
Verification of Parameterized Systems Using

Logic-Program Transformations

Abhik Roychoudhury1, K. Narayan Kumar2, C.R. Ramakrishnan1

I.V. Ramakrishnan1, Scott Smolka1

1 Dept. of Computer Science
SUNY Stony Brook

Stony Brook, NY 11794, USA
{abhik,cram,ram,sas}@cs.sunysb.edu

2 Chennai Mathematical Institute
92 G.N. Chetty Road

Chennai, India
kumar@smi.ernet.in

Abstract
We show how the problem of verifying parameterized systems can be reduced to the problem

of determining the equivalence of goals in a logic program. We further show how goal equivalences
can be established using induction-based proofs. Such proofs rely on a powerful new theory of logic-
program transformations (encompassing unfold, fold and goal replacement over multiple recursive
clauses), can be highly automated, and are applicable to a variety of network topologies, including
uni- and bi-directional chains, rings, and trees of processes. Unfold transformations in our system
correspond to algorithmic model-checking steps, fold and goal replacement correspond to program
deductions, and all three types of transformations can be arbitrarily interleaved within a proof.
Our framework thus provides a seamless integration of algorithmic and deductive verification at
fine levels of granularity.

Contact Author: C.R. Ramakrishnan
E-mail: cram@cs.sunysb.edu
Phone: +1 516 632 8218
Fax: +1 516 632 8334

1 Introduction

Advances in Logic Programming technology are beginning to influence the development of new tools
and techniques for the specification and verification of concurrent systems. For example, constraint
logic programming has been used for the analysis and verification of hybrid systems [UR95, Urb96]
and more recently for model checking infinite-state systems [DP99]. Closer to home, we have used a
tabled logic-programming system to develop XMC, an efficient and flexible model checker for finite-
state systems [RRR+97]. XMC is written in under 200 lines of tabled Prolog code, which constitute
a declarative specification of CCS and the modal mu-calculus at the level of semantic equations.
Despite the high-level nature of XMC’s implementation, its performance is comparable to that of
highly optimized model checkers such as Spin [Hol97] and Murϕ [Dil96] on examples selected from the
benchmark suite contained in the standard Spin distribution.

XMC’s efficiency derives in part from its reliance on SLG resolution, the extension of Prolog-style
SLD resolution with tabled resolution, implemented in the XSB logic programming system [XSB99].
Essentially, we have used XSB as a programmable fixed-point engine, motivated in part by the success
of Steffen et al. in [SCK+95]. XMC’s encoding centers around two predicates: trans, encoding the
transitional semantics of CCS terms, and models, defining when a CCS term models a given modal
mu-calculus formula. By appropriately redefining these predicates, model checkers for other process
description languages and other temporal logics can be readily obtained. For example, we recently
retargeted XMC to linear temporal logic (LTL) by redefining models in accordance with the proof
system given in [BCG95].

We have also been actively investigating how XMC’s model-checking capabilities can be extended
beyond finite-state systems. Essentially, this can be done by enhancing the underlying resolution
strategy appropriately, and such extensions need not involve modifying the internals of the XSB
system. Rather, they can be obtained at the level of meta-programming, and without the undue
performance penalties typically associated with the concept of meta-programming. In this sense,
XMC can be viewed as a programmable verification engine. For example, we have shown in [DRS99]
how an efficient model checker for real-time systems can be attained through the judicious use of a
constraint package for the reals on top of tabled resolution.

In this paper, we expand on this theme even further. In particular, we examine how the tabled-
resolution approach to model checking finite-state systems can be extended to the verification of
parameterized systems. A parameterized system represents an infinite family of systems, each instance
of which is finite state. For example, an n-bit shift register is a parameterized system, the parameter
in question being n, the length of the shift register. In general, the verification of parameterized
systems lies beyond the reach of traditional model checkers: the representations and the model-checking
algorithms that manipulate these representations are designed to work on finite-state systems and it
is not at all trivial (or even possible) to adapt them to parameterized systems.

The main idea underlying our approach to problem of verifying parameterized systems is to
reduce it to the problem of determining the equivalence of goals in a logic program. We then establish
goal equivalences using induction-based proofs. To derive such induction proofs we were required
to substantially generalize the well-established theory of logic-program transformations encompassing
unfold, fold and goal-replacement transformations. In particular in a recent paper [RKRR99b] we
developed a powerful transformation system for folding using multiple recursive clauses which we will
later show is crucial for proving properties of parameterized systems.

In our framework, unfold transformations, which replace instances of clause left-hand sides with
corresponding instances of clause right-hand sides, represent resolution. They thereby represent a
form of algorithmic model checking; viz. the kind of algorithmic model checking performed in XMC.
Unfold transformations are used to evaluate away the base case and the finite portions of the proof in

1

the induction step of the induction argument.
Fold transformations, which replace instances of clause right-hand sides with corresponding in-

stances of clause left-hand sides, and goal-replacement transformations, which replace a goal in an
instance of a clause right-hand side with a semantically equivalent goal, represent a form of deduc-
tive reasoning. They are used to simplify the given program so that applications of the induction
hypothesis in the induction proof can be recognized.

The applicability of the goal-replacement transformation is governed by certain integer inequali-
ties. An interesting aspect of our approach is the use of Integer Linear Programming to characterize
when it is sound to apply goal replacement. In sum, we combine unfold, fold, and goal-replacement
transformations into a framework for the automated derivation of induction proofs for the verification
of parameterized systems.

Using this approach, we have been able to establish the correctness of a number of parameterized
systems, with respect to both safety and liveness properties. Moreover, our approach does not seem
limited to any particular kind of network topology, as the systems we considered have included uni-
and bi-directional chains, rings, and trees of processes.

The primary benefits of our approach can be summarized as follows.

• Uniform framework. Our research has shown that finite-state systems, real-time systems, and,
now, parameterized systems can be uniformly specified and verified within the framework of
tabled logic programming.

• Tighter integration of algorithmic and deductive model checking. As our examples illustrate,
unfold, fold, and goal-replacement steps can be arbitrarily interleaved within the inductive proof
of a parameterized system. Thus our approach allows algorithmic model checking computation
(unfold) to be seamlessly integrated with deductive reasoning (fold, goal replacement) at fine
levels of granularity. Furthermore, since deductive steps are applied lazily in our approach,
finite-state model checking emerges as a special case.

• High degree of automation. Although a fully automated solution to the model-checking problem
for parameterized systems is not possible, for many cases of practical interest, including all the
examples in this paper, we have identified certain heuristics that can be applied to our deduction
system in order to completely automate the deductive process.

The idea of using logic program transformations for proving goal equivalences was first explored
in [PP99] for logic program synthesis. Our work expands the existing body of work with more powerful
transformations and algorithms that are central to verification of parameterized systems.

Regarding related work in the verification area, a myriad of techniques have been proposed during
the past decade for verifying parameterized systems, and the related problem of verifying infinite-state
systems. These include [BCG89, EN95, ID96], which reduce the problem of verifying a parameterized
system to the verification of an “equivalent” finite-state system, and [WL89, KM95, LHR97], which
seek to identify a “network invariant” that is invariant with respect to the given notion of parallel
composition and stronger than the property to be established. The network-invariant approach is
applicable to parameterized systems consisting of a number of copies of identical components (or
components drawn from some finite set) that are composed in parallel.

Another approach [CGJ95] aims to finitely represent the state space and transition relation of
the entire family of finite-state systems comprising a given parameterized system, and has been used
in [KMM+97] to extend symbolic model checking [McM93] to the verification of parameterized systems.
This method requires the construction of a uniform representation for each class of networks, and the
property in question must have a proof that is uniform across the family of networks.

2

gen([1]).
gen([0|X]) :- gen(X).
trans([0,1|T], [1,0|T]).
trans([H|T], [H|T1]) :- trans(T, T1).

thm(X) :- gen(X), live(X).
live(X) :- X = [1|].
live(X) :- trans(X, Y), live(Y).

System description Property description

Figure 1: Example: Liveness in a unidirectional token-passing chain.

Perhaps the work most closely related to our own involves the use of inductive theorem provers for
verifying parameterized systems. Rajan et al. [RSS95] have incorporated a finite-state model checker
for the modal mu-calculus as a decision procedure within the PVS theorem prover [OSR92]. Inductive
proofs can be established by the prover via calls to the model checker to verify finite subparts. Graf
and Saidi [GS96] show how a custom-built specification-deduction system can be combined with PVS
to formalize and carry out model checking of invariant properties using deduction.

The key difference between our approach and these is that we enhance model checking with
deductive capabilities, rather than implement model checking as a decision procedure in a deductive
system. In particular, the underlying evaluation mechanism for model checking in XMC is essentially
unfolding, and we have enhanced this mechanism with fold, and goal-replacement transformations.
These transformations complement the power of model checking with the ability to do deduction.
Moreover, deductive steps are deployed only on demand and hence do not affect the efficacy of the
algorithmic model-checking. More importantly our framework demonstrates that a tabled constraint
logic-programming system can form the core of a verification engine that can be programmed to verify
properties of various flavors of concurrent systems including finite-state, real-time, and parameterized
systems.

2 Verification of Parameterized Systems as Goal Equivalence

In this section, we discuss how the problem of verifying temporal properties of parameterized systems
can be reduced to that of checking the equivalence of goals in a logic program.

Modeling Infinite Families of Finite-State Systems: Consider the parameterized system con-
sisting of a chain of n token-passing processes. In the system’s initial state, the process in the right-most
position of the chain has the token and no other process has a token. The system evolves by passing
the token leftward.

A logic program describing the system is given in Figure 1. The predicate gen generates the
initial states of an n-process chain for all n. A global state is represented as an ordered list1 of zeros
and ones, each bit corresponding to a local state, and the head of the list corresponding to the local
state of the left-most process in the chain. Each process in the chain is a two-state automaton: one
with the token (an entry of 1 in the list) and the other without the token (an entry of 0). The set of
bindings of variable S upon evaluation of the query gen(S) is { [1], [0,1], [0,0,1], . . . }.

The predicate trans in the program encodes a single transition of the global automaton. The
first clause in the definition of trans captures the transfer of the token from right to left; the second
clause recursively searches the state representation until the first clause can be applied (i.e., when the
token is not already in the left-most process).

Liveness Properties: The predicate live in Figure 1 encodes the temporal property we wish to
verify: eventually the token reaches the left-most process. The first clause succeeds for global states

1A list in Prolog-like notation is of the form [Head|Tail].

3

where the token is already in the left-most process (a good state). The second (recursive) clause checks
if a good state is reachable after a (finite) sequence of transitions.

Thus, every member of the family satisfies the liveness property if and only if ∀ X gen(X) ⇒
live(X). Moreover, this is the case if ∀ X thm(X) ⇔ gen(X), i.e., if thm and gen are equivalent (have
the same least model). Clearly, testing the equivalence of these goals is infeasible since the minimal
model of the logic program is infinite. However, we present in Section 3 a proof methodology, based
on program transformations, for proving equivalences between such goals in a logic program.

Safety Properties: We can model safety properties by introducing negation into the above formu-
lation for liveness properties, using the temporal-logic identity G φ ≡ ¬F ¬φ. Although our program
transformation systems have been recently extended to handle programs with negation [RKRR99a],
we present an alternative formulation without negation, since the corresponding equivalence proofs are
simpler. In particular, we define a predicate bad to represent states that violate the safety property,
show that the start states are not bad, and, finally, show that bad states are reachable only from other
bad states. For instance, mutual exclusion in the n-process chain can be verified using the following
program:

bad([1|Xs]) :- one more token(Xs).
bad([|Xs]) :- bad(Xs).

one more token([1|]).
one more token([|Xs]) :- one more token(Xs).

bad start(X) :- gen(X), bad(X).

bad src(X,Y) :- trans(X, Y), bad(X).
bad dest(X,Y) :- trans(X, Y), bad(Y).

bad is true if and only if the given global state has more than one local state with a token. Showing
bad start(X) ⇔ false establishes that the start states do not violate the safety property. Showing
that bad src(X) ⇔ bad dest(X) establishes that states that violate the safety property can be reached
only from other states that violate the property. These two facts together imply that no reachable
state in the infinite family is bad and thus establish the safety property for the entire family.

A Note on the Model: XMC [RRR+97] provides a highly expressive process description language
based on value-passing CCS [Mil89] for specifying parameterized systems (although only finite-state
systems can actually be analyzed), and the modal mu-calculus for specifying temporal properties. The
above simplified presentation (which we will continue to use in the rest of this paper) is used to prevent
a proliferation of syntax from obscuring the key issues.

3 Goal Equivalence Proofs using Tableau

As observed in Section 2, to establish the liveness property of n-process chains (Figure 1), we must show
that gen(X) and thm(X) are equivalent. In this section we describe the basic framework to construct
such equivalence proofs. We begin by defining the notations used in formalizing the framework.

Notations: We assume familiarity with the standard notions of terms, models, substitutions, unifi-
cation, and most general unifier (mgu) [Llo93]. A term having no variables is called a ground term.
Atoms are terms with a predicate symbol at the root, and goals are conjunctions of atoms. Atoms
whose subterms are distinct variables (i.e., atoms of the form p(X1, . . . , Xn), where p is a predicate
symbol of arity n) are called open atoms.

We use the following notation (possibly with primes and subscripts): p, q for predicate symbols;
X, Y for variables; t, s for terms; X, Y for sequences of variables; t, s for sequences of terms; A,B for
atoms; σ, θ for substitutions; C,D for Horn clauses; α, β for goals; and P for a logic program, which
is a set of Horn clauses. A Horn clause C is written as A :− B1, B2, . . . , Bn. A, the consequent, is

4

(Ax)
Γ
 α ≡ β

where α
Pi∼= β

(Tx)
Γ
 α ≡ β

Γ, Pi+1
 α ≡ β
where M(Pi+1) =M(Pi)

(Gen)
Γ
 α ≡ β

Γ, Pi+1
 α ≡ β, P0
 α′ ≡ β′ where M(Pi+1) =M(Pi) if α′ ≡ β′

Figure 2: Rules for Constructing Equivalence Tableau.

called the head of C and the antecedent B1, B2, . . . , Bn the body of C. Note that we can write Horn
clauses as A :− α.

Semantics of a definite logic program P is given in terms of least Herbrand models, M(P). Note
that the body of Horn clauses do not contain negation, and our programs, defined above as set of
Horn clauses, are in fact definite logic programs. Given a goal α and a program P , SLD resolution is
used to prove whether instances of α are in M(P). This proof is constructed recursively by deriving
new (sub)goals by replacing an atom B in α with βθ where B′ :− β ∈ P and θ = mgu(B,B′).

We use P0, P1, . . . , Pn to denote a transformation sequence where Pi+1 is obtained from Pi by
applying a single transformation. We call P0 as the original program.

3.1 Tableau Construction

The goal equivalence problem is: given a logic program P and a pair of goals α and β, determine if
α and β are semantically equivalent in P : i.e., whether for all ground substitutions θ, αθ ∈ M(P) ⇔
βθ ∈ M(P). This problem is undecidable in general and we attempt to provide a deductive system
for identifying equivalence.

We now develop a tableau-based proof system for establishing goal equivalence. Our process
is analogous to SLD resolution. Each node in the proof tree denotes a pair of goals. To establish
their equivalence we must establish that the (sub)goals in the pair represented by each child node are
equivalent. We formalize our tableau below.

Let Γ = 〈P0, P1, . . . , Pi〉 be a sequence of logic programs such that Pj+1 is obtained from Pj

(1 ≤ j < i) by the application of a rule in our tableau. Further let M(P0) =M(P1) =M(P2) = . . . =
M(Pi). An e-atom is of the form Γ
 α ≡ β where α and β are goals, and represents our proof
obligation: that α ≡ β are semantically equivalent in any (and hence in each) of the programs in Γ.
An e-goal is a (possibly empty) sequence of e-atoms (e-atoms correspond to the atoms and e-goals to
the goals in standard resolution).

The three rules used to construct equivalence tableau are shown in Figure 2. The axiom elimi-
nation rule (Ax) is applicable whenever the equivalence of goals α and β can be established by some

automatic mechanism, denoted in the rule by α
Pi∼= β. Axiom elimination is akin to the treatment of

facts in SLD resolution.
The program transformation rule (Tx) attempts to simplify the program in order to expose

the equivalence of goals. The program Pi+1 is constructed from Γ using some semantics-preserving
program transformation. We use this rule whenever we apply an unfolding, folding, or any other
(semantics-preserving) transformation that does not add any equivalence proof obligations.

The sub-equivalence generation rule (Gen) attempts to replace a pair of goals whose equivalences
have to be established, with a new pair of (sub)goals whose equivalences are (hopefully) simpler to
establish. This step corresponds to the standard SLD resolution step. The proof of α ≡ β is built

5

p :- t, s.
q :- r , s.
r :- t.

...

p :- t, s .

q :- t, s.

r :- t.
...

p :- q.
q :- t, s.
r :- t.
...

Program P0 Program P1 Program P2

Figure 3: Example of an unfold/fold transformation sequence.

using the proof of α′ ≡ β′. Note that the proof of α′ ≡ β′ may involve a transformation sequence
different from, and not just an extension of, Γ.

A successful tableau for an e-goal E0 is a finite sequence of e-goals E0, E1, . . . , En where Ei+1 is
obtained from Ei by applying one of the rules described above and En is empty.

Theorem 1 Let E0, E1 . . . , En be a successful tableau with E0 = 〈P0〉
 α ≡ β for some (definite)
logic program P0. Then for all ground substitutions θ, αθ ∈ M(P0) ⇔ βθ ∈ M(P0), i.e., goals α and
β are equivalent in the least Herbrand model of P0.

The tableau, however, is not complete: there can be no such complete tableau as attested to by
the following theorem.

Theorem 2 The problem of determining equivalence of predicates described by logic programs is not
recursively enumerable.

The above theorem is easily proved using a reduction described in [AK86].

3.2 Program Transformations

The tableau-based equivalence proof is constructed by repeatedly applying rules Ax, Tx, and Gen.
These rules are realized concretely by logic-program transformations that include unfold, fold and goal
replacement. To make this paper self contained we review them now.

3.2.1 Review of Logic Program Transformations

For a simple illustration of program transformations, consider Figure 3. There, program P1 is derived
from P0 by unfolding the occurrence of r in the definition of q. P2 is derived from P1 by folding t,s
in the definition of p using the definition of q.

While unfolding is always semantics preserving, indiscriminate folding may introduce circularity
in definitions, thereby replacing finite proof paths with infinite ones. For example, folding t,s in the
definition of q in P2 using the definition of p in P0 results in a program of the form p :- q. q :-
p. r :- t. ..., thereby removing p and q from the least model.

Fold transformations are guided by certain bookkeeping information that summarizes the effect
of prior transformations. In [RKRR99b] we proposed a general bookkeeping mechanism and described
an abstract framework for transformations which permits folding using clauses that contain recursion
and disjunction: a fact that we will later see as a key to its application to automated verification.
Below, we instantiate the framework of [RKRR99b] as follows. With each clause C in program Pi of
the transformation sequence, we associate a pair of integer counters γi

lo(C) and γ
i
hi(C). The counters

bound the size of a shortest proof for any ground goal in program Pi relative to the size of a shortest
proof in P0. Thus, counters associated with each clause keep track of potential reductions in proof
lengths. Conditions on counters are then used to determine if a given application of folding will
preserve all proofs.

6

B : −β, A , β′.

A1 : −α1.
A2 : −α2.
...
An : −αn.

=⇒

Bσ1 : −(β, α1, β′)σ1.
Bσ2 : −(β, α2, β′)σ2.
...
Bσn : −(β, αn, β′)σn.
A1 : −α1.
...
An : −αn.

Pj :

A1 : −α′
1.

...
An : −α′

n.

Pi:

B : −β, α1, β′.
B : −β, α2, β′.
...
B : −β, αn, β′.

=⇒ B : −β, A , β′.

(a) Unfolding (b) Folding

Figure 4: Schema for Unfold/Fold transformations.

We now present the program transformations formally. Unfolding is applied to an atom A in the
body of a clause in Pi and is diagrammatically illustrated in Figure 4a.

Transformation 1 (Unfolding) Given a clause C and an atom A in Pi such that C is of the form
B :− β, A, β′, unfolding A in C derives program Pi+1 as follows. Let C1, ..., Cn be all the clauses in Pi

such that Cj (1 ≤ j ≤ n) is of the form Aj :− αj , and A and Aj unify with mgu σj. Then, Pi+1 :=
(Pi − {C}) ∪ {C′

1, ..., C
′
n}, where C′

j is of the form Bσj :− (β, αj, β
′)σj.

Also, γi+1
lo (C′

j) = γi
lo(C) + γi

lo(Cj) and γi+1
hi (C

′
j) = γi

hi(C) + γi
hi(Cj). The counters of all other clauses

in Pi+1 are inherited from Pi. ✷

Note that the conditions of unifiability of A with Aj, and the subsequent application of the mgu σj

for deriving the new clauses are taken directly from resolution.
A folding transformation replaces an occurrence of the body of a clause with its head. The clause

where the replacement takes place is called the folded clause and the clauses used to perform the
replacement are called the folder clauses. The folding schema is illustrated in in Figure 4b, where the
clauses of B are the folded clauses, and the clauses of A are the folder clauses. The folder clauses may
come from some earlier program in the transformation sequence, i.e., from Pj for some j ≤ i.

Transformation 2 (Folding) Given clauses C1, ..., Cn in Pi such that Cl is of the form B :− β, αl, β
′

for 1 ≤ l ≤ n and clauses D1, ..., Dn in Pj (j ≤ i) such that Dl is of the form Al :− α′
l satisfying :

1. ∀1 ≤ l ≤ n ∃σl. αl = α′
lσl where σl is a substitution.

2. there is an atom A such that ∀1 ≤ l ≤ n Alσl = A and D1, ..., Dn are the only clauses in Pj whose
heads unify with A.
3. ∀1 ≤ l ≤ n σl substitutes the internal variables of Dl to distinct variables that do not appear in
{A,B, β, β′}
4. ∀1 ≤ l ≤ n γ

j
hi(Dl) < γi

lo(Cl) + p.

Then, Pi+1 := (Pi − {C1, ..., Cn}) ∪ {C′} where C′ is B :− β, A, β′. Also,
γi+1

lo (C′) = min1≤l≤n(γi
lo(Cl)− γj

hi(Dl)), γi+1
hi (C

′) = max1≤l≤n(γi
hi(Cl)− γj

lo(Dl)). The counters of all
other clauses in Pi+1 are inherited from Pi. ✷

The goal-replacement transformation replaces a goal in the body of a clause in program Pi with
a semantically equivalent goal. Note that such a replacement has the potential to change lengths of
proofs arbitrarily. In order to maintain the counters associated with each clause, we need to estimate
the change in proof lengths. We do so by using the notion of atom measure [RKRR99b]. A ground
proof of an atom is an SLD proof that contains only ground terms. The atom measure of a ground
atom A is the size of the smallest ground proof for A in P0, the original program. We use w(A) to
denote the atom measure of A.

7

p(X) :- r(X). (γ1, γ
′
1)

p(X) :- e(X,Y), p(Y). (γ2, γ
′
2)

r(X) :- b(X). (γ3, γ
′
3)

q(X) :- s(X). (µ1, µ
′
1)

q(X) :- e(X,Y), q(Y). (µ2, µ
′
2)

s(X) :- b(X). (µ3, µ
′
3)

Figure 5: Program with syntactically equivalent predicates.

Transformation 3 (Goal Replacement) Given a clause C of the form A :− α, B, β in Pi, an atom
B′ such that vars(B) = vars(B′) ⊆ vars(A) ∪ vars(α) ∪ vars(β), and two integers δ and δ′ obeying
the following conditions:
1. for all ground substitutions θ: (i) Pi
 Bθ ⇔ Pi
 B′θ, and (ii) δ ≤ w(Bθ)− w(B′θ) ≤ δ′

2. γi
lo(C) + δ + k > 0

Then Pi+1 := (Pi − {C}) ∪ {C′} where C′ is A :− α, B′, β, and
γi+1

lo (C′) = γi
lo(C) + δ and γi+1

hi (C
′) = γi

hi(C) + δ′. ✷

The applicability of goal replacement transformation depends on conditions that are undecidable in
general: (i) the equivalence of two atoms B and B′. (ii) existence of values δ and δ′ that bound the
atom measures of Bθ and B′θ for any substitution θ. We will use (recursively) the equivalence tableau
to prove B ≡ B′. We later describe a technique to estimate bounds on atom measures based on that
proof.

Theorem 3 ([RKRR99b]) Let P0, P1, . . . , PN be a sequence of definite logic programs where Pi+1

is obtained from Pi by an application of unfolding, folding, or goal replacement (Transformations 1,
2, and 3). Then ∀1 ≤ i ≤ N , M(Pi) =M(P0).

Definition-introduction transformation adds a clause defining a new predicate to a program. This
transformation is used to generate “names” for goals. By introducing definitions and folding subse-
quently, we can replace indirect and multiple recursion by single, direct recursion.

Transformation 4 (Definition Introduction) Given a goal α, and a predicate symbol p that does
not appear in Pi, let C be (p(X) :− α), where X = vars(α).
Then, Pi+1 := Pi ∪ {C} and γi+1

lo (C) = γi+1
hi (C) = 1. ✷

Note that, after definition introductionM(Pi+1) �=M(Pi) since a new predicate is added in Pi+1.
But for every predicate p in Pi, and all ground terms t, p(t) ∈ M(Pi)⇔ p(t) ∈ M(Pi+1). The tableau
presented earlier can be readily extended to include such transformations. In addition, a number of
other standard transformations, such as deletion of subsumed clauses can be readily adapted to our
system of bookkeeping with counters. (Details are omitted.)

3.2.2 Computational Aspects of Goal Equivalence

Recall that the axiom elimination rule (Ax) is applicable whenever we can mechanically establish the
equivalence of two goals. We now develop a syntax-based technique to establish the equivalence of
two open atoms, i.e., atoms of the form p(X) and q(X). This technique will, by itself, fail to find
equivalence of more general goals; in Section 4, we describe methods which use this simpler test to
show general goal equivalence.

A syntactic test for goal equivalence: We first introduce the notion of syntactic equivalence
between predicates. Consider the program (with clauses annotated with counter values) in Figure 5.
We can infer that r(X) ≡ s(X) since r and s have identical definitions. In addition, we can infer that
q(X) and p(X) are equivalent, since their definitions are, in a sense, isomorphic. We formalize this
notion of equivalence in the following definition.

8

Definition 5 (Syntactic Equivalence of Predicates) A syntactic equivalence relation, P∼, is an
equivalence relation on the set of predicates of a program P such that for all predicates p, q in P , if
p

P∼ q then the following conditions hold:

1. p and q have same arity, and

2. Let the clauses defining p and q be {C1, . . . , Cm} and {D1, . . . , Dn}, respectively. Let {C′
1, . . . , C

′
m}

and {D′
1, . . . , D

′
n} be such that C′

l (D′
l) is obtained by replacing every predicate symbol r in Cl

(Dl) by s, where s is the name of the equivalence class of r (w.r.t. P∼). Then there exist two
functions f : {1, . . . , m} → {1, . . . , n} and g : {1, . . . , n} → {1, . . . , m} such that

(i) ∀1 ≤ i ≤ m C′
i is an instance of D′

f(i), and
(ii) ∀1 ≤ j ≤ n D′

j is an instance of C′
g(j).

Note that the largest syntactic equivalence relation can be computed by starting with all predicates in
the same class, and repeatedly splitting the classes that violate properties (1) and (2) until a fixed point
is reached. The soundness of syntactic equivalence with respect to semantic equivalence is ensured by
the following lemma.

Lemma 4 Let P be a program and P∼ be the syntactic equivalence relation. For all predicates p, q, if
p

P∼ q, then p(X) ≡ q(X).

This lemma can be proved by induction on the length of ground proofs T . We define syntactic

equivalence between goals as: α
P∼= β if and only if α = p(X) and β = q(X) where p, q are predicates

such that p P∼ q.
Recall that every application of goal replacement requires a computation of bounds on atom

measures. We now develop a technique based on Integer Linear Programming to estimate these
bounds.

Test for applicability of goal replacement: Assume that we need to replace p(X) with q(X)
using Transformation 3. Let ∆(p, q) and ∆′(p, q) denote the lower and upper bounds of atom measures
as specified by the transformation. That is,

∀ ground substitutions θ ∆(p, q) ≤ w(p(X)θ)−w(q(X)θ) ≤ ∆′(p, q)

We first establish p(X) ≡ q(X) by constructing a transformation sequence P0, P1, . . . , Pk such that

p
Pk∼ q. We can establish the following theorem relating the values of ∆ and ∆′ for equivalent predicates.

Theorem 5 (Values of ∆ and ∆′) Let p and q be two distinct predicates in program P such that
p

P∼ q. Let the clauses of p in P be C1, . . . , Cm with clause annotations (γ1, γ
′
1), . . . , (γm, γ

′
m). Let

the clauses of q in P be D1, . . . , Dn with clause annotations (µ1, µ
′
1), . . . , (µn, µ

′
n). Moreover, let each

clause Ci be p(t) :− pi,1(ti,1), . . . , pi,ki(ti,k1), and Dj be q(s) :− qj,1(sj,1), . . . , qj,lj(sj,lj). Finally, let f

and g be the mappings (from Definition 5) used to show p
P∼ q. Then,

∆(p, p) = ∆(q, q) = ∆′(p, p) = ∆′(q, q) = 0

∆(p, q) ≤ min
1≤i≤m

[(γi − µ′f(i)) +
∑

1≤l≤ki

∆(pi,l, qf(i),l)]

∆′(p, q) ≥ max
1≤j≤n

[(γ ′g(j) − µj) +
∑

1≤l≤lj

∆′(pg(j),l, qj,l)]

9

Theorem 5 immediately suggests a method to compute ∆ and ∆′. Observe that the constraints on
∆ and ∆′ for different pairs of equivalent predicates form a set of linear inequalities. We can therefore
use integer linear programming to maximize ∆ values and minimize ∆′ values to arrive at the tightest
bounds on atom measures. If the system of inequalities for ∆ (or ∆′) is unsolvable, we can set the
corresponding ∆ (∆′) to −∞ (+∞).

For example, consider again the program in Figure 5. We have: ∆(p, q) ≤ (γ1 − µ′1) + ∆(r, s);
∆(p, q) ≤ (γ2 − µ′2) + ∆(p, q); and ∆(r, s) ≤ γ3 − µ′3. Note that when (γ2 − µ′2) < 0 the inequalities
on ∆(p, q) are unsolvable. Otherwise, the non-recursive inequation gives the optimal value. Thus,
applying minimization, we get ∆(p, q) = (γ1 − µ′1) + (γ3 − µ′3) if (γ2 − µ′2) ≥ 0, and −∞ otherwise.

4 Automated Construction of Equivalence Tableau

We describe an algorithmic framework for creating strategies to automate the construction of the
tableau. The objective is to: (a) find equivalence proofs that arise in verification with with little or
no user intervention, and (b) apply deduction rules lazily, i.e., a proof using the strategy is equivalent
to algorithmic verification for finite-state systems.

Our framework specifies the order in which the different tableau rules and program transforma-
tions (corresponding to each tableau rule) will be applied. If multiple transformations of the same
kind (e.g., two folding steps) are possible at any point in the proof, the framework itself does not
specify which transformations to apply. That is done by a separate selection function (analogous to
literal selection in SLD resolution).

The tableau rules and associated transformations are applied in the following order. Given an
e-atom Γ
 α ≡ β, the proof is complete whenever the axiom elimination rule (Ax) is applicable.
Hence, we first choose to apply Ax. When the choice is between the Tx and Gen rules, we choose
the former since Tx corresponds to unfolding, i.e., resolution. This will ensure that our strategies will
perform algorithmic verification for finite-state systems. For infinite-state systems, however, uncon-
trolled unfolding will diverge. To create finite unfolding sequences we impose the following finiteness
condition FIN on transformation sequences:

Definition 6 (Finiteness condition) A program transformation sequence Γ = 〈P0, . . . , Pi, . . . 〉 sat-
isfies the finiteness condition FIN (Γ) if and only if the clause C and atom A selected for unfolding
at Pi: (i) are distinct modulo variable renaming, and (ii) the term size of A is bounded a priori by a
constant.

If FIN prohibits any further unfolding we either apply the folding transformation associated with Tx
or use the Gen rule. Care must be taken, however, when Gen is chosen. Recall from the definition
of Gen that α ≡ β in Pi+1 implies α ≡ β in Pi only if we can prove a new equivalence α′ ≡ β′

in P0. Since Gen itself does not specify the goals in the new equivalence, its application is highly
nondeterministic. We limit the nondeterminism by using Gen only to enable Ax or Tx rules. For
instance, consider the transformation sequence in Figure 6. Applying goal replacement in P0 under
the assumption that that q1(X) ≡ q2(X) enables the subsequent folding which transforms P1 into P2.

Hence, when no further unfoldings are possible, we look to do any possible folding. If no foldings
are enabled, we check if there are new atom equivalences that will enable a folding step. For instance, in
program P0 of Figure 6, equivalence of q1(X) and q2(X) enables folding. Note that atom equivalences
may be of the form p(t) ≡ q(s), where t and s are sequences of arbitrary terms, whereas the test for
syntactic equivalence is only done on open atoms. We therefore introduce new definitions to convert
them into open atoms. Finally, we look for new goal equivalences, which, if valid, can lead to syntactic
equivalence. For instance, suppose in program P2 (in Figure 6), there are two additional predicates

10

p1(a).
p1(f(X)):- p1(X),s1(X).

p1(f(X)):- p1(X),t1(X), q1(X) .

r1(X):- s1(X).
r1(X):- t1(X),q2(Y).

p1(a).

p1(f(X)):- p1(X), s1(X).

p1(f(X)):- p1(X), t1(X), q2(X) .

r1(X):- s1(X).
r1(X):- t1(X),q2(Y).

p1(a).
p1(f(X)):- p1(X),r1(X).

r1(X):- s1(X).
r1(X):- t1(X),q2(Y).

P0 P1 P2

Figure 6: Goal replacements to facilitate other transformations.

p2 and r2 and further assume that p2 is defined using clauses p2(a). and p2(f(Y)):-p2(Y),r2(X).
Now if r2 ≡ r1, then we can perform this goal replacement to obtain the program P3 and in P3 we
can conclude that p1 P3∼ p2. Herein also, an equivalence proof on arbitrary goals is first converted into
equivalence between open atoms by introducing new definitions.

The above intuitive ideas are formally spelled out in Algorithm Prove (see Figure 7). Given a
program transformation sequence Γ, and a pair A and B of open atoms, Algorithm Prove attempts
to construct a proof for A ≡ B. If A ≡ B is a subproof that needs to be done (because of a
goal replacement step), the corresponding bounds on atom measures are needed. If Prove succeeds
in finding a proof, it returns the bounds on the corresponding atom measures. Algorithm Prove
uses a number of functions that are described below. The function replace and prove constructs
proofs for sub-equivalences created by applying the Gen rule. Functions unfold(P) and fold(P) apply
unfolding and folding transformations respectively to program P and return a new program; function
defn intro(C, P) adds a new definition clause C to P ; and goal replace(P, (A,B), deltas) replaces atom
A by B in P , using deltas as the bounds on atom measures.

Whenever conditional folding is possible, the function new atom equiv for fold(P) finds the pair of
atoms whose replacement is necessary to do the fold operation. Similarly, when conditional equivalence
is possible, new goal equiv for equiv(A,B, P) finds a pair of goals α, β such that syntactic equivalence
of A and B can be established after replacing α with β in P .

We use new defn to convert goal and atom equivalences into equivalences between open atoms.
The function new defn(α,Γ) finds and returns a clause C from some program Pj in Γ such that α is
the body of C and the head of C does not unify with any other clause head in Pj. If no such C exists,
then new defn generates a new predicate symbol r not in Γ and returns the clause (r(X) :− α), where
X = vars(α).

Deriving concrete strategies from Prove: Algorithm Prove searches nondeterministically for a
proof: if multiple cases of nondeterministic choice are enabled, then they will be tried in the order
specified in Prove. If none of the cases apply, then evaluation fails, and backtracks to the most
recent unexplored case. There may also be nondeterminism within a case; for instance, many fold
transformations may be applicable at the same time. We again select nondeterministically from this
set of applicable transformations. By providing selection functions to pick from these applicable
transformations, one can implement a variety of concrete strategies.

Search for equivalence proofs can be controlled by the design of appropriate selection functions.
For instance, when multiple unfold transformations are applicable, we only unfold those clauses relevant
to A and B. The set of clauses relevant to an atom A, denoted by R(A), is the smallest set such
that C ∈ R(A) if the head of C unifies either with A, or with some atom A′ such that A′ is in the
body of a clause D ∈ R(A). (The examples described below use such a selection function.) It can be
shown that this selection function is “lossless” in the sense that it preserves all equivalences that can
be established by any strategy implemented using Prove. Moreover, selection functions can be used

11

algorithm Prove(A,B: open atoms, Γ:prog. seq.)
begin

let Γ = 〈P0, . . . , Pi〉
(* Ax rule *)

if (A = p(X) ∧B = q(X) ∧ p
Pi∼ q) then

return (∆(p, q),∆′(p, q)) (* page 9 *)
else

nondeterministic choice
(* Tx rule *)

case FIN (〈Γ, unfold(Pi)〉): (* Unfolding *)
return Prove(A,B, 〈Γ, unfold(Pi)〉)

case Folding is possible in Pi:
return Prove(A,B, 〈Γ, fold(Pi)〉)

(* Gen rule *)
case Conditional folding is possible in Pi:

let (A′, B′) = new atom equiv for fold(Pi)
return replace and prove(A,B, 〈A′, B′〉,Γ)

case Conditional equivalence is possible in Pi:
let (α, β) = new goal equiv for equiv(A,B, Pi)
return replace and prove(A,B, 〈α, β〉,Γ)

end choices
end

algorithm replace and prove(A,B: open atoms,
〈α, β〉:goals, Γ:prog. seq.)

begin
let Γ = 〈P0, . . . , Pi〉
if (α is not an open atom) then
C = new defn(α,Γ)
return Prove(A,B, 〈Γ, defn intro(C, Pi)〉)

else
let A′ = α

if (β is not an open atom) then
D = new defn(β,Γ)
return Prove(A,B, 〈Γ, defn intro(D, Pi)〉)

else
let B′ = β

let deltas = Prove(A′, B′, P0)
let Pi+1 = goal replace(Pi, (A′, B′), deltas)
return Prove(A,B, 〈Γ, Pi+1〉)

end

Figure 7: Algorithmic framework for automated construction of tableau

to implement fair searches in the space of proofs. For instance, using a breadth-first search, we can
ensure that any finite equivalence proof derivable using Prove will eventually be found.

We use techniques from tabled resolution [TS84] to ensure that Prove does not repeatedly attempt
to prove the same equivalences using the same transformation sequences. We do this by deeming a
proof path as having failed if it attempts to add a program P to a transformation sequence Γ when
P ∈ Γ. Moreover, note that when subproofs are generated due to conditional folding or equivalence,
we start the transformation sequence from program P0. Together with selection functions for unfolding
sketched above, this ensures that only relevant transformation sequences are used in any equivalence
proof.

Properties of Prove: It can be easily verified that only finite unfolding sequences satisfy FIN . In
fact, the condition (ii) of Definition 6 can be relaxed to select norms other than term size (following
work in termination analysis, see [DD94]). We use term size norm since it is easy to measure in
practice.

Prove terminates as long as the number of definitions introduced (i.e., new predicate symbols
added) is finite. This follows immediately from the fact that there are only a finite number of terms
of bounded size (consistent with the requirement of FIN) if the set of predicate symbols is finite.

4.1 Liveness Properties in Chains: An Example

Recall the logic program of Figure 1 which formulates a liveness property about token-passing chains,
namely, that the token eventually reaches the left-most process in any arbitrary length chain. We
obtain P0, the starting point of our transformation sequence, by annotating each clause in the program
with counter values of (1, 1). To establish the liveness property, we prove that thm(X) ≡ gen(X), by
invoking Prove(thm(X), gen(X), 〈P0〉). The proof is illustrated in Figure 8a.

12

P6

P0 thm(X) gen(X)

P0

P11

P13

P14

P10

thm(X) gen(X)

P5

P7

Unfolds

Fold

FoldFold

Unfolds

Defn. Intro.

live’(Y) live(Y) 12,PP0,...,P7

live’ ~ live thm ~ gen

(live’(Y):-live([0|Y]).

Fold

Goal Replacement

P0

P12

P0

P10

Unfolds

bad_src(X) bad_dest(X)

P11

Defn. Intro.

P14

Folds

Folds

s1 ~ s2

s1(X,Y) s2(X,Y)

P21

P23

Rest of the proof

Defn. Intro...

Unfolds

Defn. Intro.(s1(X,Y):- ...)

(s2(X,Y):- ...)

(a) Liveness Proof (b) Safety Proof

Figure 8: Fragments of Liveness and Safety Proofs using Prove.

Since thm �P0∼ gen, Prove unfolds clauses in P0, and reaches program P5 where thm is defined as:

thm([1]). (3,3)
thm([0|X]) :- gen(X), X = [1|]. (5,5)
thm([0|X]) :- gen(X), trans(X,Y), live([0|Y]). (4,4)

Further unfolding in P5 will violate FIN . In addition no folding transformation is applicable at this
stage. However, if live([0|Y]) ≡ live(Y) we can fold the last two clauses of thm. Thus, conditional
folding is true at P5, and hence replace and prove is invoked with α = live([0|Y]) and β = live(Y).
Since live([0|Y]) is not an open atom, a new definition of the form

live’(Y) :- live([0|Y]). (1,1)

is added to P5 to yield P6, and Prove is invoked again. Unconditional folding is applicable in P6 in the
third clause of thm above using the newly introduced clause as folder, generating P7 where the third
clause of thm is:

thm([0|X]) :- gen(X), trans(X,Y), live’(Y). (3,3)

Conditional folding is applicable in P7 and replace and prove is invoked, with α = live’(Y) and
β = live(Y). Since these α and β are open atoms, we first invoke Prove(live’(X), live(X), 〈P0〉)
(left branch in the tree in Figure 8a). Then using the bounds on atom measures returned by this call,
we replace live’(X) with live(X) in the definition of thm in P7 (right branch in Figure 8a).

Prove(live’(X), live(X), 〈P0〉) performs a series of unfoldings, yielding programs P8, P9 and
P10. (FIN prohibits any further unfolding in P10.) In P10, live’ is defined by the following clauses:

live’([1|Z]). (4,4)
live’(X) :- trans(X,Z), live([0|Z]). (3,3)

Folding is applicable is P10, in the second clause of live’, yielding P11 with

live’([1|Z]). (4,4)
live’(X) :- trans(X,Z), live’(Z). (2,2)

Now, live’ P11∼ live and hence Prove(live’(X), live(X), 〈P0〉) terminates. Also, ∆(live’, live) =
4− 1 = 3, and ∆′(live’, live) =∞; these bounds are returned by Prove.

13

Having completed the lemma, replace and prove replaces live’(X) with live(X) in the definition
of thm in P7, yielding P12 with:

thm([1]). (3,3)
thm([0|X]) :- gen(X), X = [1|]. (5,5)
thm([0|X]) :- gen(X), trans(X,Y), live(Y). (6,∞)

No further unfolding is possible without violating FIN . However, we can fold the last two clauses of
thm using the definition of live in P0. Note that the folding uses a recursive definition of a predicate
with multiple clauses. The program-transformation system we developed in [RKRR99b] was the first
to permit such folding. Thus we obtain P13:

thm([1]). (3,3)
thm([0|X]) :- gen(X), live(X). (4,∞)

We can fold again using the definition of thm in P0, giving P14 where thm is defined as:

thm([1]). (3,3)
thm([0|X]) :- thm(X). (3,∞)

We now have thm P14∼ gen, thereby completing the equivalence proof.
It is interesting to observe in Figure 8a that the unfolding steps that transform P0 to P5 and P7

to P10 are interleaved with folding steps. This example thus illustrates how we interleave algorithmic
model-checking steps with deduction steps.

4.2 Mutual exclusion in token rings

Algorithm prove generates a proof for mutual exclusion in a n-process token ring. The token ring is
described by the following logic program:

gen([0,1]). trans(X, Y) :- trans1(X, Y).
gen([0|X]) :- gen(X). trans([1|X], [0|Y]) :- trans2(X, Y).

trans1([0,1|T], [1,0|T]). trans2([0], [1]).
trans1([H|T], [H|T1]) :- trans1(T, T1). trans2([H|X], [H|Y]) :- trans2(X, Y).

As in the case of chains, we represent the global state of a ring as a list of local states, by arbitrarily
choosing an process in the ring as the first in the list. Processes with tokens are in local state 1 while
processes without tokens are in state 0. trans is now divided into two parts: trans1 which transfers
the token to the left neighbor in the list, and trans2 which transfers the token form the front of the
list to the back, thereby completing the ring.

Mutual exclusion property is modeled using the predicates bad, bad start, etc., as discussed in
Section 2. These predicates, along with those listed above, form the initial program P0. Recall that
the safety proof can be completed by showing bad start ≡ false and bad src ≡ bad dest. We now
show snapshots of the proof generated by prove to demonstrate these equivalences.

An invocation of prove(bad start(X), false, 〈P0〉) performs a series of unfoldings and reaches a
program P3 where bad start is defined by

bad start([0|X]) :- gen(X), bad(X). (3, 3)

In P3, prove folds gen(X), bad(X) using the original definition of bad start to obtain P4 with:

bad start([0|X]) :- bad start(X). (2, 2)

Since bad start is defined by a single self-recursive clause, can be detected as failed, and hence
bad start(X) ≡ false.

14

The proof of bad src(X) ≡ bad dest(X) is illustrated in Figure 8b. We sketch some salient
aspects of this proof below2. An invocation of prove(bad src(X), bad dest(X), 〈P0〉) performs a se-
quence of unfoldings, reaching a program P10 where the definitions of bad src and bad dest both
expand to 6 clauses. Only conditional equivalence is applicable at P10, generating 4 new goal equiva-
lences, among them trans1(X,Y), one more token(X) ≡ trans1(X,Y), one more token(Y).

The replacement of these two goals is itself performed by replace and prove. Since the goals are
not open atoms, replace and prove will create a new definition for each goal, reaching a program P12

containing clauses of the form:

s1(X, Y) :- trans1(X,Y), one more token(X) (1,1)
s2(X, Y) :- trans1(X,Y), one more token(Y) (1,1)

Note that, although the definitions of s1 and s2 are very similar, the variable bindings are different,
and hence they are not syntactically equivalent. No new unfolding is applicable at P12, and prove
folds using the above two rules as folders into respective clauses of bad src and bad dest , to obtain P14.
It then invokes prove(s1(X), s2(X), 〈P0〉) as a subproof. This proof is completed after a sequence of
unfoldings (to reach program P21) and two foldings, yielding program P23 containing:

s1([0,1|X], [1,0|X]). (4, 4)
s1([1|X], [1|Y]) :- trans1(X, Y). (3, 3)
s1([H|X], [H|Y]) :- s1(X, Y). (2, 2)

s2([0,1|X], [1,0|X]). (3, 3)
s2([1|X], [1|Y]) :- trans1(X, Y). (3, 3)
s2([H|X], [H|Y]) :- s2(X, Y). (2, 2)

s1
P23∼ s2 and hence s1(X) ≡ s2(X). Proofs of other goal equivalences generated by the conditional

equivalence in program P10 proceed similarly, and are omitted.

5 Concluding Remarks

We have shown how the combination of tabled resolution (unfold with tabling) and certain logic-
program transformations (fold and goal replacement) yields a general and highly automated framework
for proving safety and liveness properties of parameterized systems.

A preliminary prototype implementation of our transformation system, built on top of our XSB
tabled logic-programming system, has been completed. So far we have been able to automatically
verify a number of examples including the ones described in this paper. Our plan now is to investigate
the scalability of our system on more complex problems such as parameterized versions of the Rether
protocol [DSC99] and the Gnu i-protocol [DDR+99].

Towards that end we will need to enhance the proof strategies discussed in this paper. In par-
ticular, we are investigating techniques to make our proof search more “goal oriented” through the
notion of a “preferred” form for the definition of an atom (or predicate). The criteria for the preferred
form are so chosen that semantic equivalence of two atoms (or predicates) is more likely to be detected
through syntactic equivalence if their definitions are in preferred form. Our proof strategies will be
geared to transform atoms to such preferred forms.

References

[AH96] R. Alur and T. A. Henzinger, editors. Computer Aided Verification (CAV ’96), volume
1102 of Lecture Notes in Computer Science, New Brunswick, New Jersey, July 1996.
Springer-Verlag.

2The fragment of the proof corresponding to the figure appears in the appendix. For complete proof, see [RKR+99].

15

[AK86] K. Apt and D. Kozen. Limits for automatic verification of finite-state systems. Informa-
tion Processing Letters, 15:307–309, 1986.

[BCG89] M. Browne, E. Clarke, and O. Grumberg. Reasoning about networks with many identical
finite-state processes. Information and Computation, 81(1):13–31, 1989.

[BCG95] G. S. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for
CTL∗. In LICS’95, pages 388–397, San Diego, July 1995. IEEE Computer Society Press.

[CGJ95] E. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks using abstraction
and regular languages. In Lee and Smolka [LS95].

[DD94] D. De Schreye and S. Decorte. Termination of logic programs: the never-ending story.
Journal of Logic Programming, 19 & 20:199–260, May 1994.

[DDR+99] Y. Dong, X. Du, Y. S. Ramakrishna, C. R. Ramakrishnan, I.V. Ramakrishnan, S. A.
Smolka, O. Sokolsky, E. W. Stark, and D. S. Warren. Fighting livelock in the i-Protocol:
A comparative study of verification tools. In TACAS’99, volume LNCS 1579. Springer-
Verlag, March 1999.

[Dil96] D. L. Dill. The Murϕ verification system. In Alur and Henzinger [AH96], pages 390–393.

[DP99] G. Delzanno and A. Podelski. Model checking in CLP. In TACAS’99, volume LNCS
1579, pages 74–88. Springer-Verlag, March 1999.

[DRS99] X. Du, C.R. Ramakrishnan, and S.A. Smolka. Tabled resolution + constraints: A recipe
for model checking real-time systems. Technical report, Dept. of Computer Science,
SUNY Stony Brook, 1999. URL: http://www.cs.sunysb.edu/∼vicdu/papers.

[DSC99] X. Du, S. A. Smolka, and R. Cleaveland. Local model checking and protocol analysis.
Software Tools for Technology Transfer, 1999.

[EN95] E. Emerson and K.S. Namjoshi. Reasoning about rings. In Proceedings of 22nd POPL,
pages 85–94, 1995.

[Gru97] O. Grumberg, editor. Computer Aided Verification (CAV ’97), volume 1254 of Lecture
Notes in Computer Science, Haifa, Israel, June 1997. Springer-Verlag.

[GS96] S. Graf and H. Saidi. Verifying invariants using theorem proving. In Alur and Henzinger
[AH96].

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

[ID96] C. N. Ip and D. L. Dill. Verifying systems with replicated components in Murϕ. In Alur
and Henzinger [AH96], pages 147–158.

[KM95] R.P. Kurshan and K. Mcmillan. A structural induction theorem for processes. Information
and Computation, 117:1–11, 1995.

[KMM+97] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking
with rich assertional languages. In Grumberg [Gru97], pages 424–435.

[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parametrized linear
networks of processes. In Proceedings of POPL 97, pages 346–357, 1997.

16

[Llo93] J.W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-Verlag, 1993.

[LS95] I. Lee and S. A. Smolka, editors. CONCUR ’95, volume 962 of Lecture Notes in Computer
Science. Springer-Verlag, 1995.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[Mil89] R. Milner. Communication and Concurrency. International Series in Computer Science.
Prentice Hall, 1989.

[OSR92] S. Owre, N. Shankar, and J. Rushby. PVS: A Prototype Verification System. Proceedings
of CADE, 1992.

[PP99] A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using
unfold/fold proofs. Journal of Logic Programming, to appear, 1999.

[RKR+99] A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, I.V. Ramakrishnan, and
S.A. Smolka. Verification of parameterized systems using logic program transforma-
tions. Technical report, Dept. of Computer Science, SUNY Stony Brook, 1999. URL:
http://www.cs.sunysb.edu/∼abhik/papers/.

[RKRR99a] A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan.
Beyond Tamaki-Sato style unfold/fold transformations for normal logic programs. In
Asian Computer Science Conference (ASIAN), 1999. To appear.

[RKRR99b] A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan.
A parameterized unfold/fold transformation framework for definite logic programs. In
Principles and Practice of Declarative Programming (PPDP), LNCS 1702, pages 396–
413, 1999.

[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. L. Swift,
and D. S. Warren. Efficient model checking using tabled resolution. In Grumberg [Gru97].

[RSS95] S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with automated
proof checking. In P. Wolper, editor, Computer Aided Verification (CAV ’95), volume 939
of Lecture Notes in Computer Science, pages 84–97, Liége, Belgium, July 1995. Springer-
Verlag.

[SCK+95] B. Steffen, A. Classen, M. Klein, J. Knoop, and T. Margaria. The fixpoint-analysis
machine. In Lee and Smolka [LS95], pages 72–87.

[TS84] H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In Proceedings
of International Conference on Logic Programming, pages 127–138, 1984.

[UR95] L. Urbina and G. Riedewald. Simulation and verification in constraint logic programming.
In 2nd European Workshop on Real Time and Hybrid Systems. Springer-Verlag, 1995.

[Urb96] L. Urbina. Analysis of hybrid systems in CLP(R). In Constraint Programming (CP’96),
volume LNCS 1102. Springer-Verlag, 1996.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems,
volume 407 of Lecture Notes in Computer Science, pages 66–80, Grenoble, June 1989.
Springer-Verlag.

17

[XSB99] XSB. The XSB logic programming system v2.01, 1999. Available by anonymous ftp from
www.cs.sunysb.edu/∼sbprolog.

18

APPENDIX

A Proof of mutual exclusion in a n-process token ring

An invocation of prove(bad src(X), bad dest(X), 〈P0〉) performs a sequence of unfoldings (as long as
the finiteness conditions hold) and reaches a program P10 containing the following clauses:

bad src([0,1,1|X], [1,0,1|X]). (6,6)
bad src([0,1,H|T], [1,0,H|T]) :- one more token(T). (6,6)
bad src([1|X],[1|Y]) :- trans1(X,Y), one more token(X). (4,4)
bad src([H|X],[H|Y]) :- trans1(X,Y), bad(X). (4,4)
bad src([1,1|X],[0,1|Y]) :- trans2(X,Y). (5,5)
bad src([1,H|X],[0,H|Y]) :- trans2(X,Y), one more token(X). (5,5)
bad dest([0,1,1|X], [1,0,1|X]). (6,6)
bad dest([0,1,H|T], [1,0,H|T]) :- one more token(T). (6,6)
bad dest([1|X],[1|Y]) :- trans1(X,Y), one more token(Y). (4,4)
bad dest([H|X],[H|Y]) :- trans1(X,Y), bad(Y). (4,4)
bad dest([1,1|X],[0,1|Y]) :- trans2(X,Y), one more token(Y). (5,5)
bad dest([1,H|X],[0,H|Y]) :- trans2(X,Y), bad(Y). (5,5)

Conditional equivalence alone is applicable in P10, creating new goal equivalences between the
right hand sides of rules for bad src and bad dest. Here, we consider one of the new equiva-
lences: trans1(X,Y), one more token(X) ≡ trans1(X,Y), one more token(Y). The replacement
of these two goals is itself performed by replace and prove . Since the goals are not open atoms,
replace and prove will create a new definition for each goal, reaching a program P12 containing clauses
of the form:

s1(X, Y) :- trans1(X,Y), one more token(X) (1,1)
s2(X, Y) :- trans1(X,Y), one more token(Y) (1,1)

No new unfolding is applicable at P12, and prove . It first folds using the above two rules as folders into
respective clauses of bad src and bad dest respectively, yielding P14. It then invokes prove(s1(X), s2(X), 〈P0〉).
This invocation reaches a program P21 containing:

s1([0,1|X], [1,0|X]). (4, 4)
s1([1|X], [1|Y]) :- trans1(X, Y). (3, 3)
s1([H|X], [H|Y]) :- trans1(X, Y), one more token(X). (3, 3)
s2([0,1|X], [1,0|X]). (3, 3)
s2([1|X], [1|Y]) :- trans1(X, Y). (3, 3)
s2([H|X], [H|Y]) :- trans1(X, Y), one more token(Y). (3, 3)

No further unfolding is possible in P21, but folding using the definitions of s1 and s2, we reach a
program P23 containing:

s1([0,1|X], [1,0|X]). (4, 4)
s1([1|X], [1|Y]) :- trans1(X, Y). (3, 3)
s1([H|X], [H|Y]) :- s1(X, Y). (2, 2)
s2([0,1|X], [1,0|X]). (3, 3)
s2([1|X], [1|Y]) :- trans1(X, Y). (3, 3)
s2([H|X], [H|Y]) :- s2(X, Y). (2, 2)

Now s1
P23∼ s2 and hence s1(X) ≡ s2(X). Proofs of other goal equivalences generated by the condi-

tional equivalence in program P10 proceed similarly, and are omitted.

19

