but if the

insertion of c would lead to an edge e being encroached the edge e is bisected instead.

The triangulation is modified upon each vertex insertion, such that T = Del(X) is always

a Delaunay triangulation of the underlying vertex-set. Ruppert’s algorithm terminates

when the radius-edge ratios for all triangles are less than the threshold ρ̄.

In addition to considerations of the element-wise radius-edge ratios, practical mesh

generation algorithms based on Ruppert’s algorithm typically also incorporate a size-

driven refinement strategy. It is typical to supply a user-defined mesh size function h̄(x) :

R2 → R+ that expresses an upper bound on edge length as a function of position. In such

cases, a high-quality triangulation can be generated using a slightly modified version of

Ruppert’s algorithm, in which both edges and triangles are refined to satisfy local sizing

constraints, in addition to the radius-edge bounds described previously. Specifically, such

a modification requires only that the convergence criteria be altered – ensuring that any

edge e ∈ E is refined if ‖e‖ ≥ αh̄(xe), and that any triangle τi ∈ Del(X) is refined if

h(τ) ≥ αh̄(xτ ). Here, xe and xτ are the edge midpoints and triangle circumcentres,

respectively, and α ∈ R+ is a ‘safety-factor’1. The size of each triangle is expressed in

a single-valued fashion2, such that h(τ) =
√

3r, where r is the radius of the associated

circumcircle. The size of each edge is simply its Euclidean length, with h(e) = ‖e‖.
Ruppert’s algorithm, including modifications to support user-defined size constraints, is

presented in Algorithm 3.1.1.

In practice, optimised implementations typically improve on the näive algorithm de-

1The scalar α = 4
3

in this study, to ensure that the mean element size does not, on average, under-

shoot the desired target size h̄(xτ ).
2The factor

√
3 represents the mapping between the edge-length and circumradius for an equilateral

element.
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Algorithm 3.1.1 Planar Delaunay Refinement.

1: function DelaunayPlanar(P, ρ̄, h̄(x), T)
2: Push all vertices xi ∈ P onto Del(X).
3: Enqueue all 1- and 2-simplexes Q|E ← e ∈ Del(X) and Q|T ←

τ ∈ Del(X). Simplexes are enqueued if BadSimplex1(e) or
BadSimplex2(τ) returns true.

4: while (Q|E 6= ∅) or (QT 6= ∅) do . {main refinement loop}
5: if (Q|E 6= ∅) then
6: Call RefineSimplex1(e← Q|E)
7: else
8: Call RefineSimplex2(τ ← Q|T)
9: end if

10: for all (updated τ ∈ Del(X)) do
11: Update Q|E and Q|T to reflect changes in Del(X).
12: end for
13: end while
14: return T = Del(X)
15: end function

1: function RefineSimplex1(e) . {edge refinement}
2: Form diametric ball B(c, r) for edge e.
3: Insert midpoint X ← c and update Del(X)← X.
4: end function

1: function RefineSimplex2(τ) . {area refinement}
2: Form the Steiner point c for the simplex τ .
3: if (c encroaches any edge e ∈ E) then
4: Call RefineSimplex1(e)
5: else
6: Insert Steiner point X ← c and update Del(X)← X.
7: end if
8: end function

1: function BadSimplex1(e) . {termination criteria}
2: return (e encroahed by any xi ∈ Del(X)) or

(
h(e) > h̄(xe)

)
3: end function

1: function BadSimplex2(τ) . {termination criteria}
2: return (ρ(τ) > ρ̄) or (h(τ) > h̄(xτ ))
3: end function

scribed previously in a number of important ways. Triangles are typically processed using

a priority-ordering, sorted according to the element radius-edge ratios ρ(τ). The use of

such a strategy ensures that the triangle with the worst radius-edge ratio is refined at

each iteration of the main refinement loop. It is noted in [2, Chapter 6] that this ‘worst-

first’ ordering can reduce the size of the output mesh |T| by up to 35% in some cases.

Other important practical implementation details include: (i) using the current triangu-

lation T as a geometric search structure when determining enclosing triangle and edge

encroachment queries, and (ii) ensuring that only internal elements τ ∈ |P| are refined,

rather than processing all elements in Del(X). In practice Ruppert’s algorithm has been

found to often significantly outperform its theoretical bounds, typically converging for

up to θmin ' 33.8◦ for a wide range of inputs. See, for example, the previous studies

[9, 18, 19, 20] for additional details and remarks.
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3.1.2 Discussion

A simple theoretical model can be used to gain an understanding of the mechanics of

Ruppert’s algorithm, and to determine the conditions under which it is guaranteed to

converge. Firstly, I introduce the so-called Packing Lemma – a key ingredient of the

discussions that follow:

Lemma 3.1 (Packing Lemma). Let D ⊂ Rd be a bounded domain. Given a subset

X ⊂ D, satisfying ‖u− v‖ ≥ γ for all pairs u,v ∈ X and some scalar γ ∈ R+, the size

of X is bounded, such that |X| ≤ µ for some constant µ ∈ Z+.

The Packing Lemma states that any bounded set of points for which there exists a

positive minimum separation distance must, consequently, be finite. As such, if it can be

shown that a meshing algorithm preserves such a minimum separation length between its

vertices, the Packing Lemma can be invoked to prove that the vertex-set is finite, and,

as a result, that termination of the algorithm is guaranteed. I state Lemma 3.1 without

proof – I refer interested readers to [2, Chapter 6] for full details.

A simple model for Ruppert’s algorithm can be constructed by examining the effect

of inserting the circumcentre c associated with a triangle τ ∈ Del(X) into the underlying

tessellation.

Proposition 3.1 (refinement, shape-quality). Let the element-wise radius-edge threshold

ρ̄ ≥
√

2. Given a low-quality simplex τ ∈ Del(X), for which ρ(τ) > ρ̄, the minimum edge

length ‖e0‖ is not decreased following the insertion of a new Steiner vertex located at the

centre of the circumball associated with the element τ .

Proof. Recalling the definition of the radius-edge ratio, shape-based refinement occurs

when rd/‖e0‖ ≥ ρ̄, where rd is the radius of the circumdisk B(c, r)d associated with the

poor quality element τ . Considering the two modes of vertex insertion separately:

• Case (i): The circumcentre cd does not encroach any constrained edge e ∈ P. Noting

that the simplex τ is Delaunay, it is clear that the adjacent vertices xj ∈ τ are the

closest neighbours of the point cd, such that ‖xj − cd‖ = rd. Following the insertion

of cd, the new minimum edge length ‖e0
′‖ cannot be smaller than the circumradius

rd as a result. Rearranging the definition of the radius-edge ratio, the new minimum

length can be expressed as ‖e0
′‖ ≥ ρ̄ ‖e0‖, which is clearly non-decreasing for ρ̄ ≥ 1.

• Case (ii): The circumcentre cd does encroach at least one constrained edge e ∈ P. Let

B(c, r)e be the diametric ball associated with an encroached edge e, and let xj ∈ e be

the vertex that is positioned closest to the circumcentre cd. Noting that the simplex τ

is Delaunay, it is clear that ‖xj − cd‖ ≥ rd. Rearranging the definition of the radius-

edge ratio leads to ‖xj − cd‖ ≥ ρ̄ ‖e0‖. Due to encroachment, the constrained edge e

is split by inserting a new vertex at ce, creating two short edges with ‖e0
′‖ = re. In

the limiting case, the circumcentre cd is positioned on the circumference of the ball

B(c, r)e, forming a right-angle triangle such that ‖e0
′‖ =

(√
2/2
)
‖xj−cd‖. Rearranging

in terms of the existing minimum edge length leads to ‖e0
′‖ ≥

(√
2/2
)
ρ̄ ‖e0‖, which is

non-decreasing for ρ̄ ≥
√

2.



3.1. Delaunay Refinement 55

In addition to shape-based refinement, it is important to also consider the effect

of size-driven refinement strategies on the structure of the tessellation. Specifically, in

such cases, a high-quality simplex τ ∈ Del(X) with ρ(τ) ≤ 1 may be marked for further

refinement if τ is in violation of the local element size constraints. In such cases, while it is

tolerable to accept some reduction in minimum edge length, it is important to ensure that

such a reduction is bounded in the worst-case, guaranteeing that the resulting sampling

X remains well-distributed, without pathologically small edges.

Proposition 3.2 (refinement, grading). Given a refinable simplex τ ∈ Del |Σ(X), the

minimum edge length ‖e0‖ is decreased by a worst-case O(1) factor following the insertion

of a new Steiner vertex located at the centre of the associated circumball B(c, r)d.

Proof. Following the same reasoning presented in Proposition 3.1, the insertion of a new

Steiner vertex cd, positioned at the centre of the associated circumball B(c, r)d, modifies

the local distribution of edge lengths. Specifically, the minimum edge length ‖e0
′‖ in the

updated triangulation Del |Σ(X ∪ {cd}) can be expressed in terms of the radius of the

associated circumball, such that ‖e0
′‖ = ρ(τ)r0. Noting that ρ(τ) achieves a minimum

value when the simplex τ is equilateral, such that ρ(τ) = 1/
√

3, it is clear that the

minimum edge length is reduced by an O(1) factor of 1/
√

3 in the worst-case.

Guarantees on the worst-case behaviour of the refinement operators can be used to

study the termination and convergence of the algorithm.

Proposition 3.3 (termination). Given a polygonal domain P, a radius-edge threshold

ρ̄ ≥
√

2, and a positive mesh size function h̄(x) > 0 defined for all x ∈ |P|, the Delaunay-

refinement algorithm (3.1) terminates in a finite number of steps.

Proof. The Delaunay-refinement algorithm (3.1) refines any simplex τ ∈ Del(X) if: (i)

it is of poor shape quality, such that ρ(τ) ≥ ρ̄, or (ii) it is too large, such that it exceeds

local mesh size constraints, such that h(τ) ≥ αh̄(xτ ).

• Case (i): Given a sufficiently large radius-edge threshold ρ̄ ≥
√

2 it is known, via

Proposition 3.1, that refinement does not lead to a reduction in minimum edge length.

Shape-based refinement therefore preserves the minimal edge length ‖e0‖k, associated

with either the initial sampling X0 ∈ P, or the insertion of some previous vertex xk ∈ X
due to size-driven refinement.

• Case (ii): Given that the mesh size function h̄(x) is positive, such that h̄(x) ≥ h̄0

for some h̄0 ∈ R+, size-driven refinement is declined once the local element size is

sufficiently small. Specifically, considering a limiting case, in which h(τ) =
√

3r = αh̄0,

where r is the radius of the associated circumball, Proposition 3.2 states that the

minimum edge length is reduced by a factor of 1/
√

3 in the worst-case. Rearranging the

previous expressions, the minimum edge length is shown to be bounded above (α/3)h̄0.

Given the individual bounds on minimum edge length, the overall Delaunay-refine-

ment algorithm (3.1) is known to preserve some positive minimum vertex separation
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distance d = min
(
‖e0‖k, (α/3)h̄0

)
, and, via the Packing Lemma 3.1, is guaranteed to

produce a point-wise sampling X of finite size. It is therefore clear that the algorithm

inserts a bounded number of Steiner vertices and is guaranteed to terminate in a finite

number of steps as a consequence.

A proof of finite termination leads directly to a number of useful auxiliary guarantees

and bounds on both the nature and the quality of the output tessellation. Adopting the

conventional terminology, meshes generated using the Delaunay-refinement algorithm

presented in Section 3.1 can be considered to be ‘provably-good’.

Corollary 3.1 (convergence). Given a polygonal domain P, a radius-edge threshold ρ̄ ≥√
2, and a positive mesh size function h̄(x) > 0 defined for all x ∈ |P|, the tessellation

T = Del(X) generated by the Delaunay-refinement algorithm (3.1) satisfies all imposed

constraints. Specifically, for all simplexes τ in the output T: (i) all radius-edge ratios

are bounded, such that ρ(τ) < ρ̄, and (ii) all element sizes are bounded, such that h(τ) <

αh̄(xτ ), where xτ is the centre of the associated circumball B(c, r)d and α ∈ R+.

Proof. Algorithm (3.1) maintains a queue of ‘bad’ elements throughout the refinement

process, containing any simplexes τ ∈ Del(X) that are in violation of one or more local

constraints. Specifically, a given triangle τ ∈ Del(X) is enqueued if: (i) ρ(τ) ≥ ρ̄, or (ii)

if h(τ) ≥ αh̄(xτ ). Given that the algorithm is known to terminate, it is clear that the

refinement queue must become empty after a finite number of steps and that all entities

in the resulting triangulation Del(X) satisfy the requisite radius-edge ratio and element

size constraints as a consequence.

3.2 Frontal-Delaunay Methods

Frontal-Delaunay algorithms are a hybridisation of advancing-front and Delaunay-refine-

ment techniques, in which a Delaunay triangulation is used to define the topology of a

mesh while new Steiner vertices are inserted in a manner consistent with advancing-front

techniques. In practice, such methods have been observed to produce very high-quality

meshes, inheriting the smooth, semi-structured vertex placement of pure advancing-front

methods and the optimal mesh topology of Delaunay-based techniques. Early Frontal-

Delaunay meshing algorithms are due to Rebay [15], Müller, Roe and Deconinck [10]

and Mavriplis [8] who built upon advancing-front frameworks to generate high-quality

meshes for problems in computational fluid dynamics. More recently Erten and Üngör

[6, 20] have shown that similar methods can instead be developed through modifications

to the Delaunay-refinement framework.

3.2.1 Off-centres

The Frontal-Delaunay algorithm presented in this study is primarily based on ideas

introduced by Rebay, who, in [15], developed a Frontal-Delaunay algorithm in which new

vertices are positioned along edges in the associated Voronoi diagram. Rebay’s approach

was based on size-driven refinement, positioning new Steiner vertices along edges e ∈
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Vor(X) in order to satisfy a prescribed mesh size function h(x) – a strategy broadly

consistent with conventional advancing-front techniques. While Rebay’s algorithm uses

a Delaunay triangulation T = Del(X) to define the topology of the mesh throughout the

refinement procedure, consistent with conventional Delaunay-refinement algorithms, it

is still fundamentally an advancing-front scheme – bereft of guarantees on the element

shape quality ρ(τ) and θ(τ).

In contrast, Üngör and Erten have approached the problem from the flip-side, in-

troducing the notion of generalised Steiner vertices for Delaunay-refinement methods.

Their so-called ‘off-centre’ vertices are points other than triangle circumcentres, lying

along edges in the associated Voronoi diagram, as per Rebay. In [20], Üngör showed

that when refining a triangle τ ∈ Del(X) its off-centre should be positioned, if possible,

such that the new triangle τ ′ adjacent to the shortest edge e0 ∈ τ satisfies the de-

sired radius-edge constraint, such that ρ(τ) ≤ ρ̄. Importantly, Üngör demonstrated that

such a strategy typically leads to an improvement in the performance of the Delaunay-

refinement algorithm in practice, significantly reducing the size of the output |T| when

the threshold ρ̄ is restrictive. Üngör also extended the theoretical guarantees associated

with Ruppert’s Delaunay-refinement algorithm to his off-centre technique and showed

that the same shape quality bounds are satisfied. Üngör’s off-centre refinement algo-

rithm is based on Ruppert’s Delaunay-refinement framework directly, involving only the

modification of the point-placement scheme used to refine poor quality triangles. The

use of similar generalised refinement strategies has also been explored by Chernikov,

Chrisochoides and Foteinos in [3, 7].

In this study, I consider the use of off-centre Steiner vertices to simulate the vertex

placement strategy of a conventional advancing-front approach, while also preserving the

framework of a Delaunay-refinement meshing algorithm. The aim of such a strategy

is to recover the high element qualities and smooth, semi-structured meshes generated

by frontal methods in practice, while inheriting the guarantees and provable bounds of

Delaunay-refinement based strategies. Advancing-front algorithms typically incorporate

a mesh size function h̄(x) – a function f : R2 → R+ defined over the domain to be

meshed, where h̄(x) represents the desired edge length ‖e‖ at a point x ∈ |P|. This mesh

size function typically incorporates size constraints dictated by the both the user and

the geometry of the domain to be meshed. The construction of appropriate mesh size

functions will be discussed in further detail in Section 3.3, but for now, it is sufficient to

note that h̄(x) is a g-Lipschitz continuous function defined at all points on the domain

to be meshed.

The proposed Frontal-Delaunay algorithm developed in this study is an extension of

Ruppert’s Delaunay-refinement algorithm presented in Section 3.1, modified to use off-

centre rather than circumcentre-based refinement schemes. The basic framework of the

algorithm is consistent with the Delaunay-refinement algorithm described previously, in

which an initially coarse triangulation of the domain P is refined through the introduction

of additional Steiner vertices xi ∈ P until all element shape and size constraints are

satisfied. The constraints satisfied by the Frontal-Delaunay algorithm are identical to

those discussed previously for the modified Delaunay-refinement scheme, with upper
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Figure 3.1: Off-centre constructions for a triangle τ , illustrating (i) the segment of the Voronoi
diagram associated with the short edge e0 ∈ τ , (ii) placement of the size-optimal vertex c(2)

such that local size constraints h̄(xτ ) are enforced, and (iii) placement of a shape-optimal vertex
c(3) such that the required radius-edge ratio ρ̄ is satisfied.

(i) (ii) (iii)

bounds on the radius-edge ratio ρ̄ and element size h̄(xτ ) all required to be satisfied for

convergence. I refer the reader to Algorithm 3.1.1 for a detailed summary of the method.

3.2.2 Point-placement Strategy

Given a triangle τ ∈ Del(X) marked for refinement, the new Steiner vertex introduced

to eliminate τ is an off-centre, constructed based on local size and shape constraints.

Adopting the generalised off-centre framework introduced by Üngör, the ‘ideal’ location of

the off-centre c for the given element τ is based on a consideration of the isosceles triangle

σ formed about the short edge e0 ∈ τ . I consider the locally-optimal placement of three

points, c(1), c(2) and c(3), designed to ensure that σ satisfies both local shape and size

constraints. Type I vertices, c(1), are equivalent to conventional element circumcentres,

and are used to satisfy constraints on the element radius-edge ratios. Type II vertices,

c(2), are size-optimal points, designed to satisfy element sizing constraints in a locally

optimal fashion. Type III points, c(3), are Üngör’s off-centre vertices, and are designed to

reduce the number of Steiner vertices required to satisfy the desired element radius-edge

ratio. The final off-centre c is chosen as the point c(i) that satisfies local constraints in a

worst-case fashion. Point-placement diagrams for the generalised off-centre schemes are

shown in Figure 3.1.

Given a refinable element τ ∈ Del(X), the size-optimal Type II vertex c(2) is placed

following an approach similar to that introduced by Rebay. The point c(2) is positioned

along the Voronoi segment1 v ∈ Vor(X) associated with the short edge e0 ∈ τ , such that

the size of the new triangle h(σ) satisfies local constraints. Specifically, the altitude of

the triangle is calculated to ensure that the two new edges of σ are not too long, such

that ‖e1‖ ' h̄(m1) and ‖e2‖ ' h̄(m2), where the mi’s are the edge midpoints. Each

constraint can be solved for an associated altitude

a
(2)
i =

(
h̄(mi)

2 − ‖ 1
2e0‖2

) 1
2 . (3.1)

1The Voronoi segment v associated with an edge e ∈ T is the line segment connecting the circum-
centres of the triangles τ1, τ2 adjacent to e. Their intersection e ∩ v is m, the midpoint of the edge
e.
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Given the pair of altitudes, the position of the size-optimal point c(2) can be expressed

as

c(2) = m0 + 1
2

(
a

(2)
1 + a

(2)
2

)
v̂ (3.2)

where m0 is the midpoint of the short edge e0 and v̂ is the frontal unit direction vector

associated with the Voronoi edge v. Note that, for non-uniform h̄(x), this expression is

non-linear, with the altitudes a
(2)
i depending on the evaluation of the mesh size function

at the edge midpoints h̄(mi) and visa-versa. In practice, since h̄(x) is Lipschitz smooth,

a simple iterative predictor-corrector procedure is sufficient to solve these expressions

approximately.

The shape-optimal vertex c(3) is placed following the procedure of Üngör. The point

c(3) is placed along the Voronoi segment v ∈ Vor(X) associated with the short edge

e0 ∈ τ , such that the shape of the new triangle σ satisfies ρ(σ) ≤ ρ̄. Setting ρ(σ) = ρ̄

leads to a solution for the altitude of σ

a(3) = 1
2‖e0 ‖

(
tan( 1

2θmin)
)−1

(3.3)

where θmin = is the minimum angle associated with the radius-edge constraint ρ̄. The

position of the shape-optimal point c(3) is then expressed as

c(3) = m0 + a(3) v̂ (3.4)

where m0 is the midpoint of the short edge e0 and v̂ is the unit direction vector associated

with the Voronoi edge v.

Using the size-optimal Type II point c(2), the shape-optimal Type III point c(3) and

the Type I point c(1), the final position of the refinement point c for the element τ is

calculated. The point c is selected to satisfy the limiting local constraints, setting

c =


c(2), if

(
d(2) ≤ d(1)

)
,
(
d(2) ≤ d(3)

)
and

(
d(2) ≥ 1

2‖e0‖
)
,

c(3), if
(
d(3) ≤ d(1)

)
,

c(1), otherwise

(3.5)

where the d(i) = ‖c(i) − m0‖ are distances from the midpoint of the frontal edge e0

to the Type I, Type II and Type III vertices, respectively. The cascading selection

criteria is designed to ensure that the refinement scheme smoothly degenerates to that of

a conventional circumcentre-based Delaunay-refinement strategy in limiting cases, while

using locally size- or shape-optimal points where possible. Specifically, the conditions

d(2, 3) ≤ d(1) guarantee that c lies no further from the frontal edge e0 than the centre of the

circumball of τ . Additionally, the condition d(2) ≥ 1
2‖e0‖ ensures that the diametric ball

of the edge e0 remains empty. Such behaviour guarantees that the size-optimal scheme

is only selected when e0 is sufficiently small with respect to the local mesh size function

– ensuring that e0 is a good frontal edge candidate in the context of a conventional

advancing-front scheme. In all other cases, a shape-based strategy, guaranteed to reduce

element radius-edge ratios, is selected.
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3.2.3 Discussion

The mechanics of the Frontal-Delaunay algorithm are similar to those of the Delaunay-

refinement scheme presented in Section 3.1. Specifically, since the Frontal-Delaunay

algorithm involves a modification to the underlying point-placement strategy only, it

inherits much of the same theoretical framework as the preceding Delaunay-refinement

scheme. Differences in the point-placement strategies necessitate that a number of the

propositions presented in Section 3.1 be re-evaluated for the new algorithm.

Proposition 3.4 (refinement, shape-quality). Let the element-wise radius-edge threshold

ρ̄ ≥
√

2. Given a low-quality simplex τ ∈ Del(X), for which ρ(τ) > ρ̄, the minimum edge

length ‖e0‖ is not decreased following either: (i) the insertion of a new Type I Steiner

vertex, located at the centre of the associated circumball B(c, r), or (ii) the insertion of

a new Type III Steiner vertex, positioned on an adjacent edge in the associated Voronoi

diagram.

Proof. Considering the two shape-driven vertex insertion strategies separately:

• Case (i): The bounds associated with the insertion of Type I Steiner vertices are

presented in detail in Proposition 3.1, and I do not reproduce them here in full as

a result. Specifically, recall that the minimum edge length is guaranteed to be non-

decreasing given ρ̄ ≥
√

2.

• Case (ii): Type III Steiner vertices are positioned on an edge in the Voronoi diagram

v ∈ Vor(X), associated with the short edge e0 ∈ τ . Based on the properties of

the Voronoi diagram, the edge v intersects e0 at its midpoint. The Steiner vertex

c(3) is positioned to ensure that an isosceles triangle σ, formed between the existing

vertices xi,j ∈ e0 and c(3), satisfies the desired shape-quality. Recalling that the point

c(3) lies on an adjacent edge in the Voronoi diagram, it is clear that the existing

vertices xi,j ∈ e0 are its closest neighbours. Considering the geometry of the triangle

σ, the length of the new edges can be expressed in terms of the base length, such

that ‖e0
′‖ = 1

2

(
sin
(

1
2θmin

))−1‖e0‖, where θmin is the enclosed angle at the apex of σ.

Clearly, for θmin ≤ 60◦, the existing minimum edge length ‖e0‖ is preserved. Such a

limit corresponds to an equivalent bound on the radius-edge ratio, such that ρ̄ ≥ 1/
√

3.

Overall, it is clear that the insertion of Type I vertices is a limiting case, and that, as

a result, any point-placement scheme based on the insertion of both Type I and Type III

Steiner vertices requires ρ̄ ≥
√

2 to ensure that the minimum edge length is preserved.

Such a bound is consistent with the threshold given in Proposition 3.1 for the standard

Delaunay-refinement scheme.

Proposition 3.5 (refinement, grading). Given a refinable simplex τ ∈ Del |Σ(X), the

minimum edge length ‖e0‖ is decreased by an O(1) factor in the worst-case following:

(i) the insertion of a new Type I Steiner vertex located at the centre of the associated

circumball B(c, r)d, or (ii) the insertion of a new Type II Steiner vertex, positioned on

an adjacent edge in the associated Voronoi diagram.
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Proof. Considering the two size-driven vertex insertion strategies separately:

• Case (i): The bounds associated with the insertion of Type I Steiner vertices are

presented in detail in Proposition 3.2, and I do not reproduce them here in full as a

result. Specifically, recalling that in the worst-case, given an equilateral triangle τ ,

Type I refinement results in a new minimum edge length equal to the radius of the

associated circumball, such that the edge length is bounded above (1/
√

3)‖e0‖.

• Case (ii): Type II Steiner vertices are positioned on an edge in the Voronoi diagram

v ∈ Vor(X), associated with the short edge e0 ∈ τ . Based on the properties of the

Voronoi diagram, the edge v intersects e0 at its midpoint. The Steiner vertex c(2) is

positioned to ensure that an isosceles triangle σ, formed between the existing vertices

xi,j ∈ e0 and c(2), satisfies the desired local size constraints. In the worst-case, when

h̄(x) ≤ ‖e0‖, the new vertex c(2) is positioned at the intersection of v and the diametric

ball associated with the edge e0. Such a strategy ensures that the new edge length is

bounded above (1/
√

2)‖e0‖.

Overall, it is clear that the insertion of Type I vertices is a limiting case, and that, as

a result, any point-placement scheme based on the insertion of both Type I and Type II

Steiner vertices reduces minimum edge length by a factor of (1/
√

3) in the worst-case,

consistent with the bounds given in Proposition 3.2 for the standard Delaunay-refinement

scheme.

Importantly, the bounds given in Propositions 3.4 and 3.5 are identical to those de-

rived for the conventional Delaunay-refinement algorithm presented in Section 3.1, show-

ing that the behaviour of the new Frontal-Delaunay and Delaunay-refinement algorithms

is consistent in the worst-case. Specifically, the bounds stated in Propositions 3.4 and

3.5 show that the new Frontal-Delaunay algorithm is guaranteed to: (i) terminate in a

finite number of steps, and (ii) converge to a result satisfying all element shape- and size-

driven constraints. A proof of these statements is identical to that presented previously

for the Delaunay-refinement algorithm (3.1), via Proposition 3.3 and Corollaries 3.1 and

is therefore not reproduced in full here.

3.3 Mesh Size Functions

The construction of high-quality mesh size functions is an important aspect of the Frontal-

Delaunay algorithm presented in Section 3.2. A good mesh size function h̄(x) incorpo-

rates sizing constraints imposed by both the user and the geometry of the domain to be

meshed. These contributions can be considered via two separate size functions, where

h̄u(x) represents user-defined sizing information and h̄g(x) encapsulates sizing constraints

dictated by the geometry of the domain P. In this study, I require that both h̄u(x) and

h̄g(x) be piecewise linear functions defined on a supporting triangular complex S and

that the supporting complex cover the domain to be meshed, such that |P| ⊆ |S|. These

restrictions are typical of methods used in existing mesh generation algorithms. Con-

struction of appropriate user-defined functions h̄u(x) is highly problem specific and I
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Figure 3.2: Construction of the mesh size functions for the airfoil, lake and island planar
meshing problems, showing the sparse supporting complexes Sg in (i)–(iii), and contours of the
geometric mesh size functions h̄g(x) in (iv)–(vi).

(i) (ii) (iii)

(iv) (v) (vi)

do not attempt to canvas individual methods here. As a general comment, two typical

choices for h̄u(x) often arise in practice. In the first case, a uniform maximum size is

required, leading to the obvious choice h̄u(x) = γ, γ ∈ R+. The second case addresses

solution adaptive re-meshing, in which a piecewise function h̄u(x) is derived from the

characteristics of a numerical solution ψ(x), represented on an existing mesh T k. Typi-

cally, this size data is used to obtain a new mesh T k+1 that better resolves ψ(x).

3.3.1 Initial Size Estimates

Before outlining the procedure used to construct the geometric mesh size function h̄g(x),

I introduce the so-called local feature size for a polygonal plc.

Definition 3.1 (local feature size). The local feature size lfs(x) of a polygonal domain

P is a function f(x) : R2 → R+, where f(x) is the radius of the smallest disk centred at

x intersecting two non-adjacent edges in P.

Ideally, the local feature size of P could be used directly as a geometric size function,

such that h̄g(x) = lfs(x). In practice, since direct evaluation of lfs(x) is expensive, I

construct h̄g(x) as a piecewise linear approximation, formed from a set of sparse samples

of lfs(x). This sparse sampling is achieved by forming a coarse constrained Delaunay

triangulation Del(Y ) of the points in the plc Y ∈ P. Additional vertices are inserted



3.3. Mesh Size Functions 63

to ensure that Del(Y ) is a conforming triangulation of the domain P, such that no edge

segments are encroached. The final supporting complex Sg for h̄g(x) is constructed

by performing a minimal refinement of Del(Y ). Using a modified version of Ruppert’s

Delaunay-refinement algorithm, any triangle τ ∈ Sg is refined if it (i) spans the domain,

having all three vertices xi ∈ τ on a boundary of P, and (ii) has a sufficiently large

radius-edge ratio, such that ρ(τ) ≥ ρ̄g. Since a minimal refinement is desired, a non-strict

limit ρ̄g is typically specified, and in this study, is set such that ρ̄g = 4. The resulting

sparse complex Sg contains an approximation of the so-called medial-axis of the domain,

wherein the additional points added during the refinement process are equidistant to their

respective closest features in the domain P. Importantly, it should be noted that since

these points are positioned at the ‘centre’ of local geometrical features, they coincide with

ridges and peaks in the local feature size function lfs(x). Construction of the geometric

size function h̄g(x) for an example domain is illustrated in Figure 3.2.

A total mesh size function h̄(x) is finally obtained as a combination of the user-defined

and geometric size functions, h̄u(x) and h̄g(x), such that h̄(x) = min(h̄u(x), h̄g(x)) for

all x ∈ |P|. A supporting complex S = Del(Xu ∪Xg) is built for h̄(x), where the vertices

Xu ∈ Su and Xg ∈ Sg are supports for the user-defined and geometric size functions,

respectively. It should be noted that the total size function h̄(x) expresses the limiting

size constraints imposed by both user-defined and geometric inputs.

3.3.2 Size Function Smoothing

The final stage in the construction of the mesh size function h̄(x) involves the imposition

of a prescribed smoothness limit, g, such that, for any two points xi,xj ∈ |P|, the local

increase in size is bounded, with h̄(xj) ≤ h̄(xi) + g ‖xi − xj‖ and visa-versa. Such a

function is said to be g-Lipschitz. Such limits on the smoothness of h̄(x) are introduced

to ensure that the size constraints are consistent with desired element quality. Clearly,

size functions that vary more slowly are expected to be congruent with improved element

quality, while also leading to an increase in the number of elements in the output |T|. The

relationship between element shape quality and size function smoothness can be explored

through a simple idealised model, considering an isosceles triangle with a base edge of

length h and sides of length (1 + g)h. Solving for g in terms of the small angle θmin at

the apex of the triangle gives g = 1
2 (sin( 1

2θmin))−1 − 1. Clearly, g → 0 as θmin → 60.0◦.

An element of moderate quality, with θmin = 45.0◦, corresponds to g ' 0.3. It should

be noted that this simple model is optimistic, with lower quality elements generated in

practice due to a number of other factors.

I adapt the methods introduced by Persson and Strang [11, 12] to impose smoothness

constraints on the size function h̄(x). This smoothing algorithm is summarised in Algo-

rithm 3.3.1. Firstly, observe that a point xj can only be smoothed from adjacent points

xi ∈ S provided that h̄(xi) < h̄(xj). This condition implies that an optimal ordering of

points exists, for which the application of all smoothness constraints can be achieved in

a single pass. An efficient greedy algorithm based on these observations first inserts all

points x ∈ S into a priority queue, sorted by the associated size function values |h̄(x)|
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Algorithm 3.3.1 g-Lipschitz Smoothing

1: function SmoothFunc(S, h(x))
2: Enqueue all vertices x ∈ S, Q← h(x)
3: while (Q 6= ∅) do
4: Dequeue vertex with lowest size, xi ← Q
5: for all (xj adj. xi in S) do . {limit pairwise gradients}
6: Set h(xj) = min(h(xj), h(xi) + g ‖xi − xj‖)
7: Update priority queue, Q← h(xj)
8: end for
9: end while

10: end function

for each point. At each iteration of the main loop, the unprocessed point xi of mini-

mum current size value h̄(xi) is removed from the queue, and smoothness constraints

are checked in its local neighbourhood. Specifically, all points xj ∈ S adjacent to xi

are examined, with their size values modified if they violate the local smoothness limit.

This limit can be expressed via the linear inequality h̄(xj) ≤ h̄(xi) + g ‖xi − xj‖. The

algorithm terminates when all points have been removed from the queue. The resulting

size function h̄(x) ensures that for any two points xi,xj connected by an edge e ∈ S the

variation is bounded, such that h̄(xj) ≤ h̄(xi) + g ‖xi − xj‖ and visa-versa.

3.3.3 Discussion

While the size-optimal point-placement strategy presented in Section 3.2 is clearly reliant

on the construction of a high-quality mesh size function, it is important to note that the

overall Frontal-Delaunay algorithm is more flexible. Specifically, the Frontal-Delaunay

algorithm does not explicitly require that the mesh size function h̄(x) correctly satisfy

either (i) all geometric constraints imposed by the input domain P, or (ii) an appro-

priate Lipschitz smoothness constraint. In fact, since the Frontal-Delaunay algorithm

incorporates a standard Delaunay-refinement technique via the Type I and Type III

point-placement strategies, setting h̄(x) = ∞ simply forces the algorithm to operate in

pure Delaunay-refinement mode. Note that under such conditions, the satisfaction of

all element shape and size constraints is still guaranteed – the algorithm simply oper-

ates without the benefit of the size-optimal point placement scheme. This robustness

and flexibility is a key factor that differentiates the proposed Frontal-Delaunay method

from conventional advancing-front techniques, that may sometimes fail, or generate low

quality meshes when used in conjunction with an inappropriate mesh size function h̄(x).

3.4 Domains with Small Angles

The utility of both the Delaunay-refinement and Frontal-Delaunay algorithms presented

in this chapter can be significantly improved by relaxing the geometric constraints on

the domain P, allowing plc’s containing sharp features to be meshed. Clearly, for plc’s

containing very acute angles, it is not possible to ensure that all triangles in the resulting

mesh T = Del(X) satisfy the expected angle bounds whilst concurrently enforcing domain

conformity. For example, it is impossible to eliminate the small angle at the apex of a
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needle shaped domain, irrespective of both the number and position of the Steiner vertices

inserted. Non-convergence may ensue if the unmodified Delaunay-refinement or Frontal-

Delaunay algorithms are used to mesh domains containing sufficiently sharp features,

with the Steiner vertices positioned on edges adjacent to small angles potentially leading

to an infinite cascade of mutual-encroachment. When dealing with domains subtending

small angles it is instead necessary to accept that some sacrifice of element quality is

necessary in the vicinity of sharp geometric features and that a set of special cases must

be identified to ensure that convergence is achieved.

A number of techniques have been developed to extend Ruppert’s Delaunay-refinement

algorithm to handle general domains that incorporate arbitrarily small acute angles.

Specifically, both the concentric shell method, originally proposed by Ruppert in [17]

and the so-called seditious edge scheme introduced by Miller, Pav and Walkington in [9]

introduce a set of special case rules and thresholds for the refinement of elements in the

neighourhood of a sharp feature. In both these methods, convergence is guaranteed by

ensuring that a subset of low-quality elements immediately adjacent to any sharp features

in P are considered to be un-refinable, and are allowed to persist through the refinement

process. In the present study, I pursue a slightly different approach, and, as such, refer

the reader to the comprehensive treatment of these topics presented in [2, Chapter 6] for

additional information.

3.4.1 Protecting Disks

In the present study, I adopt a strategy inspired by the idea of protective-collars, as

introduced by Rand and Walkington [13, 14], in which a small subset of the domain,

adjacent to any sufficiently sharp features in P is pre-processed and quarantined from

subsequent refinement. Such a formulation is similar to the so-called protecting-balls

technique of Cheng, Dey and Ramos [1] for higher-dimensional problems. Given a general

plc P, the protection process seeks to enclose any sharp features present in the domain

inside a set of Euclidean balls, within which refinement, through the introduction of new

Steiner vertices, is prohibited. I adopt a similar procedure in this study, in which a set

of protecting-disks D are placed at the apex of any sharp features in the domain P. The

disks D define a protected region within which refinement is disallowed. The radii of the

disks is selected to ensure that the protected regions are sufficiently small with respect

to local constraints.

Proposition 3.6 (locality). Let the radius ri of a protecting disk di ∈ D be sufficiently

small, such that ri ≤
(

1
3

)
lfs(xa), where xa ∈ P is the vertex positioned at the apex of

the associated sharp feature. The disk di is well-separated from all disjoint features in

the domain, including all vertices x ∈ P, x 6= xa, edges e ∈ P, e ∩ xa = ∅ and disks

dj ∈ D, dj 6= di.

Proof. Let di be a disk of radius ri ≤ γ lfs(xi) centred on xi. Recalling that lfs(xi) is the

minimum distance from the vertex xi to any disjoint feature in the domain P, it is clear

that the minimum distance between any point in the disk di and a disjoint feature in P

is at least ri when γ ≤ 1
2 . Furthermore, the minimum distance between any two disks
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di, dj ∈ D is at least ri when γ ≤ 1
3 , even when such disks are centred on opposite ends

of the same edge ei ∈ P.

In practice, Proposition 3.6 is implemented by setting ri = h̄(xi) for each disk, and

enforcing local modifications to the mesh size function, such that h̄(xi) ≤
(

1
3

)
lfs(xi) in

the neighbourhood of any sharp features in the plc. Such a strategy ensures a close

coupling between the size of the protected regions and the magnitude of the local mesh

size function, and has been found to produce smoothly graded meshes in practice. This

approach also ensures that sharp features are resolved at an appropriate scale when

h̄(xi) ≤ lfs(xi).

Given a set of protecting disks D, a set of new Steiner vertices is first introduced at

intersections between the disks di ∈ D and the input domain P. By placing a ‘ring’ of so-

called collar-vertices at a constant radius ri about each apex xa, a conforming Delaunay

triangulation of the protected region of P is induced.

Proposition 3.7 (conformity). Let the set of collar vertices Xs include all intersections

D ∩ E 6= ∅, where D is the set of protecting disks, and E ⊆ P is the set of edges in

the plc. The Delaunay tessellation Del(X ∪Xs) is a conforming triangulation of the

protected regions in P.

Proof. Considering any given sharp feature in the domain P, a pair of vertices xi,xj ∈ Xs

are positioned at the intersections di ∩ ei and di ∩ ej , where di ∈ D is the associated

protecting disk and ei, ej ∈ P are the edges associated with the sharp feature. Noting

that the vertices xi,xj are equidistant from the apex xa, the triplet [xi,xj ,xa] defines an

isosceles triangle σa that conforms to local edge constraints. The circumcentre cσ clearly

lies within σ, positioned along the vector [xm,xa], where xm is the midpoint of the edge

[xi,xj ]. The associated circumradius rσ is bounded as a result, such that rσ ≤ ri, where

ri is the radius of the protecting disk di. Using Proposition 3.6, the disk di is known

to be empty of any non-adjacent vertices xk ∈ P. Additionally, note that any adjacent

collar vertices xl ∈ Xs are positioned on the circumference of a common ball of radius ri.

The circumball of σ is empty as a consequence, and σ ∈ Del(X ∪Xs) by the Delaunay

criterion.

Following this initialisation about sharp features, the meshing problem is reduced to

the task of triangulating the remaining protected domain P′ = P \ TD, where TD is the

set of all collar simplexes created during the initial protection phase. Importantly, the

protected domain is known to be free of any sharp features.

Proposition 3.8 (local convexity). Let TD be the conforming triangulation of the pro-

tected region of a general plc P. The protected domain P′ = P \ TD does not contain

sharp features, with all edges E ⊆ P′ meeting at non-acute angles.

Proof. Considering any given sharp feature in the domain P, recall that an isosceles

triangle σ = [xi,xj ,xa], where xi,xj are the associated collar vertices, is introduced

to protect the sharp feature centred at xa. Let the angle of the feature be α and the
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Figure 3.3: Illustration of the protection strategy for a general plc, showing (i) the set of
protecting disks D = {d1, . . . , dn} associated with sharp features in the domain P, (ii) the set of
collar-vertices Xs introduced at the intersections D∩E 6= ∅, and (iii) the set of collar-simplexes
TD and their associated circumdisks Dτ .

(i) (ii) (iii)

associated angles induced in the protected domain P′ be β. Considering that the pro-

tected edge [xi,xj ] is the base of an isosceles triangle, it is clear that the included angle

β = 1
2 (180◦ + α) ≥ 90◦. Recalling that all features in P for which α ≤ 90◦ are protected,

it is clear that edges in the protected domain P′ meet at non-acute angles.

When triangulating the protected domain P′, any collar-simplexes – that is, any

elements τi ∈ TD – are preserved throughout the subsequent refinement process. The

Delaunay-refinement and Frontal-Delaunay methods presented in Algorithm 3.1.1 are

modified to additionally test the suitability of each candidate Steiner vertex, declining

to perform refinements that would result in the introduction of new vertices within the

circumball of a collar simplex. The set of protected circumballs is denoted Dτ . Such

filtering is accomplished efficiently by storing the collection Dτ in a supporting aabb-

tree. A subset of low-quality elements in the local neighbourhood of any sharp features

in P are preserved as a result, and these elements appear in the final triangulation

T = Del(X), in violation of the desired shape constraints ρ̄. I refer to these modified

Delaunay-refinement and Frontal-Delaunay algorithms as the protected variants.

Proposition 3.9 (performance). Let T = Del(X) be a triangulation generated by the

protected Delaunay-refinement or Frontal-Delaunay algorithms for a domain P. The

tessellation T is a conforming triangulation of P, and, for all elements in the sub-mesh

TP′ = {τ ∈ T | cτ ∩Dτ = ∅}, local shape- and size-based constraints are satisfied, such

that ρ(τ) ≤ ρ̄ and h(τ) ≤ h̄(xτ ), where cτ are the element circumcentres, ρ̄ is a prescribed

radius-edge ratio, and h̄(xτ ) is a user-defined mesh size function sampled at the element

circumcentres.

Proof. Recalling Propositions 3.3 and 3.1, and noting, by Proposition 3.8, that the pro-

tected domain P′ includes only non-acute features, the (unprotected) Delaunay-refinement

and Frontal-Delaunay algorithms (3.1.1) are guaranteed to produce a conforming trian-

gulation TP′ of the protected domain P′, satisfying all size- and shape-based constraints.

By rejecting refinement operations that would lead to the introduction of new Steiner

vertices lying inside any circumdisk di ∈ Dτ associated with a protected element τi ∈ TD,

the set of collar simplexes TD is preserved throughout the refinement process, ensuring
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that the final tessellation T = TP′ ∪ TD is a conforming Delaunay triangulation of the

original domain P.

3.5 Results & Discussion

The performance of the planar meshing algorithms introduced in this chapter was in-

vestigated experimentally, with both the Delaunay-refinement and Frontal-Delaunay al-

gorithms developed in Sections 3.1 and 3.2 used to mesh a series of eleven benchmark

problems of varying size and complexity. A range of test domains were chosen from a

diverse set of application areas, including problems from geospatial processing, compu-

tational fluid dynamics, and solution adaptive numerical simulation. Meshes for each

domain, generated using the Frontal-Delaunay approach, are shown in Figure 3.4, except

for the adaptive meshing examples, which are deferred until Figure 3.8. Note that a

number of the test-cases include small acute angles. Both the Frontal-Delaunay algo-

rithm described in Section 3.2 and Ruppert’s Delaunay-refinement algorithm described

in Section 3.1 were implemented, allowing the performance and output of the two al-

gorithms to be compared side-by-side. Due to the similarities in structure between the

two algorithms, a common code-base was used, with the algorithms differing only in the

type of Steiner vertices inserted and in the manner in which the queue of bad triangles

is updated, as discussed in Section 3.2. Both algorithms are built using the TRIPOD and

LUMBERJACK packages – making use of the efficient incremental Delaunay triangulation

and spatial indexing frameworks presented in Chapter 2. The Frontal-Delaunay and

Delaunay-refinement algorithms are included in the JIGSAW package – a new mesh gen-

eration library built using the algorithms developed in this thesis. Both algorithms are

implemented in C++ and compiled as 64-bit executables.

Meshes generated using the new Frontal-Delaunay algorithm for the full set of bench-

marks are presented in Figure 3.4, demonstrating the effectiveness of the new strategy

in practice. These meshes are generated using relatively coarse element size constraints,

with the mesh size functions h̄(x) constructed using a Lipschitz smoothness parame-

ter g = 3/10. Tight bounds on element shape-quality are imposed, setting ρ̄ to achieve

θmin ' 29◦ and θmax ' 122◦. Qualitatively, these results confirm that the new Frontal-

Delaunay algorithm is successful in practice, generating high-quality conforming meshes

for a series of complex inputs. It can also be seen that smoothly graded meshes are

generated in all cases, with high resolution regions adjacent to small geometrical features

transitioning to lower resolution areas in the ‘interior’ of the domains. It is also noted

that convergence is achieved in all cases, despite the element angle bound θmin ' 29◦

significantly exceeding the theoretical limit θmin ' 20.7◦ at which convergence is guar-

anteed. This behaviour is consistent with the results of a number of previous studies,

including, for example, investigations by Shewchuk [18, 19] and Üngör [6, 20] who show

that Delaunay-refinement algorithms typically outperform their theoretical bounds in

practice. Shewchuk remarks that convergence is typically observed for θmin ' 33.8◦,

although rarely higher. Similar behaviour has been observed throughout this study,

confirming that the size-optimal point-placement strategy used in the Frontal-Delaunay
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Figure 3.4: Benchmark problems for planar meshing studies, showing meshes generated using
the Frontal-Delaunay algorithm with coarse settings, such that g = 3/10. A constant radius-edge
ratio limit is specified for all cases, such that θmin ' 29◦. Normalised histograms of element
area-length ratio a(τ), plane angle θ(τ) and relative size ‖e‖

h̄(xe)
are also shown.
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Figure 3.5: Benchmark problems for planar meshing studies, showing meshes generated using
the Frontal-Delaunay algorithm with coarse settings, such that g = 3/10. A constant radius-edge
ratio limit is specified for all cases, such that θmin ' 29◦. Normalised histograms of element
area-length ratio a(τ), plane angle θ(τ) and relative size ‖e‖

h̄(xe)
are also shown.
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algorithm does not have a negative effect on practical performance. Additionally, it is

also important to note that convergence is achieved for a number of inputs containing

input angles as small as 6.4◦, confirming the effectiveness of the protecting-disks strategy

used for domains containing sharp features.

3.5.1 Comparative Performance

The results of a comparative performance study, contrasting the effectiveness of the

Frontal-Delaunay and Delaunay-refinement meshing algorithms, is presented in Fig-

ures 3.6 and 3.7 and includes detailed results for the airfoil and lake test problems.

Specifically, the effectiveness of the new size-driven refinement scheme is addressed, com-

paring a range of meshes generated using the Frontal-Delaunay and Delaunay-refinement

algorithms for a range of different input parameters. The resulting meshes are compared

in terms of their size- and shape-quality, and their underlying structure. In addition to

the detailed results presented for the airfoil and lake problems, a simplified set of

comparisons are also tabulated for the full set of benchmark problems.

3.5.1.1 Size-driven Refinement

A detailed study of meshes generated for the airfoil and lake problems, presented in

Figures 3.6 and 3.7, examines the impact of the size-optimal Type II point-placement

strategy introduced in Section 3.2. A set of meshes were generated for both test cases

using low, medium and high resolution settings, where the associated mesh size functions
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h̄(x) were constructed using Lipschitz smoothness values of g = 3/10, g = 2/10 and

g = 1/10, respectively. The radius-edge threshold was held constant across all test cases,

such that θmin ' 29◦. For all test problems, element quality has been catalogued, with

normalised histograms of element area-length a(τ), plane angle θ(τ) and relative edge

length ‖e‖
h̄(xe)

illustrated. Histograms further highlight the minimum and mean area-length

measures, the worst-case angle bounds, θmin and θmax and the mean relative edge length.

Note that the domain for the lake test case includes a small acute angle, seen as an

outlier in distributions of a(τ) and θ(τ).

An analysis of Figures 3.6 and 3.7 shows, firstly, that both the Frontal-Delaunay and

Delaunay-refinement algorithms generate high-quality meshes for all test cases – satisfy-

ing the required element angle thresholds, except in regions adjacent to sharp features.

Inspection of distributions of a(τ), θ(τ) and ‖e‖
h̄(xe)

show that the Frontal-Delaunay al-

gorithm consistently outperforms the Delaunay-refinement scheme, generating meshes

with higher mean area-length ratios and ‘tight’ distributions of element plane angle and

relative edge length in all cases. The most significant difference in behaviour between the

two algorithms appears to be in the way that mesh size constraints are imposed. Given

the narrow distributions of relative edge length, strongly clustered about ‖e‖
h̄(xe)

= 1, it is

clear that the Frontal-Delaunay algorithm successfully generates meshes that accurately

conform to the imposed mesh size constraints. In contrast, output generated using the

Delaunay-refinement scheme is seen to incorporate significant sizing error, typified by

‘broad’ distributions of relative edge length straddling ‖e‖
h̄(xe)

= 1. While the mean rel-

ative edge lengths are comparable in all cases, the Frontal-Delaunay algorithm clearly

generates much more accurate output on an element-by-element basis.

Additionally, it is evident that the quality of meshes generated using the Frontal-

Delaunay algorithm improves as g → 0, as indicated by the increase in mean a(τ), the

narrowing of the θ(τ) distribution about 60.0◦1 and the narrowing of the distribution

of relative edge length about ‖e‖
h̄(xe)

= 1. In contrast, similar analysis shows that the

Delaunay-refinement results are essentially independent of the magnitude of the mesh size

function, h(x), with distributions of a(τ), θ(τ) and ‖e‖
h̄(xe)

seen to be broadly consistent

across all cases. Visually, the enhanced quality of the meshes generated using the Frontal-

Delaunay algorithm is evident, with a marked increase in mesh smoothness and sub-

structure obvious. Meshes generated by both algorithms are seen to be similar size, with

neither algorithm showing a significant or consistent deviation in element count |T|.

An analysis of the Steiner refinement strategies logged throughout this study show

that the majority of the off-centres chosen by the Frontal-Delaunay algorithm were either

size-optimal Type II points (' 60%) or conventional Type I circumcentres (' 40%). The

bias toward size-optimal off-centres was also observed to increase as h̄(x)→ 0. The use

of shape-optimal Type III off-centres was noted to be rare (� 1%). These results are not

surprising, simply indicating that when the magnitude of the mesh size function h̄(x) is

sufficiently small, the element size constraints dominate and the Type II point-placement

1Triangles with ideal shape quality are equilateral, explaining why θ(τ)→ 60.0◦ as shape-quality is
improved.
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Figure 3.6: Size-driven refinement study for the airfoil problem, showing meshes generated
using the Frontal-Delaunay (upper) and Delaunay-Refinement (lower) algorithms. Meshes are
generated with increasing values of size function smoothness, g = 3/10, g = 2/10 and g = 1/10 from
left to right. A constant radius-edge ratio limit is specified for all cases, such that θmin ' 29◦.
Element counts |T| are included for each case. Normalised histograms of element area-length

ratio a(τ), plane angle θ(τ) and relative size ‖e‖
h̄(xe)

are also shown.
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Figure 3.7: Size-driven refinement study for the lake problem, showing meshes generated using
the Frontal-Delaunay (upper) and Delaunay-Refinement (lower) algorithms. Meshes are gener-
ated with increasing values of size function smoothness, g = 3/10, g = 2/10 and g = 1/10 from
left to right. A constant radius-edge ratio limit is specified for all cases, such that θmin ' 29◦.
Element counts |T| are included for each case. Normalised histograms of element area-length

ratio a(τ), plane angle θ(τ) and relative size ‖e‖
h̄(xe)

are also shown.
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Table 3.1: Planar meshing study, comparing the performance of the Frontal-Delaunay and Delaunay-refinement algorithms on the full set of benchmark problems.
Meshes were generated using medium resolution settings, such that the mesh size functions h̄(x) are constructed with g = 2/10. A constant radius-edge ratio
limit is specified for all cases, such that θmin ' 29◦. Results listed include: total element count |T|, total runtime t(s), mean and minimum area-length ratios
a(τ), a(τ)min and plane angle bounds θ(τ)min, θ(τ)max.

Domain Frontal-Delaunay Delaunay-refinement

|T| t(s) a(τ)min a(τ) θ(τ)min θ(τ)max |T| t(s) a(τ)min a(τ) θ(τ)min θ(τ)max

airfoil 7, 187 0.09 0.61 0.95 29.1◦ 118.7◦ 7, 209 0.06 0.63 0.92 29.0◦ 116.7◦

lake 4, 530 0.04 0.32 0.95 12.2◦ 143.2◦ 4, 603 0.04 0.32 0.92 12.2◦ 143.2◦

circles 10, 131 0.08 0.62 0.94 29.1◦ 117.6◦ 10, 231 0.08 0.62 0.91 29.0◦ 118.2◦

river 4, 218 0.04 0.61 0.95 29.2◦ 119.5◦ 4, 306 0.04 0.61 0.92 29.1◦ 119.3◦

newzealand 212, 543 1.44 0.20 0.95 6.9◦ 141.4◦ 214, 965 1.38 0.20 0.92 6.9◦ 141.4◦

islands 166, 293 1.05 0.59 0.95 25.4◦ 121.1◦ 168, 212 0.96 0.59 0.92 25.4◦ 121.2◦

coast 229, 147 1.53 0.42 0.95 18.0◦ 136.2◦ 231, 559 1.44 0.42 0.92 18.0◦ 136.2◦

australia 689, 868 5.23 0.36 0.95 14.3◦ 139.8◦ 697, 730 5.25 0.36 0.92 14.3◦ 139.8◦

greenland 710, 766 5.72 0.19 0.95 6.4◦ 148.9◦ 789, 969 6.16 0.19 0.92 6.4◦ 148.9◦

cavity 34, 572 0.22 0.64 0.98 29.6◦ 115.6◦ 36, 331 0.19 0.60 0.93 29.0◦ 119.6◦

cylinder 67, 618 0.45 0.65 0.98 29.0◦ 114.3◦ 72, 421 0.41 0.59 0.93 29.0◦ 120.6◦
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scheme is preferred.

3.5.1.2 Overall Comparisons

In addition to the detailed comparisons presented previously, a simplified set of compar-

ative results were also obtained for all benchmark problems, contrasting the performance

of the Frontal-Delaunay and Delaunay-refinement approaches. The results of this study

are presented in Table 3.1. Meshes were generated using medium resolution settings,

with the mesh size function h̄(x) constructed with g = 2/10. Again, tight bounds on ele-

ment radius-edge ratios were specified, such that θmin ' 29◦ and θmax ' 122◦. Analysis

of the results in Table 3.1 confirm the trends observed in the detailed analysis carried

out for the airfoil and lake problems – that, given an appropriate mesh size function

h̄(x), the proposed Frontal-Delaunay algorithm produces meshes that are of significantly

higher shape- and size-quality than those generated using the conventional Delaunay-

refinement algorithm. Total run-times for the algorithms are also tabulated and show,

firstly, that the implementations developed in this study are efficient, generating meshes

containing 100, 000’s of elements in a matter of seconds. These results also show that

the new off-centre point-placement scheme used in the Frontal-Delaunay algorithm im-

poses a small additional cost, with the total runtime increased by 15–20%. This increase

in computational work is associated with the local iteration used when positioning the

size-optimal Type II Steiner vertices.

3.5.2 Solution Adaptive Meshing

The performance of the planar meshing algorithms for problems involving user specified

mesh size functions h̄u(x) was also assessed. In Figure 3.8, the results of an adaptive

meshing study are presented, in which a sequence of graded meshes are generated for

a pair of example problems from computational fluid dynamics, including the driven

flow in a square cavity and the flow over a pair of cylindrical cross-sections. Numerical

simulations were performed using a Navier-Stokes solver previously developed by the

author in [5], which is based on a vertex-centred finite-volume framework. An iterative

solution-adaptive re-meshing process was investigated, in which the numerical solution

obtained on a given mesh T k used to generate a new mesh size function h̄u(x)k+1. A new

mesh T k+1 was then generated to conform to h̄u(x)k+1, and the process repeated. Initial

meshes were generated based on geometric information alone, with h̄u(x)k=0 = ∞. At

each iteration, the meshes were adapted using a simple measure of the flow characteristics,

with the new size function based on the magnitude of the local vorticity of the flow,

ω(x) = ∇ × u(x), such that h̄u(x) = α/|ω(x)|, where α > 0 is a scaling constant. The

meshes generated using both the Frontal-Delaunay and Delaunay-refinement algorithms

after 3 adaptive meshing cycles are presented in Figure 3.8. In all cases, the radius-

edge ratio limit was set such that θmin = 29◦ and the mesh size function smoothed

using g = 2/10. For all test problems, element quality is catalogued, with normalised

histograms of the element area-length a(τ), plane angle θ(τ) and relative edge length
‖e‖
h̄(xe)

illustrated. The histograms further highlight the minimum and mean area-length
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measures, the worst-case angle bounds, θmin and θmax and the mean relative edge length.

Analysis of these adaptive results confirm many of the trends discussed previously,

with the Frontal-Delaunay algorithm generating meshes of significantly higher quality

when compared to the conventional Delaunay-refinement method. Specifically, it is noted

that distributions of both element quality a(τ) and relative edge length ‖e‖
h̄(xe)

are improved

significantly when using the Frontal-Delaunay method, with the vast majority of elements

consisting of near-perfect shape-quality and size. It is also observed that the Frontal-

Delaunay algorithm produces meshes of slightly smaller size. A combination of improved

element quality and reduced mesh size typically leads to improvements in efficiency in

the associated numerical simulation. I do not seek to explicitly quantify this effect in

this study, although it is an interesting avenue for future research. Overall, these results

demonstrate the effectiveness of the proposed Frontal-Delaunay method when generating

high-quality adaptive meshes for numerical simulation.

3.6 Conclusions

In this chapter, I have presented a pair of algorithms designed for high-quality mesh gen-

eration in the plane. The first algorithm is a conventional Delaunay-refinement scheme

due to Ruppert [17], in which the circumcentres of poor quality triangles are inserted

into the mesh as new Steiner vertices. In the second algorithm, I have developed a new

Frontal-Delaunay technique, building on ideas previously introduced by Üngör [20] and

Rebay [15], in which generalised Steiner vertices are inserted along edges in the asso-

ciated Voronoi diagram. This new approach allows for the insertion of both size- and

shape-optimal Steiner points, leading to a hybrid strategy that combines many of the ad-

vantages of advancing-front and Delaunay-refinement techniques. A series of comparative

experimental studies confirm the effectiveness of this new technique, demonstrating that

significant improvements in element quality are typically achieved in practice. Impor-

tantly, it has also been demonstrated that the new Frontal-Delaunay algorithm achieves

much of the same theoretical optimality as conventional Delaunay-refinement schemes,

satisfying constraints on element radius-edge ratios and edge length. Results show that

the new algorithm is an effective hybridisation of existing mesh generation techniques,

combining the high element quality and mesh structure of advancing-front techniques

with the theoretical guarantees of Delaunay-refinement schemes.

A number of avenues exist for future investigations – improving or generalising the

Delaunay-refinement and Frontal-Delaunay meshing algorithms presented in this study.

Specifically, further generalisations of the off-centre techniques could be investigated, fol-

lowing, for example, the strategies outlined by Erten and Üngör in [6], in which Steiner

vertices are inserted along non-adjacent segments in the associated Voronoi diagram. In

the context of shape optimality alone, such methods have been reported to improve the

performance of a planar meshing algorithm, further reducing the output size and improv-

ing the element angle distribution. Initial analysis suggests that these methods could also

be formulated in terms of size-optimal constraints, allowing them to be incorporated into

the Frontal-Delaunay framework introduced in this study.
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Figure 3.8: Adaptive meshing study for the cavity and cylinder test cases, showing the numer-
ical solutions and associated meshes after 3 iterations of solution-adaptive meshing. Contours of
velocity magnitude are shown (left). Meshes generated using the Frontal-Delaunay (centre) and
Delaunay-refinement (right) algorithms are adapted to resolve high shear regions in the flow.
A constant radius-edge ratio limit is specified for all cases, such that θmin ' 29◦. Normalised
histograms of element area-length ratio a(τ), plane angle θ(τ) and relative size ‖e‖

h̄(xe)
are also

shown.
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Chapter 4

Surface Mesh Generation

In this chapter, I present a Frontal-Delaunay surface meshing algorithm for closed 2-

manifolds embedded in R3. This new algorithm is an extension of the Frontal-Delaunay

method developed for planar domains in Chapter 3 and is designed to combine the high-

quality results achieved using advancing-front techniques with the provable bounds and

theoretical guarantees of Delaunay-refinement schemes. The surface meshing algorithms

presented in this chapter are based on the so-called restricted Delaunay triangulation

– a subset of the full-dimensional Delaunay tessellation that conforms to the surface

of interest. I review both the mechanics and theoretical development of existing re-

stricted Delaunay-refinement algorithms before introducing the new Frontal-Delaunay

strategy. Exploiting ideas similar to those presented in Chapter 3, I show that the use

of ‘off-centre’ Steiner vertices, positioned along facets in the associated Voronoi complex,

typically leads to an improvement in both the shape- and size-quality of the resulting

surface tessellation. In addition to conventional shape-driven refinement methods, based

on element radius-edge ratios, I show that a new size-optimal refinement strategy can

be realised by positioning off-centre vertices such that a local mesh size function is satis-

fied. The use of this sizing function to generate graded meshes adhering to user defined

size constraints is also explored. I use a simple theoretical model to prove termination

and convergence for the proposed algorithm. I investigate the performance of the new

Frontal-Delaunay strategy experimentally, and undertake a series of comparative stud-

ies, contrasting the performance of the new algorithm with a typical Delaunay-refinement

technique. I demonstrate that the new Frontal-Delaunay method inherits many of the

benefits of both Delaunay-refinement and advancing-front type methods, typically lead-

ing to the construction of very high quality triangulations in practice. Experiments are

conducted using a range of complex benchmarks, verifying the robustness and practical

performance of the proposed scheme. Work presented in this chapter appears in [11, 12].

4.1 Restricted Delaunay Refinement

Delaunay-refinement algorithms for surface meshing operate by incrementally introduc-

ing new Steiner vertices into an initially coarse Delaunay tessellation that ‘conforms’ to
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Figure 4.1: Surface Delaunay ball for a restricted 2-face f ∈ Del |Σ(X), showing (i) the placement
of the surface ball at the intersection of the dual Voronoi edge and the underlying surface Σ,
and (ii) the radius r(f) and surface discretisation error ε(f) associated with the surface ball.

(i) (ii)

the surface of interest. Contrary to the planar refinement techniques presented in Chap-

ter 3, refinement schemes for surface meshing are designed not only to ensure that the

resulting mesh satisfies element shape and size constraints, but that the geometry and

topology of the mesh itself is an accurate piecewise approximation of the underlying sur-

face. The surface meshing algorithms presented in this chapter are based on the so-called

restricted Delaunay surface tessellation Del |Σ(X) – a sub-complex of the full-dimensional

Delaunay tessellation Del(X), containing the 2-faces f ∈ Del(X) that best approximate

an underlying surface Σ. The restricted Delaunay surface tessellation is introduced and

defined in Section 2.2.

Before moving on to a detailed description of the meshing algorithms presented in this

chapter, it is first necessary to redefine and introduce a number of important geometrical

constructs that will be used throughout the developments that follow. Firstly:

Definition 4.1 (surface Delaunay ball). Let Del |Σ(X) be a restricted Delaunay trian-

gulation of a 2-manifold Σ. Given a 2-simplex f ∈ Del |Σ(X), any circumball of f centred

on the surface Σ is a surface Delaunay ball of f , denoted SDB(f).

Surface Delaunay balls are centred at the intersection of the associated Voronoi com-

plex Vor(X) with the surface Σ. Specifically, each 2-face f ∈ Del |Σ(X) is associated with

an orthogonal edge in the Voronoi complex v ∈ Vor(X), which is guaranteed, based on

the properties of the restricted tessellation Del |Σ(X), to intersect with the surface Σ at

least once. In some cases, especially when the sampling X ∈ Σ is relatively coarse, there

may be multiple surface balls associated with any given surface facet f ∈ Del |Σ(X). In

such cases, it is typical to consider only the largest surface ball. See Figure 4.1 for an

illustration of the surface Delaunay ball for a general facet f .

Definition 4.2 (surface discretisation error). Let Del |Σ(X) be a restricted Delaunay

triangulation of a 2-manifold Σ. Given a 2-simplex f ∈ Del |Σ(X), the surface discreti-

sation error ε(f) is the Euclidean distance between the centres of the largest surface

Delaunay ball of f and its diametric ball.

The surface discretisation error is a measure of how well the restricted triangula-

tion Del |Σ(X) approximates the underlying surface Σ. Considering a surface facet
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f ∈ Del |Σ(X), the surface discretisation error ε(f) is a measure of the distance be-

tween the face f and the furthest associated point on the surface Σ. This measure can

be thought of as a one-sided discrete Hausdorff distance, ε(f) = H(Del |Σ(X),Σ), de-

fined from a set of representative points on the triangulation Del |Σ(X) to the surface Σ.

Clearly, if the triangulation Del |Σ(X) is a good piecewise representation of the surface Σ,

the surface discretisation error ε(f) should be small. See Figure 4.1 for a representation

of the surface discretisation error for a facet f ∈ Del |Σ(X).

4.1.1 An Existing Algorithm

The development of provably-good Delaunay-refinement schemes for surface-based mesh

generation is an ongoing area of research. In this section, I present an algorithm for

the meshing of closed 2-manifolds embedded in R3, adapted largely from the methods

presented by Boissonnat and Oudot in [4, 5]. This method is largely equivalent to the

CGALMESH algorithm, available as part of the CGAL package, and summarised by Jamin,

Alliez, Yvinec and Boissonnat in [15]. A similar algorithm is also outlined by Cheng,

Dey and Shewchuk in [9]. I will refer to the algorithm presented in this section as the

‘conventional’ Delaunay-refinement approach, due to its direct use of circumcentre-based

Steiner vertices.

In this study, I restrict my attention to so-called remeshing operations, in which the

underlying surface Σ is specified as an existing manifold triangular complex P. While this

constraint may seem overly restrictive, it is important to recognise that the use of such

triangulated surface representations is widespread within the computational modelling

communities, associated with applications such as laser scanning, terrain modelling and

some computer drawing applications. Furthermore, remeshing operations are a necessary

task in many practical cases, with triangulated surface models often incorporating a

number of undesirable defects, including elements of low shape quality and/or regions

of unsuitable resolution. The remeshing algorithms presented in this study are designed

to remedy these situations, generating new high-quality surface meshes that adhere to

user defined sizing constraints. An extension of the methods presented here to more

general classes of surfaces, such as parametric or implicit representations, is left for

future investigations.

Following the approach described by Jamin et al. in [15], the Delaunay-refinement

algorithm takes as input a surface domain, described by a closed 2-manifold Σ, an upper

bound on the allowable element radius-edge ratio ρ̄, a mesh size function h̄(x) defined at

all points on the surface Σ and an upper bound on the allowable surface discretisation

error ε̄(x). The input surface Σ encloses a bounded volume Ω. The algorithm returns

a triangulation T|Σ of the surface Σ, where T|Σ is a restricted Delaunay surface trian-

gulation of a point-wise sampling X ∈ Σ, such that T|Σ = Del |Σ(X). As a by-product,

the algorithm also returns a coarse triangulation T|Ω of the enclosed volume Ω, where

T|Ω is a restricted Delaunay volume triangulation T|Ω = Del |Ω(X). Both Del |Σ(X)

and Del |Ω(X) are sub-complexes of the full-dimensional Delaunay tessellation Del(X).

Note that Del |Σ(X) is a triangular complex, while Del |Ω(X) and Del(X) are tetrahedral
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Algorithm 4.1.1 Restricted Delaunay Surface Refinement

1: function DelaunaySurface(Σ,Ω, ρ̄, ε̄(x), h̄(x), T|Σ, T|Ω)
2: Form an initial sampling X ∈ Σ such that X is well-spaced on

Σ.
3: Form Delaunay tessellation Del(X).
4: for all (τ ∈ Del(X)) do . {assemble restricted triangulations}
5: Call RestrictedDT(τ,Del |Σ(X),Del |Ω(X))
6: end for
7: Enqueue all 2-simplexes Q|Σ ← f ∈ Del |Σ(X). A 2-simplex f

is enqueued if BadSimplex2(f) returns true.
8: while (Q|Σ 6= ∅) do . {main refinement loop}
9: Call RefineSimplex2(f ← Q|Σ)

10: for all (updated τ ∈ Del(X)) do
11: Call RestrictedDT(τ,Del |Σ(X),Del |Ω(X))
12: end for
13: Update Q|Σ to reflect changes to Del |Σ(X).
14: end while
15: return T|Σ = Del |Σ(X) and T|Ω = Del |Ω(X)
16: end function

1: function RefineSimplex(f) . {surface refinement}
2: Call SurfaceDelaunayBall(f,B(c, r)max).
3: Form new Steiner vertex c about B(c, r)max.
4: Insert Steiner vertex X ← c and update Del(X)← X.
5: end function

1: function SurfaceDelaunayBall(f) . {surface ball}
2: Form Voronoi edge vf orthogonal to 2-simplex f .
3: Form the set of associated surface Delaunay balls B(c, r)i for

the restricted 2-simplex f ∈ Del |Σ(X). Balls are centred
about the set of surface intersections vf ∩ Σ 6= ∅.

4: return B(c, r)max, where rmax is maximal.
5: end function

1: function BadSimplex(f) . {termination criteria}
2: return (ρ(f) > ρ̄) or

(
ε(f) > ε̄

(
xf
))

or
(
h(f) > h̄

(
xf
))

3: end function

complexes. The Delaunay-refinement algorithm is summarised in Algorithm 4.1.1.

The Delaunay-refinement algorithm guarantees, firstly, that all elements in the output

surface triangulation f ∈ T|Σ satisfy both the element shape constraints, such that

ρ(f) ≤ ρ̄, and the surface discretisation threshold, such that ε(f) ≤ ε̄(xf ). Furthermore,

for sufficiently small mesh size functions h̄(x), the output surface triangulation T|Σ is

guaranteed to be a good piecewise approximation of the underlying surface Σ. Based

on the properties of the restricted Delaunay triangulation outlined in Section 2.2, under

such conditions it is known that T|Σ is homeomorphic to Σ, that the Hausdorff distance

H(Σ,T|Σ) is small, and that T|Σ is a good geometric approximation to the surface Σ –

with the properties of the triangulation converging toward the true normals, curvature

and area of the underlying surface Σ as h̄(x)→ 0.

The Delaunay-refinement algorithm begins by creating an initial point-wise sampling

of the surface X ∈ Σ. Exploiting the discrete representation available for Σ, the initial

sampling can be obtained as a well-distributed subset of the existing vertices Y ∈ P,

where P is the polyhedral representation of the surface Σ. In the next step, the initial

triangulation objects are formed. The full-dimensional Delaunay tessellation, Del(X), is

built using the standard incremental framework outlined in Chapter 2. The restricted
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surface and volume triangulations, Del |Σ(X) and Del |Ω(X), are derived from Del(X) by

explicitly testing for intersections between the associated Voronoi complex Vor(X) and

the surface Σ. This process is discussed in further detail in subsequent sections. The

main loop of the algorithm proceeds to incrementally refine any 2-faces f ∈ Del |Σ(X)

that do not satisfy either the radius-edge, element size or surface discretisation require-

ments. The refinement process is priority scheduled, with triangles f ∈ Del |Σ(X) ordered

according to their radius-edge ratios ρ(f), ensuring that the element with the worst ra-

tio is refined at each iteration. Individual elements are refined based on their surface

Delaunay balls, with a triangle f ∈ Del(X) eliminated by inserting the centre of the

largest associated surface ball B(c, r)max = SDB(f) into the tessellation Del(X). This

process is a direct generalisation of the circumcentre-based insertion method introduced

in Ruppert’s algorithm for planar domains, discussed in Chapter 3. As a consequence of

changes to the full-dimensional tessellation following the insertion of a new Steiner vertex,

corresponding updates to the restricted triangulations Del |Σ(X) and Del |Ω(X) are in-

stigated, ensuring that all tessellation objects remain in-sync throughout the refinement

process. The Delaunay-refinement algorithm terminates when all 2-faces f ∈ Del |Σ(X)

satisfy all radius-edge, size and surface discretisation thresholds, such that1 ρ(f) ≤ ρ̄,

h(f) ≤ αh̄(xf ) and ε(f) ≤ ε̄(xf ), respectively, where the element size h(f) is proportional

to the radius of the associated surface ball B(c, r)max = SDB(f), such that2 h(f) =
√

3 r,

and h̄(xf ), ε̄(xf ) are sampled at the centre of SDB(f).

4.1.2 Discussion

Unlike the planar Delaunay-refinement algorithms presented in Chapter 3, the mechanics

of the restricted surface Delaunay-refinement algorithm cannot be understood in terms

of the effect of vertex insertion on element shape-quality alone. Instead, considerations

of geometrical and topological fidelity impose additional constraints on the nature of

the point-wise sampling itself, requiring that a set of geometric sizing constraints be

satisfied. Before discussing the various geometrical and topological guarantees in detail,

I first formalise the notion of feature-size for closed surface domains.

Definition 4.3 (medial-axis). Given a bounded volumetric domain Ω enclosed by a

surface Σ, the medial-axis of Ω is the topological closure of the set of centres of empty

balls touching the surface Σ at more than one point.

Definition 4.4 (medial-distance). Given a bounded volumetric domain Ω enclosed by

a surface Σ, in addition to a point x ∈ Σ, the medial-distance, denoted dM (x), is the

Euclidean distance between x and the closest point on the medial-axis of Ω.

Noting that the medial-axis lies at the ‘centre’ of any geometrical features in the

volumetric domain induced by the bounding surface Σ, it is clear that the associated

1The scalar α = 4
3

, to ensure that the mean element size does not, on average, undershoot the target

size h̄
(
xf
)
, as per the discussions outlined in Section 3.2.

2The coefficient
√

3 represents the mapping between the edge length and diametric ball radius for
an equilateral element. Such scaling ensures that size constraints are applied with respect to mean edge
length.
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medial-distance dM (x) is a measure of the local ‘thickness’ of the domain at any point

x ∈ Σ. Using such considerations, Boissonnat and Oudot [4, 5] introduce the notion of

loose γ-samples to describe point-wise samplings X ∈ Σ that induce restricted surface

triangulations Del |Σ(X) with favourable geometrical and topological guarantees.

Definition 4.5 (loose γ-sample1). Let Σ be a closed surface supporting a point-wise

sampling X ∈ Σ. Let EV(X) be the set of edges in the associated Voronoi complex

Vor(X). The sampling X is called a is called a loose γ-sample of Σ if: (i) for all points

x ∈ {EV(X) ∩ Σ} the associated γ-balls are non-empty, such that X ∩B(x, γdM (x)) 6= ∅
for some γ ∈ R+, and (ii) the restricted triangulation Del |Σ(X) includes at least one

vertex on all connected components of the surface Σ.

‘Loose’ γ-samples differ from the standard γ-samples introduced by Amenta and Bern

[1] according to the manner in which the underlying surface is ‘interrogated’. Specifically,

standard γ-samples require that for all points x ∈ Σ there exists at least one point xi ∈ X
within the local γ-ball centred at x, such that ‖x − xi‖ ≤ γdM (x). Such arguments

require a continuous interrogation of the surface Σ, and are therefore problematic in the

context of discrete meshing algorithms. The loose γ-samples of Boissonnat and Oudot

seek to relax such constraints, by instead requiring that only a discrete set of γ-balls,

centred at intersections between the edges of the Voronoi complex EV(X) ⊆ Vor(X) and

the surface Σ, are required to be non-empty. Recalling that the surface Delaunay balls

associated with the 2-faces f ∈ Del |Σ(X) are centred on such intersections, it is clear

that the restricted Delaunay-refinement algorithm described in Section 4.1 can be used

to construct loose γ-samples directly, provided that refinement continues until all surface

balls B(c, r)max = SDB(f) satisfy local sizing constraints, such that r ≤ γdM (c).

Importantly, Boissonnat and Oudot have shown that restricted Delaunay triangu-

lations built using loose γ-samples provide a ‘good’ approximation of the underlying

surface, exhibiting a number of desirable geometrical and topological properties. I state

these properties here without proof and instead refer the reader to the detailed exposi-

tions presented in [4, 5] for further details.

Proposition 4.1 (loose γ-sample, restricted triangulation). Let Σ be a closed surface,

supporting a loose γ-sampling X ∈ Σ, with γ ≤ 0.08. The associated restricted surface

triangulation Del |Σ(X) exhibits the following properties: (i) the triangulation Del |Σ(X)

is homeomorphic to the surface Σ, (ii) for any 2-face f ∈ Del |Σ(X) the angle between

the facet normal n̂f and the surface normal n̂Σ, sampled at the vertices x ∈ f , is O(γ),

and (iii) the one-sided Hausdorff distance H(Del |Σ(X),Σ), sampled at the centre of the

surface Delaunay balls B(c, r)max = SDB(f) associated with any 2-face f ∈ Del |Σ(X),

is O
(
γ2
)
.

In addition to considerations of geometrical and topological correctness, the preser-

vation of adequate bounds on the shape quality of any surface facets f ∈ Del |Σ(X) is

also clearly a key requirement for the surface Delaunay-refinement algorithm described

1I adopt the term ‘γ-sample’ in preference to the original ‘ε-sample’ terminology of Boissonnat and
Oudot to prevent confusion with the surface discretisation error, denoted ε(f) in this work.
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in Section 4.1. Following an approach similar to that outlined in Chapter 3 for Rup-

pert’s algorithm, bounds on the achievable element radius-edge ratios can be derived by

ensuring that a minimum edge length is preserved throughout the refinement process.

Proposition 4.2 (refinement, shape-quality). Let the element-wise radius-edge threshold

ρ̄ ≥ 1. Given a low-quality surface facet f ∈ Del |Σ(X), for which ρ(f) ≥ ρ̄, the minimum

edge length ‖e0‖ is not decreased following the insertion of a new Steiner vertex located

at the centre of the largest surface Delaunay ball B(c, r)max = SDB(f) associated with

the facet f .

Proof. Recalling the definition of the radius-edge ratio, shape-based refinement occurs

when rd
‖e0‖ ≥ ρ̄, where rd is the radius of the diametric disk associated with the surface

facet f . Noting that the new Steiner vertex c lies on an edge in the associated Voronoi

complex Vor(X), it is clear that there is no vertex xi ∈ X lying closer to c than the

vertices of the surface facet xj ∈ f , which are located on the circumference of the

associated surface ball at a distance of r. As a consequence, the length of the of the

shortest edge in the updated triangulation Del |Σ(X ∪ {c}) is bounded by the size of

the surface ball, such that ‖e0
′‖ ≥ r, where ‖e0

′‖ is the minimum length of any new

edges in the updated triangulation. Noting that the diametric ball of the facet f is never

larger than the associated surface Delaunay ball1, it is clear that ‖e0
′‖ ≥ rd and that

‖e0
′‖ ≥ ρ̄ ‖e0‖ as a result. Given that ρ̄ ≥ 1, it is clear that minimum edge length is not

decreased by the refinement process.

Recalling the relationship between the radius-edge ratio and element plane angles

for triangular elements, such arguments show that an angle bound θmin = 30◦ can be

achieved for the surface meshing case without compromising overall convergence. These

bounds correspond to the idealised planar configuration, in which an infinite domain

without boundaries is considered. Augmenting the surface refinement algorithm to han-

dle embedded edge constraints, inscribed on the surface Σ, is left for future studies.

In addition to shape-based refinement, it is important to also consider the effect of

both size- and surface-error-driven refinement strategies on the structure of the tessella-

tion. Specifically, in such cases, a high-quality surface facet f ∈ Del |Σ(X) with ρ(f) ≤ 1

may be marked for further refinement if f is in violation of the local element size or

surface error constraints. In such cases, while it is tolerable to accept some reduction in

minimum edge length, it is important to ensure that such a reduction is bounded in the

worst-case, guaranteeing that the resulting sampling X remains well-distributed, without

pathologically small edges.

Proposition 4.3 (refinement, grading). Given a refinable surface facet f ∈ Del |Σ(X),

the minimum edge length ‖e0‖ is decreased by a worst-case O(1) factor following the

insertion of a new Steiner vertex located at the centre of the largest surface Delaunay ball

B(c, r)max = SDB(f) associated with the facet f .

1Given a surface facet f ∈ Del |Σ(X) the radius of the associated surface Delaunay ball B(c, r)max =
SDB(f) reaches a minimum when the underlying surface Σ is flat. In such cases, the surface ball and
the diametric ball of f are equal. When the curvature of Σ is non-zero, the centre of the surface ball
SDB(f) is offset from the plane of the facet f , and the radius is increased accordingly.
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Proof. Following the same reasoning presented in Proposition 4.2, the insertion of a new

Steiner vertex c, positioned at the centre of the associated surface ball B(c, r)max =

SDB(f), modifies the local distribution of edge lengths. Specifically, the minimum edge

length ‖e0
′‖ in the updated triangulation Del |Σ(X ∪ {c}) can be expressed in terms of

the radius of the associated surface ball, such that ‖e0
′‖ ≥ r. In the worst case, when

the underlying surface Σ is flat, the new edge length can be related to the radius-edge

ratio of f directly, satisfying ‖e0
′‖ ≥ ρ(f)‖e0‖. Noting that ρ(f) achieves a minimum

value when the facet f is equilateral, such that ρ(f) = 1/
√

3, it is clear that the minimum

edge length is reduced by an O(1) factor of 1/
√

3 in the worst-case.

Boissonnat and Oudot [4, 5] have shown that, when given a suitable mesh size func-

tion h(x), the Delaunay-refinement algorithm described in Section 4.1 is guaranteed to

produce high quality surface meshes that satisfy a variety of geometrical and topological

constraints.

Proposition 4.4 (termination). Given a closed 2-manifold Σ, a radius-edge threshold

ρ̄ ≥ 1, positive mesh size and surface discretisation functions, h̄(x) > 0, ε̄(x) > 0, defined

for all x ∈ Σ, the Delaunay-refinement algorithm (4.1) terminates in a finite number of

steps.

Proof. The Delaunay-refinement algorithm (4.1) refines any surface facet f ∈ Del |Σ(X)

if: (i) it is of poor shape quality, such that ρ(f) ≥ ρ̄, (ii) it is too large, such that

h(f) ≥ αh̄(xf ), or (iii) it violates the local surface discretisation error threshold, such

that ε(f) ≥ ε̄(xf ).

• Case (i): Given a sufficiently large radius-edge threshold ρ̄ ≥ 1 it is known, via Propo-

sition 4.2, that refinement does not lead to a reduction in minimum edge length.

Shape-based refinement therefore preserves the minimal edge length ‖e0‖k, associated

with either the initial sampling X0, or the insertion of some previous vertex xk ∈ X
due to size- or surface-error-driven refinement.

• Case (ii): Given that the mesh size function h̄(x) is positive, such that h̄(x) ≥ h̄0

for some h̄0 ∈ R+, size-driven refinement is declined once the local element size is

sufficiently small. Specifically, considering a limiting case, in which h(f) =
√

3r = αh̄0,

where r is the radius of the associated surface ball, Proposition 4.3 states that the

minimum edge length is reduced by a factor of 1/
√

3 in the worst-case. Rearranging the

previous expressions, the minimum edge length is shown to be bounded above (α/3)h̄0.

• Case (iii): Given that the surface discretisation threshold is positive, such that ε̄(x) ≥
ε̄0 for some ε0 ∈ R+, it is clear that error-driven refinement is declined once the local

surface discretisation error is sufficiently small. Noting that the surface discretisation

error ε(f) cannot exceed the radius r of the associated surface ball, it is clear that

r ≥ ε̄0 is a worst-case condition for surface-error-driven refinement. Considering the

limiting case, Proposition 4.3 states that the minimum edge length is reduced by a

factor of 1/
√

3 in the worst-case, showing that minimal edge length is bounded above

(1/
√

3)ε̄0.
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Given the individual bounds on minimum edge length, the overall Delaunay-refinement

algorithm (4.1) is known to preserve some positive minimum vertex separation distance

d = min
(
‖e0‖k, (α/3)h̄0, (1/

√
3)ε̄0

)
, and, via the Packing Lemma (3.1), is guaranteed to

produce a point-wise sampling X of finite size. It is therefore clear that the algorithm

inserts a bounded number of Steiner vertices and is guaranteed to terminate in a finite

number of steps as a consequence.

A proof of finite termination leads directly to a number of useful auxiliary guarantees

and bounds on both the nature and the quality of the output tessellation. Adopting

the conventional terminology, surfaces meshes generated using the Delaunay-refinement

algorithm presented in Section 4.1 can be considered to be ‘provably good’.

Corollary 4.1 (convergence). Given a closed 2-manifold Σ, a radius-edge threshold

ρ̄ ≥ 1, positive mesh size and surface discretisation functions, h̄(x) > 0, ε̄(x) > 0,

defined for all x ∈ Σ, the restricted surface tessellation T|Σ = Del |Σ(X) generated by the

Delaunay-refinement algorithm (4.1) satisfies all constraints. Specifically, for all surface

facets f in the output T|Σ: (i) all radius-edge ratios are bounded, such that ρ(f) < ρ̄,

(ii) all element sizes are bounded, such that h(f) < αh̄(xf ), where xf is the centre

of the associated surface ball B(c, r)max = SDB(f) and α ∈ R+, and (iii) all surface

discretisation errors are bounded, such that ε(f) < ε̄(xf ).

Proof. Algorithm (4.1) maintains a queue of ‘bad’ elements throughout the refinement

process, containing any surface facets f ∈ Del |Σ(()X) that are in violation of one or more

local constraints. Specifically, a given 2-face f ∈ Del |Σ(X) is enqueued if: (i) ρ(f) ≥ ρ̄,

(ii) if h(f) ≥ αh̄(xf ), or (iii) if ε(f) ≥ ε̄(xf ). Given that the algorithm is known to

terminate, it is clear that the refinement queue must become empty after a finite number

of steps and that all entities in the resulting triangulation Del |Σ(X) satisfy the requisite

radius-edge ratio, element size and surface error constraints as a consequence.

Based on the properties of the loose γ-samples of Boissonnat and Oudot, it is clear that

the resulting surface triangulations generated using the Delaunay-refinement algorithm

are guaranteed to be a good approximation of the underlying surface definition if the

mesh size function is sufficiently small.

Corollary 4.2 (convergence, loose γ-sample). Given a closed 2-mainfold Σ and a γ-

conforming size function (α/
√

3)h̄(x) ≤ γdM (x), the point-wise sampling X ∈ Σ generated

by the Delaunay-refinement algorithm (4.1) is a loose γ-sample. When γ ≤ 0.08 the as-

sociated triangulation Del |Σ(X) is an accurate topological and geometrical approximation

of the surface Σ.

Proof. The Delaunay-refinement algorithm (4.1) refines any large surface facets, ensur-

ing that h(f) ≤ αh̄(xf ) for all facets f ∈ Del |Σ(X). Rearranging the previous ex-

pression, and substituting for the given mesh size constraints leads to h(f) =
√

3r ≤
α
(√

3/α
)
γdM(x), which simplifies to r ≤ 0.08 dM(x) given that γ ≤ 0.08. Recalling

Proposition 4.1, it is known that Del |Σ(X) is an asymptotically good geometrical and

topological approximation to the underlying surface Σ under such conditions. A list of

topological guarantees and geometrical bounds are enumerated in Proposition 4.1.
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4.2 Restricted Frontal-Delaunay Methods

Frontal-Delaunay algorithms are a hybridisation of advancing-front and Delaunay-refine-

ment techniques, in which a Delaunay triangulation is used to define the topology of

the mesh while new Steiner vertices are inserted in a manner consistent with advancing-

front methodologies. In practice, such techniques have been observed to produce very

high-quality meshes, inheriting the smooth, semi-structured vertex placement of pure

advancing-front methods and the optimal mesh topology of Delaunay-based approaches.

While Frontal-Delaunay methods have previously been used by a range of authors in

the context of planar, volumetric and parametric surface meshing, including, for exam-

ple studies by Üngör and Erten [13], Rebay [19], Mavriplis [16], and Frey, Borouchaki,

George [14], and Remacle, Henrotte, Carrier-Baudouin, Béchet, Marchandise, Geuzaine

and Mouton [20], I am not aware of any previous investigations describing the application

of such techniques to the surface meshing problem directly. The conventional advancing-

front method, on the other hand, has been generalised to support direct surface meshing,

as, for example, outlined in studies by Rypl [21, 22] and Schreiner, Scheidegger, Fleish-

man and Silva [23, 24].

In these previous studies, the conventional planar advancing-front methodology is

directly extended to support surface operations. Meshing proceeds with the incremental

introduction of a well distributed set of vertices X positioned on the surface X ⊆ Σ. Note

that, contrary to the restricted Delaunay-refinement techniques introduced in previous

sections, advancing-front methods typically maintain a partial manifold triangular com-

plex T|Σ only – they do not construct a full-dimensional tessellation T|Ω. It should also

be noted that, in addition to the usual limitations associated with advancing-front strate-

gies, serious issues of robustness often afflict these techniques in the context of surface

mesh generation specifically, due to the difficulties associated with reliably evaluating the

requisite geometric intersection and overlap predicates for sets of non-planar elements.

Additionally, for highly curved and/or poorly separated surface definitions it is difficult

to ensure the topological correctness of the output mesh T|Σ. Schreiner et al. [23, 24]

introduce a number of heuristic techniques in an effort to overcome these difficulties.

4.2.1 Off-centres

The new Frontal-Delaunay algorithm presented in this study is based on a generalisa-

tion of the ‘off-centre’ techniques previously developed for planar mesh generation, as

discussed in detail in Chapter 3. In the planar meshing algorithm, new Steiner vertices

are positioned along edges in the associated Voronoi diagram Vor(X). Consistent with

the methods developed previously for the planar case, the placement of surface-based

off-centre vertices is designed to satisfy both element size and shape constraints.

In this study, I consider the use of off-centre Steiner vertices to simulate the vertex

placement strategy of a conventional advancing-front approach, while also preserving the

framework of a Delaunay-refinement meshing algorithm. The aim of such a strategy

is to recover the high element qualities and smooth, semi-structured meshes generated

by frontal methods in practice, while inheriting the guaranteed bounds of Delaunay-
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refinement based methods. Advancing-front algorithms typically incorporate a mesh size

function h̄(x), a function f : R3 → R+ defined over the domain to be meshed, where

h̄(x) represents the desired edge length ‖e‖ at any point x ∈ Σ. This mesh size function

typically incorporates size constraints dictated by the both the user and the geometry of

the domain to be meshed. The construction of appropriate mesh size functions will be

discussed in further detail in Section 4.4, but for now, it is sufficient to note that h̄(x) is

a g-Lipschitz continuous function defined at all points on the surface to be meshed.

The proposed Frontal-Delaunay algorithm developed in this study is an extension

of the restricted Delaunay-refinement algorithm presented in Section 4.1, modified to

use off-centre rather than circumcentre-based refinement schemes. The basic frame-

work of the algorithm is consistent with the Delaunay-refinement algorithm described

previously, in which an initially coarse triangulation of a surface Σ is refined through

the introduction of additional Steiner vertices X ⊆ Σ until all element shape and size

and surface-error constraints are satisfied. A conforming surface triangular complex

T|Σ = Del |Σ(X) is constructed through consideration of the set of restricted 2-faces of

the full-dimensional tessellation Del(X). A coarse conforming volumetric tetrahedral

complex T|Ω = Del |Ω(X) of the enclosed volume Ω is also constructed as a by-product.

The constraints satisfied by the Frontal-Delaunay algorithm are identical to those de-

scribed previously for the restricted Delaunay-refinement scheme, with upper bounds on

the radius-edge ratio ρ̄, surface discretisation error ε̄(xf ) and element size h̄(xf ) all re-

quired to be satisfied for convergence. I refer the reader to Algorithm 4.1.1 for a detailed

summary of the method.

4.2.2 Point-placement Strategy

Given a surface facet f ∈ Del |Σ(X) marked for refinement, the new Steiner vertex

introduced to eliminate f is an off-centre, constructed based on local size and shape

constraints. Adopting the generalised off-centre framework introduced by Üngör [25],

the ‘ideal’ location of the off-centre c for the given element f is based on a consideration

of the isosceles triangle σ formed about the short edge e0 ∈ f . I consider the locally-

optimal placement of three points, c(1), c(2) and c(3), designed to ensure that σ satisfies

both local shape and size constraints. Type I vertices, c(1), are located at the centre

of element surface balls, and are used to satisfy constraints on the element radius-edge

ratios. Type II vertices, c(2), are size-optimal points, designed to satisfy element sizing

constraints in a locally optimal fashion. Type III points, c(3), are a generalisation of

Üngör’s off-centre vertices, and are designed to reduce the number of Steiner vertices

required to satisfy the desired element radius-edge ratio. The final off-centre c is chosen

as the point c(i) that satisfies local constraints in a worst-case fashion. Point-placement

diagrams for the generalised off-centre schemes are illustrated in Figure 3.1.

Given a refinable 2-simplex f ∈ Del |Σ(X), the size-optimal Type II vertex c(2) is

positioned at an intersection of the surface Σ and a plane V, where V is aligned with

the local face of the Voronoi diagram Vor(X) associated with the frontal edge e0 ∈ f .

The plane is positioned such that it passes through three local points on Vor(X): the
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Figure 4.2: Geometric constructions for the placement of off-centre Steiner vertices, showing (i)
the surface Delaunay ball associated with a refinable 2-simplex f ∈ Del |Σ(X), (ii) the plane
V, aligned with a local facet of the Voronoi diagram associated with the short edge e0 ∈ f ,
(iii) placement of the shape-optimal vertex c(3) such that the required radius-edge ratio ρ̄ is
satisfied, and (iv) placement of the size-optimal vertex c(2) such that local size constraints
h̄(xf ) are enforced.

(i) (ii)

(iii) (iv)

midpoint of the frontal edge e0 ∈ f , the centre of the diametric ball of f and the centre

of the surface Delaunay ball B(c, r)max = SDB(f). The vertex c(2) is positioned such

that the size of the new triangle h(σ) satisfies local constraints. Specifically, the altitude

of the triangle is calculated to ensure that the two new edges of σ are not too long, such

that ‖e1‖ ' h̄(m1) and ‖e2‖ ' h̄(m2), where the mi’s are the new edge midpoints. Each

constraint is solved for an associated altitude

a
(2)
i =

(
h̄(mi)

2 − ‖ 1
2e0‖2

) 1
2

. (4.1)

Given the altitudes, the position of the point c(2) is calculated by computing the intersec-

tion of the surface Σ with a circle of radius 1
2 (a

(2)
1 + a

(2)
2 ), centred at the midpoint of the

frontal edge e0 ∈ f and inscribed on the plane V. In the case of multiple intersections, the

candidate point ci
(2) of closest alignment to the frontal direction vector df is selected.

Specifically, the point ci
(2) that maximises the scalar product

(
ci

(2)−m0

)
·df is chosen,

where m0 is the midpoint of the short edge e0 ∈ f and the frontal direction vector df is

taken from the midpoint m0 to the centre of the surface ball B(c, r)max = SDB(f).

For non-uniform h̄(x), expressions for the position of the point c(2) are non-linear,

with the altitudes ai depending on an evaluation of the mesh size function at the edge

midpoints h̄(mi) and visa-versa. In practice, since h̄(x) is guaranteed to be Lipschitz

smooth, a simple iterative predictor-corrector procedure is sufficient to solve these expres-

sions approximately. The positioning of size-optimal Type II Steiner vertices is illustrated
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in Figure 4.2.

The shape-optimal Type III vertex c(3) is placed following a generalisation of the

methods introduced by Üngör [25], wherein c(3) is positioned at an intersection of the

surface Σ and a plane V, where V is again a plane aligned with the local face of the Voronoi

diagram Vor(X) associated with the frontal edge e0 ∈ f , as described previously. The

vertex c(3) is positioned to ensure that the shape of the new element σ satisfies the shape

constraints, ρ(σ) ≤ ρ̄. Setting ρ(σ) = ρ̄, leads to a solution for the altitude a(3) of σ,

where

a(3) = 1
2‖e0 ‖

(
tan
(

1
2θmin

))−1
. (4.2)

The position of the shape-optimal point c(3) is then found by computing the intersection

of the surface Σ with a circle of radius a(3), centred at the midpoint of the short edge

e0 ∈ f and inscribed on the plane V. In the case of multiple intersections, the candidate

point c
(3)
i of closest alignment to the frontal direction vector df is selected, as discussed

previously. The positioning of shape-optimal Type III Steiner vertices is illustrated in

Figure 4.2.

Using the size-optimal Type II point c(2), the shape-optimal Type III point c(3) and

the standard Type I point c(1), the final position of the refinement point c for the surface

facet f ∈ Del |Σ(X) is calculated. The point c is selected to satisfy the limiting local

constraints, setting

c =


c(2), if

(
d(2) ≤ d(1)

)
,
(
d(2) ≤ d(3)

)
and

(
d(2) ≥ 1

2‖e0‖
)
,

c(3), if
(
d(3) ≤ d(1)

)
,

c(1), otherwise

(4.3)

where the d(i) = ‖c(i) − m0‖ are distances from the midpoint of the frontal edge e0

to the Type I, Type II and Type III vertices, respectively. The cascading selection

criteria is designed to ensure that the refinement scheme smoothly degenerates to that

of a conventional circumball-based Delaunay-refinement strategy in limiting cases, while

using locally size- or shape-optimal points where possible. Specifically, the conditions

d(2, 3) ≤ d(1) guarantee that c lies no further from the frontal edge e0 than the centre

of the circumball associated with the facet f . Additionally, the condition d(2) ≥ 1
2‖e0‖

ensures that the diametric ball of the edge e0 remains empty. Such behaviour guarantees

that the size-optimal scheme is only selected when e0 is sufficiently small with respect

to the local mesh size function – ensuring that e0 is a good frontal edge candidate in

the context of a conventional advancing-front scheme. In all other cases, a shape-based

strategy, guaranteed to reduce element radius-edge ratios, is selected.

4.2.3 Surface Intersections

In preceding discussions, the placement of off-centre Steiner vertices is achieved by lo-

cating the points of intersection between circles of specified radii and the underlying

surface definition Σ – an idea inspired by the techniques of Schreiner et al. [24] in the

development of their advancing-front algorithm AFRONT. These methods were originally
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designed in the context of an advancing-front framework, and ensure that elements of the

‘correct’ Euclidean altitude are generated, even in regions of high surface curvature. As

noted by Schreiner et al., such an approach is significantly more robust than alternative

strategies based on iterative projection to the surface, guaranteeing that vertices can be

reliably and accurately positioned in the neighbourhood of difficult geometric features,

such as regions in which elements straddle sharp creases or ridges in Σ. I refer the reader

to the presentations of Schreiner et al. [23, 24] for additional discussions and examples.

4.2.4 Discussion

The mechanics of the Frontal-Delaunay surface meshing algorithm are similar to those of

the Delaunay-refinement scheme presented in Section 4.1. Specifically, since the Frontal-

Delaunay algorithm involves a modification to the underlying point-placement strategy

only, it inherits much of the same theoretical framework as the preceding Delaunay-

refinement scheme. Importantly, being based on a restricted Delaunay paradigm, it too

benefits from the topological and geometrical guarantees associated with the loose γ-

samples of Boissonnat and Oudot [4, 5], as enumerated in Proposition 4.1. Differences in

the point-placement strategies necessitate that a number of the propositions presented

in Section 4.1 be re-evaluated for the new algorithm.

Proposition 4.5 (refinement, shape-quality). Let the element-wise radius-edge threshold

ρ̄ ≥ 1. Given a low-quality surface facet f ∈ Del |Σ(X), for which ρ(f) > ρ̄, the minimum

edge length ‖e0‖ is not decreased following either: (i) the insertion of a new Type I

Steiner vertex, located at the centre of the largest surface Delaunay ball B(c, r)max =

SDB(f) associated with the facet f , or (ii) the insertion of a new Type III Steiner vertex,

positioned on a facet of the associated Voronoi complex adjacent to the short edge in the

facet f .

Proof. Considering the two shape-driven vertex insertion strategies separately:

• Case (i): The bounds associated with the insertion of Type I Steiner vertices are

presented in detail in Proposition 4.2, and I do not reproduce them here in full as a

result. Specifically, recalling that the length of the new edges ‖e0
′‖ introduced by the

insertion of a Type I vertex can be expressed in terms of the existing local minimum,

such that ‖e0
′‖ ≥ ρ̄ ‖e0‖, it is clear that the minimum length scale is preserved provided

ρ̄ ≥ 1.

• Case (ii): Type III Steiner vertices are positioned on a plane V aligned with the local

facet of the underlying Voronoi complex associated with the short edge e0 ∈ f . Based

on the properties of the Voronoi complex, the plane V intersects e0 at its midpoint. The

Steiner vertex c(3) is positioned to ensure that an isosceles triangle σ, formed between

the existing vertices xi,j ∈ e0 and c(3), satisfies the desired shape-quality. Recalling

that the point c(3) lies on an adjacent facet of the Voronoi diagram, it is clear that the

existing vertices xi,j ∈ e0 are its closest neighbours. Considering the geometry of the

triangle σ, the length of the new edges can be expressed in terms of the base length,

such that ‖e0
′‖ = 1

2

(
sin
(

1
2θmin

))−1‖e0‖, where θmin is the enclosed angle at the apex
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of σ. Clearly, for θmin ≤ 60◦, the existing minimum edge length ‖e0‖ is preserved.

Such a limit corresponds to an equivalent bound on the radius-edge ratio, such that

ρ̄ ≥ 1/
√

3.

Overall, it is clear that the insertion of Type I vertices is a limiting case, and that, as

a result, any point-placement scheme based on the insertion of both Type I and Type III

Steiner vertices requires ρ̄ ≥ 1 to ensure that minimum edge length is preserved. Such a

bound is consistent with the threshold given in Proposition 4.2.

Proposition 4.6 (refinement, grading). Given a refinable surface facet f ∈ Del |Σ(X),

the minimum edge length ‖e0‖ is decreased by an O(1) factor in the worst-case following:

(i) the insertion of a new Type I Steiner vertex located at the centre of the largest surface

Delaunay ball B(c, r)max = SDB(f) associated with the facet f , or (ii) the insertion of

a new Type II Steiner vertex, positioned on a facet of the associated Voronoi complex

adjacent to the shortest edge in the facet f .

Proof. Considering the two size-driven vertex insertion strategies separately:

• Case (i): The bounds associated with the insertion of Type I Steiner vertices are

presented in detail in Proposition 4.3, and I do not reproduce them here in full as a

result. Specifically, recalling that in the worst-case, given an equilateral facet f , Type I

refinement results in a new minimum edge length equal to the radius of the associated

surface ball, such that the edge length is bounded above (1/
√

3)‖e0‖.

• Case (ii): Type II Steiner vertices are positioned on a plane V aligned with the local

facet of the underlying Voronoi complex associated with the short edge e0 ∈ f . Based

on the properties of the Voronoi complex, the plane V intersects e0 at its midpoint. The

Steiner vertex c(2) is positioned to ensure that an isosceles triangle σ, formed between

the existing vertices xi,j ∈ e0 and c(2), satisfies the desired local size constraints. In

the worst-case, when h̄(x) ≤ ‖e0‖, the new vertex c(2) is positioned at the intersection

of V and the diametric ball associated with the edge e0. Such a strategy ensures that

the new edge length is bounded above (1/
√

2)‖e0‖.

Overall, it is clear that the insertion of Type I vertices is a limiting case, and that, as

a result, any point-placement scheme based on the insertion of both Type I and Type II

Steiner vertices reduces minimum edge length by a factor of (1/
√

3) in the worst-case,

consistent with the bounds given in Proposition 4.3.

Importantly, the bounds given in Propositions 4.5 and 4.6 are identical to those de-

rived for the standard Delaunay-refinement algorithm presented in Section 4.1, showing

that the behaviour of the new Frontal-Delaunay and Delaunay-refinement algorithms is

consistent in the worst-case. Specifically, the bounds stated in Propositions 4.5 and 4.6

show that the new Frontal-Delaunay algorithm is guaranteed to: (i) terminate in a finite

number of steps, (ii) converge to a result satisfying all element shape-, size- and sur-

face error constraints, and (iii) generate an output tessellation that is geometrically and

topologically consistent with the input surface Σ, provided that the mesh size function

is sufficiently small. A proof of these statements is identical to that presented previously
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for the Delaunay-refinement algorithm (4.1), via Proposition 4.4 and Corollaries 4.1 and

4.2, and is therefore not reproduced in full here.

4.3 Calculation of Restricted Tessellations

The methods used to construct and maintain the restricted surface and volume tri-

angulations Del |Σ(X) ⊆ Del(X) and Del |Ω(X) ⊆ Del(X) are core components of the

surface-based Delaunay meshing algorithms presented in this chapter. In this study, these

objects are obtained from the full dimensional triangulation Del(X) in an incremental

fashion – evaluating the associated geometric predicates with respect to the surface Σ

and volume Ω on an as-needed basis. All 2-simplexes f ∈ Del(X) are associated with

an edge in the associated Voronoi diagram vf ∈ Vor(X), and any facet for which the

intersection vf ∩ Σ 6= ∅ are elements of the restricted surface triangulation Del |Σ(X).

Likewise, all 3-simplexes τ ∈ Del(X) associated with an internal circumcentre c ∈ Ω

are elements of the restricted volume triangulation Del |Ω(X). Clearly, these conditions

can be checked incrementally, cycling through each element τ ∈ Del(X) one-by-one and

performing the requisite geometric calculations. The incremental algorithm used to con-

struct and maintain the restricted surface and volumetric triangulations is summarised

in Algorithm 4.3.1.

The algorithm takes as input a 3-simplex τ , the full-dimensional tessellation Del(X)

and an existing pair of restricted surface and volumetric triangulation objects Del |Σ(X)

and Del |Ω(X). Considering that it is necessary to maintain rather than simply construct

the various triangulation objects, support for both the addition of new elements τ ∈
Del(X) and the removal of recently deleted elements τ /∈ Del(X) is provided. In the first

case, where τ is a new element, the restricted triangulations are updated by performing

the requisite geometric tests: (i) the element τ is added to Del |Ω(X) if its circumcentre

is fully enclosed by the surface Σ, and (ii) each of the 2-faces f ∈ τ are added to

Del |Σ(X) if their associated Voronoi edges intersect with the surface Σ explicitly. In

this study, the triangulated surface Σ is stored in a supporting aabb-tree, as outlined in

Chapter 2, allowing these operations to be implemented via efficient tree-based traversals.

In the second case, where τ is a recently deleted element, the restricted triangulations

are updated based on a set of topological tests: (i) τ is removed from Del |Ω(X) if

τ ∈ Del |Ω(X), and (ii) the faces f ∈ τ are removed from Del |Σ(X) for any f ∈ Del |Σ(X).

Recalling that, in the case of vertex insertion, the full-dimensional tessellation Del(X) is

updated using the Bowyer-Watson technique described in Chapter 2, it is clear that the

efficient incremental management of the restricted surface and volume triangulations can

be accomplished directly. Given an update to the full-dimensional tessellation Del(X), a

set of deleted elements τold /∈ Del(X) and a set of newly created elements τnew ∈ Del(X)

are returned as output from the Bowyer-Watson process. The restricted triangulations

are then updated in a two-pass process, first scanning through elements in the set τold and

deleting any associated τ ∈ Del |Ω(X) and f ∈ Del |Σ(X) before subsequently iterating

over elements in the set τnew and adding any new τ ∈ Del |Ω(X) and f ∈ Del |Σ(X).

Considering that, in the average-case, the sets τold and τnew are of size O(1), and, recalling
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Algorithm 4.3.1 Incremental Restricted Delaunay Update

1: function RestrictedDT(τ,Del |Σ(X),Del |Ω(X))
2: if (τ ∈ Del(X)) then . {τ inserted into Del(X)}
3: Call InsertFacets(τ,Del |Σ(X),Del |Ω(X))
4: end if
5: if (τ /∈ Del(X)) then . {τ deleted from Del(X)}
6: Call DeleteFacets(τ,Del |Σ(X),Del |Ω(X))
7: end if
8: end function

1: function InsertFacets(τ,Del |Σ(X),Del |Ω(X))
2: Form circumball B(c, r) for 3-simplex τ .
3: if (c ∈ Ω) then . {test enclosure}
4: Update Del |Ω(X)← τ .
5: end if
6: for all (2-simplexes f ∈ τ) do
7: Form Voronoi edge vf orthogonal to 2-simplex f .
8: if

(
vf ∩ Σ 6= ∅

)
then . {test intersections}

9: Update Del |Σ(X)← f .
10: end if
11: end for
12: end function

1: function DeleteFacets(τ,Del |Σ(X),Del |Ω(X))
2: Delete τ from Del |Ω(X), if τ ∈ Del |Ω(X).
3: for all (2-simplexes f ∈ τ) do
4: Delete f from Del |Σ(X), if f ∈ Del |Σ(X).
5: end for
6: end function

that the associated geometric predicates are implemented via traversals of a supporting

aabb-tree, the expected complexity for a single such update is O(log(|P|)), where P is a

triangulation of the underlying surface definition Σ.

4.4 Mesh Size Functions

The construction of high-quality mesh size functions is an important aspect of both the re-

stricted Delaunay-refinement and Frontal-Delaunay algorithms presented in Sections 4.1

and 4.2. Good mesh size functions h̄(x) incorporate sizing constraints imposed by both

the user and the geometry of the domain to be meshed. Geometric and user-defined

contributions can be considered via two separate size functions, where h̄u(x) represents

user-defined sizing information and h̄g(x) encapsulates sizing constraints dictated by the

geometry of the domain. In this study, I require that both h̄u(x) and h̄g(x) be piecewise

linear functions defined on a supporting tetrahedral complex S and that the support-

ing complex cover the domain to be meshed. These restrictions are typical of methods

used in existing mesh generation algorithms. Construction of appropriate user-defined

functions h̄u(x) is highly problem specific and I do not discuss such methods in detail

here. Consistent with the strategies outlined in Chapter 3, a range of analytical and

solution-dependent functions h̄u(x) can be defined considered.

The satisfaction of appropriate geometric constraints is especially important in the

case of surface mesh generation, where it is known that the geometric and topological

correctness of the triangulation is dependent on the nature of the underlying mesh size
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function. Such considerations are discussed in detail in Section 4.1, where it is shown

that h̄(x) is required to be sufficiently small to ensure that the resulting tessellation

satisfies the loose γ-sampling constraints of Boissonnat and Oudot [6, 7]. Bounds on the

local magnitude of the size function can be expressed in terms of the medial-axis and

local-feature-size of the underlying domain:

Definition 4.6 (local feature size). The local feature size lfs(x) for a bounded domain Ω

enclosed by a closed surface Σ is a function f(x) : R3 → R+, where f(x) is proportional

to the minimum distance from any point x ∈ Σ to the medial-axis of Ω.

Specifically, Boissonnat and Oudot have shown that when h̄g(x) ≤ 0.08 dM(x), where

dM(x) is the minimum distance from a point x ∈ Σ to the medial-axis, the resulting

surface tessellation Del |Σ(X) is guaranteed to be a good geometrical and topological

approximation of the underlying surface Σ, as stated in Proposition 4.1. Such bounds

are often found to be overly pessimistic, with surface triangulations generated using

larger size functions, such that h̄g(x) = γdM (x), where γ ≥ 0.08, often found to be

geometrically and topologically correct in practice [9, Chapter 11].

4.4.1 Initial Size Estimates

Consistent with the methods presented for planar domains in Chapter 3, the geometric

size function h̄g(x) is constructed based on an approximation of the local feature size of

the domain. In practice, since direct evaluation of the local feature size lfs(x) is expensive,

I construct h̄g(x) as a piecewise linear approximation, formed from a set of sparse samples

of lfs(x). In the present study, the surface Σ is specified as an existing triangulated surface

P, allowing lfs(x) to be sampled directly in a well-distributed fashion. I construct a sparse

supporting complex Sg for h̄g(x) by forming a coarse restricted Delaunay tessellation1

Del |Ω(Y ) of the points in the original triangulated surface Y ∈ P. Importantly, note

that since the surface Σ is embedded in R3, such a tessellation is a tetrahedral complex,

covering the enclosed volume Ω.

A discrete approximation to lfs(x) can be calculated directly via the approach of

Amenta and Bern [1, 2, 3, 10] which makes use of the sparse Voronoi complex Vor(Y ) as-

sociated with vertices in the supporting tessellation Y ⊆ Sg. Given a point-wise sampling

of the surface of the domain Y ⊆ Σ, an estimate for the local feature size is computed

for each yi ∈ Y . This estimate is based on the distance from the vertex yi to an approx-

imation of the medial axis of the domain Ω. Consistent with the approach presented in

Chapter 3 for planar domains, an approximation of the medial axis can be derived from

the Voronoi complex Vor(Y ). The situation is somewhat more complicated for domains

in R3, with only a subset of the Voronoi vertices providing a good approximation to the

medial axis. The remaining Voronoi vertices may be positioned arbitrarily close to the

surface Σ. This issue is ameliorated using a filtering approach due to Amenta, Bern

and Kamvysselis [2], originally presented in the context of algorithms for robust surface

1In this thesis, I assume that the initial surface sampling Y ∈ Σ is sufficiently-dense, ensuring that
Del |Ω(Y ) is an accurate geometric and topological approximation to the domain Ω. The development
of techniques to handle sparsely sampled domains is deferred for future investigations.
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Algorithm 4.4.1 Evaluate Feature Size in R3

1: function FeatureSize3D(Y,Del |Ω(Y ), hg(Y ))
2: Form the restricted tetrahedral complex Del |Ω(Y ).
3: for all (yi ∈ Y ) do . {evaluate size function at input vertices}
4: for all

(
τ ∈ Del |Ω(Y )

∣∣ τ ⋂ yi 6= ∅
)
do

5: Evaluate the circumball B(c, r) associated with the 3-
simplex τ .

6: Push the Voronoi vertex vτ = c onto the set of local Voronoi
vertices, Vi ← vτ .

7: end for
8: Find the positive pole – the Voronoi vertex v+ ∈ Vi maximising

the distance d+
max = ‖yi − v+‖.

9: Find the negative pole – the Voronoi vertex v− ∈ Vi maximising
the distance d−max = ‖yi − v−‖ lying in the opposite halfspace,
such that

(
yi − v+

)
·
(
yi − v−

)
< 0.

10: Estimate the minimum distance to the medial axis, setting

hg(yi) = min
(
d+

max, d
−
max

)
.

11: end for
12: end function

reconstruction. In such an approach, a pair of poles v+
i ,v

−
i are identified for each sample

yi ∈ Y , where v+
i ,v

−
i are selected to be the furthest points in the Voronoi cell associated

with the sample yi and lying in either segment of the halfspace induced by Σ about the

vertex yi. This furthest-point filtering ensures that Voronoi vertices lying close to the

surface Σ are never used as an approximation to the medial axis. The local feature size

at the vertex yi is taken as the minimum distance to the poles v+
i ,v

−
i . This procedure

is summarised in detail in Algorithm 4.4.1.

4.4.2 Sparse Refinement

By evaluating the local feature size at the set of surface samples Y ∈ Σ, only the bound-

ary conditions for the full geometric size function h̄g(x) are provided. A minimal refine-

ment of the supporting tetrahedral complex Sg is undertaken, ensuring that the sizing

information is smoothly extended into the interior of the bounded volume Ω. While

such considerations are unnecessary for surface-only mesh generation, they are critical

for the volumetric meshing operations presented in Chapter 5, and are detailed here for

completeness.

Using a modified version of the restricted volumetric Delaunay-refinement algorithm,

presented in detail in Section 5.1, a minimal refinement of the supporting tessellation Sg

is performed, whereby any element τ ∈ Sg is refined if it has a sufficiently large radius-

edge ratio, such that ρ(τ) ≥ ρ̄g. Since only a minimal refinement is desired, a non-strict

limit ρ̄g is typically specified and in this study is set such that ρ̄g = 4. The resulting

sparse complex Sg contains an approximation of the so-called medial-axis of the domain,

in which a subset of the additional vertices added during refinement are equidistant to

their associated closest features in P. Importantly, it should be noted that since these

points are positioned at the ‘centre’ of local geometrical features they coincide with ridges

and peaks in the local feature size function lfs(x). The function values are initialised such

that h̄g(yj) =∞ for any new vertices yj ∈ Ynew, where Ynew is the set of Steiner vertices

introduced during refinement. Appropriate mesh size values are calculated for these new
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Figure 4.3: Geometric structures for the bunny and venus surface meshing problems. The
triangulated surfaces Σ are shown (left), contours of element size function h̄(x) are shown
(centre) and surface meshes T|Σ = Del |Σ(X) obtained using the Frontal-Delaunay algorithm are
shown (right). Cutaway views of surface meshes are shown, revealing the underlying restricted
tetrahedral complexes Del |Ω(X).

(i) (ii) (iii)

(iv) (v) (vi)

vertices via the subsequent smoothing operation, detailed in the following section.

A total mesh size function h̄(x) is ultimately obtained as a combination of the user-

defined and geometric size functions, h̄u(x) and h̄g(x), such that h̄(x) = min
(
h̄u(x), h̄g(x)

)
.

A supporting complex S = Del(Yu ∪ Yg) is built for h̄(x), where the vertices Yu ∈ Su and

Yg ∈ Sg are supports for the user-defined and geometric size functions, respectively. It

should be noted that the total size function h̄(x) expresses the limiting size constraints

imposed by both user-defined and geometric inputs.

4.4.3 Size Function Smoothing

The final stage in the construction of the mesh size function h̄(x) involves the imposition

of the Lipschitz constraint, g, via a so-called gradient-limiting process, such that, for

any two points xi,xj ∈ |P|, the local increase in size is bounded, with h̄(xj) ≤ h̄(xi) +

g ‖xi − xj‖ and visa-versa. Such a function is said to be g-Lipschitz. Such limits on

the smoothness of h̄(x) are introduced to ensure that the size constraints are consistent

with desired element quality. Clearly, size functions that vary more slowly are expected

to be congruent with improved element quality, while also leading to an increase in the

number of elements in the output mesh |T|Σ|. Consistent with the approach presented in
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Chapter 3 for planar domains, I adapt the efficient marching techniques introduced by

Persson and Strang [17, 18] to impose smoothness constraints on the size function h(x).

This smoothing algorithm is summarised in detail in Algorithm 3.3.1.

4.4.4 Discussion

A set of geometric structures, including the triangulated surface definitions Σ, mesh size

functions h̄(x) and resulting surface meshes T|Σ = Del |Σ(X) are shown in Figure 4.3 for

a pair of example problems. Note that the coarse volumetric tessellation Del |Ω(X), gen-

erated as a by-product of the surface triangulation Del |Σ(X) is also shown in the cutaway

views. In both cases, it can be seen that the mesh size functions h̄(x) reach local minima

in: (i) regions of high curvature in the underlying surface Σ, and (ii) regions of small

thickness in the underlying volume Ω. Additionally, the size function magnitude is seen

to increase smoothly from these minima, reaching local maximum values in relatively flat

regions that are well separated from areas of detail. The resolution of the corresponding

surface meshes, in this case generated using the Frontal-Delaunay algorithm presented

in Section 4.2, is clearly a good match to the contours of the associated mesh size func-

tions, illustrating that the size-driven refinement schemes presented in previous sections

is effective.

4.5 Domains with Sharp Features

Special care is needed to ensure that the Delaunay-refinement and Frontal-Delaunay

algorithms presented in Sections 4.1 and 4.2 faithfully re-mesh domains containing sharp

ridges and creases in the underlying surface Σ, and, furthermore, that the convergence of

the meshing algorithms is preserved in such cases. While the presence of isolated sharp

ridges in the surface Σ does not typically limit the achievable shape-quality of elements in

the resulting surface meshes Del |Σ(X), complex configurations, in which multiple ridges

and creases meet at small angles, can impose such element shape restrictions. Consistent

with the discussions presented in Chapter 3 concerning the behaviour of the planar

meshing algorithms, use of the unmodified Delaunay-refinement or Frontal-Delaunay

algorithms in such cases can lead to non-convergence. Additionally, even in cases where

convergence is obtained, the reproduction of sharp features in the resulting surface meshes

Del |Σ(X) is typically poor, with Steiner vertices generally positioned away from the

apex of any ridges or creases, leading to a noisy ‘rounding-off’ of sharp features in the

underlying surface Σ.

In the present study I adopt a strategy inspired by the so-called protecting balls

approach presented by Cheng, Dey and Ramos in [8]. Firstly, recalling that both the

Delaunay-refinement and Frontal-Delaunay algorithms presented in Sections 4.1 and 4.2

start from an initial point-wise sampling Xs of the surface Σ, special care is taken to

ensure that Xs includes an explicit sampling of any sharp features in the surface Σ. In

practice, a single vertex is added to Xs for any sharp peaks in Σ, while a one-dimensional

discretisation of any ridges or creases is performed, guaranteeing that edges aligned with
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Figure 4.4: Illustration of surface mesh generation for domains containing sharp features, show-
ing (i) results generated using the standard Frontal-Delaunay algorithm without treatment of
sharp features, illustrating ‘rounding’ effects at ridges, and (ii) equivalent results using the
protecting balls strategy.

(i) (ii)

these features satisfy local sizing constraints. While such a strategy ensures that sharp

features are correctly incorporated within the initialisation phase, additional protection

is necessary to ensure that such features correctly survive the refinement process. The

protecting balls strategy encloses any sharp features in the domain within a set of Eu-

clidean balls, within which refinement, through the introduction of new Steiner vertices,

is prohibited. The Delaunay-refinement and Frontal-Delaunay methods presented in Sec-

tions 4.1 and 4.2 are modified to test the suitability of any candidate Steiner vertices,

declining to perform refinements that would result in the introduction of new vertices

within a protecting ball. Such filtering is accomplished efficiently by storing the collection

of protecting balls in a supporting aabb-tree. Due to the rejection of Steiner vertices,

the protecting balls strategy can have a negative effect on element shape-quality, allow-

ing surface facets that would otherwise be refined to persist in the final output mesh

T|Σ = Del |Σ(X). Note though, that the protecting balls are active in only a narrow

region adjacent to sharp features, and that all element constraints are fully satisfied in

the remainder of the domain. The effectiveness of the protecting balls strategy is illus-

trated in Figure 4.4, where the same domain is meshed with and without the protection

of sharp features. Clearly, the protecting balls strategy is successful not only in recov-

ering the sharp ridges in the underlying surface, but also in preventing any spurious

over-refinement, generated by the standard Frontal-Delaunay algorithm in an effort to

satisfy the surface discretisation error thresholds in the vicinity of the sharp creases in

the domain.

Importantly, the full protecting balls strategy presented by Cheng et al. in [8], also

makes use of the so-called weighted Delaunay tessellation, a variation of the conventional

Delaunay structure that incorporates non-negative scalar vertex weights that can be

used to influence the topology of the resulting tessellation. Cheng et al. use such a

structure to guarantee that adjacent vertices positioned along sharp ridges in the surface

Σ are connected by an edge in the weighted, restricted triangulation Del |Σ(X), ensuring

fidelity to the underlying domain. In the present work, I have utilised a conventional

Delaunay tessellation only, admitting the potential for spurious topological connections
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in the neighbourhood of sharp features. In practice, such situations have not been found

to occur, based on the comprehensive set of benchmark meshes presented in Section 4.6.

The use of a weighted tessellation, as described in [8, 9] and [15] is an important avenue

for future development.

4.6 Results & Discussion

The performance of the surface meshing algorithms introduced in this chapter was in-

vestigated experimentally, with both the Delaunay-refinement and Frontal-Delaunay al-

gorithms developed in Sections 4.1 and 4.2 used to mesh a series of fifteen benchmark

problems of varying size and complexity. A range of test domains were chosen from a

diverse set of application areas, including problems from computational modelling and

simulation, computer graphics and medical imaging. Meshes for each domain, generated

using the Frontal-Delaunay approach, are shown in Figure 4.6. Note that a number

of test-cases include sharp surface ridges. Both the Frontal-Delaunay and Delaunay-

refinement algorithms described in Sections 4.1 and 4.2 have been implemented, allowing

the performance and output of the two algorithms to be compared side-by-side. Due to

the similarities in structure, a common code-base was used, with the algorithms differing

only in the type of Steiner vertices inserted and in the manner in which the queue of

bad triangles is updated, as discussed in Section 4.2. Both algorithms are built using

the TRIPOD and LUMBERJACK packages – making use of the efficient incremental Delau-

nay triangulation and spatial indexing frameworks presented in Chapter 2. Additionally,

updates to the restricted surface and volumetric triangulations are achieved via an imple-

mentation of Algorithm 4.3.1, where the geometric predicates are evaluated using double

precision arithmetic. The Frontal-Delaunay and Delaunay-refinement algorithms are in-

cluded in JIGSAW – a new mesh generation library built using the algorithms developed in

this thesis. Both algorithms are implemented in C++ and compiled as 64-bit executables.

Meshes generated using the new Frontal-Delaunay algorithm for the full set of bench-

marks are presented in Figure 4.6, demonstrating the effectiveness of the new strategy

in practice. These meshes are generated using relatively coarse element size constraints,

with the mesh size functions h̄(x) constructed using a Lipschitz smoothness parameter

g = (3/10). Tight bounds on element shape quality are imposed, setting a radius-edge

ratio ρ̄ equivalent to θmin ' 29◦ and θmax ' 122◦. A non-uniform surface discretisation

threshold was enforced, setting ε̄ = βh̄(x), with β = (1/10). For β < 1, such a setting en-

sures that the discrete Hausdorff associated with each surface facets f ∈ T|Σ is a fraction

of the local edge length. Qualitatively, the results shown in Figure 4.6 confirm that the

new Frontal-Delaunay algorithm is successful in practice, generating high-quality meshes

for a series of complex inputs. It can be seen that graded meshes are generated in all

cases, with highly resolved regions in areas of high curvature smoothly transitioning to

sparser representations throughout the remainder of the domains. It is also noted that

convergence is achieved in all cases, confirming that the new point-placement schemes

do not negatively impact on practical performance. Additionally, it is important to note

that convergence is achieved for a number of inputs containing sharp ridges, confirming
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Figure 4.5: Benchmark problems for surface meshing studies, showing meshes generated using
the Frontal-Delaunay algorithm with coarse settings, such that g = (3/10). A constant radius-
edge ratio limit is specified, such that θmin ' 29◦. A non-uniform surface discretisation threshold
is imposed, with ε̄ = (1/10)h̄(x). Element counts |T|Σ| are included for each case. Normalised

histograms of element area-length ratio a(f), plane angle θ(f) and relative size ‖e‖
h̄(xe)

are also

shown.
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Figure 4.6: Benchmark problems for surface meshing studies, showing meshes generated using
the Frontal-Delaunay algorithm with coarse settings, such that g = (3/10). A constant radius-
edge ratio limit is specified, such that θmin ' 29◦. A non-uniform surface discretisation threshold
is imposed, with ε̄ = (1/10)h̄(x). Element counts |T|Σ| are included for each case. Normalised

histograms of element area-length ratio a(f), plane angle θ(f) and relative size ‖e‖
h̄(xe)

are also

shown.
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Figure 4.7: Benchmark problems for surface meshing studies, showing meshes generated using
the Frontal-Delaunay algorithm with coarse settings, such that g = (3/10). A constant radius-
edge ratio limit is specified, such that θmin ' 29◦. A non-uniform surface discretisation threshold
is imposed, with ε̄ = (1/10)h̄(x). Element counts |T|Σ| are included for each case. Normalised

histograms of element area-length ratio a(f), plane angle θ(f) and relative size ‖e‖
h̄(xe)

are also

shown.
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the effectiveness of the protecting-balls strategy for such domains.

4.6.1 Comparative Performance

The results of a comparative performance study, contrasting the effectiveness of the

Frontal-Delaunay and Delaunay-refinement meshing algorithms, is presented in Fig-

ures 4.8 and 4.9 and includes detailed results for the bunny and venus test problems.

Specifically, the effectiveness of the new size-driven refinement scheme is addressed, com-

paring a range of meshes generated using the Frontal-Delaunay and Delaunay-refinement

algorithms for a range of different input parameters. The resulting meshes are compared

in terms of their size- and shape-quality, and their underlying structure. In addition to

the detailed results presented for the bunny and venus problems, a simplified set of

comparisons are also presented for the full set of benchmark problems.

4.6.1.1 Size-driven Refinement

A detailed study of meshes generated for the bunny and venus problems, presented in

Figures 4.8 and 4.9, examines the impact of the size-optimal Type II off-centres intro-

duced in Section 4.2. A set of meshes are generated for test cases using low, medium and

high resolution settings, where the associated mesh size functions h̄(x) are constructed us-

ing Lipschitz smoothness values of g = (3/10), g = (2/10) and g = (1/10), respectively. The
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radius-edge ratio limit is held constant across all test cases, such that θmin ' 29◦. A non-

uniform surface discretisation threshold is enforced, setting ε̄ = βh̄(x), with β = (1/10).

For all test problems, element quality has been catalogued, with normalised histograms

of element area-length a(f), plane angle θ(f) and relative edge length ‖e‖
h̄(xe)

illustrated.

Histograms further highlight the minimum and mean area-length measures, the worst-

case angle bounds, θmin and θmax and the mean relative edge length. Note that the

venus test case includes a number of sharp ridges in the underlying surface Σ, located

near the neck of the statue.

Analysis of Figures 4.8 and 4.9 shows that both the Frontal-Delaunay and Delaunay-

refinement algorithms generate high-quality meshes for all test cases – satisfying the re-

quired element angle thresholds. Inspection of distributions of a(f), θ(f) and ‖e‖
h̄(xe)

show

that the Frontal-Delaunay algorithm consistently outperforms the Delaunay-refinement

scheme, generating meshes with higher mean area-length ratios and ‘tight’ distributions

of element plane angle and relative edge length in all cases. The most significant differ-

ence in behaviour between the two algorithms appears to be in the way that mesh size

constraints are imposed. Given the narrow distributions of relative edge length, strongly

clustered about ‖e‖
h̄(xe)

= 1, it is clear that the Frontal-Delaunay algorithm successfully

generates meshes accurately conforming to the imposed mesh size constraints. In con-

trast, output generated using the Delaunay-refinement scheme is seen to incorporate

significant sizing error, typified by ‘broad’ distributions of relative edge length strad-

dling ‖e‖
h̄(xe)

= 1. While the mean relative edge lengths are comparable in all cases, the

Frontal-Delaunay algorithm clearly generates much more accurate output on an element-

by-element basis.

Additionally, it is evident that the quality of meshes generated using the Frontal-

Delaunay algorithm improves as g → 0, as indicated by the increase in mean a(f), the

narrowing of the θ(f) distribution about 60.0◦1 and the narrowing of the distribution

of relative edge length about ‖e‖
h̄(xe)

= 1. In contrast, similar analysis shows that the

Delaunay-refinement results are essentially independent of the magnitude of the mesh

size function, h̄(x), with distributions of a(f), θ(f) and ‖e‖
h̄(xe)

seen to be broadly con-

sistent across all cases. Visually, the enhanced quality of the meshes generated using

the Frontal-Delaunay algorithm is evident, with marked increases in both smoothness

and sub-structure. The meshes generated by both algorithms are of similar sizes, with

neither algorithm showing a consistent deviation in terms of element count |T|Σ|.

Analysis of the Steiner refinement strategies logged throughout this study show that

the majority of the off-centres chosen by the Frontal-Delaunay algorithm are either size-

optimal Type II points (' 60%) or conventional Type I circumcentres (' 40%), exhibiting

similar ratios to those observed for the planar algorithm presented in Chapter 3. The

bias toward size-optimal off-centres is also observed to increase as h(x) → 0. The use

of shape-optimal Type III off-centres is rare (� 1%). These results are not surprising,

simply indicating that when the magnitude of the mesh size function h̄(x) is sufficiently

1Triangles with ideal shape quality are equilateral, explaining why θ(f)→ 60.0◦ as shape-quality is
improved.
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Figure 4.8: Size-driven refinement study for the bunny problem, showing meshes generated
using the Frontal-Delaunay (upper) and Delaunay-Refinement (lower) algorithms. Meshes are
generated with increasing values of size function smoothness, g = (3/10), g = (2/10) and g = (1/10),
from left to right, respectively. A constant radius-edge ratio limit is specified for all cases,
such that θmin ' 29◦. A non-uniform surface discretisation threshold is imposed, such that
ε̄ = (1/10)h̄(x). Element counts |T|Σ| are included for each case. Normalised histograms of

element area-length ratio a(f), plane angle θ(f) and relative size ‖e‖
h̄(xe)

are also shown.

|T|Σ| = 12, 516 |T|Σ| = 15, 026 |T|Σ| = 25, 006

0.59 0.94

0 0.2 0.4 0.6 0.8 1

29.02 121.09

0 30 60 90 120 150 180

0.97

0 0.5 1 1.5 2

0.59 0.95

0 0.2 0.4 0.6 0.8 1

29.02 121.18

0 30 60 90 120 150 180

0.98

0 0.5 1 1.5 2

0.62 0.96

0 0.2 0.4 0.6 0.8 1

29.00 118.14

0 30 60 90 120 150 180

0.99

0 0.5 1 1.5 2

|T|Σ| = 12, 708 |T|Σ| = 14, 408 |T|Σ| = 25, 490

0.59 0.91

0 0.2 0.4 0.6 0.8 1

29.02 121.37

0 30 60 90 120 150 180

0.98

0 0.5 1 1.5 2

0.58 0.92

0 0.2 0.4 0.6 0.8 1

29.01 121.82

0 30 60 90 120 150 180

0.99

0 0.5 1 1.5 2

0.60 0.92

0 0.2 0.4 0.6 0.8 1

29.02 119.90

0 30 60 90 120 150 180

1.02

0 0.5 1 1.5 2



4.6. Results & Discussion 109

Figure 4.9: Size-driven refinement study for the venus problem, showing meshes generated
using the Frontal-Delaunay (upper) and Delaunay-Refinement (lower) algorithms. Meshes are
generated with increasing values of size function smoothness, g = (3/10), g = (2/10) and g = (1/10),
from left to right, respectively. A constant radius-edge ratio limit is specified for all cases,
such that θmin ' 29◦. A non-uniform surface discretisation threshold is imposed, such that
ε̄ = (1/10)h̄(x). Element counts |T|Σ| are included for each case. Normalised histograms of

element area-length ratio a(f), plane angle θ(f) and relative size ‖e‖
h̄(xe)

are also shown.
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Table 4.1: Surface meshing study, comparing the performance of the Frontal-Delaunay and Delaunay-refinement algorithms on the full set of benchmark problems.
Meshes are generated using medium resolution settings, such that the mesh size functions h(x) are constructed with g = (2/10). A constant radius-edge ratio
limit is specified for all cases, such that θmin ' 29◦. A non-uniform surface discretisation threshold is imposed, such that ε̄ = (1/10)h̄(x). Results listed include:
total element count |T|Σ|, total runtime t(s), mean and minimum area-length ratios a(f), a(f)min and plane angle bounds θ(f)max, θ(f)min.

Domain Frontal-Delaunay Delaunay-refinement

|T|Σ| t(s) a(f)min a(f) θ(f)min θ(f)max |T|Σ| t(s) a(f)min a(f) θ(f)min θ(f)max

sphere 730 0.07 0.68 0.96 32.8◦ 111.3◦ 694 0.06 0.63 0.93 31.2◦ 116.7◦

ellipsoid 1, 592 0.13 0.72 0.97 32.0◦ 107.2◦ 1, 488 0.11 0.63 0.93 30.2◦ 117.3◦

femur 5, 392 1.35 0.64 0.96 29.3◦ 116.3◦ 5, 014 1.20 0.59 0.93 29.1◦ 121.2◦

hip 14, 728 1.44 0.59 0.95 29.0◦ 121.4◦ 14, 274 1.17 0.59 0.92 29.1◦ 121.5◦

vertebra 20, 426 1.87 0.60 0.94 29.0◦ 120.1◦ 19, 900 1.49 0.58 0.92 29.0◦ 121.8◦

wood 9, 756 1.59 0.64 0.95 29.1◦ 116.1◦ 9, 294 1.36 0.59 0.92 29.0◦ 121.5◦

hand 18, 132 3.85 0.58 0.94 29.0◦ 121.9◦ 17, 250 3.41 0.58 0.92 29.0◦ 121.7◦

blade 26, 936 3.83 0.60 0.95 29.0◦ 120.4◦ 25, 538 3.16 0.58 0.92 29.0◦ 121.7◦

rocker 12, 600 1.49 0.60 0.95 29.1◦ 120.4◦ 11, 942 1.22 0.58 0.92 29.0◦ 121.6◦

spiral 1 17, 552 2.21 0.63 0.96 29.1◦ 116.7◦ 17, 296 1.99 0.60 0.93 29.2◦ 119.7◦

spiral 2 22, 310 2.73 0.61 0.96 29.1◦ 119.5◦ 22, 306 2.47 0.60 0.93 29.1◦ 119.9◦

bunny 15, 026 1.81 0.59 0.95 29.0◦ 121.1◦ 14, 408 1.47 0.58 0.92 29.0◦ 121.9◦

bimba 32, 316 8.28 0.58 0.95 29.1◦ 121.7◦ 30, 514 7.16 0.58 0.92 29.0◦ 121.6◦

venus 28, 698 7.60 0.59 0.95 29.0◦ 121.1◦ 27, 096 6.65 0.58 0.92 29.0◦ 121.7◦

dinosaur 101, 406 13.77 0.58 0.94 29.0◦ 122.0◦ 98, 102 10.95 0.58 0.92 29.0◦ 121.8◦
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small, the element size constraints dominate.

4.6.1.2 Overall Comparisons

In addition to the detailed comparisons presented for the bunny and venus test prob-

lems, a simplified set of comparative results are also obtained for all benchmark prob-

lems, contrasting the performance of the Frontal-Delaunay and Delaunay-refinement ap-

proaches. The results of this study are presented in Table 4.1. Meshes are generated using

medium resolution settings, with the mesh size function h̄(x) constructed with g = (2/10).

Again, tight bounds on element radius-edge ratios are specified, such that θmin ' 29◦

and θmax ' 122◦. A non-uniform surface discretisation threshold is enforced, setting

ε̄ = βh̄(x), with β = (1/10). Analysis of the results presented in Table 4.1 confirm the

trends observed in the detailed analysis carried out for the bunny and venus problems

– that, given an appropriate mesh size function h̄(x), the proposed Frontal-Delaunay

algorithm produces meshes that are of significantly higher shape-quality than those gen-

erated using the conventional Delaunay-refinement algorithm. Total run-times for the

algorithms are also tabulated and show, firstly, that the implementations developed in

this study are efficient, generating meshes containing 10, 000’s of elements in a matter

of seconds. It can be seen that the Frontal-Delaunay algorithm is typically slower than

the Delaunay-refinement method by a margin of approximately 10-20%. The additional

computational expense is associated with the use of off-centres in the Frontal-Delaunay

algorithm, specifically, the placement of size-optimal Type II vertices according to the

iterative strategy described in Section 4.2. Such a procedure requires the solution of a

small local system of non-linear equations, which, in the case of surface refinement, leads

to the iterative computation of surface intersections. Such intersections are relatively

costly, currently implemented as geometric searches over the facets of the triangulated

surface Σ via traversals of a supporting aabb-tree. The development of techniques to

speed-up this process has been identified as an avenue for future research.

4.6.2 User-defined Size Constraints

The performance of the surface meshing algorithms for problems involving user specified

mesh size constraints h̄u(x) is also assessed. In Figure 4.10, the results of a graded mesh-

ing study are presented, in which a set of surface meshes are generated for the bunny

and venus test problems that adhere to user defined sizing constraints. The user defined

constraints in these examples are illustrative-only, consisting of a simple sinusoidal varia-

tion, h̄u(x) = c1 sin(c2z)+c3, where the coefficients c1, c2, c3 ∈ R are chosen based on the

dimensions of the geometry and z is a locally aligned vertical coordinate. Note that in ad-

dition to the user specified size function h̄u(x), a geometric size function h̄g(x) is also con-

structed, with the final mesh size function h̄(x) taken as the minimum of the user-defined

and geometric contributions, such that h̄(x) = min
(
h̄g(x), h̄u(x)

)
, as per the methods

outlined in Section 4.4. The meshes generated using both the Frontal-Delaunay and

Delaunay-refinement algorithms are presented in Figure 4.10. The final mesh size func-

tion h̄(x) is constructed using a Lipschitz smoothness parameter g = (2/10). In all cases, a
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constant radius-edge ratio is specified, equivalent to θmin = 29◦ and θmax = 122◦. A non-

uniform surface discretisation threshold is enforced, setting ε̄ = βh̄(x), with β = (1/10).

For all test problems, element quality has been catalogued, with normalised histograms of

element area-length a(f), plane angle θ(f) and relative edge length ‖e‖
h̄(xe)

illustrated. His-

tograms further highlight the minimum and mean area-length measures, the worst-case

angle bounds, θmin and θmax and the mean relative edge length.

Analysis of these graded meshes confirm much of the behaviour discussed in the

previous size- and shape-driven comparison studies, with the Frontal-Delaunay algorithm

generating meshes of significantly higher shape- and size-quality when compared to the

conventional Delaunay-refinement method. Specifically, it is noted that mean element

quality is improved for both the bunny and venus benchmark problems. Note also

that meshes generated using the Frontal-Delaunay technique are observed to conform

more uniformly to the specified size function. Overall, these results demonstrate the

effectiveness of the proposed Frontal-Delaunay method when generating high-quality

graded surface meshes for user-defined sizing constraints.

4.7 Conclusions

In this chapter, I have presented a pair of algorithms designed for high-quality surface

mesh generation for closed 2-manifolds embedded in R3. Both algorithms are based on

the so-called restricted Delaunay tessellation, in which a surface triangulation Del |Σ(X),

conforming to an underlying surface Σ, is constructed as a subset of a full-dimensional

Delaunay tessellation Del(X). The first algorithm is a ‘conventional’ restricted Delaunay-

refinement scheme, closely modelled on the CGALMESH algorithm presented by Jamin

et al. in [15], in which the centres of surface Delaunay balls associated with poor qual-

ity elements are inserted into the mesh as Steiner vertices. In the second algorithm, I

have proposed a new restricted Frontal-Delaunay technique, generalising the ideas in-

troduced in Chapter 3 for planar meshing algorithms to support surface domains. In

this new algorithm, generalised off-centre Steiner vertices are utilised, based on a com-

bination of size- and shape-driven refinement strategies, leading to a hybrid approach

that combines many of the advantages of advancing-front and Delaunay-refinement tech-

niques. A series of comparative experimental studies confirm the effectiveness of this

new approach, demonstrating that an improvement in element shape- and size-quality is

typically achieved when comparing the new Frontal-Delaunay method with conventional

Delaunay-refinement techniques. Importantly, it has also been demonstrated that the

new Frontal-Delaunay algorithm achieves the same theoretical optimality as the con-

ventional Delaunay-refinement approach, satisfying constraints on element radius-edge

ratios, edge length and surface discretisation thresholds. Results show that the new

algorithm is an effective hybridisation of existing mesh generation techniques, combin-

ing the high element quality and mesh structure of advancing-front techniques with the

theoretical guarantees of Delaunay-refinement schemes.

A number of avenues exist for future investigations – improving or generalising the

Delaunay-refinement and Frontal-Delaunay surface meshing algorithms presented in this
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Figure 4.10: Adaptive meshing study for the bunny and venus test cases, showing (left)
contours of the user-defined mesh size functions h̄u(x). Meshes generated using the Frontal-
Delaunay (centre) and Delaunay-refinement (right) algorithms are graded to conform to these
size constraints. A constant radius-edge ratio limit is specified for all cases, such that θmin ' 29◦.
A non-uniform surface discretisation threshold is imposed, with ε̄ = (1/10)h̄(x). Element counts
|T|Σ| are included for each case. Normalised histograms of element area-length ratio a(f), plane

angle θ(f) and relative size ‖e‖
h̄(xe)

are also shown.
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study. The speed of the current implementation could be further improved, by, for

example, investigating alternative strategies for the placement of Type II size-optimal

Steiner vertices, with the aim of minimising the number of expensive surface intersection

queries required. Secondly, the applicability of the algorithms could be greatly improved

by adding support for additional types of surface definitions, including, for example,

support for open and non-manifold domains and alternative surface formulations, such

as the parametric definitions commonly associated with Computer Aided Drawing (CAD)

applications.
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Chapter 5

Volumetric Mesh Generation

In this chapter, I present a Frontal-Delaunay meshing algorithm for volumetric domains

in R3. This new algorithm is an extension of the Frontal-Delaunay methods developed

for planar and surface domains in Chapters 3 and 4, and is designed to combine the

high-quality results achieved using advancing-front techniques with the provable bounds

and theoretical guarantees of Delaunay-refinement schemes. Like the surface meshing

techniques presented in the previous chapter, the algorithms for volumetric mesh genera-

tion are based on the restricted Delaunay triangulation – a subset of the full-dimensional

Delaunay tessellation conforming to the domain of interest. I review both the mechanics

and theoretical development of existing restricted Delaunay-refinement algorithms before

introducing the new strategy. Exploiting ideas similar to those presented in Chapters 3

and 4, I show that the use of ‘off-centre’ Steiner vertices, positioned along edges in the

associated Voronoi complex, typically leads to an improvement in both the shape- and

size-quality of the resulting tessellations. Specifically, I show that in addition to con-

ventional shape-driven refinement methods, based on element radius-edge ratios, a new

size-optimal refinement strategy can be realised by positioning off-centre vertices such

that a local mesh size function is satisfied. The use of this sizing function to generate

graded meshes adhering to user defined size constraints is also explored.

Three-dimensional mesh generation is typically plagued by the existence of low-quality

sliver elements, and I review the conditions under which these type of elements are gen-

erated within the Delaunay framework. Furthermore, I investigate the idea of topological

optimality for meshes in R3, and demonstrate, using a set of simple examples, that the

topology of the Delaunay tessellation is non-optimal in terms of element dihedral angles

and/or volume-length ratios. Despite these theoretical shortcomings, I present a simple

modification to the Delaunay-refinement and Frontal-Delaunay algorithms that leads to

the elimination of elements with pathologically poor dihedral angles. This strategy is an

extension of the ideas presented by Cheng, Dey and Shewchuk in [5], in which element

refinement is driven not by the conventional radius-edge ratios, but instead using alter-

native measures of element shape-quality. I present a new refinement strategy based on

element volume-length ratios, in which elements of small volume-length ratios are marked

for refinement. Such methods are shown to produce meshes without unattractively small
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or large dihedral angles, at the expense of the introducing of additional Steiner vertices. I

investigate the performance of these new methods experimentally, and undertake a series

of comparative studies, contrasting the performance of the new algorithms with typical

Delaunay-refinement techniques. Experiments are conducted using a range of complex

benchmarks, verifying the robustness and practical performance of the proposed schemes.

Work presented in this chapter appears in [7].

5.1 Restricted Delaunay Refinement

Delaunay-refinement algorithms for volumetric meshing operate by incrementally intro-

ducing new Steiner vertices into an initially coarse Delaunay triangulation of the volume

to be meshed. Such triangulations typically incorporate a high-quality embedded triangu-

lation of the bounding surface of the domain. Consistent with the techniques presented

in Chapter 4 for surface meshing, volumetric refinement schemes are designed not only

to ensure that the resulting mesh satisfies element shape and size constraints, but that

the geometry and topology of the mesh itself is an accurate piecewise approximation to

both the volumetric domain and its bounding surface. The volumetric meshing algo-

rithms presented in this chapter are based on the so-called restricted Delaunay surface

and volumetric tessellations Del |Σ(X) and Del |Ω(X) – triangular and tetrahedral sub-

complexes of the full-dimensional Delaunay tessellation Del(X). Specifically, the the

embedded restricted surface triangulation Del |Σ(X) contains the 2-faces f ∈ Del(X)

that best approximate the bounding surface Σ, while the restricted volumetric trian-

gulation Del |Ω(X) contains the 3-simplexes internal to the volumetric domain Ω. The

restricted surface and volumetric Delaunay tessellations are introduced and defined in

Section 2.2, where additional theoretical discussion is presented. Additionally, an effi-

cient incremental algorithm for the construction and maintenance of such structures is

detailed in Section 4.1.

5.1.1 An Existing Algorithm

The development of provably-good Delaunay-refinement schemes for the meshing of vol-

umetric domains is an ongoing area of research. In this section, I present an algorithm for

the meshing of volumes enclosed by smooth 2-manifolds embedded in R3, that is adapted

largely from the methods presented by Oudot, Rineaua and Yvinec in [18]. This method

is largely equivalent to the CGALMESH algorithm, available as part of the CGAL package,

and summarised by Jamin, Alliez, Yvinec and Boissonnat in [12]. A similar algorithm is

also outlined by Cheng, Dey and Shewchuk in [5]. I will refer to the algorithm presented

in this section as the ‘conventional’ Delaunay-refinement approach, due to its direct use

of circumcentre-based Steiner vertices. Consistent with the surface meshing techniques

developed in Chapter 4, I restrict my attention to so-called ‘re-meshing’ algorithms in this

study, in which the underlying surface definition Σ is specified as an existing manifold

triangular complex P. See Section 4.1 for a discussion of the scope and appropriateness

of such a restriction.
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Following the approach described by Jamin et al. in [12], the Delaunay-refinement

algorithm takes as input a volumetric domain, described by a closed 2-manifold Σ ⊆ R3,

an upper bound on the allowable element radius-edge ratio ρ̄, a mesh size function h̄(x)

defined at all points enclosed by the surface Σ and an upper bound on the allowable

surface discretisation error ε̄(x). The input surface Σ encloses a bounded volume Ω. The

algorithm returns a triangulation T|Σ of the surface Σ, where T|Σ is a restricted Delaunay

surface triangulation of a point-wise sampling X ∈ Σ, such that T|Σ = Del |Σ(X). Addi-

tionally, the algorithm also returns a triangulation T|Ω of the enclosed volume Ω, where

T|Ω is a restricted Delaunay volumetric triangulation T|Ω = Del |Ω(X). Both Del |Σ(X)

and Del |Ω(X) are sub-complexes of the full-dimensional Delaunay tessellation Del(X).

Note that Del |Σ(X) is a triangular complex, while Del |Ω(X) and Del(X) are tetrahedral

complexes. The Delaunay-refinement algorithm is summarised in Algorithm 5.1.1.

The Delaunay-refinement algorithm guarantees, firstly, that all elements in the output

volume triangulation τ ∈ T|Ω satisfy constraints on both the element shape and size,

such that ρ(τ) ≤ ρ̄, and h(τ) ≤ h̄(xτ ). Secondly, all elements in the embedded surface

triangulation f ∈ T|Σ satisfy similar element shape and size constraints as well as an

upper bound on the allowable surface discretisation error, ensuring that ε(f) ≤ ε̄(xf ).

Finally, a consistency constraint is also enforced, ensuring that the restricted surface

triangulation is truly embedded within the volumetric tessellation, such that Del |Σ(X) =

∂Del |Ω(X), where ∂Del |Ω(X) is the set of boundary 2-faces for the tetrahedral complex

Del |Ω(X).

Compared with the restricted surface meshing algorithm outlined in Chapter 4, it is

only this last consistency constraint that is new. Such a condition ensures that no ele-

ments in the restricted surface triangulation Del |Σ(X) are orphaned – spanning locally

under-resolved regions of the surface Σ that do not enclose elements in the associated

volumetric tessellation Del |Ω(X). In such configurations, a surface facet f ∈ Del |Σ(X) is

not face-adjacent to any tetrahedra τi, τj ∈ Del |Ω(X)1, and, as a result, f /∈ ∂Del |Ω(X).

Such issues are readily addressed through additional refinement – increasing local reso-

lution on the surface Σ through a subdivision of the surface facet f . See [5] for extended

discussions on this topic.

Based on the properties of the coarse initial volume triangulation T|Ω = Del |Ω(X)

and the embedded surface triangulation T|Σ = Del |Σ(X), generated using the restricted

Delaunay surface meshing algorithms presented in Chapter 4, it is known that the trian-

gulations T|Σ and T|Ω are good piecewise linear approximations to the bounding surface

Σ and volume Ω, provided that the magnitude of the mesh size function h̄(x) is suffi-

ciently small, as per the discussions detailed in Chapter 4. Under such conditions it is

known that the triangulations T|Σ and T|Ω are homeomorphic to the underlying surface

and volume definitions Σ and Ω, and that the geometric properties of T|Σ and T|Ω con-

verge toward the true normals, curvature, area and volume of the surface Σ and volume

Ω as h̄(x)→ 0.

1The surface facet f ∈ Del |Σ(X) is clearly face-adjacent to a tetrahedral pair τi, τj ∈ Del(X), but,
in such cases, neither τi or τj are elements of the restricted volumetric tessellation Del |Ω(X), leaving
the surface facet f orphaned.
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Algorithm 5.1.1 Restricted Delaunay Volume Refinement

1: function DelaunayVolume(Σ,Ω, ρ̄, ε̄(x), h̄(x), T|Σ, T|Ω)
2: Call DelaunaySurface(Σ,Ω, ρ̄, ε̄(x), h̄(x), T|Σ, T|Ω) – generating

a high-quality surface triangulation T|Σ = Del |Σ(X) for a point-
wise surface sample X ∈ Σ and initialising a coarse volumetric
triangulation T|Ω = Del |Ω(X).

3: Enqueue all 2- and 3-simplexes Q|Σ ← f ∈ Del |Σ(X) and Q|Ω ←
τ ∈ Del |Ω(X). Simplexes are enqueued if BadSimplex2(f) or
BadSimplex3(τ) returns true.

4: while (Q|Σ 6= ∅ or Q|Ω 6= ∅) do . {main refinement loop}
5: if (Q|Σ 6= ∅) then
6: Call RefineSimplex2(f ← Q|Σ)
7: else
8: Call RefineSimplex3(τ ← Q|Ω)
9: end if

10: for all (updated τ ∈ Del(X)) do
11: Call RestrictedDT(τ,Del |Σ(X),Del |Ω(X))
12: end for
13: Update Q|Σ & Q|Ω to reflect changes in Del |Σ(X) & Del |Ω(X).
14: end while
15: return T|Σ = Del |Σ(X) and T|Ω = Del |Ω(X)
16: end function

1: function RefineSimplex2(f) . {surface refinement}
2: Call SurfaceDelaunayBall(f,B(c, r)max)
3: Insert Steiner point X ← cmax and update Del(X)← X.
4: end function

1: function RefineSimplex3(τ) . {volume refinement}
2: Form the Steiner point c for the simplex τ .
3: if (c encroaches on any surface facet f ∈ Del |Σ(X)) then
4: Call RefineSimplex2(f)
5: else
6: Insert Steiner point X ← c and update Del(X)← X.
7: end if
8: end function

1: function BadSimplex2(f) . {termination criteria}
2: return (ρ(f) > ρ̄) or (ε(f) > ε̄(xf )) or (h(f) > h̄(xf )) or f /∈ ∂T|Ω
3: end function

1: function BadSimplex3(τ) . {termination criteria}
2: return (ρ(τ) > ρ̄) or (h(τ) > h̄(xτ ))
3: end function

The Delaunay-refinement algorithm begins by constructing an initial surface triangu-

lation T|Σ = Del |Σ(X), based on a well-distributed point-wise sampling X ∈ Σ via a call

to the restricted surface Delaunay-refinement meshing algorithm presented in Chapter 4.

In this study, for reasons of consistency, the volumetric Delaunay-refinement algorithm is

combined with the surface Delaunay-refinement algorithm only, while the surface Frontal-

Delaunay algorithm is used only in combination with the volumetric Frontal-Delaunay

algorithm presented in subsequent sections. This is segregation is somewhat arbitrary,

and use of the various combinations of Delaunay-refinement and Frontal-Delaunay sur-

face and volumetric meshing algorithms is easily achieved in practice. Such investigations

are not pursued in the present study. Additionally, again for reasons of consistency, a

common mesh size function h̄(x) is used for both the surface and volumetric meshing

phases in all cases.

Consistent with the methods outlined in previous chapters, the full-dimensional tessel-
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lation Del(X) is maintained incrementally, using the efficient Bowyer-Watson framework

outlined in Chapter 2. The restricted surface and volumetric triangulations, Del |Σ(X)

and Del |Ω(X), are derived from Del(X) using the incremental restricted Delaunay al-

gorithms presented in Chapter 4, in which the intersection and enclosure of edges and

vertices in the associated Voronoi diagram Vor(X) and the bounding surface Σ are com-

puted explicitly.

The main loop of the volumetric meshing algorithm proceeds to incrementally refine

any 2-faces f ∈ Del |Σ(X) or 3-simplexes τ ∈ Del |Ω(X) that do not satisfy either the

radius-edge, element size, surface discretisation or topological constraints, with triangles

f ∈ Del |Σ(X) refined in preference to tetrahedra τ ∈ Del |Ω(X). Furthermore, all el-

ements are ordered according to their radius-edge ratios ρ(f) and ρ(τ), ensuring that

elements with the largest radius-edge ratio are refined at each iteration. Individual el-

ements are refined based on their circumballs, with a triangle f ∈ Del(X) eliminated

by inserting the centre of the largest surface Delaunay ball SDB(f) into the tessellation

Del(X), while a tetrahedron τ ∈ Del |Ω(X) is eliminated by inserting the centre of its dia-

metric ball into the existing tessellation. Additionally, the encroachment of surface facets

is managed, with the insertion of a volumetric Steiner vertex deferred if the new point

lies inside the surface Delaunay ball associated with any surface facet f ∈ Del |Σ(X). In

such cases, the surface facet is instead refined, ensuring that the local resolution of the

embedded surface triangulation reflects that of the neighbouring volumetric tessellation.

These processes are a direct generalisation of the circumcentre-based insertion methods

introduced in Ruppert’s algorithm for planar domains, discussed in Chapter 3.

As a consequence of changes to the full-dimensional tessellation Del(X) following the

insertion of a new Steiner vertex, corresponding updates to the restricted triangulations

Del |Σ(X) and Del |Ω(X) are instigated, ensuring that all tessellation objects remain in-

sync throughout the refinement process. The Delaunay-refinement algorithm terminates

when all 2-faces f ∈ Del |Σ(X) and all 3-simplexes τ ∈ Del |Ω(X) satisfy all associated

constraints. In the case of surface facets, this ensures that all radius-edge, element

size, surface discretisation and topological constraints are satisfied. Considering the

volumetric elements, a set of consistent constraints are satisfied, ensuring that1 ρ(τ) ≤ ρ̄
and h(τ) ≤ αh̄(xτ ), respectively, where the element size h(τ) is proportional is the radius

of the associated circumball B(c, r), such that2 h(τ) = (4/
√

6)r, and h̄(xτ ) is sampled at

the centre of the associated diametric ball.

5.1.2 Discussion

Like the surface meshing algorithms presented in Chapter 4, the performance of the

volumetric Delaunay-refinement scheme can be understood in terms of both geometri-

cal and topological fidelity and element shape- and size-quality. Recalling the results of

1The scalar α = 4
3

, to ensure that the mean element size does not, on average, undershoot the target

size h̄(xτ ), as per the discussions outlined in Section 3.2.
2The coefficient

√
6/4 represents the mapping between the edge length and diametric ball radius for

an equilateral element. Such scaling ensures that size constraints are applied with respect to mean edge
length.
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Boissonnat and Oudot [1, 2] presented in Proposition 4.1, the surface and volumetric

tessellations T|Σ = Del |Σ(X) and T|Ω = Del |Ω(X) are guaranteed to be ‘good’ topolog-

ical and geometrical approximations to the underlying domain Ω when the point-wise

sampling X ∈ Ω is a so-called ‘loose’ γ-sample. Such behaviour is assured when the

mesh size function is sufficiently small, such that h̄(x) ≤ γdM(x), where dM(x) is the

minimum distance to the medial axis of Ω and γ ≤ 0.08. These issues are discussed in

detail in Section 4.1. The development of detailed theoretical analysis for volumetric

meshing algorithms is an evolving area of research, and detailed remarks concerning the

performance of Algorithm 5.1.1 are omitted in this study. Cheng, Dey and Shewchuk

[5] show that termination and convergence can be guaranteed for a similar restricted

Delaunay-refinement algorithm, given that ρ̄ ≥ 2.

5.2 Restricted Frontal-Delaunay Methods

Frontal-Delaunay algorithms are a hybridisation of advancing-front and Delaunay-refine-

ment techniques, in which a Delaunay triangulation is used to define the topology of

a mesh while new Steiner vertices are inserted in a manner consistent with advancing-

front methodologies. In practice, such techniques have been observed to produce very

high-quality meshes, inheriting the smooth, semi-structured vertex placement of pure

advancing-front methods and the optimal mesh topology of Delaunay-based approaches.

Frontal-Delaunay methods have previously been for volumetric meshing studies, with

early work by Rebay [19] and Mavriplis [16, 17] incorporating extensions of their orig-

inal two-dimensional algorithms to simple three-dimensional configurations, while Frey,

Borouchaki, and George present a fully three-dimensional method in [10]. While these

methods differ slightly in the methodologies used to introduce new Steiner vertices, all

involve the size-driven placement of new points about existing ‘frontal’ faces. Specifically,

the techniques of Rebay involve a direct generalisation of his two-dimensional algorithm

discussed in Chapter 3, whereby new Steiner vertices are positioned along edges in the

associated Voronoi diagram such that a prescribed mesh size function is satisfied. These

existing methods do not typically incorporate element shape-based refinement strategies

– an important differentiator for the new Frontal-Delaunay technique developed in this

thesis, where the use of both shape- and size driven refinement schemes are investigated.

Such an approach is consistent with the algorithms developed for planar and surface

meshing problems in Chapters 3 and 4.

5.2.1 Off-centres

The new Frontal-Delaunay algorithm presented here is based on a generalisation of the

‘off-centre’ techniques introduced in Chapters 3 and 4 for planar and surface mesh gener-

ation, in which new Steiner vertices are positioned along edges in the associated Voronoi

complex. Such an approach shares some similarties with the generalised refinement

strategies investigated recently by by Chernikov, Chrisochoides and Foteinos in [6, 8]. In

contrast to the strategies developed previously for the planar and surface cases, I pursue
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the development of a size-optimal scheme only in the volumetric case. This decision was

taken in response to the small number of shape-optimal vertices that are typically selected

by the planar and surface-based Frontal-Delaunay algorithms in practice. Nonetheless,

further investigation of shape-optimal point-placement strategies, based on a generalisa-

tion of ideas presented in previous chapters, is an interesting avenue for future research.

In this study, I consider the use of off-centre Steiner vertices to simulate the vertex

placement strategy of a conventional advancing-front approach, while also preserving the

framework of a Delaunay-refinement meshing algorithm. The aim of such a strategy

is to recover the high element qualities and smooth, semi-structured meshes generated

by frontal methods in practice, while inheriting the guaranteed bounds of Delaunay-

refinement based methods. Advancing-front algorithms typically incorporate a mesh size

function h̄(x), a function f : R3 → R+ defined over the domain to be meshed, where

h̄(x) represents the desired edge length ‖e‖ at any point x ∈ Ω. This mesh size function

typically incorporates size constraints dictated by the both the user and the geometry

of the domain to be meshed. Since both surface and volumetric meshing problems are

embedded in R3, a common mesh size function is used in both cases. I refer the reader

to Section 4.4 for additional discussions of the methods used to construct size functions

appropriate for surface and volumetric mesh generation.

The proposed Frontal-Delaunay algorithm developed in this study is an extension

of the restricted Delaunay-refinement algorithm presented in Section 5.1, modified to

use off-centre rather than circumcentre-based refinement schemes. The basic framework

of the algorithm is consistent with the Delaunay-refinement algorithm described previ-

ously, in which an initially coarse tessellation of a bounded volume Ω, obtained as output

from the Frontal-Delaunay surface meshing algorithm described in Chapter 4, is refined

through the introduction of additional Steiner vertices X ∈ Ω until all element shape,

size, surface error and topological constraints are satisfied. Following the approach intro-

duced by Ruppert and Shewchuck, any encroached 2-faces f ∈ Del |Σ(X) are also refined,

preserving the integrity of the embedded surface triangulation T|Σ = Del |Σ(X). A con-

forming tetrahedral complex T|Ω = Del |Ω(X) is constructed through consideration of the

set of restricted 3-simplexes of the full-dimensional tessellation Del(X). The constraints

satisfied by the Frontal-Delaunay algorithm are identical to those introduced previously

for the restricted Delaunay-refinement scheme, with upper bounds on the radius-edge ra-

tio ρ̄ and element size h̄(xτ ) all required to be satisfied for convergence. Furthermore, it is

required that similar constraints, including bounds on the surface discretisation error ε̄(x)

and local topology are satisfied by the embedded surface triangulation T|Σ = Del |Σ(X),

ensuring that the surface triangulation is an adequate representation of the bounding

surface Σ, and is consistent with the boundary of the tetrahedral complex ∂Del |Ω(X),

as outlined in Chapter 4. See Algorithm 5.1.1 for a detailed summary of the method.

5.2.2 Point-placement Strategy

The Steiner vertex introduced when refining a 3-simplex τ ∈ Del |Ω(X) is an off-centre,

constructed based on local adherence to element size and shape constraints. The off-
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Figure 5.1: Off-centre constructions for a 3-simplex τ ∈ Del |Ω(X), illustrating (i) the local
edge of the Voronoi diagram associated with the small face f0 ∈ τ , and (ii) placement of the
size-optimal vertex c(2) such that local size constraints h̄(xτ ) are enforced.

(i) (ii)

centres introduced in this study involve the placement of two distinct kinds of Steiner

vertices. Type I vertices, c(1), are equivalent to conventional element circumcentres,

and are used to satisfy constraints on the element radius-edge ratios. Type II vertices,

c(2), are size-optimal points, designed to satisfy element sizing constraints in a locally

optimal fashion. Adopting the generalised off-centre framework presented in Chapters 3

and Chapter 4, the ‘ideal’ location of the size-optimal off-centre c(2) is based on a con-

sideration of the isosceles tetrahedron σ formed about the small 2-face f0 ∈ τ , where

f0 is chosen as the face with the smallest associated circumradius. The point c(2) is

positioned to ensure that σ satisfies local size constraints. As mentioned previously, the

use of shape-optimal Type III vertices is not explored in the present study in the context

of volumetric meshing.

Given a refinable 3-simplex τ ∈ Del |Ω(X), the size-optimal Type II vertex c(2) is

placed following a generalisation of the approach introduced by Rebay. The point c(2) is

positioned along the Voronoi segment vf ∈ Vor(X) associated with the small 2-face f0 ∈
τ , such that the size of the new tetrahedron h(σ) satisfies local constraints. Specifically,

the altitude of the new element is calculated to ensure that the three new edges of σ

are not too long, such that ‖ei‖ ' h(mi), where the mi’s are the edge midpoints for

i = 1, 2, 3. Given that Del |Ω(X) is Delaunay, a number of important properties regarding

the face-adjacent Voronoi segment vf are known, including, firstly, that vf is orthogonal

to the associated 2-face f0, and, secondly, that vf passes through the centre of the

diametric ball B(c0, r0) associated with the 2-face f0. Considering the right-triangle

formed from an existing vertex xi ∈ τ , the centre c0 and the size-optimal point c(2), the

element altitude a(2) can be expressed in terms of each of the edge-based size constraints

a
(2)
i =

(
h̄(mi)

2 − r2
0

) 1
2 (5.1)

where h̄(mi) is the desired edge length. Given the set of altitudes, the position of the

size-optimal point c(2) can be expressed as

c(2) = c0 + 1
3

(
a

(2)
1 + a

(2)
2 + a

(2)
3

)
v̂ (5.2)
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where c0 is the circumcentre associated with the 2-face f0 and v̂ is the frontal unit

direction vector associated with the Voronoi edge vf . Note that, for non-uniform h̄(x),

this expression is non-linear, with the altitudes ai
(2) depending on the evaluation of the

mesh size function at the edge midpoints h̄(mi) and visa-versa. In practice, since the

mesh size function h̄(x) is known to be Lipschitz smooth, a simple iterative predictor-

corrector procedure is sufficient to resolve these expressions approximately.

Using the size-optimal Type II point c(2) and the Type I point c(1), the final position

of the refinement point c for the facet f is calculated. The point c is selected to satisfy

the limiting local constraints, setting

c =

 c(2), if
(
d(2) ≤ d(1)

)
and

(
d(2) ≥ r0

)
,

c(1), otherwise
(5.3)

where the d(i) = ‖c(i) − c0‖ are distances from the centre of the frontal face f0 to the

Type I and Type II vertices, respectively. The cascading selection criteria is designed

to ensure that the refinement scheme smoothly degenerates to that of a conventional

circumcentre-based Delaunay-refinement strategy in limiting cases, while using locally

shape-optimal points where possible. Specifically, the condition d(2) ≤ d(1) guarantees

that c lies no further from the frontal face f0 than the centre of the circumball of τ .

Additionally, the condition d(2) ≥ r0 ensures that the diametric ball of the frontal face f0

remains empty. Such behaviour guarantees that the size-optimal scheme is only selected

when f0 is sufficiently small with respect to the local mesh size function – ensuring

that f0 is a good frontal face candidate in the context of a conventional advancing-front

scheme. A shape-based strategy, guaranteed to reduce element radius-edge ratios, is

selected otherwise.

5.3 Mesh Size Functions

The construction of high-quality mesh size functions is an important aspect of the

Delaunay-refinement and Frontal-Delaunay algorithms presented in Sections 5.1 and 5.2.

Recalling that in both cases, an initial surface triangulation is first formed via calls to

the surface meshing algorithms presented in Chapter 4, a consistent mesh size function

is used for both the surface and volumetric meshing phases, ensuring that compatible

surface and volumetric mesh resolution is achieved. As such, the mesh size function h̄(x)

used in this study is a piecewise linear g-Lipschitz function f : R3 → R+, defined on

a supporting tetrahedral complex S = Del(Y ) that covers the domain Ω. The point-

set Y ⊂ R3 is a set of sparse supports for the function h̄(x). This mesh size function

incorporates both geometric and user-defined sizing constraints, and is gradient-limited

to ensure that the Lipschitz conditions are satisfied. See Section 4.4 for further details

regarding the construction of the mesh size functions used in this study.

A set of geometric structures, including the triangulated surface definitions Σ, mesh

size functions h̄(x) and resulting volumetric meshes T|Ω = Del |Ω(X) are shown in Fig-

ure 5.2 for a pair of example problems. In both cases, it can be seen that the mesh size
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Figure 5.2: Geometrical structures for the bunny and venus surface meshing problems. The
triangulated surfaces Σ are shown (left), contours of element size function h̄(x) are shown
(centre) and surface meshes T|Ω = Del |Ω(X) obtained using the Frontal-Delaunay algorithm
are shown (right). Note that an interpolation of the size function onto the final mesh is shown,
to facilitate the detailed cutaway views.

(i) (ii) (iii)

(iv) (v) (vi)

function h̄(x) reaches local minima at regions of high curvature or narrow separation in

the underlying surface Σ. Additionally, the size function magnitude is seen to increase

smoothly from these minima, reaching local maximum values in the ‘interior’ of the do-

mains. The resolution of the corresponding volumetric meshes, in this case generated

using the Frontal-Delaunay algorithm presented in Section 5.2, is clearly a good match

to the contours of the associated mesh size functions, illustrating that the size-driven

refinement schemes presented in previous sections is effective. A comparison of the final

meshes T|Ω with the original triangulated surfaces Σ also demonstrates the success of

the re-meshing paradigm used in this study, with a set of high-quality, graded volumet-

ric meshes generated from low-quality initial surface triangulations of roughly constant

resolution.

5.4 Domains with Sharp Features

The utility of both the Delaunay-refinement and Frontal-Delaunay algorithms presented

in this chapter can be significantly improved by relaxing the constraints on the domain Ω,

allowing the enclosing surface Σ to contain sharp ridges and creases. Clearly, for domains

containing very sharp features, with dihedral angles θ � 90◦, it is not possible to ensure
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that all elements in the resulting mesh T|Ω = Del |Ω(X) satisfy the expected shape con-

straints, whilst concurrently enforcing domain conformity. Non-convergence may ensue

if the unmodified Delaunay-refinement or Frontal-Delaunay algorithms are used to mesh

domains containing sufficiently sharp features, with Steiner vertices positioned in the

neighbourhood of such features potentially leading to an infinite cascade of mutual en-

croachment. When dealing with domains subtending small angles it is instead necessary

to accept that some sacrifice of element quality is necessary in the vicinity of sharp geo-

metric features and that special cases must be identified that allow a subset of low-quality

elements adjacent to such features to persist in the final mesh T|Ω = Del |Ω(X).

In the present study I adopt a strategy inspired by the so-called protecting-balls ap-

proach presented by Cheng, Dey and Ramos in [4]. Consistent with the detailed descrip-

tion of this technique presented in the context of surface mesh generation in Chapter 4,

any sharp features in the domain Ω are enclosed in a set of Euclidean balls, within which

refinement, through the introduction of new Steiner vertices, is prohibited. The protec-

tion strategy used within the volumetric meshing phase is inherited directly from the

initial surface meshing pass, where any sharp peaks, ridges and creases in the domain Ω

are identified and protected. The Delaunay-refinement and Frontal-Delaunay methods

presented in Sections 5.1 and 5.2 are modified to test the suitability of any candidate

Steiner vertices, declining to perform refinements that would result in the introduction

of new vertices within a protecting ball. Such filtering is accomplished efficiently by

storing the collection of protecting balls in a supporting aabb-tree. The protecting balls

strategy clearly leads to the preservation of a subset of low-quality elements in the local

neighbourhood of any sharp features in the Ω, and these elements appear in the final

triangulation T|Ω = Del |Ω(X), in violation of the shape constraints ρ(τ) ≥ ρ̄. I make no

claims concerning the optimality of such an approach, but instead appeal to the experi-

mental results presented in Section 5.6, demonstrating the effectiveness of such a strategy

in practice.

5.5 Slivers, Optimality & Refinement Criteria

Contrary to the behaviour of the planar and surface meshing algorithms developed ear-

lier in this thesis, the volumetric Delaunay-refinement and Frontal-Delaunay algorithms

presented in Sections 5.1 and 5.2 do not ensure that bounds on the shape-quality of

tetrahedral elements are satisfied. Such issues are known to manifest in practice, with

volumetric meshes generated using conventional Delaunay-based techniques dogged by

the occurrence of low-quality sliver elements with pathologically poor dihedral angles.

This behaviour is well documented in the literature, including, for example, studies by

Jamin et al. [12], Shewchuck [20, 21], Cheng, Dey, Edelsbrunner, Facello and Teng [3],

Tournois, Srinivasanand and Alliez [23], and Si [22], amongst others. Cheng, Dey and

Shewchuck provide an excellent overview of these issues in [5], summarising many of the

individual contributions listed previously.

The lack of shape-optimality in higher dimensional tessellations stems from two im-

portant issues – a lack of topological optimality in the underlying Delaunay tessellation
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itself, and the failure of the conventional radius-edge ratio to correctly characterise ele-

ment geometry. Firstly, while it is known that higher dimensional Delaunay tessellations

possess an array of interesting theoretical properties, as summarised in Chapter 2, the

maximisation of element shape-quality is unfortunately not one of them. In R2, the De-

launay tessellation is known to minimise the radius of the largest circumdisk associated

with the elements τ ∈ Del(X). Recalling that the circumradius, element geometry and

plane angles are related via ρ(τ) = 1
2 (sin(θmin))−1, it is clear that a minimisation of the

circumradii leads to a maximisation of θmin. In contrast, the situation in R3 is signifi-

cantly less straightforward. Firstly, the Delaunay tessellation is known only to minimise

the size of the maximum min-enclosing ball associated with elements τ ∈ Del(X), rather

than the element circumballs. Furthermore, there is no relationship between the mini-

mum element dihedral angles and the associated circumballs or min-enclosing balls. As

a result, the distribution of angles for Delaunay tessellations in R3 is unbounded.

Remark 5.1 (optimality). Higher-dimensional Delaunay tessellations Del(X) for points

X ⊂ Rd with d ≥ 3 admit elements of pathologically low quality, even when X is well-

distributed.

Unfortunately, it is known that a variety of well-distributed point-sets X ⊂ R3 sup-

port Delaunay tessellations incorporating elements of pathologically low shape-quality,

with minimum and maximum dihedral angles approaching 0◦ and 180◦, respectively. The

well-known sliver element is of particular concern, incorporating not only asymptotically

poor dihedral angles, but also relatively small radius-edge ratios, making such elements

undetectable to standard Delaunay-refinement strategies. In such cases, the four vertices

of a tetrahedron τ are located close to the equatorial plane of the associated element cir-

cumball, resulting in a ‘kite’-like geometry. Further details are provided in the catalogue

of element configurations presented in Chapter 2.

In Figure 5.3, I present a simple example, designed to induce a Delaunay tessellation

incorporating a sliver element. A array of twelve vertices is positioned in a lattice-like

configuration, forming a structure equivalent to two ‘cubes’ stacked one upon the other,

aligned with the z-axis. Additionally, a single vertex located at the interface between

the ‘cubes’ is perturbed in the ẑ direction by a small increment δ, ensuring that the

interface between the two ‘cubes’ is a non-planar surface, marginally mis-aligned with

the xy-plane. Importantly, note that δ ∈ R is arbitrarily small. Analysis of the resulting

Delaunay tessellation shows that a low-quality sliver element is generated adjacent to

the perturbed vertex, and that the quality of this element is proportional to δ. Clearly

as δ → 0 the minimum and maximum dihedral angles of the sliver approach 0◦ and

180◦, respectively. This example clearly illustrates the pitfalls of Delaunay-based mesh

generation in R3, showing that a well-separated set of vertices can induce Delaunay

tessellations incorporating elements of pathologically poor quality.

5.5.1 Alternative Refinement Criteria

In cases such as the example shown in Figure 5.3, a simple remedy is to re-visit the

mechanisms used to drive shape-based refinement in Delaunay-based meshing algorithms.
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Figure 5.3: A perturbed lattice configuration illustrating the occurrence of sliver elements. In
(i) the standard Delaunay tessellation is shown, with a low-quality sliver element shown in
red, wedged between the two adjacent ‘cube’-like regions. In (ii) results of volume-length-driven
refinement are shown, in which the sliver is eliminated through the introduction of a new Steiner
vertex. Finally, in (iii), the topology of an optimal non-Delaunay tessellation is shown, free of
low-quality tetrahedrons.

(i) (ii) (iii)

Conventionally, an element τ ∈ Del(X) is marked for refinement if its radius edge ratio

exceeds a given threshold, such that ρ(τ) > ρ̄. Given that sliver elements are not de-

tected and refined using such an approach, it is natural to seek out alternative strategies.

Specifically, recent studies, including those presented by Gosselin and Olliver-Gooch in

[11] and Cheng, Dey and Shewchuk in [5], investigate the effectiveness of refinement

strategies driven by alternative definitions of element shape quality, including measures

of the minimum element dihedral angles, volume-length ratios, aspect ratios and various

other mixed metrics.

In the present study, I explore refinement schemes driven by element-wise volume-

length ratios, in which elements with a volume-length measure v(τ) smaller than a pre-

scribed threshold v̄ are marked for refinement. Consistent with the various strategies

presented in [11], the volume-length measure is known to be a robust metric in R3, de-

tecting low-quality tetrahedra of all types. In contrast, quality metrics based solely on

element angle distributions, such as those based on minimum dihedral angles [5], are

known to admit certain classes of low-quality tetrahedra (spear types), and are therefore

not sufficient when seeking to ensure that all low-quality elements are removed from a

mesh. In [11], Gosselin and Olliver-Gooch present an extensive comparison of various al-

ternative refinement schemes, and show that robust metrics, including the volume-length

measure, offer the best overall performance.

In this study, I have implemented a volume-length driven strategy, modifying the

Delaunay-refinement and Frontal-Delaunay algorithms presented in Sections 5.1 and 5.2

to refine any 3-simplexes τ ∈ Del |Ω(X) with small volume-length ratios v(τ) ≤ v̄. Note

that while these modified algorithms still prioritise element processing based on radius-

edge ratios, the shape-based refinement strategy is driven purely by the element volume-

length ratios. Such behaviour is achieved by setting ρ̄ =∞. Note also, that the additional

constraints, associated with element size, surface error and topology, are implemented

as per the standard algorithms presented in Section 5.1 and 5.2. Application of this

modified Delaunay-refinement algorithm to the ‘lattice’ example presented in Figure 5.3

leads to the insertion of an additional Steiner vertex about the mid-plane, eliminating
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the adjacent low-quality sliver element.

Despite their apparent practical success, the development of robust theoretical guar-

antees remains an open problem for non-standard refinement schemes. Currently, con-

vergence is not guaranteed, although, based on numerical experiments, Cheng, Dey and

Shewchuk report in [5] that schemes based on the minimum element-wise dihedral angles

reliably achieve dihedral angle distributions in the range 19◦ < θ(τ) < 153◦. In [11],

Gosselin and Olliver-Gooch report similar bounds for schemes based on dihedral angle

measures, in addition to bounds of 14◦ < θ(τ) < 154◦ for robust quality metrics. Re-

sults for the volume-length based scheme introduced in the present study are outlined in

Section 5.6, showing good agreement with existing studies. Such results indicate that,

while not proven, Delaunay-refinement schemes driven by non-standard quality metrics

can be expected to converge in practice.

5.5.2 Topological Optimality & Non-Delaunay Tessellations

In contrast to the modified refinement schemes presented in the previous section, in which

low quality tetrahedra are eliminated through additional refinement, considerations of

topological-optimality offer an alternative pathway to improved element shape quality.

Abandoning the sub-optimal Delaunay criterion, it is possible to search for alternative

tessellations, designed to maximise a given element-wise cost function.

Remark 5.2 (alternative topology). The Delaunay tessellation T = Del(X) of a point-

set X ⊂ Xd with d ≥ 3 is not guaranteed to maximise element shape-quality. An

alternative, non-Delaunay topology TND 6= T, designed to maximise an element shape

metric Q(TND), can lead to tessellations of improved shape-quality.

Consistent with the aim of maximising element shape-quality, cost functions based on

element shape metrics, such as the minimum or maximum dihedral angles and/or volume-

length measures, are obvious choices. The use of non-Delaunay tessellations, especially

for problems in R3, is an idea that has been investigated in a number of previous studies.

Specifically, a range of authors including Joe [13], Freitag and Ollivier-Gooch [9] and

Klinger and Shewchuk [14, 15] have presented optimisation-based algorithms to generate

pseudo-optimal tessellations for a given element-wise cost function. Additionally, the so-

called sliver-exudation approach of Cheng et al. [3], makes use of the weighted Delaunay

tessellation to improve the topology of the underlying mesh in the neighbourhood of low-

quality sliver elements. In the present study, the notion of pseudo-optimal non-Delaunay

tessellation is pursued in detail in Chapter 6, where these topological structures form the

basis of a powerful mesh optimisation framework.

Returning to the ‘lattice’ example presented in Figure 5.3, an optimal non-Delaunay

tessellation is presented, obtained by simply iterating over the set of candidate tessel-

lations conforming to the given vertices and selecting the structure that resulted in a

maximisation of the minimum element volume-length measure. Importantly, in con-

trast to the original Delaunay tessellation, note that the new tessellation is free of any

low-quality elements. Furthermore, compared to the tessellation generated via the alter-

native volume-length based refinement scheme, the non-Delaunay tessellation achieves
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high element shape-quality without the need for additional Steiner vertices. Such results

demonstrate the potential of non-Delaunay-based mesh generation for higher-dimensional

problems. While the development of non-Delaunay tetrahedral meshing algorithms is not

pursued in the current study, these ideas are identified as an important avenue for future

investigation.

5.6 Results & Discussion

The performance of the volumetric meshing algorithms introduced in this chapter was

investigated experimentally, with both the Delaunay-refinement and Frontal-Delaunay

algorithms developed in Sections 5.1 and 5.2 used to mesh a series of fifteen bench-

mark problems of varying size and complexity. Test domains were sourced from a range

of application areas, including problems from computational modelling and simulation,

computer graphics and medical imaging. Meshes for each domain, generated using the

Frontal-Delaunay approach, are shown in Figure 5.4. Note that a number of test-cases in-

clude sharp surface ridges. Both the Frontal-Delaunay algorithm described in Section 5.2

and the Delaunay-refinement algorithm described in Section 5.1 have been implemented,

allowing the performance and output of the two algorithms to be compared side-by-side.

Due to the similarities in structure between the two algorithms, a common code-base is

used, with the algorithms differing only in the type of Steiner vertices inserted and in

the manner in which the queue of bad triangles is updated, as discussed in Section 5.2.

Both algorithms are built using the TRIPOD and LUMBERJACK packages – making use of

the efficient incremental Delaunay triangulation and spatial indexing frameworks pre-

sented in Chapter 2. Additionally, updates to the restricted surface and volumetric

triangulations are achieved via an implementation of Algorithm 4.3.1, where the surface

and volumetric intersection predicates are evaluated using double precision arithmetic.

The Frontal-Delaunay and Delaunay-refinement algorithms are included in JIGSAW – a

new mesh generation library built using the algorithms developed in this thesis. Both

algorithms are implemented in C++ and compiled as 64-bit executables.

Meshes generated using the new Frontal-Delaunay algorithm for the full set of bench-

marks are presented in Figure 5.4, demonstrating the effectiveness of the new strategy

in practice. For all test problems, element quality has been catalogued, with normalised

histograms of element volume-length v(τ), dihedral angle θ(τ) and relative edge length
‖e‖
h̄(xe)

illustrated. Histograms further highlight the minimum and mean volume-length

measures, the worst-case angle bounds θmin and θmax and the mean relative edge length.

Meshes were generated using relatively coarse element size constraints, with the mesh

size functions h̄(x) constructed using a Lipschitz smoothness parameter g = 3/10. Tight

bounds on the element radius-edge ratios are imposed, such that ρ̄ = 1.25. While the

shape of the surface facets in the embedded surface triangulation T|Σ = Del |Σ(X) are

bounded as a result, note that the dihedral angles of the 3-simplexes in the volumetric

triangulation T|Ω = Del |Ω(X) are unbounded – a major departure from the behaviour of

the planar and surface meshing algorithms presented in previous chapters. An analysis

of the results presented in Figure 5.4 shows, firstly, that the new Frontal-Delaunay al-
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Figure 5.4: Benchmark problems for volumetric meshing studies, showing meshes generated
using the Frontal-Delaunay algorithm with coarse settings, such that g = 3/10. A constant
radius-edge ratio limit is specified, such that ρ̄ = 1.25. A non-uniform surface discretisation
threshold is imposed, with ε̄ = (1/10)h̄(x). Element counts |T|Ω| are included for each case.
Normalised histograms of element volume-length ratio v(τ), dihedral angle θ(τ) and relative

size ‖e‖
h̄(xe)

are also shown.
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Figure 5.5: Benchmark problems for volumetric meshing studies, showing meshes generated
using the Frontal-Delaunay algorithm with coarse settings, such that g = 3/10. A constant
radius-edge ratio limit is specified, such that ρ̄ = 1.25. A non-uniform surface discretisation
threshold is imposed, with ε̄ = (1/10)h̄(x). Element counts |T|Ω| are included for each case.
Normalised histograms of element volume-length ratio v(τ), dihedral angle θ(τ) and relative

size ‖e‖
h̄(xe)

are also shown.
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Figure 5.6: Benchmark problems for volumetric meshing studies, showing meshes generated
using the Frontal-Delaunay algorithm with coarse settings, such that g = 3/10. A constant
radius-edge ratio limit is specified, such that ρ̄ = 1.25. A non-uniform surface discretisation
threshold is imposed, with ε̄ = (1/10)h̄(x). Element counts |T|Ω| are included for each case.
Normalised histograms of element volume-length ratio v(τ), dihedral angle θ(τ) and relative

size ‖e‖
h̄(xe)

are also shown.
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gorithm is successful – meshing a range of complex volumetric domains, including those

with sharp surface features. Furthermore, it is clear that the meshes respect the im-

posed size functions, with high resolution regions adjacent to regions of high curvature

smoothly transitioning to sparser areas in the ‘interior’ of the domains. Secondly, it is

noted that convergence is achieved for ρ̄� 2, significantly outperforming the theoretical

analysis presented in Section 5.1. Additionally, it is also important to note that conver-

gence is achieved for a number of complex inputs containing sharp ridges in the enclosing

surface Σ, with both the venus and dinosaur problems containing a number of these

features with dihedral angles of under 30◦. These results confirm the effectiveness of the

protecting-balls strategy, used to support inputs with sharp features.

Inspection of the associated volume-length and dihedral angle distributions shown

in Figure 5.4 shows that the lack of element shape bounds in R3 is not merely a the-

oretical concern, but an issue that significantly affects mesh quality in practice. It can

be seen that a number of poorly shaped tetrahedrons are present in the meshes for all

benchmark problems, and that a minority of these tetrahedrons are sliver elements, with

pathologically poor dihedral angles approaching 0◦ and 180◦. As per the discussions

outlined in Section 1.1, the presence of these low-quality elements significantly limits the

applicability of these meshes for use in subsequent numerical modelling and simulation

studies.
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5.6.1 Comparative Performance

The results of a comparative performance study, contrasting the effectiveness of the

Frontal-Delaunay and Delaunay-refinement meshing algorithms, is presented in Fig-

ures 5.7 and 5.8. Detailed results for the bunny and venus test problems are examined,

investigating the performance of both algorithms for a range of different input param-

eters. Specifically, the effectiveness of the new size-driven point-placement scheme is

addressed, comparing a range of meshes generated by both the Frontal-Delaunay and

Delaunay-refinement algorithms in terms of their size- and shape-quality and underly-

ing structure. In addition to the detailed results presented for the bunny and venus

problems, a simplified set of comparisons are also presented for the full set of benchmark

problems.

5.6.1.1 Size-driven Refinement

A detailed study of meshes generated for the bunny and venus problems, presented in

Figures 5.7 and 5.8, examines the impact of the size-optimal Type II off-centres intro-

duced in Section 5.2. A set of meshes were generated for test cases using low, medium and

high resolution settings, where the associated mesh size functions h̄(x) were constructed

using Lipschitz smoothness values of g = 3/10, g = 2/10 and g = 1/10, respectively. The

radius-edge ratio limit was held constant across all test cases, such that ρ̄ = 1.25. A

non-uniform surface discretisation threshold was enforced for the embedded surface tri-

angulation T|Σ = Del |Σ(X), setting ε̄ = βh̄(x), with β = 1/10. For all test problems,

element quality has been catalogued, with normalised histograms of element volume-

length v(τ), dihedral angle θ(τ) and relative edge length ‖e‖
h̄(xe)

illustrated. Histograms

further highlight the minimum and mean volume-length measures, the worst-case angle

bounds, θmin and θmax and the mean relative edge length. Note that the domain for the

venus test case includes a number of sharp ridges in the underlying surface Σ, located

near the neck of the statue.

Analysis of Figures 5.7 and 5.8 shows that both the Frontal-Delaunay and Delaunay-

refinement algorithms successfully generate meshes in all cases, but, as per discussions

in the preceding sections, the lack of element shape optimality is obvious, with a number

of low-quality sliver elements generated in each case. Inspection of distributions of v(τ),

θ(τ) and ‖e‖
h̄(xe)

show that the Frontal-Delaunay algorithm consistently outperforms the

Delaunay-refinement scheme, generating meshes with higher mean volume-length ratios

and ‘tight’ distributions of relative edge length in all cases. The most significant differ-

ence in behaviour between the two algorithms appears to be in the way that mesh size

constraints are imposed. Given the narrow distributions of relative edge length, strongly

clustered about ‖e‖
h̄(xe)

= 1, it is clear that the Frontal-Delaunay algorithm successfully

generates meshes accurately conforming to the imposed mesh size constraints. In con-

trast, output generated using the Delaunay-refinement scheme is seen to incorporate

significant sizing error, typified by ‘broad’ distributions of relative edge length strad-

dling ‖e‖
h̄(xe)

= 1. While the mean relative edge lengths are comparable in all cases, the

Frontal-Delaunay algorithm clearly generates much more accurate output on an element-
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Figure 5.7: Size-driven refinement study for the bunny problem, showing meshes generated
using the Frontal-Delaunay (upper) and Delaunay-Refinement (lower) algorithms. Meshes are
generated with increasing values of size function smoothness, g = 3/10, g = 2/10 and g = 1/10

from left to right. A constant radius-edge ratio limit is specified for all cases, such that ρ̄ = 1.25.
A non-uniform surface discretisation threshold is imposed, such that ε̄ = (1/10)h̄(x). Element
counts |T|Ω| are included for each case. Normalised histograms of element volume-length ratio

v(τ), dihedral angle θ(τ) and relative size ‖e‖
h̄(xe)

are also shown.
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Figure 5.8: Size-driven refinement study for the venus problem, showing meshes generated
using the Frontal-Delaunay (upper) and Delaunay-Refinement (lower) algorithms. Meshes are
generated with increasing values of size function smoothness, g = 3/10, g = 2/10 and g = 1/10

from left to right. A constant radius-edge ratio limit is specified for all cases, such that ρ̄ = 1.25.
A non-uniform surface discretisation threshold is imposed, such that ε̄ = (1/10)h̄(x). Element
counts |T|Ω| are included for each case. Normalised histograms of element volume-length ratio

v(τ), dihedral angle θ(τ) and relative size ‖e‖
h̄(xe)

are also shown.
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Table 5.1: Volume meshing study, comparing the performance of the Frontal-Delaunay and Delaunay-refinement algorithms on the full set of benchmark problems.
Meshes are generated using medium resolution settings, such that the mesh size functions h̄(x) are constructed with g = 2/10. A constant radius-edge ratio limit
is specified for all cases, such that ρ̄ = 1.25. A non-uniform surface discretisation threshold is imposed, such that ε̄ = (1/10)h̄(x). Results listed include: total
element count |T|Ω|, total runtime t(s), mean and minimum volume-length ratios v(τ), v(τ)min and dihedral angle bounds θ(τ)min, θ(τ)max.

Domain Frontal-Delaunay Delaunay-refinement

|T|Σ| t(s) v(τ)min v(τ) θ(τ)min θ(τ)max |T|Σ| t(s) v(τ)min v(τ) θ(τ)min θ(τ)max

sphere 5, 668 0.19 0.01 0.79 0.62◦ 178.9◦ 5, 900 0.18 0.07 0.76 3.86◦ 174.1◦

ellipsoid 16, 337 0.48 0.01 0.79 0.38◦ 179.3◦ 16, 971 0.45 0.01 0.75 0.87◦ 178.5◦

femur 41, 878 2.26 0.00 0.77 1.11◦ 177.8◦ 42, 805 2.12 0.00 0.74 0.30◦ 179.5◦

hip 105, 607 3.66 0.00 0.77 0.09◦ 179.8◦ 109, 859 3.43 0.00 0.73 0.05◦ 179.9◦

vertebra 135, 097 4.33 0.00 0.76 0.05◦ 179.9◦ 137, 746 3.98 0.00 0.73 0.05◦ 179.9◦

wood 63, 939 2.91 0.00 0.77 0.90◦ 178.4◦ 67, 342 2.75 0.01 0.74 0.29◦ 179.5◦

hand 156, 581 7.67 0.00 0.77 0.08◦ 179.9◦ 161, 099 7.28 0.00 0.74 0.15◦ 179.7◦

blade 210, 409 8.83 0.00 0.77 0.26◦ 179.6◦ 216, 008 8.36 0.00 0.74 0.11◦ 179.8◦

rocker 93, 138 3.41 0.00 0.77 0.08◦ 179.9◦ 95, 764 3.16 0.00 0.74 0.06◦ 179.9◦

spiral 1 76, 676 3.29 0.00 0.77 0.70◦ 178.8◦ 80, 041 3.05 0.00 0.73 0.15◦ 179.7◦

spiral 2 96, 798 3.97 0.00 0.79 0.30◦ 179.5◦ 100, 026 3.72 0.00 0.73 0.07◦ 179.9◦

bunny 153, 611 5.36 0.00 0.77 0.50◦ 179.4◦ 154, 421 4.92 0.00 0.74 0.04◦ 179.9◦

bimba 384, 533 19.27 0.00 0.78 0.10◦ 179.8◦ 390, 664 17.88 0.00 0.74 0.13◦ 179.8◦

venus 338, 303 16.86 0.00 0.78 0.40◦ 179.4◦ 339, 930 15.81 0.00 0.74 0.05◦ 179.9◦

dinosaur 690, 574 34.57 0.00 0.76 0.20◦ 179.7◦ 688, 504 29.91 0.00 0.73 0.04◦ 179.9◦
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by-element basis.

Additionally, analysis of the distributions of v(τ) and θ(τ) shows that, despite the

presence of these low-quality elements, the Frontal-Delaunay algorithm also consistently

outperforms the Delaunay-refinement scheme in terms of shape quality, generating meshes

with higher mean volume-length ratios in all cases. Furthermore, it is evident that the

quality of meshes generated using the Frontal-Delaunay algorithm improves as g → 0, as

indicated by the increase in mean v(τ) and the narrowing of the θ(τ) distribution about

70.5◦1. Specifically, it can be seen that sharp peaks about v(τ) ' 1 and θ(τ) ' 70.5◦

manifest as g → 0, showing that a significant percentage of near-perfect elements are

generated by the Frontal-Delaunay algorithm as the mesh size constraints become more

restrictive. Similar analysis shows that the Delaunay-refinement results are only weakly

dependent on the Lipschitz smoothness of the mesh size function, with mean v(τ) in-

creasing only marginally. No detectable narrowing of the distribution of θ(τ) is evident,

in contrast to the behaviour of the Frontal-Delaunay algorithm. Visually, the enhanced

quality of the meshes generated using the Frontal-Delaunay algorithm is evident, with

marked increases in mesh smoothness and sub-structure obvious. Meshes generated by

both algorithms are seen to be similar size, with neither algorithm showing a significant

or consistent deviation in element count |T|Ω|.
Analysis of the Steiner refinement strategies logged throughout this study show that

the majority of the off-centres chosen by the Frontal-Delaunay algorithm are either size-

optimal Type II points (' 55%) or conventional Type I circumcentres (' 45%), exhibiting

similar ratios to those observed for the planar algorithm presented in Chapter 3. The bias

toward size-optimal off-centres is also observed to increase as h̄(x) → 0. These results

are not surprising, simply indicating that when the magnitude of the mesh size function

h̄(x) is sufficiently small, the element size constraints dominate.

5.6.1.2 Overall Comparisons

In addition to the detailed comparisons presented previously, a simplified set of compar-

ative results were also obtained for all benchmark problems, contrasting the performance

of the Frontal-Delaunay and Delaunay-refinement approaches. The results of this study

are presented in Table 5.1. Meshes were generated using medium resolution settings,

with the mesh size function h̄(x) constructed with g = 2/10. Again, tight bounds on

element radius-edge ratios were specified, such that ρ̄ = 1.25. A non-uniform surface

discretisation threshold was enforced, setting ε̄ = βh̄(x), with β = 1/10. A consistent

mesh size function was used when generating both the embedded surface and volumetric

triangulations. Analysis of the results presented in Table 5.1 confirm the trends observed

in the detailed analysis carried out for the bunny and venus problems – that, given an

appropriate mesh size function h̄(x), the proposed Frontal-Delaunay algorithm produces

meshes that are of higher shape- and size-quality than those generated using the con-

ventional Delaunay-refinement algorithm. These results are confirmed by the increase

in mean volume-length ratio vmean for meshes generated using the Frontal-Delaunay

1A regular tetrahedron has a uniform dihedral angle of ' 70.53◦
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algorithm. Consistent with the results presented in previous sections, analysis of the

worst-case dihedral angles confirms that all meshes generated using both the Delaunay-

refinement and Frontal-Delaunay methods include low quality sliver elements. Note that

the extreme angles are typically equally poor for both methods.

Total run-times for the algorithms are also tabulated and show, firstly, that the

implementations developed in this study are efficient, generating meshes containing

1, 000, 000’s of elements in a matter of minutes. Consistent with the behaviour of the sur-

face algorithms presented in Chapter 4, it can be seen that the surface Frontal-Delaunay

algorithm is typically marginally slower than the Delaunay-refinement method. This

additional computational burden is associated with the use of off-centres in the Frontal-

Delaunay algorithm, specifically, the placement of size-optimal Type II vertices according

to the iterative strategy described in Sections 4.2 and Sections 5.2. Such a strategy re-

quires the solution of a small local system of non-linear equations, which, in the case of

surface refinement, leads to the iterative computation of surface intersections. Such inter-

sections are relatively costly, currently implemented as geometric searches over the facets

of the triangulated surface Σ via traversals of a supporting aabb-tree. The development

of techniques to speed-up this process is flagged as an avenue for future research.

5.6.2 User-defined Size Constraints

The performance of the volumetric meshing algorithms for problems involving user spec-

ified mesh size functions h̄u(x) was also assessed. In Figure 5.9, the results of a graded

meshing study are presented, in which a set of volumetric meshes were generated for the

bunny and venus test problems that adhere to user defined sizing constraints. The user

defined constraints in these examples are illustrative-only, consisting of a simple sinu-

soidal variation, h̄u(x) = c1 sin(c2z) + c3, where the coefficients c1, c2, c3 ∈ R are chosen

based on the dimensions of the geometry and z is a locally aligned vertical coordinate.

Note that in addition to the user specified size function h̄u(x), a geometric size function

h̄g(x) was also constructed, with the final mesh size function h̄(x) taken as the minimum

of the user-defined and geometric contributions, such that h̄(x) = min
(
h̄g(x), h̄u(x)

)
,

as per the methods outlined in Section 4.4. A consistent mesh size function was used

when generating both the embedded surface and volumetric triangulations. The meshes

generated using both the Frontal-Delaunay and Delaunay-refinement algorithms are pre-

sented in Figure 5.9. The final mesh size function h̄(x) was constructed using a Lipschitz

smoothness parameter g = 2/10. In all cases, a constant radius-edge ratio was specified,

such that ρ̄ = 1.25. A non-uniform surface discretisation threshold was enforced for

the embedded surface triangulation T|Σ = Del |Σ(X), setting ε̄ = βh̄(x), with β = 1/10.

For all test problems, element quality has been catalogued, with normalised histograms

of element volume-length v(τ), dihedral angle θ(τ) and relative edge length ‖e‖
h̄(xe)

illus-

trated. Histograms further highlight the minimum and mean volume-length measures,

the worst-case angle bounds, θmin and θmax and the mean relative edge length.

Analysis of these graded meshes confirm much of the behaviour discussed in the pre-

vious comparisons, with the Frontal-Delaunay algorithm generating meshes of higher
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Figure 5.9: Adaptive meshing study for the bunny and venus test cases, showing (left) contours
of the user-defined mesh size functions h̄u(x). Meshes generated using the Frontal-Delaunay
(centre) and Delaunay-refinement (right) algorithms are graded to conform to these size con-
straints. A constant radius-edge ratio limit is specified for all cases, such that ρ̄ = 1.25. A
non-uniform surface discretisation threshold is imposed, with ε̄ = (1/10)h̄(x). Element counts
|T|Σ| are included for each case. Normalised histograms of element volume-length ratio v(τ),

dihedral angle θ(τ) and relative size ‖e‖
h̄(xe)

are also shown.
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mean shape- ans size-quality when compared to the conventional Delaunay-refinement

method. Analysis of the distributions of v(τ) and θ(τ) reveals that sharp peaks, corre-

sponding to v(τ) ' 1 and θ(τ) ' 70.5◦, are present in results for the Frontal-Delaunay

algorithm, confirming that a large fraction of near-perfect elements are generated. Corre-

sponding results for the Delaunay-refinement scheme, on the other hand, do not exhibit

such behaviour. Careful analysis of Figure 5.9 also shows that meshes generated us-

ing the Frontal-Delaunay technique typically conform more uniformly to the specified

mesh size function, resulting in smoother meshes with more regular substructure. Lastly,

consistent with preceding volumetric results, the lack of tetrahedral element shape op-

timality is clearly visible, with a minority of low-quality sliver elements present in all

meshes. Overall, despite the sliver elements, these results demonstrate the effectiveness

of the proposed Frontal-Delaunay method when generating graded volumetric meshes for

user-defined sizing constraints.

5.6.3 Alternative Refinement Criteria

In an effort to improve worst-case element shape-quality, the alternative volume-length-

based refinement strategy presented in Section 5.5 has been implemented. As discussed

previously, this new refinement scheme is a simple variation on the standard radius-

edge-driven techniques used in both the Delaunay-refinement and Frontal-Delaunay al-

gorithms analysed in the preceding sections. In the new scheme, rather than refining

elements based on their radius-edge ratios, all elements τ ∈ Del |Ω(X) are selected for

refinement if their volume-length ratios are too small, such that v(τ) ≤ v̄, where v̄ is

a user-defined constant v̄ ∈ [ 0, 1 ]. The implementation of the new refinement strategy

requires only minimal modification to the existing Delaunay-refinement and Frontal-

Delaunay algorithms – simply requiring that an additional comparison of volume-length

ratios be performed when assessing element refinement status. While the existing radius-

edge ratio infrastructure is maintained, and is used to prioritise the refinement schedule,

explicit radius-edge-driven refinement is disabled by setting ρ̄ = ∞. The modified al-

gorithms are otherwise consistent with the Delaunay-refinement and Frontal-Delaunay

algorithms presented in Sections 5.1 and 5.2, inheriting an identical treatment of the

additional element size, surface error and topological constraints.

In Figure 5.10, meshes generated using the modified Frontal-Delaunay algorithm are

presented, clearly demonstrating the effectiveness of the new volume-length refinement

strategy in eliminating low-quality elements. In addition to cutaway views of the result-

ing tetrahedral structures, element quality is also catalogued, with normalised histograms

of element volume-length v(τ), dihedral angle θ(τ) and relative edge length ‖e‖
h̄(xe)

illus-

trated. Histograms further highlight the minimum and mean volume-length measures,

the worst-case angle bounds, θmin and θmax and the mean relative edge length. Results

are presented for the full set of benchmark problems previously processed using the ‘stan-

dard’ Frontal-Delaunay algorithm in Figure 5.4, allowing direct side-by-side comparisons

between the new volume-length and existing radius-edge-driven refinement schemes to

be conducted. Furthermore, meshes were generated using consistent input parameters,
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Figure 5.10: Benchmark problems for volumetric meshing studies, showing meshes generated
using the Frontal-Delaunay algorithm with coarse settings, such that g = 3/10. Contrary to
previous results, refinement is driven using a threshold on element volume-length ratios only,
such that v̄ = 1/3. A non-uniform surface discretisation threshold is imposed, with ε̄ = (1/10)h̄(x).
Element counts |T|Ω| are included for each case. Normalised histograms of element volume-length

ratio v(τ), dihedral angle θ(τ) and relative size ‖e‖
h̄(xe)

are also shown.
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Figure 5.11: Benchmark problems for volumetric meshing studies, showing meshes generated
using the Frontal-Delaunay algorithm with coarse settings, such that g = 3/10. Contrary to
previous results, refinement is driven using a threshold on element volume-length ratios only,
such that v̄ = 1/3. A non-uniform surface discretisation threshold is imposed, with ε̄ = (1/10)h̄(x).
Element counts |T|Ω| are included for each case. Normalised histograms of element volume-length

ratio v(τ), dihedral angle θ(τ) and relative size ‖e‖
h̄(xe)

are also shown.
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Figure 5.12: Benchmark problems for volumetric meshing studies, showing meshes generated
using the Frontal-Delaunay algorithm with coarse settings, such that g = 3/10. Contrary to
previous results, refinement is driven using a threshold on element volume-length ratios only,
such that v̄ = 1/3. A non-uniform surface discretisation threshold is imposed, with ε̄ = (1/10)h̄(x).
Element counts |T|Ω| are included for each case. Normalised histograms of element volume-length

ratio v(τ), dihedral angle θ(τ) and relative size ‖e‖
h̄(xe)

are also shown.
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with identical sizing constraints (g = 3/10) and surface error thresholds (ε̄ = (1/10)h̄(x))

imposed. In this study, I have found that convergence was achieved for all test problems

when using a volume-length threshold v̄ ≤ 1/3. For larger threshold values as small as

v̄ = 0.34, non-convergence was observed across the board, with failures reported for all

types of problem, even simple geometries such as the sphere and ellipsoid test cases.

I believe these results indicate that v̄ = 1/3 is a reliable upper-bound on the allowable

volume-length threshold, applicable to volumetric meshing problems in general. In addi-

tion to these experimental results, the development of a theoretical model of convergence,

and the associated derivation of bounds for v̄ is clearly of considerable practical interest

and may be a fruitful topic for future investigations.

An analysis of the results presented in Figure 5.10 shows, firstly, that the new volume-

length refinement strategy is successful in practice – achieving uniform convergence for a

range of complex volumetric domains, including those with sharp surface features. Fur-

thermore, in contrast with meshes generated using radius-edge-based refinement shown in

Figure 5.4, it is clear that the new strategy significantly improves the shape quality of the

worst-case elements in the resulting meshes, capping the element volume-length measures

such that v(τ) > 1/3. Corresponding improvements in the dihedral angle distributions

are also observed, with the worst-case angles lying in the range 14◦ < θ(τ) < 153◦ for

all test problems. These results support those presented by Gosselin and Ollivier-Gooch

in [11]. In [5], Cheng, Dey and Shewchuk report dihedral angle distributions as good
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as 19◦ < θ(τ) < 153◦ for large-scale meshing problems, though it is important to note

that their alternative refinement scheme is based on the dihedral angles only, admitting

the occurrence of other types of low-quality tetrahedra with poor plane angles, as cata-

logued in Section 5.5. Note also that, compared to measures of the dihedral angles, the

volume-length measure is computationally inexpensive to evaluate.

Further analysis of Figures 5.4 and 5.10 reveals that the improved shape quality

achieved using the new volume-length-driven refinement strategy comes at the cost of

increased mesh size. Comparisons of the output sizes |T|Ω = Del |Ω(X)| shows that larger

meshes are generated in all cases when using the new volume-length based scheme. For

some test problems, such as the spiral3 case, the increase in size is significant, with the

mesh generated using the volume-length refinement strategy approximately 1.6 times

larger than the equivalent results generated using the standard algorithm. On average,

the increase is size is typically more subdued, with most meshes 1.2–1.3 times larger when

refined using the new volume-length scheme. Analysis of the distributions of relative edge

length ‖e‖
h̄(xe)

confirms that the volume-length refinement strategy leads to non-uniform

grading, in which elements in the output mesh T|Ω are smaller than the local mesh size

constraints. Such behaviour is consistent with results presented by Cheng, Dey and

Shewchuk in [5].

While volume-length driven refinement is clearly effective in producing bounded-

quality tessellations in practice, the increased mesh size and sub-optimal mesh grading

are considered to be non-negligible drawbacks. In spite of this, such methods clearly

improve the utility of the volumetric meshing algorithms developed in this chapter, facil-

itating the construction of meshes that satisfy a range of size, shape and approximation

related constraints and guarantees. In contrast to meshes built using standard Delaunay-

refinement techniques, such meshes are directly applicable to problems in computational

simulation and modelling. Alternative schemes, based on geometrical and topological

optimisation strategies, are presented in the next chapter. Consistent with the findings

of Gosselin and Ollivier-Gooch [11], such methods are considered to comprise a better

solution to the problem of quality tetrahedral mesh generation.

5.7 Conclusions

In this chapter, I have presented a pair of algorithms designed to generate high-quality

meshes for volumetric domains enclosed by 2-manifold surfaces. Both algorithms are

based on the so-called restricted Delaunay triangulation, in which an embedded sur-

face triangulation T|Σ = Del |Σ(X) and corresponding volumetric triangulation T|Ω =

Del |Ω(X), both conforming to an underlying surface Σ, are constructed as subsets of

a full-dimensional Delaunay tessellation Del(X). The first algorithm is a ‘conventional’

restricted Delaunay-refinement scheme, closely modelled on the CGALMESH algorithm pre-

sented by Jamin et al. in [12], in which an embedded surface triangulation is first con-

structed following the Delaunay-refinement methods outlined in Chapter 4. The subse-

quent volumetric triangulation is built using a variation of Shewchuk’s scheme [20, 21],

whereby the circumcentres of poor quality tetrahedrons are inserted into the mesh as
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Steiner vertices. In the second algorithm, I have proposed a new restricted Frontal-

Delaunay technique, generalising the ideas introduced in Chapters 3 and 4 for planar and

surface meshing algorithms to support volumetric domains. In this new algorithm, I again

initially generate an embedded surface triangulation, using the Frontal-Delaunay algo-

rithm outlined in Chapter 4. The subsequent volumetric triangulation is built using gen-

eralised off-centre Steiner vertices, in which elements are refined by carefully inserting new

points along segments in the associated Voronoi diagram. Off-centre Steiner vertices are

positioned based on a combination of size- and shape-driven refinement strategies, lead-

ing to a hybrid approach that combines many of the advantages of advancing-front and

Delaunay-refinement techniques. A series of comparative experimental studies confirm

the effectiveness of this new approach, demonstrating that an improvement in element

quality is typically achieved when comparing the new Frontal-Delaunay method with con-

ventional Delaunay-refinement techniques. Importantly, it has also been demonstrated

that the new Frontal-Delaunay algorithm achieves the same theoretical optimality as the

conventional Delaunay-refinement approach, satisfying constraints on element radius-

edge ratios, edge length and surface discretisation thresholds. Despite these theoretical

guarantees, the lack of element shape optimality for tetrahedral elements is identified as

a major weakness for both the Delaunay-refinement and Frontal-Delaunay algorithms,

with meshes generated by these algorithms in practice seen to contain a minority of poor-

quality sliver elements. The genesis of these elements is traced to two underlying issues:

(i) the lack of topological optimality for the Delaunay tessellation in dimensions higher

than 2, and (ii) the failure of the element-wise radius-edge ratio to detect low-quality

sliver tetrahedrons.

In addition to algorithms based on standard radius-edge refinement strategies, I have

also developed an alternative refinement criteria, designed to detect and eliminate all

classes of low-quality tetrahedrons. This new method uses the element volume-length

measure, rather than the conventional radius-edge ratio, to drive shape-based refine-

ment, converging when all elements in a mesh satisfy v(τ) > v̄, where v̄ is a user-defined

constant. Based on a comprehensive set of experimental studies, an upper bound v̄ ≤ 1/3

has been established for which convergence can be expected in practice. The develop-

ment of an associated theoretical model of convergence remains an open problem. A

series of experimental studies confirm the effectiveness of this new approach in practice,

demonstrating that modified Delaunay-refinement and Frontal-Delaunay algorithms, in-

corporating the new volume-length-based refinement strategy, successfully refine a series

of complex volumetric benchmark problems without the introduction of low-quality tetra-

hedral elements. The cost of this new refinement technique is an increase in mesh size,

with experimental studies confirming that output size is increased by a factor of approx-

imately 1.2 on average and 1.6 in the worst-case for the test problems examined in this

study. Despite the increase in mesh size, algorithms based on the new volume-length

refinement strategy represent a significant improvement over conventional methods, fa-

cilitating the generation of high-quality volumetric meshes suitable for computational

modelling and simulation.
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Chapter 6

Mesh Improvement

In this chapter, I develop a new framework for mesh improvement that is designed to

enhance the quality of existing simplicial meshes. I focus on the development of a general

algorithm that is equally applicable to each of the the planar, surface and volumetric mesh

types investigated in this thesis. Mesh improvement is fundamentally an optimisation-

based task, seeking to maximise a given objective function through the application of

geometrical and topological updates. Achieving globally optimal mesh configurations is

known to be difficult, requiring the solution of a coupled geometrical and topological

optimisation problem. In this work, I focus instead on the development of a local opti-

misation strategy, in which a ‘good’ locally-optimal solution is sought based on a given

initial mesh configuration. The mesh improvement process is driven by an element-wise

mesh-quality metric – a scalar function that scores the shape-quality of each element

based on its geometry.

Extending previous work due primarily to Freitag and Ollivier-Gooch [13] and Klinger

and Shewchuk [19, 20], I build a mesh improvement framework utilising a variety of lo-

cal optimisation predicates, including: (i) local vertex smoothing operations, based on a

perturbation of vertex coordinates, (ii) topological transformations, via local updates to

the underlying mesh connectivity, and (iii) vertex insertion, in which additional Steiner

vertices are introduced to the mesh. Consistent with previous approaches, I show that

a locally-optimal solution can be achieved through an iterative application of these op-

timisation predicates, with convergence attained when no further improvement in mesh

quality is possible. I investigate the effectiveness of a new priority-driven optimisation

schedule, in which optimisation effort is focused on regions of the mesh that are amenable

to further improvement. As such, I pursue an ‘active-set’ philosophy, in which, within

each iteration, the optimisation predicates are applied to a restricted subset of the mesh

entities that are identified as candidates for further optimisation. The evolution of this

active-set is tracked explicitly as the optimisation proceeds. I show that such an ap-

proach can lead to significant improvements in computational efficiency while preserving

optimisation performance.

The effectiveness of the new mesh improvement framework is assessed experimentally,

examining its effectiveness when applied to a comprehensive set of benchmark problems,
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including a range of planar, surface and volumetric test cases. Additionally, a series of

comparative studies are undertaken, contrasting the performance of the new tetrahedral

mesh improvement scheme with the existing mesh optimisation package STELLAR, devel-

oped by Klinger and Shewchuk [19, 20]. Experiments are conducted using a range of

complex benchmark problems, verifying the robustness, efficiency and practical perfor-

mance of the proposed schemes.

6.1 Mesh Improvement Strategies

Irrespective of the manner in which a computational mesh is generated, the quality of the

underlying tessellation can often be enhanced, sometimes significantly, through the appli-

cation of so-called mesh improvement strategies. Such high-quality meshes are desirable

in that they facilitate the construction of optimal discretisations for the numerical solu-

tion of partial differential equations, as per the discussions presented in Chapter 1. Due

to difficulties associated with the direct generation of high-quality tetrahedral meshes,

caused in part by the presence of low-quality sliver elements, mesh improvement is known

to be especially important for volumetric problems.

Mesh improvement is typically viewed as an optimisation problem, requiring that a

geometrical and topological configuration be found that optimises a given mesh quality

function Q(τ), designed to score the configuration of each element τ ∈ T based on a set

of user-defined criteria. In this thesis, I restrict my interest to a straightforward metric,

based solely on the shape quality of each element. The resulting mesh improvement pro-

cess can therefore be expected to optimise element shape quality only. Note that such

simplifications are unnecessary in the general case, with a number of authors, including,

for example, Freitag and Knupp [12], Klinger [19] and Frey and Alauzet [14] previously

investigating composite mesh quality functions designed to optimise a range of charac-

teristics, including the element size, shape, orientation and anisotropy. In this work, I

further restrict the choice of quality metric to the so-called area- and volume-length mea-

sures presented in Chapter 2. Such formulations are known to robustly detect all types of

low-quality triangular and tetrahedral element types, in contrast to other metrics, such

as the Delaunay criterion, or measures based on the dihedral angles. Recent studies, such

as the work of Klinger and Shewchuk [19, 20] have shown that use of the volume-length

measure often leads to optimal mesh improvement results for a wide range of tetrahedral

test cases.

6.2 Mesh Improvement Predicates

Consistent with the approaches advocated by Freitag and Ollivier-Gooch [13] and Klinger

and Shewchuk [20], the mesh improvement algorithms developed in this thesis are built

upon a set of mesh improvement predicates – a collection of core mesh transformation

operations designed to improve the shape-quality of local element ‘patches’ within a

given mesh. These predicates include a range of topological transformations, geometrical

operations and refinement-based templates. Following closely the work of Klinger and
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Shewchuk [20], I implement all optimisation predicates in a so-called hill-climbing fashion,

accepting the geometrical or topological modifications dictated by a particular operation

only if the local mesh quality metrics are sufficiently improved. Specifically, I adopt

a worst-first strategy, in which a given optimisation predicate is required to improve

the worst-case quality metric within the local element subset being acted upon. Such

a philosophy ensures that the mesh quality metric is increased monotonically as the

optimisation proceeds. This behaviour aims to maximise the minimum quality metric in

the mesh, rather than improving a mean measure.

Before moving on to a detailed discussion of the various optimisation predicates used

in this thesis, I introduce a number of constructs used to define the local neighbour-

hood for a given entity in a tessellation. The use of such neighbourhoods is integral to

the development of the disparate topological, geometrical and insertion-based predicates

developed in subsequent sections.

Definition 6.1 (topological distance). Given an undirected graph G(V,E), the topological

distance D(vi, vj) between two vertices vi, vj ∈ V is the minimum number of edges in a

path between vi and vj .

Definition 6.2 (k-ring neighbourhood). Given an undirected graph G(V,E), the k-ring

neighbourhood of a vertex vi ∈ V is the set of vertices {v1, v2, . . . , vn} ⊆ V with a

topological distance D(vk, vi) less than or equal to k.

Recalling that the topology of a simplicial tessellation can be represented as an undi-

rected graph, it is natural to consider local entity neighbourhoods via the k-ring construc-

tion. In this work, the 1-ring neighbourhood is frequently used, to identify, for example,

the subset of elements at unit topological distance from a given vertex, edge or element.

In this case, the neighbourhoods simply consist of those entities immediately adjacent to

the given entity. General k-ring neighbourhoods can be found by performing a suitable

breadth-first-search in the underlying adjacency graph.

6.2.1 Topological Transformations

The first class of mesh improvement predicates explored in this work concerns the topo-

logical optimality of the underlying tessellation itself. Following a strategy originally

presented by Joe [16, 17], I construct a catalogue of local topological transformations,

that are designed to incrementally improve the underlying topology of a given mesh.

Such transformations, or flips, are local in nature, spanning only a small, densely con-

nected subset of the overall mesh topology. Given their local nature, a sequence of such

transformations are typically required, iterating over the collection of possible element

subsets in a given mesh. The topological transformations presented in this work can be

thought of as local re-triangulation operations, in which the elements associated with

a local convex cavity C embedded in a mesh T are removed and replaced with a new

conforming tessellation of C that improves the distribution of local quality metrics. It

is important to note that, given an initial Delaunay tessellation, T = Del(X), such op-

erations do not necessarily preserve the Delaunay criterion, but instead seek to form a
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Figure 6.1: Illustration of bistellar flips for triangular and tetrahedral tessellations, showing: (i)
the T2T2 edge-flip for planar (top) and surface (bottom) trinagulations, and (ii) the T2T3 and
T3T2 face- and edge-flips for tetrahedral complexes.

(i) (ii)

locally optimal tessellation. In the case of tetrahedral meshes, where it is known that the

Delaunay criterion leads to the formation of sub-optimal sliver elements, such behaviour

is often desirable.

6.2.1.1 Bistellar Flips

Bistellar flips are the simplest type of topological transformation that can be applied to

simplicial meshes. For triangulations embedded in R2, such operations are commonly

known as edge-flips, whereby the common edge adjacent to two neighbouring trian-

gular elements is ‘flipped’, connecting the opposing vertices in the associated quadri-

lateral cavity. Such an operation is referred to as a T2T2 flip in this thesis, indi-

cating the number of associated elements before and after the flipping operation is

performed. Consistent with the hill-climbing nature of the mesh improvement frame-

work, the T2T2 flip seeks to improve the worst-case element quality metric, such that

min(Q(T′i),Q(T′j)) > min(Q(Ti),Q(Tj)), where T′i,T
′
j denote the ‘flipped’ element config-

uration. The edge flip operation in R2 is illustrated in detail in Figure 6.1.

The edge flip operation is also applicable to 2-manifold surface triangulations em-

bedded in R3, in which the non-planar quadrilateral cavity associated with adjacent

2-simplexes is re-triangulated by flipping the common diagonal edge. In such a configu-

ration, in addition to considerations of local metrics, care is needed to ensure that the

transformed mesh remains homeomorphic to the original surface topology, requiring that

both the orientation and manifold-ness of the mesh is preserved. In the current work, the

2-manifold property is preserved by testing the degree of the flipped edge, ensuring that

the new edge is shared between a maximum of two elements in the triangulation. An

additional orientation test is also performed in the flipped configuration, ensuring that

the angle θz, formed between adjacent element normals z′i, z
′
j , is sufficiently small, such

that θz ≤ β, where β is a user-defined threshold. In this thesis, the orientation angle

threshold is constrained to the range β ∈ [0, 90◦]. The embedded edge flip operation in

R3 is illustrated in detail in Figure 6.1.

Bistellar flips for tetrahedral elements in R3 are significantly more complicated than

their lower-dimensional counterparts, consisting of a pair of inverse edge-face opera-

tions. Originally documented by Lawson [21] and further analysed by Joe [16], such
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operations are constructed by considering the number of possible triangulations of 5

vertices in R3. Lawson showed that such configurations support two possible triangu-

lations, consisting of either two or three tetrahedrons. As a result, a pair of transfor-

mations are induced, known as the T2T3 and T3T2 operations in this thesis. Given

a pair of tetrahedra sharing a common 2-face f , sandwiched between a pair of op-

posing vertices a, b, the T2T3 operation attempts to create three new tetrahedra that

share a common edge ab. Such an operation seeks to improve the worst-case qual-

ity metric, such that min(Q(T′i),Q(T′j),Q(T′k)) > min(Q(Ti),Q(Tj)), where T′i,T
′
j ,T
′
k de-

note the ‘flipped’ element configuration. Conversely, given an interconnected triplet of

tetrahedra sharing a common edge ab, the T3T2 operation attempts to create a pair

of tetrahedra adjacent to the vertices a, b that share a common 2-face f . It is clear

that such an operation is an inverse for the T2T3 flip described previously. Again,

such an operation is designed to improve the worst-case quality metric , such that

min(Q(T′i),Q(T′j)) > min(Q(Ti),Q(Tj),Q(Tk)), where T′i,T
′
j denote the ‘flipped’ element

configuration. The T2T3 and T3T2 bistellar flips are illustrated in detail in Figure 6.1.

6.2.1.2 Edge Removal

The edge-removal operation, first introduced by Briére de L’isle and George [2] is a topo-

logical transformation for tetrahedral meshes in which a single common edge, shared by

a ring of adjacent tetrahedra M ⊆ T, is removed. The resulting cavity is re-triangulated

about the non-planar polygon R, formed by the set of opposing edges in the sub-mesh

M. The edge-removal operation can be thought of as a generalisation of the simple T3T2

flip, and, as a result, is known as the G3G2 operation in this work. The edge-removal

operation has previously been used to great effect in the context of tetrahedral mesh

improvement by a number of authors, including de Cougny and Shephard [6], Freitag,

Ollivier-Gooch [13] and Klinger and Shewchuk [20].

Given an existing edge ab, shared by a ring of tetrahedra M, the G3G2 transforma-

tion seeks to build a new triangulation N that improves the minimum local element

quality metric, such that min(Q(N)) > min(Q(M)). The new tetrahedral sub-mesh N

is constructed by selecting an appropriate triangulation TR of the non-planar polygo-

nal ring R, allowing the ‘upper’ and ‘lower’ halves of the cavity to be re-triangulated

as N =
⋃
ti∈TR

{Conv(ti, {a}),Conv(ti, {b})}. The edge-removal process is illustrated in

detail in Figure 6.2. For |M| > 3, the triangulation TR is clearly non-unique, making

selection of an appropriate TR non-trivial. Specifically, it is required that a particular

TR be selected that leads to a maximisation of the minimum quality metric associated

with the new set of tetrahedra N.

Selecting an optimal TR efficiently is the key challenge when implementing the G3G2

operation in practice. Following the methods detailed by Freitag and Ollivier-Gooch [13],

I employ a ‘lookup-table‘ approach in this work, in which the complete combinatorial

spaces associated with triangulations of the ring R are stored in a set of static tables.

The optimal TR is then selected by simply iterating over elements in the candidate

triangulations, keeping track of the minimum quality metric in each case. The size of

these static tables increases exponentially with increasing |M|, and, for considerations
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of efficiency, I restrict the G3G2 operation to relatively low-degree configurations in this

thesis, for which |M| ≤ 8. Note that, in practical cases, such a constraint is not expected

to be overly restrictive, with both Freitag and Ollivier-Gooch [13] and Shewchuk [23]

noting that G3G2 operations are rarely successful in practice for configurations in which

|M| > 8. Static combinatorial tables representing the candidate triangulations TR can

be formed via the Hurtardo-Noy hierarchy [15], a tree-like representation enumerating

the set of possible triangulations associated with a given convex polygonal region. Note

that, due to the size of the combinatorial space, implementations of the Hurtardo-Noy

hierarchy exhibit inherently exponential complexity.

Restrictions to low-degree configurations can be partially ameliorated through an ap-

proach of Shewchuk [23], who selects the optimal ring triangulation TR using a polynomial-

time, dynamic programming algorithm of Klincsek [18]. While the O
(
|M|3

)
performance

of such an approach is asymptotically superior to the simple lookup table methodology

used in the current work, such differences are not expected to manifest significantly for

the small |M| ≤ 8 typically encountered in practice.

6.2.1.3 Multi-Face Removal

The multi-face-removal operation, introduced by de Cougny and Shephard [6], is a topo-

logical transformation for tetrahedral meshes in which a ring of 2-faces sandwiched be-

tween a pair of vertices are replaced by a single edge. The resulting cavity C is re-

triangulated about the new edge. The multi-face-removal operation can be thought of

as the inverse of the edge-removal operation G3G2, and, as a result is known as the

G2G3 operation in this work. Such a transformation can also, equivalently, be thought

of as a generalisation of the simple T2T3 flip. The multi-face-removal operation seems

to be somewhat under-utilised, appearing only in the original unpublished report of de

Cougny and Shephard, and the recent studies of Klinger and Shewchuk [20] and Misztal,

Bærentzen, Anton and Erleben [22].

Given a vertex pair a, b, the G2G3 operation proceeds by identifying a set of 2-faces

TR ⊆ T that are sandwiched between the vertices a, b, such that each 2-face ti ∈ TR is

shared by a pair of tetrahedra adjacent to the vertices a, b. Given such a configuration,

a G2G3 operation attempts to replace the set of tetrahedra N adjacent to a subset of

the sandwiched faces f ⊆ TR by re-triangulating the ring-shaped cavity associated with

f about the edge ab, such that min(Q(M)) > min(Q(N)), where M is the set of new

tetrahedra. This re-triangulation step is an exact inverse for the edge-removal operation

described in previous sections. The multi-face-removal procedure is shown in detail in

Figure 6.2.

Given a set of sandwiched faces TR, an optimal G2G3 operation selects the subset

f ⊆ TR that leads to a maximisation of the minimum quality metric for the set of

new tetrahedra M. Shewchuk [23] has shown that such a selection can be performed

in O(|TR|) time via a tree-based traversal of the local adjacency graph of TR, leading

to an optimal O(|N|) time G2G3 algorithm overall. Shewchuk’s traversal algorithm is

implemented in the current work without modification. Interestingly, note that while

an efficient linear-time algorithm is available for the multi-face-removal operation, the
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Figure 6.2: Illustration of the edge- and multi-face removal operations for tetrahedral complexes,
showing the sequence of inverse operations required to transform from one state to another. Note
that both the G2G3 and G3G2 predicates act about the non-planar polygonal ring TR. In the
case of the G3G2 edge-removal, the existing edge ab is replaced with an optimal triangulation TR.
The inverse G2G3 multi-face removal replaces the existing triangulation TR by splitting about
the new edge ab.

Figure 6.3: Illustration of the multi-face re-triangulation operations for tetrahedral complexes,
showing the sequence of inverse operations required to transform from one state to another.
Like the edge- and multi-face removal operations, multi-face re-triangulation acts about the non-
planar polygonal ring TR, seeking to find an improved triangulation TR

′. Note that contrary to
the edge- and multi-face removal operations, multi-face re-triangulation is its own inverse.

existence of such an approach for the inverse edge-removal transformation is unknown.

6.2.1.4 Multi-Face Retriangulation

The multi-face retriangulation operation, introduced by Misztal, Bærentzen, Anton and

Erleben [22], is a topological transformation for tetrahedral meshes in which the tetrahe-

dra adjacent to a ring of 2-faces sandwiched between a pair of vertices is re-triangulated,

preserving the sandwiched region. Such an operation is related to the G2G3 and G3G2 flips

outlined previously, and is denoted as the G4G4 operation in this work. The multi-face

retriangulation operation is, to my knowledge, investigated only in the recent study of

Misztal et al. [22], where it was shown to lead to moderate improvements in mesh quality

compared to comparative results generated using a combinations of edge-removal and

multi-face-removal operations alone.

Given a vertex pair a, b, the G4G4 operation proceeds by identifying a set of 2-faces

TR ⊆ T that are sandwiched between the vertices a, b, such that each 2-face ti ∈ TR
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is shared by a pair of tetrahedra adjacent to both a, b. This process is equivalent to

that described previously for the G2G3 operation. Given such a configuration, the G4G4

operation attempts to replace the set of tetrahedra N adjacent to the sandwiched faces

TR by finding a new optimal triangulation T′R of the ring-shaped region R, such that

min(Q(M)) > min(Q(N)), where M is the set of new tetrahedra adjacent to T′R. Like the

G3G2 operation, such a process seeks to retriangulate the ‘upper’ and ‘lower’ halves of

the cavity as M =
⋃
ti∈TR

{Conv(ti, {a}),Conv(ti, {b})}. The multi-face retriangulation

process is illustrated in detail in Figure 6.3.

In contrast to the G2G3 and G3G2 operations discussed previously, which seek to re-

place a set of sandwiched faces with an edge and vice-versa, the G4G4 operation simply

seeks to retriangulate an existing set of sandwiched faces. Consistent with the G3G2 oper-

ation outlined in previous sections, such a procedure involves the selection of an optimal

triangulation TR that leads to a maximisation of the minimum quality metric associated

with the new set of tetrahedra M. In this work, such an operation is implemented for

N ≤ 8 via the same static lookup table approach used for the G3G2 operation described

previously. As per the earlier discussions, Shewchuk [23] has shown that such a process

can be implemented in O
(
|N|3

)
time using a dynamic programming approach of Klincsek

[18].

6.2.2 Locally Optimal Tessellation

Given a catalogue of topological transformations, the notion of locally optimal tessella-

tions can be explored. Following an approach of Joe [16, 17], I define such an object

to be any tessellation that is locally optimal with respect to its available catalogue of

transformations.

Definition 6.3 (locally optimal tessellation). Let T be a tessellation of a point-set

X ⊂ Rd and let Θ be a catalogue of topological transformations. Let Q be an element-wise

objective function. The tessellation T is said to be locally-optimal if no quality-improving

transformation θi ∈ Θ can be found for the tessellation T. A transformation θi is said to

be quality-improving if Q(θi(T)) > Q(T) where θi(T) is the updated topology induced by

the transformation θi.

In the absence of global criteria, such as the Delaunay property, the notion of local op-

timality is a convenient framework within which the quality of a general tessellation can

be assessed. Such tessellations can be constructed by exhaustive application of the set of

topological transformations, achieving convergence when no further transformations can

be successfully applied. In the context of mesh optimisation, topological optimality is

often pursued via relatively naive approaches, with a number of authors, including Joe

[17], Freitag and Ollivier-Gooch [13] and Klinger and Shewchuk [20] simply iteratively

applying global sweeps of transformations until convergence is obtained. I pursue an al-

ternative queue-based strategy that is expected to significantly reduce the computational

effort required to find locally optimal tessellations.

Given an initial tessellation T and a catalogue of Θ of topological operations, a locally

optimal tessellation is sought via a greedy, queue-based procedure. Such an algorithm
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Algorithm 6.2.1 Local Topology Optimisation

1: function OptimTopology(X, T) . {find locally optimal tessellation}
2: Initialise queue of active elements P← T.
3: while (P 6= ∅) do
4: if (TestFlip(ti ← P)) then . {element-specific flips}
5: Update queue P← θi(ti).
6: end if
7: end while
8: end function

1: function TestFlipSimplex2(ti) . {flips for 2-simplex elements}
2: for all (ej ∈ ti) do . {edge-based flips}
3: if (TestFlipT2T2(ti, ej)) then
4: Update topology T ← T2T2(T)
5: return True.
6: end if
7: end for

8: return False.
9: end function

1: function TestFlipSimplex3(ti) . {flips for 3-simplex elements}
2: for all (fj ∈ ti) do . {face-based flips}
3: Find opposing vertex pair a, b for face fj .
4: if (TestFlipG2G3(ti, a, b)) then
5: Update topology T ← G2G3(T)
6: return True.
7: end if
8: if (TestFlipG4G4(ti, a, b)) then
9: Update topology T ← G4G4(T)

10: return True.
11: end if
12: end for
13: for all (ej ∈ ti) do . {edge-based flips}
14: if (TestFlipG3G2(ti, ej)) then
15: Update topology T ← G3G2(T)
16: return True.
17: end if
18: end for
19: return False.
20: end function

maintains a priority queue P of active elements, about which the full catalogue Θ of

topological transformations are attempted. At each iteration, the active element ti ∈ P

at the front of the queue is removed and the sequence of available transformations tested.

If a given transformation θi ∈ Θ is found to improve the local distribution of element

quality metrics, such that Q(θi(T)) > Q(T), the transformation is accepted and all new

elements ti ∈ θi(T) are appended to the queue P as new active entries. An active element

ti becomes inactive when there is no transformation θi ∈ Θ that can be successfully

applied in its local neighbourhood. Inactive elements are simply removed from the queue

P. The greedy, queue-based algorithm converges to a locally optimal configuration when

the queue becomes empty. Several variants of this algorithm can be constructed, based on

the manner in which the priority queue P is maintained. In this thesis, I have investigated

two options: (i) first-come, in which active elements are processed according to the simple

linear order in which they are added to the queue, and (ii) worst-first, in which the queue

P is sorted according to element quality, with the lowest quality elements processed first.

The worst-first heuristic is designed to prioritise the improvement of the worst elements



160 6. Mesh Improvement

in a mesh and has been found to produce superior results in practice. The worst-first

criteria is adopted throughout the remainder of this work.

While the core framework of the greedy, queue-based procedure clearly generalises to

different types of tessellations, including the triangular and tetrahedral types considered

in this thesis, the application of the transformation catalogue must be defined explicitly

for each element type. Given a 2-simplex ti ∈ T, a sequence of T2T2 flips are attempted

about each edge ej ∈ ti, with the first transformation that leads to an improvement in

the local mesh quality metrics accepted. Given a 3-simplex ti ∈ T, a series of edge- and

face-based flips are attempted. A sequence of G2G3 and G4G4 flips are first attempted

about each face fj ∈ ti. If such flips are unsuccessful, a sequence of G3G2 flips are then

attempted about each edge ej ∈ ti. Consistent with the procedure used for 2-simplexes,

the first transformation leading to an improvement in the local mesh quality metrics

is accepted. In this thesis, the ordering of the edge- and face-based transformations

is randomised, in an effort to prevent the algorithm becoming unnecessarily ‘stuck’ on

local maxima. I make no claims concerning the optimality of the flip sequences presented

here, though I have found that such algorithms are effective in practice. The queue-based

procedure for local topological optimisation is summarised in Algorithm 6.2.1.

6.2.3 Vertex Smoothing

The second class of mesh improvement predicates investigated in this thesis is focused

on the geometric optimality of the underlying tessellation. Closely following an approach

rigorously developed by Freitag and Olivier-Gooch [13], Freitag and Knupp [12] and

Klinger and Shewchuk [19, 20], a set of locally optimal vertex positions can be constructed

via a local optimisation procedure. Given a set of vertex coordinates X ⊂ Rd and an

associated simplicial tessellation T(X), the position of any given vertex xi ∈ X can

be optimised with respect to its local element neighbourhood. The position of a given

vertex xi is considered to be locally optimal when the distribution of quality metrics in

the associated ‘patch’ Txi = {τ ∈ T | τ ∩ xi 6= ∅} adjacent to the vertex xi is maximised.

Consistent with the hill-climbing paradigm outlined previously, I seek a maximisation

of the worst-case quality metric in Txi in this work. Following conventional strategies,

the optimisation of all vertices xi ∈ X in a given tessellation is sought iteratively, by

incrementally applying the geometric optimisation algorithm in the neighbourhood of

each vertex in turn. Such a process is repeated until further improvements in mesh quality

are sufficiently small. Due to the incremental movement of vertex positions, geometrical

optimisation is often known as a vertex smoothing procedure. The full vertex smoothing

procedure is outlined in Algorithm 6.2.2.

6.2.3.1 Laplacian Smoothing

Arguably the simplest local geometric optimisation predicate is the well-known Laplacian

smoothing procedure [9]. Given a vertex xi ∈ X in a simplicial tessellation T(X), the

Laplacian smoothing operation follows a simple strategy – setting the vertex xi equal to

the centroid of the polyhedron formed by the set of its 1-ring vertex neighbours Xxi ⊆ X,
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Algorithm 6.2.2 Local Vertex Smoothing

1: function SmoothVertex(X, TX ,xi) . {update vertex position}
2: Evaluate initial vertex metric Qxi .
3: if (Qxi ≤ β) then
4: return OptimiserSmooth(X, TX ,xi).
5: else
6: return LaplacianSmooth(X, TX ,xi).
7: end if
8: end function

1: function LaplacianSmooth(X, TX ,xi) . {Laplacian update}
2: Form vertex update: x̃i =

(
1/|Xxi

|
) ∑|Xxi

|
j=1 xj .

3: Form projected update x̃′i using x̃i.

4: Evaluate updated vertex metric Q̃′xi
.

5: return (Q̃xi ≥ Qxi ).
6: end function

1: function OptimiserSmooth(X, TX ,xi) . {optimisation-based update}
2: while (Pass and i ≤Maxiter) do
3: Form gradient vectors gj(xi).
4: Form descent direction g̃.
5: Compute initial line-search step-size ∆0.
6: Pass = False.
7: while

(
(not Pass) and ∆k ≥ ∆min

)
do . {line-search}

8: Attempt vertex update x̃∗i = x̃ki + ∆k g̃.
9: Form projected update x̃′i using x̃∗i .

10: Evaluate updated vertex metric Q̃′xi
.

11: if (Q̃xi ≥ Qxi ) then
12: Pass = True.
13: end if
14: Bisect step-size ∆k+1 = 1

2
∆k. . {step-size reduction}

15: end while
16: Update iteration counter i = i+ 1.
17: end while
18: end function

such that:

x̃i =
1

|Xxi
|

|Xxi
|∑

j=1

xj (6.1)

The Laplacian smoothing operator acts to ‘smooth’ an initial vertex distribution in an

isotropic fashion, repositioning each vertex to the mean of its local neighbourhood. Such

an action is similar to the application of a conventional (differential) Laplacian operator,

giving rise to its name. Noting that the Laplacian smoothing update is not guaranteed to

improve worst-case element quality, a variation known as smart Laplacian-smoothing [11],

is employed in this thesis. Rather than simply accepting the updated vertex coordinate

x̃i directly, smart Laplacian smoothing is based on an evaluation of the change in local

quality metrics Qti(xi) for all elements ti ∈ Txi . Provided that a sufficient improvement

in local quality is achieved, the updated coordinate x̃i is accepted. For consistency with

the overall hill-climbing paradigm, I require that such updates improve the worst-case

quality metric. Laplacian smoothing can be used to improve the geometric quality of a

tessellation globally by simply iterating over its vertices one-by-one.
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6.2.3.2 Non-Smooth Optimisation

While Laplacian smoothing is known to be effective when the initial quality of the tessel-

lation is already reasonably high, it is typically less effective when attempting to improve

general tessellations, especially in the tetrahedral case. Freitag [11], along with contri-

butions from a number of other authors, including Olivier-Gooch [13], Knupp [12], and

Jones and Plassman [10], have developed several optimisation-based approaches for ver-

tex smoothing, designed to offer improved effectiveness and robustness. Considering the

optimisation of a single vertex position xi ∈ X, the task is to find the new position x̃i

that leads to a maximisation of the minimum quality metric in the surrounding 1-ring

neighbourhood Txi ⊆ T:

Qxi
= min(Qt1(xi),Qt2(xi), . . . ,Qtn(xi)) (6.2)

Even when the element-wise quality function Qti(xi) is sufficiently smooth (as is

the case for the area- and volume-length metrics used in this thesis), the action of the

min() operator implies that the vertex-based objective function Qxi
is inherently non-

smooth. Following closely the methods described by Freitag and Olivier-Gooch [13], I

use a non-smooth variant of the steepest descent technique to optimise (6.2). Firstly, any

element(s) associated with the minimum quality metric Qtk = Qxi
constitute an active-set

ATi
⊆ Txi

. At the k-th step of the optimisation procedure, we seek a vertex position xk+1
i

leading to an improvement in the vertex-centred metric Qk+1
xi

> Qkxi
. Improvements in Qxi

correspond to changes in the membership of the active-set ATi
. The search direction at

each step is calculated via the gradient directions gj(xi) = ∂/∂xi(Qtj (xi)) as the solution

of a local quadratic programming problem:

min(g̃Tg̃) where g̃ =
∑
j∈ATi

αjgj(xi) (6.3)

subject to
∑
j∈ATi

αj = 1, αj ∈ R+ (6.4)

Given a search vector g̃, an update for the vertex position is calculated, setting

x̃k+1
i = x̃ki + ∆ g̃, where ∆ is a scalar step-size, ∆ ∈ R+. An estimate for the step

length ∆ is computed using a first-order finite-difference approximation for the change

in element metrics:

Qj(xi + ∆) = Qj(xi) + ∆ g̃j(xi) (6.5)

Using this information, an estimate of the minimum ∆ for which there is a change

in membership in the active-set ATi is computed, and is used as an initial guess for

the line-search increment ∆0. The line-search proceeds, requiring that an improvement

in the vertex metric Qxi be realised for a given ∆k. A recursive bisection is invoked
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otherwise, setting ∆k+1 = 1
2∆k until a successful step-size is found. If instead the

maximum number of line-search iterations is exhausted, a failure is reported and local

optimisation is terminated. Contrary to the original work of Freitag et al. [10, 11, 13], or

the subsequent studies of Klinger and Shewchuk [19], I evaluate all gradients ∂/∂x(Qtj (xi))

numerically using second-order accurate finite-differences, ensuring that the step-size is

a small fraction of the minimum edge length adjacent to the vertex xi.

6.2.3.3 Constraints

Both the Laplacian- and optimisation-based geometric operators update the vertex co-

ordinates in full-dimensional space, and do not, as a result, enforce external constraints

on vertex movement. To ensure that the geometric constraints imposed by the geom-

etry of the domain are correctly satisfied, the vertex update strategies described above

are modified accordingly. In this thesis, I adopt a simple projection-based strategy, in

which the Laplacian- and optimisation-based vertex updates are modified by an addi-

tional projection step, in which pending updates are projected onto the closest segment

of their associated constraints. Three classes of constraint are supported in this study:

(i) corner constraints, (ii) curve-based constraints, and (iii) surface-based constraints.

The Laplacian- and optimisation-based vertex updates are modified to ensure that: (i)

any corner vertices remain fixed, (ii) any curve vertices are projected onto the curve, but

are allowed to ‘slide’ along its length, and (iii) any surface vertices are projected onto

the surface, but are allowed to ‘slide’ over its area. Given a constrained vertex xi ∈ X,

an unconstrained update x̃i is first calculated, based on either the Laplacian smoothing

or non-smooth optimisation predicates. A projected update x̃′i is then calculated and

the vertex-centred quality metric Q′xi
evaluated at this projected position. If there is an

improvement in the vertex-centred metric Q′xi
, the projected update x̃′i is accepted. Such

a method is equivalent to taking the component of the unconstrained update x̃i aligned

with the constraining curve/surface.

6.2.3.4 Combined Smoothing

While optimisation-based vertex updates are known to be significantly more effective

than Laplacian smoothing when attempting to improve the quality of the worst elements

in a given tessellation, they are also substantially more computationally expensive. To

ameliorate this extra cost, Freitag and Olivier-Gooch [11, 13] advocate for the use of a

hybrid combined smoothing process, in which some combination of Laplacian smoothing

and optimisation-based improvement are applied concurrently. In this thesis, I make

use of the ‘first-method’ of Freitag [11], where, given a vertex xi, I select the smoothing

scheme based on the initial value of the vertex-centred quality metric Qxi
. If Qxi

ex-

ceeds a user-defined smoothing threshold β, a Laplacian smoothing update is attempted.

Otherwise, if Qxi
≤ β, the optimisation-based method is used. Such a procedure is de-

signed to reserve the expensive optimisation-based updates for difficult vertices that are

not improved by the relatively cheap Laplacian smoothing operation. The smoothing

threshold β, ensures that optimisation-based updates are only attempted for vertices in
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Algorithm 6.2.3 Local Vertex Insertion

1: function RefineEdge(X, tj) . {longest edge refinement}
2: Find longest edge emax ∈ tj .
3: Form new Steiner vertex c = emid.
4: if (TestFlipEmid(X, tj , c)) then
5: Update X ← c. . {update vertices/topology}
6: Update T ← H′.
7: return True.
8: end if
9: end function

the neighbourhood of sufficiently low-quality elements.

6.2.4 Vertex Insertion

The final class of mesh improvement predicates investigated in this thesis are based on

a sequence of refinement templates, designed to improve local mesh quality through

the introduction of new Steiner vertices. The use of refinement in the context of mesh

improvement is an idea introduced by Klinger and Shewchuk [19, 20], where they focus

on the development of techniques for the improvement of tetrahedral meshes. Given a

low-quality element ti ∈ T, Klinger and Shewchuk seek to construct an optimal cavity

H ⊆ T for a new Steiner vertex c. Through a re-triangulation of the cavity H about

the new vertex c, an improvement in the local element quality metrics Qtj (x) is sought,

consistent with the discussions presented previously. In practice, this task is known to

be difficult. In general, it is not known how to efficiently compute either the position of

the vertex c, or the topology of the associated cavity H to guarantee a maximisation of

the worst-case metric min(Qtj (c)) for all tj in the re-triangulated cavity H′.

In light of these difficulties, Klinger and Shewchuk instead focus on the construction

of an effective heuristic scheme. In [20], they develop a composite refinement operation

for tetrahedral meshes. Given an element ti ∈ T marked for refinement, their composite

strategy performs a sequence of operations, in which: (i) a new Steiner vertex c is first

positioned about the circumcentre of ti, (ii) a pseudo-optimal star-shaped cavity H ⊆ T

is induced in the neighbourhood of tj via a greedy breath-first search of the underlying

adjacency graph, (iii) the cavity is re-triangulated, forming a new sub-mesh H′, and

(iv) a range of smoothing and topological improvement operations are attempted in the

neighbourhood of H′. This composite operation is accepted if there is an improvement

in the worst-case quality metrics Qtj (x) for all tj in the new sub-mesh H′. If no such

improvement is realised, the full sequence of operations associated with the operation

are unwound, via a roll-back mechanism. While Klinger and Shewchuk report that

such composite refinement operations are effective in practice, significantly improving

the quality of even very low-quality tessellations, they also note that such operations

impose significant computational costs – contributing as much as 90% of the total work

associated with their full mesh optimisation program [20].

In this thesis, I pursue a simpler and more cost effective strategy. Recall firstly that

the planar, surface and volumetric Frontal-Delaunay meshing algorithms presented in

Chapters 3, 4 and 5 are designed to guarantee the generation of high-quality tessella-
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tions with bounded radius-edge ratios ρ(τ). Given that the input is expected to be of

reasonable quality, I introduce a simple edge-centred refinement template. Following the

strategy of Klinger and Shewchuk described previously, given an edge e ∈ T marked for

refinement, the edge-refinement predicate attempts the following sequence of operations:

(i) a new Steiner vertex c ∈ e is selected, (ii) an associated star-shaped cavity H ⊆ T

is found, and (iii) the cavity is re-triangulated, forming the new sub-mesh H′. In this

work, I do not require that the cavity H be optimal, and simply select the set of ele-

ments in the 1-ring neighbourhood of the edge e. Consistent with the set of optimisation

predicates discussed previously, the edge-refinement predicate is successful if there is an

improvement in the worst-case quality metrics Qtj (x) for all tj in the new sub-mesh H′.

Based on practical experience with a range of mesh optimisation problems, it was

found that elements lying on the boundary of the tessellation containing a long edge were

often resistant to both the vertex smoothing and topological transformation predicates

introduced previously. These findings are consistent with those of Klinger and Shewchuk

in [20]. As a result, a simple edge-bisection refinement scheme is adopted in this work in

which the new Steiner vertex c ∈ e is positioned at the edge midpoint emid.

6.3 Mesh Improvement Framework

I assemble a new mesh optimisation franework, known as JITTERBUG, by combining the

various geometrical, topological and insertion-based optimisation predicates introduced

throughout Section 6.2. Existing mesh improvement algorithms typically consist of the

iterative application of a set of basic optimisation predicates according to a predefined

schedule. In the early work of Freitag and Olivier-Gooch [13], such optimisation schedules

were typically static, with the total mesh improvement procedure comprised of a fixed

sequence of operations. While this type of approach leads to the development of rela-

tively straightforward algorithms, it does not cater for the specific character of a given

tessellation. As a result, such methods are known to be guilty of performing either too

much or too little optimisation, leading to reductions in computational efficiency or sub-

optimal optimisation performance, respectively. In their tetrahedral mesh improvement

program STELLAR, Klinger and Shewchuk [19, 20] instead investigate the use of a dynamic

optimisation schedule, in which the application of specific local optimisation predicates

is adapted based on the convergence characteristics of the overall process. Such a strat-

egy has been shown to result in very high levels of optimisation performance for a wide

range of input meshes. Unfortunately, despite these successes, the STELLAR program is

known to be still very computational expensive in practice, often requiring some orders

of magnitude more computational effort to improve a mesh than was initially used to

generate it [20].

In this thesis, I develop an adaptive optimisation schedule, designed to incorporate the

flexibility and performance of the scheme previously introduced by Klinger and Shewchuk,

while also improving on its computational performance. Additionally, I focus on the

development of a general mesh improvement framework, catering to planar, surface and

volumetric tessellations, rather than supporting the optimisation of tetrahedral meshes
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Algorithm 6.3.1 Mesh Improvement Schedule

1: function ImproveMesh(X, T, γ)
2: Call OptimTopology(X, T). . {form locally optimal topology}
3: Initialise active vertex set AX ← X.
4: while (AX 6= ∅) do
5: for (all xi ∈ AX) do . {perform refinement pass}
6: Form 1-ring neighbourhood TX ← Ring(xi).
7: for (all ti ∈ TX) do
8: Call RefineEdge(X, ti).
9: end for

10: end for
11: Initialise QX ← ∅.
12: for (all xi ∈ AX) do . {perform smoothing pass}
13: Form 1-ring neighbourhood TX ← Ring(xi).
14: if (SmoothVertex(X, TX ,xi)) then
15: Call OptimTopology(X, TX).
16: Store active vertex QX ← xi.
17: end if
18: end for
19: Initialise AX ← ∅.
20: for (all xi ∈ QX) do . {update active vertex set}
21: Form local length measure ‖e‖.
22: if (∆xi ≥ γ ‖e‖) then
23: Update active set AX ← xi.
24: Inflate AX about xi.
25: end if
26: end for
27: end while
28: end function

1: function Ring(xi) . {assemble 1-ring neighbourhood}
2: return Ri = {τi ∈ T | τi

⋂
xi 6= ∅}

3: end function

only. The new framework is based on a priority-driven optimisation schedule, in which

optimisation is focused on the worst elements in the tessellation.

Given a simplicial tessellation T(X), the new mesh improvement algorithm first con-

structs a locally optimal topology T′ by applying the greedy topological optimisation

procedure outlined in Algorithm 6.2.1 exhaustively to all elements ti ∈ T. This topologi-

cal optimality is maintained as an invariant throughout the mesh improvement procedure.

Prior to the main iterative optimisation loop, all vertices xi ∈ X are initially added to

the ‘active’ set AX , marking them for optimisation. Within the main loop of the al-

gorithm, an initial refinement sweep is undertaken, in which all elements adjacent to

a vertex in the active set AX are considered for refinement-based optimisation, as per

the templates outlined in Section 6.2. Upon successful refinement, any new vertices are

pushed onto the active set AX . Following completion of the refinement sweep, a com-

bined geometrical/topological optimisation pass is initiated, updating all entities in the

neighbourhood of any vertex xi ∈ AX . The active set AX is traversed in-order. Given a

specific active vertex xi ∈ AX a vertex smoothing operation is first attempted, accord-

ing to the local geometrical optimisation process outlined in Section 6.2. If the vertex

smoothing is successful, it is immediately followed by a topological operation, in which

the greedy local topological optimisation procedure described in Section 6.2 is initiated

from the set of elements Txi = {ti ∈ T | ti ∩ xi 6= ∅} adjacent to the vertex xi. Such a
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process ensures that the tessellation remains locally topologically optimal following any

geometrical updates to the vertex positions. Any vertices that are successfully smoothed

are pushed onto a linear queue QX ← xi.

Following the application of the optimisation predicates, the active vertex set AX is

re-calculated for the next outer iteration. All vertices xi ∈ QX are considered, and are

pushed onto the active set AX if their movement over the current iteration is sufficiently

large, such that ∆xi ≥ γ ‖e‖, where ‖e‖ is a measure of mean edge length adjacent to the

vertex xi and γ is a user-specified tolerance. Such a constraint acts to remove vertices

from subsequent outer iterations as approach a converged state. Scaling the movement

threshold based on a measure of mean adjacent edge length ‖e‖ ensures that the con-

vergence criteria is tailored to the local distribution of mesh size in the neighbourhood

of each vertex. Following the initial allocation of vertices onto the active set, AX is in-

flated to also include any vertices in the 1-ring neighbourhood of those already present.

Such an operation achieves a degree of adaptivity in the mesh improvement program,

allowing vertices that have previously become inactive to be placed back onto the active

set AX , as a result of movement within their local neighbourhood. Importantly, such

an adaptive strategy seeks to minimise computational expense by attempting to only

optimise about unconverged subsets of the tessellation. The mesh improvement program

terminates when the active set AX becomes empty. The full algorithm is summarised in

Algorithm 6.3.1.

6.4 Improvement of Planar Meshes

The performance of the new mesh optimisation framework JITTERBUG for planar mesh

improvement was investigated experimentally, being used to optimise a variety of planar

meshes generated using the Frontal-Delaunay mesh generator presented in Chapter 3.

Ten benchmark problems of varying size and complexity were tested, with problems

covering a range of application areas, including geospatial processing, computational

fluid dynamics, and solution adaptive meshing. Both unoptimised and optimised meshes

for each test case are shown in Figure 6.4, in which elements are coloured according

to shape quality. Specifically, elements with plane-angles satisfying θ(τ) < 12.50◦ and

θ(τ) > 155.0◦ are shaded red, those with plane-angles satisfying 12.50◦ ≤ θ(τ) < 25.00◦

or 130.0◦ ≤ θ(τ) < 155.0◦ are shaded yellow, and those with plane-angles satisfying

25.00◦ ≤ θ(τ) < 37.50◦ or 105.0◦ ≤ θ(τ) < 130.0◦ are shaded green. Gray elements

are of better quality. Additionally, histograms of element area-length a(τ) and plane-

angle θ(τ) measures are shown in each case, indicating mean and minimum area-length

ratios a(τ), a(τ)min, and minimum and maximum plane angle bounds θ(τ)min, θ(τ)max.

Note that a number of test-cases include small acute angles, seen as outlying θ(τ)min or

θ(τ)max values. The optimisation runs were completed using a vertex movement tolerance

γ = 1× 10−3 and a vertex smoothing threshold β = 0.9. The planar mesh improvement

program was implemented in C++ and compiled as a 64-bit executable.

Analysis of Figure 6.4 shows that the new JITTERBUG optimisation program is effective

in practice, significantly improving the quality of all meshes in the test set. Specifically,
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Figure 6.4: Planar optimisation results for the airfoil and lake meshes. Columns show un-
optimised input (left) and optimised output (right). Optimisation was performed using a con-
vergence tolerance γ = 1 × 10−3 and a smoothing threshold β = 0.9. Elements are coloured
according to the local distribution of plane-angles θ(τ), with elements satisfying θ(τ) < 12.50◦

and θ(τ) > 155.0◦ shaded red, those satisfying 12.50◦ ≤ θ(τ) < 25.00◦ or 130.0◦ ≤ θ(τ) < 155.0◦

shaded yellow, and those satisfying 25.00◦ ≤ θ(τ) < 37.50◦ or 105.0◦ ≤ θ(τ) < 130.0◦ shaded
green. Gray elements are of better quality. Normalised histograms of element area-length a(τ)
and element plane angle θ(τ) are also included, in addition to statistics for the total runtime
t(s) and required outer-iterations for the optimisation program.
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Figure 6.5: Continuation of Figure 6.4, showing comparative results for the newzealand,
coastline and islands test problems.
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Figure 6.6: Continuation of Figure 6.4, showing comparative results for the australia, green-
land and river test problems.
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Figure 6.7: Continuation of Figure 6.4, showing comparative results for the cavity and cylin-
der test problems.
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the mean element area-length ratios a(τ) are seen to improve for all test cases, while

the minimum are-length ratio a(τ)min are noted to improve for all tests without small

constraining angles in the geometry. The optimisation process is seen to alter the shape

of the θ(τ) distribution significantly in all test cases, with a general ‘fattening’ typically

observed due to the improvement in the shape of elements initially containing small or

large plane angles. In some cases, such as the airfoil, cavity and cylinder problems,

the minimum and maximum plane angles, θ(τ)min and θ(τ)max, are seen to improve be-

yond the maximum theoretical levels achievable using refinement-based mesh generation

alone. Note also that the optimisation procedure is seen to significantly reduce the per-

centage of low quality elements (elements coloured red, yellow or green) present in the

optimised meshes.

Despite generally impressive optimisation performance, note that a slight reduction

in θ(τ)min is observed for the river test case. Initially, this behaviour may appear to
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violate the hill-climbing nature of the optimisation strategy, but it must be remembered

that it is the element area-length ratios a(τ) and not the plane angle measures θ(τ) used

to drive the optimisation. Noting that the element area-length a(τ) and plane angle

θ(τ) measures are related in a non-linear fashion, it is clear that a monotonic increase

in a(τ) is not necessarily accompanied by similar behaviour in θ(τ). In practice, such

occurrences appear to be rare, with an optimisation of a(τ) leading to improvements in

the distribution of θ(τ) in all other cases. In the river benchmark specifically, note that

a significant improvement in a(τ)min is still accomplished via the optimisation process.

Analysis of the optimisation runtime and iteration counts included in Figure 6.4 show

that the new planar mesh improvement framework is efficient in practice. Comparisons

of the run-times with those of the Frontal-Delaunay mesh generator used to create the

initial unoptimised tessellations show that the optimisation process is typically a factor of

2–3 times slower. Such performance is roughly consistent across the full set of problems

in the test set. These results suggest that, consistent with the underlying Delaunay-based

meshing program, the planar mesh optimiser appears to achieve pseudo-linear scaling in

practice, confirming that such a method is appropriate for large-scale problems. In this

study, it is shown that complex test problems containing 100,000’s of elements can be

meshed and optimised in a matter of seconds.

6.5 Improvement of Surface Meshes

The performance of the new mesh optimisation framework JITTERBUG for the opti-

misation of surface tessellations was investigated experimentally, being used to opti-

mise a variety of surface meshes generated using the Frontal-Delaunay mesh genera-

tor presented in Chapter 4. Fifteen benchmark problems of varying size and complex-

ity were tested, with problems covering a range of application areas, including com-

puter graphics, computational engineering, and medical imaging. Both unoptimised and

optimised meshes for each test case are shown in Figure 6.8, in which elements are

coloured according to shape quality. Specifically, elements with plane-angles satisfying

θ(f) < 12.50◦ and θ(f) > 155.0◦ are shaded red, those satisfying 12.50◦ ≤ θ(f) < 25.00◦

or 130.0◦ ≤ θ(f) < 155.0◦ are shaded yellow, and those satisfying 25.00◦ ≤ θ(f) < 37.50◦

or 105.0◦ ≤ θ(f) < 130.0◦ are shaded green. Gray elements are of better quality. Ad-

ditionally, histograms of element area-length a(f) and plane angle θ(f) measures are

shown in each case, indicating mean and minimum area-length ratios a(f), a(f)min, and

minimum and maximum plane angle bounds θ(f)min, θ(f)max. The optimisation runs

were completed using a vertex movement tolerance γ = 1×10−3 and a vertex smoothing

threshold β = 0.9. The surface mesh improvement program was implemented in C++

and compiled as a 64-bit executable.

Analysis of Figure 6.8 shows that the new surface mesh improvement program is

effective in practice, significantly improving the quality of all meshes in the test set.

Specifically, both the mean and minimum element area-length ratios a(f) are seen to

improve for all test cases. The optimisation process is also seen to alter the shape of

the θ(f) distribution significantly in all test cases, with a general ‘fattening’ typically
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Figure 6.8: Surface optimisation results for the sphere and ellipsoid meshes. Columns show
unoptimised input (centre) and optimised output (right). Optimisation was performed using a
convergence tolerance γ = 1× 10−3 and a smoothing threshold β = 0.9. Elements are coloured
according to the distribution of plane-angles θ(f), with those elements satisfying θ(f) < 12.50◦

and θ(f) > 155.0◦ coloured red, those elements satisfying 12.50◦ ≤ θ(f) < 25.00◦ or 130.0◦ ≤
θ(f) < 155.0◦ coloured yellow, and those elements satisfying 25.00◦ ≤ θ(f) < 37.50◦ or 105.0◦ ≤
θ(f) < 130.0◦ coloured green. Gray elements are of better quality. Normalised histograms of
element area-length a(f) and element plane angle θ(f) are also included, in addition to statistics
for the total runtime t(s) and required outer-iterations for the optimisation program.
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Figure 6.9: Continuation of Figure 6.8, showing comparative results for the femur, hip and
vertebra test problems.
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Figure 6.10: Continuation of Figure 6.8, showing comparative results for the blade, rocker
and woodthinker test problems.
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Figure 6.11: Continuation of Figure 6.8, showing comparative results for the hand, spiral 1
and spiral 2 test problems.
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Figure 6.12: Continuation of Figure 6.8, showing comparative results for the bunny, bimba and
venus test problems.
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Figure 6.13: Continuation of Figure 6.8, showing comparative results for the dinosaur test
problem.
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observed due to the improvement in the shape of elements initially containing small or

large plane angles. In some cases, such as the sphere, ellipsoid, femur, blade and

spiral problems, the minimum and maximum plane angles, θ(f)min and θ(f)max, are

seen to improve beyond the maximum theoretical levels achievable using refinement-based

mesh generation alone. Note also that the optimisation procedure is seen to significantly

reduce the percentage of low quality elements (elements coloured red, yellow or green)

in the final optimised meshes.

Consistent with the behaviour of the planar mesh improvement program, despite

generally impressive optimisation performance, a slight reduction in θ(f)min is observed

for a number of test-cases, including the hip, vertebra, hand, bunny, bimba, venus

and dinosaur problems. As per the discussions presented previously concerning the

planar case, this behaviour does not, in fact, violate the hill-climbing nature of the opti-

misation strategy, but is instead due to the non-linear relationship between the element

area-length a(f) and plane angle θ(f) measures. Inspection of the resulting distributions

confirm that the minimum element area-length ratio is increased for all test problems in

the set. While an optimisation of a(f) is seen to improve the distribution of θ(f) in the

majority of cases, compared to the planar optimisation results presented previously, slight

reductions in θ(f)min appears to be a more prevalent occurrence. The mechanism for this

behaviour is not currently understood. Regardless of slight reductions in θ(f)min, the

surface optimisation procedure is found to result in a significant improvement in a(f)min

in all cases.

Analysis of the optimisation runtime and iteration counts included in Figure 6.8 show

that the new surface mesh improvement framework is efficient in practice. Comparisons

of the run-times with those of the Frontal-Delaunay mesh generator used to create the

initial unoptimised tessellations show that the optimisation process is typically a factor of

3–4 times faster. Such performance is roughly consistent across the full set of problems in
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the test set. These results suggest that, consistent with the underlying Delaunay-based

meshing program, the surface mesh optimiser appears to achieve pseudo-linear scaling in

practice, confirming that such a method is appropriate for large-scale problems. In this

study, it is shown that complex test problems containing 100,000’s of elements can be

meshed and optimised in a matter of seconds.

6.6 Improvement of Tetrahedral Meshes

The performance of the new mesh optimisation framework JITTERBUG for the optimisa-

tion of volumetric tessellations was investigated experimentally, being used to optimise

a variety of volumetric meshes generated using the Frontal-Delaunay mesh generator

presented in Chapter 5 in addition to examples from external sources. Twenty-seven

benchmark problems of varying size and complexity were tested, with problems covering

a range of application areas, including computer graphics, computational engineering,

and medical imaging. Both unoptimised and optimised meshes for each test case are

shown in Figures 6.14 and 6.20 in which elements are coloured according to shape qual-

ity. Specifically, elements with dihedral-angles satisfing θ(τ) < 10.00◦ and θ(τ) > 160.0◦

are shaded red, those satisfying 10.00◦ ≤ θ(τ) < 20.00◦ or 140.0◦ ≤ θ(τ) < 160.0◦ are

shaded yellow, and those satisfying 20.00◦ ≤ θ(τ) < 30.00◦ or 120.0◦ ≤ θ(τ) < 140.0◦ are

shaded green. Gray elements are of better quality. Additionally, histograms of element

volume-length v(τ) and dihedral angle θ(τ) measures are shown in each case, indicating

mean and minimum volume-length ratios v(τ), v(τ)min, and minimum and maximum

dihedral angle bounds θ(τ)min, θ(τ)max. Due to the difficulty associated with the opti-

misation of tetrahedral tessellations, the new mesh improvement strategy developed in

this thesis was compared with the existing STELLAR optimisation package of Klinger and

Shewchuk [19, 20]. Equivalent results generated using the STELLAR package are included

in Figures 6.14 and 6.20. Note also that twelve of the benchmark problems investigated

here are taken from the STELLAR verification set directly. The optimisation runs were

completed using a vertex movement tolerance γ = 1 × 10−3 and a vertex smoothing

threshold β = 0.7. The volumetric mesh improvement program was implemented in C++

and compiled as a 64-bit executable. The STELLAR program was set to use the element

volume-length ratios as its objective function, and was run with default settings other-

wise.

Analysis of Figures 6.14 and 6.20 show that the new volumetric mesh improvement

program is effective in practice, significantly improving the quality of all meshes in the

test sets. The STELLAR package is also seen to produce similar results in the majority

of cases, with a few important exceptions. Focusing firstly on the test cases included

in Figure 6.14, generated using the Frontal-Delaunay meshing program developed in

Chapter 5, it is seen that both optimisation frameworks are typically successful in (i)

removing the multitude of low quality sliver elements present in the initial meshes, (ii)

improving both the minimum and mean volume-length ratios v(τ)min, v(τ), and (iii)

dramatically improving the distribution of element dihedral angles θ(τ). Overall, the

new optimisation framework compares favourably to the STELLAR package on this first
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Figure 6.14: Volumetric optimisation results for the sphere and ellipsoid meshes. Columns
show the unoptimised input (left), results due to the new JITTERBUG library developed in the
present study (middle) and results due to the STELLAR program (right). Optimisation was
performed using a convergence tolerance γ = 1 × 10−3 and a smoothing threshold β = 0.7.
Elements are coloured according to the distribution of dihedral-angles θ(τ), with elements sat-
isfying θ(τ) < 10.00◦ and θ(τ) > 160.0◦ shaded red, those satisfying 10.00◦ ≤ θ(τ) < 20.00◦

or 140.0◦ ≤ θ(τ) < 160.0◦ shaded yellow, and those satisfying 20.00◦ ≤ θ(τ) < 30.00◦ or
120.0◦ ≤ θ(τ) < 140.0◦ shaded green. Gray elements are of better quality. Normalised his-
tograms of element volume-length v(τ) and element dihedral angle θ(τ) are also included, in
addition to statistics for the total runtime t(s) and required outer-iterations for both optimisa-
tion programs.
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Figure 6.15: Continuation of Figure 6.14, showing comparative results for the femur, hip and
vertebra test problems.
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Figure 6.16: Continuation of Figure 6.14, showing comparative results for the blade, rocker
and woodthinker test problems.
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Figure 6.17: Continuation of Figure 6.14, showing comparative results for the hand, spiral 1
and spiral 2 test problems.
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Figure 6.18: Continuation of Figure 6.14, showing comparative results for the bunny, bimba
and venus test problems.
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Figure 6.19: Continuation of Figure 6.14, showing comparative results for the dinosaur test
problem.
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set of benchmark problems in terms of optimisation quality, with the STELLAR program

producing sub-optimal output for the rocker, woodthinker, bunny, bimba and di-

nosaur problems. It is unclear why such a degradation in the performance of STELLAR

is observed for these test cases, although it is noted that STELLAR often appears to exit

early for these problems, performing significantly fewer iterations compared to other test-

cases. For all other problems, the performance of the two packages is comparable, with

worst case element dihedral angles improved to the range 20◦ ≤ θ(τ) ≤ 140◦. Consistent

with the original findings of Klinger and Shewchuk [20], it is seen that both optimisation

programs achieve best case results in which the dihedral angle distribution is restricted

to the range 30◦ ≤ θ(τ) ≤ 120◦, or better.

Analysis of the test-cases included in Figure 6.20 – provided as verification examples

for the STELLAR package – leads to slightly different conclusions. Consistent with previous

results, it is observed that both optimisation packages are successful in improving both

the volume-length v(τ) and dihedral angle θ(τ) distributions for all problems, ensuring

that low-quality sliver elements are removed from the optimised output. A more detailed

analysis shows that the relative performance of the two optimisation packages is reversed

within this second set of benchmark problems, with the STELLAR program producing

better results for a range of individual test cases. While the optimisation framework

proposed in this thesis is still reasonably successful across the full set of test cases, it

does not always produce output in which the extreme dihedral angle values θ(τ)min

and θ(τ)max are improved to the same level as that achieved by the STELLAR program.

Specifically, it is noted that significant performance discrepancies exist when the quality

of the initial tessellation is very low, as illustrated by the results for the tire, tfire,

rand1, rand2, P and house2 problems. It is expected that the STELLAR package

benefits from its sophisticated set of vertex insertion-based optimisation predicates in

these cases.
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Figure 6.20: Volumetric optimisation results for test cases introduced by Klinger and Shewchuk,
showing the cube1k and cube10k meshes. Columns show the unoptimised input (left), results
due to the new JITTERBUG library developed in the present study (middle) and results due
to the STELLAR program (right). Optimisation was performed using a convergence tolerance
γ = 1 × 10−3 and a smoothing threshold β = 0.7. Elements are coloured according to the
distribution of dihedral-angles θ(τ), with elements satisfying θ(τ) < 10.00◦ and θ(τ) > 160.0◦

shaded red, those satisfying 10.00◦ ≤ θ(τ) < 20.00◦ or 140.0◦ ≤ θ(τ) < 160.0◦ shaded yellow,
and those satisfying 20.00◦ ≤ θ(τ) < 30.00◦ or 120.0◦ ≤ θ(τ) < 140.0◦ shaded green. Gray
elements are of better quality. Normalised histograms of element volume-length v(τ) and element
dihedral angle θ(τ) are also included, in addition to statistics for the total runtime t(s) and
required outer-iterations for both optimisation programs.
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Figure 6.21: Continuation of Figure 6.20, showing comparative results for the tfire, tire and
rand 1 test problems.
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Figure 6.22: Continuation of Figure 6.20, showing comparative results for the rand 2, dragon
and cow test problems.
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Figure 6.23: Continuation of Figure 6.20, showing comparative results for the P, St gallen
and house test problems.
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Figure 6.24: Continuation of Figure 6.20, showing comparative results for the staypuft test
problems.
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In addition to optimisation quality, an analysis of the program run-times and iteration

counts reveal significant differences in performance. Across all test problems, except for

the rand benchmarks, it can be seen that the STELLAR program is significantly slower

than the new method proposed in this thesis, with the total runtime of the STELLAR

package often as much as an order of magnitude larger. The STELLAR package was fastest

only for the rand test cases, where it produced significantly smaller tessellations. Noting

that the run-times associated with STELLAR are typically large – measuring several hours

for the large test problems studied – an order of magnitude decrease in computational cost

represents an important improvement in the practicality of large-scale mesh optimisation.

In addition to run-time metrics, it can be seen that the convergence of STELLAR appears

to be somewhat erratic, with large differences in the required number of iterations-to-

convergence observed between test cases.

6.6.1 Impact of Optimisation Features

Due to the difficulties associated with tetrahedral mesh optimisation, a detailed study of

the effectiveness of the various mesh optimisation predicates is presented in Figures 6.25

and 6.27 for the bunny and venus test cases.

6.6.1.1 Optimisation Predicates

In Figure 6.25, the effect of the various topological-, smoothing- and refinement-based

predicates is assessed, with both test-cases run using a combination of active and in-active

optimisation predicates. Overall, similar behaviour was recorded for both the bunny and

venus test-cases. Firstly, it can be seen that the application of topological transformation

alone was effective in removing low-quality sliver elements from the tessellations, with

the worst-case dihedral angles improved such that 15◦ ≤ θ(τ) ≤ 155◦ for both test-cases.

Noting that the initial mesh topology was fully Delaunay in both cases, these results
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Figure 6.25: Volumetric optimisation feature study for the bunny mesh, illustrating the effect
of various combinations of vertex smoothing, topological transformation and vertex insertion
operations. Elements are coloured according to shape-quality, consistent with previous figures.
Normalised histograms of element volume-length v(τ) (left) and dihedral angle θ(τ) (right)
metrics are also shown.
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Figure 6.26: Volumetric optimisation feature study for the venus mesh, illustrating the effect
of various combinations of vertex smoothing, topological transformation and vertex insertion
operations. Elements are coloured according to shape-quality, consistent with previous figures.
Normalised histograms of element volume-length v(τ) (left) and dihedral angle θ(τ) (right)
metrics are also shown.
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reinforce the importance of seeking optimal, non-Delaunay topologies for tetrahedral

meshing problems. Based on the success of topology-only optimisation methods, the

development of enhanced topological transformations is clearly an interesting avenue for

future investigation.

Conversely, the application of vertex-smoothing operations alone is shown to preserve

many low-quality sliver elements, though it can also be seen that an improvement in the

shape of the angle distributions is achieved. The combination of vertex-smoothing and

topological optimisation clearly leads to a significant improvement in all quality metrics,

easily outperforming either of the topology-only or smoothing-only configurations. Fi-

nally, the introduction of edge-refinement operations is shown to slightly improve mesh

quality. It is expected that the use of more sophisticated vertex-insertion schemes, such

as those suggested by Klinger and Shewchuk [19, 20], may significantly improve the

effectiveness of insertion-based optimisation.

6.6.1.2 Vertex Smoothing Threshold

In Figure 6.27, the effect of the combined vertex smoothing operation is assessed. Firstly,

recall that the vertex optimisation predicate introduced in Section 6.2.3 is a hybrid pro-

cedure, using a simple Laplacian-smoothing update when the local mesh quality is suffi-

ciently high and an update based on local non-smooth optimisation otherwise. Specifi-

cally, the vertex-centred quality metric Qxi
= min(Qtj (x)) is required to exceed a user-

specified threshold β to invoke a Laplacian-smoothing-based update. Considering again

the bunny and venus benchmark problems in detail, the effect of varying the threshold

β over the range [1/2, 1] is investigated in Figure 6.27. Other than the variation in β, the

full optimisation schedule, incorporating the various topological transformation, vertex

smoothing and edge-refinement predicates is used. Results for both benchmark problems

show similar trends. An analysis of Figure 6.27 shows that firstly, as expected, mesh

quality is typically improved with increasing β, with the proportion of vertex updates

due to the optimal non-smooth optimisation process increased accordingly. Despite these

improvements, it is also clear that beyond β ' 0.7 there is little improvement in either

the minimum volume length metrics or the worst-case dihedral angles. Importantly, it is

also noted that for β ≥ 0.7 there is a corresponding reduction in the mean volume-length

metrics. For both test-cases, it can be seen that v(τ) approaches ' 0.8 as β → 1.

These results demonstrate that, contrary to planar and surface triangulations, it is

typically very difficult to construct high quality tetrahedral tilings for general volumetric

domains. Eppstein, Sullivan, and Üngör [8] have shown that even for simple slab-like

configurations it is difficult to construct tessellations for which all elements exhibit both

good angle distributions and good size regularity. As a result, it is expected that for

higher values of β there is a reduction in v(τ) as high-quality elements are ‘sacrificed’ to

improve the minimum quality elements. Lastly, recalling that a worst-first vertex metric

Qxi = min(Qtj (x)) is used in this work, I note that alternate ‘mean’ metrics, such as

the Centroidal-Voronoi [1, 7] or Optimal-Delaunay [3, 4, 5] formulations, may lead to

improvements in mean mesh quality in some cases [5]. Note that such improvements in

the mean measures are often achieved at the expense of the worst-case elements in the
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Figure 6.27: Volumetric optimisation threshold study for the bunny mesh, illustrating the effect
of the vertex smoothing threshold, β, on mesh quality. Elements are coloured according to shape-
quality, consistent with previous figures. Normalised histograms of element volume-length v(τ)
(left) and dihedral angle θ(τ) (right) metrics are also shown.
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Figure 6.28: Volumetric optimisation threshold study for the venus mesh, illustrating the effect
of the vertex smoothing threshold, β, on mesh quality. Elements are coloured according to shape-
quality, consistent with previous figures. Normalised histograms of element volume-length v(τ)
(left) and dihedral angle θ(τ) (right) metrics are also shown.
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tessellation.

6.7 Conclusions

In this chapter, I have presented a new mesh improvement framework for the optimisa-

tion of planar, surface and volumetric simplicial tessellations. The mesh improvement

program is based on a local ‘hill-climbing’ optimisation paradigm, and relies on a series of

geometric, topological and refinement-based operations. Building on the previous work

of Freitag and Olivier-Gooch [13] and Klinger and Shewchuk [20], I have presented a

detailed description of the various optimisation predicates and have outlined the manner

in which they are interleaved to form a full optimisation schedule. I have proposed a

new priority-driven strategy, in which optimisation is targeted at the worst entities in

the mesh at each iteration. Specifically, I have shown that by restricting the various

optimisation predicates to neighbourhoods adjacent to an active-set of vertices, the new

optimisation program can achieve a significant reduction in total computational effort

while maintaining very high levels of optimisation quality. A series of comparative exper-

imental studies have confirmed the effectiveness of the new mesh improvement program

in practice, with high-quality results achieved for a variety of planar, surface and volu-

metric test cases. Due to the difficulties associated with the improvement of tetrahedral

meshes, a set of detailed comparisons were made with the STELLAR optimisation pro-

gram of Klinger and Shewchuk [19, 20]. A comparative analysis showed, firstly, that

for relatively high-quality input, both optimisation programs typically generated similar,

and very high-quality output. When applied to low-quality input, the STELLAR package

was found to often outperform the proposed method. Across all benchmark problems

the proposed optimisation program was found be faster than the existing package, often

outperforming STELLAR by an order of magnitude or more. Results show that, given

output from the Frontal-Delaunay or Delaunay-refinement meshing algorithms presented

in previous chapters, the new mesh optimisation program generates very high-quality

output at low computational expense.

A number of avenues for future investigation have also been identified, including: (i)

the search for enhanced topological transformations for tetrahedral complexes, (ii) the

development of improved refinement-based insertion predicates, following the formulation

presented by Klinger and Shewchuk [20], and (iii) the investigation of alternate vertex-

centred quality metrics for smoothing operations, designed to improve mean mesh quality.

Significant opportunities also exist to explore the application of the existing optimisation

strategy to non-simplicial mesh types, such as mixed quadrilateral- and hexahedral-based

tessellations.
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Chapter 7

Conclusions

In this thesis, I have developed a range of methods designed to generate high-quality

unstructured simplicial tessellations for domains in R2 and R3, including techniques

that target the various planar, surface and volumetric problems typically encountered in

practical computational modelling and simulation tasks. Expanding on previous work fo-

cused on the development of meshing algorithms deriving from the Delaunay-refinement

paradigm, I have introduced a new set of Frontal-Delaunay meshing techniques that

typically outperform existing methods in terms of both practical performance and theo-

retical robustness. Additionally, I have developed a new, computationally efficient mesh

improvement framework designed to optimise the quality of existing triangular and tetra-

hedral meshes. When used in concert, these new mesh generation and mesh improvement

algorithms constitute a complete meshing solution – able to create high-quality unstruc-

tured tessellations suitable for subsequent numerical simulation and modelling studies.

In addition to a full theoretical exposition of the various theorems and algorithms intro-

duced, I provide high-quality implementations of the new mesh generation and optimisa-

tion schemes in the JIGSAW and JITTERBUG packages, respectively. An extensive series of

experimental studies have been used to confirm both the robustness and effectiveness of

these new techniques in practice, verifying that the new algorithms are typically at least

competitive, and are often found to outperform various existing state-of-the-art meshing

techniques.

7.1 Frontal-Delaunay Mesh Generation

I have developed and implemented a number of algorithms for the construction of simpli-

cial meshes based on a new Frontal-Delaunay paradigm – a hybridisation of conventional

Delaunay-refinement and advancing-front techniques. The key contribution in this work

is a generalisation of the point-placement strategy used when refining elements in a con-

ventional Delaunay-refinement algorithm. Rather than forcing new Steiner points to lie

at the element circumcentres only, as per conventional techniques, I have shown that

a careful positioning of new vertices along the adjacent faces of the associated Voronoi

complex can lead to a significant improvement in mesh quality, while simultaneously
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maintaining the theoretical robustness associated with conventional circumcentre-based

strategies. Specifically, I have shown that a new class of size-optimal Voronoi-centred

refinement methods typically lead to substantial improvements in mesh shape-quality

and structure when element size constraints are imposed. I have also demonstrated

that these new techniques maintain existing bounds on element radius-edge ratios and

surface discretisation errors. For planar cases, this new strategy is similar to the meth-

ods introduced by Rebay [18] and Üngör [20], though I am not aware of any previous

generalisations to either surface or volumetric meshing problems.

While the new Voronoi-centred refinement algorithms follow the structure of a con-

ventional Delaunay-refinement strategy, the nature of the new point-placement scheme

shares many similarities with advancing-front algorithms, with both methods incremen-

tally introducing new vertices about an existing set of frontal faces. Like advancing-front

techniques, but contrary to the behaviour of conventional Delaunay-refinement meth-

ods, I have shown that the quality of meshes generated using the new Voronoi-centred

Frontal-Delaunay algorithms improves with decreasing mesh size. Such behaviour is an

important consideration for a range of numerical modelling and simulation applications,

such as some problems in computational fluid dynamics and structural analysis that re-

quire very high mesh quality in locally aligned regions such as boundary layers. It is

hoped that the combination of high element quality and theoretical robustness offered

by the new Frontal-Delaunay techniques are of benefit to such fields.

7.2 Mesh Optimisation

I have developed and implemented a new mesh improvement framework for the optimisa-

tion of existing simplicial tessellations. The new optimisation programs are an evolution

of previous work by Freitag and Olivier-Gooch [6] and Klinger and Shewchuk [9], and

are designed to improve isotropic measures of element shape-quality via a combination of

local topological, geometrical and refinement-based optimisation predicates. The main

contribution in this thesis is the use of a new priority-driven optimisation schedule, in

which computational work is minimised by concentrating optimisation effort on a local

subset of mesh entities that are amenable to further improvement. Specifically, I have

shown that by tracking and updating a set of active vertices throughout the optimisation

procedure, the application of local optimisation predicates can be restricted to a narrow

neighbourhood adjacent to vertices that have not yet reached a converged state. This

approach has been shown to achieve a significant reduction in total computational effort

while maintaining very high levels of optimisation quality.

A series of comparative experimental studies have confirmed the effectiveness of the

new mesh improvement framework in practice, with high-quality results achieved for

a variety of planar, surface and volumetric test cases. Additionally, a set of detailed

comparisons were made with the stellar package, a state-of-the-art optimisation pro-

gram due to Klinger and Shewchuk [8, 9]. A comparative analysis showed that while the

stellar program produced slightly better output for a series of pathological examples,

the new mesh improvement framework offered competitive optimisation performance at
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greatly reduced computational expense for the majority of test cases examined. The

performance of the new optimisation programs were found to be excellent when ap-

plied to meshes generated using the new Frontal-Delaunay algorithms developed in this

thesis. The generation of high-quality tetrahedral meshes with bounded dihedral angle

distributions has been an ongoing issue for various types of three-dimensional numer-

ical simulation and modelling studies, and it is hoped that the new tetrahedral mesh

optimisation program will be especially useful in these areas.

7.3 Topics for Future Investigation

Mesh generation is a broad and evolving area of research. Considering the ever increasing

sophistication of associated methods in numerical modelling and simulation, computer

graphics, animation and data analysis, it is necessary to continually pursue innovative

developments in order to maintain pace. The topics included below are extensions of

the methods presented in this thesis to new or evolving trends in the computational

modelling community:

• Parallel mesh generation and smoothing. While the Delaunay-refinement and

Frontal-Delaunay techniques presented in this thesis achieve optimal O(n log(n)) algo-

rithmic performance, additional efficiency may be pursued through the development

of parallel meshing techniques, in which the computational burden is distributed be-

tween multiple processing units. Specifically, a number of authors, including Pirzadeh

and Zagaris [17] and Linardakis and Chrisochoides [12, 13] have recently shown that

domain-decomposition type approaches can be used to construct efficient parallel al-

gorithms. An experimental implementation, based on a balanced decomposition of a

coarse and weighted Delaunay tessellation of the bounding geometry, has been found

to produce encouraging levels of parallel speed-up in a multi-threaded environment.

• Enhanced Voronoi-centred refinement schemes. It may be possible to further

generalise the Voronoi-based point-placement schemes developed in this thesis to incor-

porate additional flexibility and constraints. Specifically, in the context of planar mesh

generation, Erten and Üngör [4] have recently shown that substantial improvements in

element quality can be achieved by using a set of generalised off-centre Steiner points,

positioned at non-adjacent locations on the underlying Voronoi diagram. Additionally,

Chernikov and Chrisochoides [2] have recently expanded upon a scheme originally due

to Chew [3], and have shown that the introduction of a distributed picking-region for

Steiner vertices in the local neighbourhood of element circumcentres can be used to

limit the creation of low-quality sliver elements in tetrahedral Delaunay-refinement

schemes.

• Locally optimal tetrahedral mesh generation. Despite provably-good behaviour

for planar and surface-based triangulations in R2 and R3, it is known that the topology

of the Delaunay tessellation is sub-optimal for higher-dimensional problems, including

the tetrahedral case in R3. Rather than accepting the low-quality sliver elements as-

sociated with tetrahedral Delaunay-refinement or Frontal-Delaunay schemes, it may
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instead be possible to pursue the development of locally optimal non-Delaunay mesh-

ing techniques, based on the topological transformations introduced in Chapter 6 in

the context of mesh optimisation. Methods based on such an approach may share sim-

ilarities with the local-reconnection algorithms of Marcum and Weatherill [15]. While

such methods may indeed achieve improved performance in practice, it is expected

that such behaviour may come at the expense of theoretical robustness and provable

guarantees.

• Anisotropic mesh generation and smoothing. The behaviour of physical phe-

nomena is often highly anisotropic and it is therefore sensible to incorporate such

anisotropy into the underlying numerical models and simulations used to study such

behaviour. Such methods require the generation of anisotropic meshes, in which the

local measures of mesh quality are deformed and stretched according to a local met-

ric field. Both the mesh generation and mesh improvement methods developed in

this thesis could be extended to support such tessellations through the development

of anisotropic mesh quality kernels. The development of such methods are ongoing,

including contributions from Labelle and Shewchuk [10], Frey and Alauzet [7], Bois-

sonnat, Shi, Tournois and Yvinec, [1] and Lévy and Bonneel [11].

• High-order mesh generation and smoothing. Many modern numerical schemes

for computational modelling and simulation are formulated using high-order polyno-

mial basis functions. In order to achieve their full rate of convergence, such schemes

require the generation of high-order tessellations, consisting of elements with curved

polynomial edges and faces. The mesh optimisation techniques developed in this thesis

could be extended to support such tessellations through the development of high-order

element quality metrics and optimisation predicates. Work in this area is ongoing,

including contributions from Lu, Shephard, Tendulkar and Beall [14], Roca, Gargallo-

Peiró and Sarrate [19] and Persson and Peraire [16].

• Higher-dimensional mesh generation and smoothing. The direct generation

of unstructured meshes in higher dimensional spaces is beginning to receive signifi-

cant attention, with recent studies describing techniques for the direct manipulation of

unstructured four-dimensional space-time meshes for medical imaging [5], and unstruc-

tured Discontinuous-Galerkin finite-element methods [21]. The Delaunay-based mesh

generation methods described in this thesis generalise directly to higher-dimensional

spaces, though the so-called ‘curse-of-dimensionality’ is expected to substantially in-

crease the associated level of computational work required. The development of higher-

dimensional mesh optimisation predicates is expected to be a challenging task.
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