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Objective: To determine whether the automatic classification of documents can be useful in systematic
reviews on medical topics, and specifically if the performance of the automatic classification can be
enhanced by using the particular protocol of questions employed by the human reviewers to create
multiple classifiers.
Methods and materials: The test collection is the data used in large-scale systematic review on the topic
of the dissemination strategy of health care services for elderly people. From a group of 47,274 abstracts
marked by human reviewers to be included in or excluded from further screening, we randomly selected
20,000 as a training set, with the remaining 27,274 becoming a separate test set. As a machine learning
algorithm we used complement naïve Bayes. We tested both a global classification method, where a
single classifier is trained on instances of abstracts and their classification (i.e., included or excluded), and
a novel per-question classification method that trains multiple classifiers for each abstract, exploiting the
specific protocol (questions) of the systematic review. For the per-question method we tested four ways
of combining the results of the classifiers trained for the individual questions. As evaluation measures,
we calculated precision and recall for several settings of the two methods. It is most important not to
exclude any relevant documents (i.e., to attain high recall for the class of interest) but also desirable to
exclude most of the non-relevant documents (i.e., to attain high precision on the class of interest) in order
to reduce human workload.
Results: For the global method, the highest recall was 67.8% and the highest precision was 37.9%.
For the per-question method, the highest recall was 99.2%, and the highest precision was 63%. The
human–machine workflow proposed in this paper achieved a recall value of 99.6%, and a precision value

of 17.8%.
Conclusion: The per-question method that combines classifiers following the specific protocol of the
review leads to better results than the global method in terms of recall. Because neither method is efficient
enough to classify abstracts reliably by itself, the technology should be applied in a semi-automatic way,
with a human expert still involved. When the workflow includes one human expert and the trained auto-

prove
orkloa
matic classifier, recall im
can reduce the human w

. Introduction

Systematic reviews are highly structured summaries of existing
esearch in a particular field. They are a valuable tool in enabling
he spread of evidence-based practices especially in the medical
omain as the amount of information in medical publications con-
inues to increase at a tremendous rate. Systematic reviews help to

arse this growing body of information and distill targeted knowl-
dge from it.

The systematic review process, though typically less expensive
han primary research, requires considerable time and effort, as

∗ Corresponding author. Tel.: +1 613 562 5800x2140; fax: +1 613 562 5175.
E-mail address: ofrunza@site.uottawa.ca (O. Frunza).

933-3657/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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s to an acceptable level, showing that automatic classification techniques
d in the process of building a systematic review.

© 2010 Elsevier B.V. All rights reserved.

human reviewers must screen references manually to determine
their relevance to each given review. This process often entails
reading thousands or even tens of thousands of article abstracts.
The continuing growth of the body of medical articles makes this
process increasingly difficult.

A systematic review begins with a query-based search to iden-
tify articles that may be candidates for inclusion. Two reviewers
then read each abstract to determine whether the entire article
(which may not be available for free) should be examined. If so, fur-
ther analysis of the article decides whether it is clinically relevant

to the review topic and what information should be extracted.

A systematic review must be exhaustive; the accidental exclu-
sion of a potentially relevant abstract can have a significant negative
impact on the validity of the overall review [1]. Thus the process is
extremely labor-intensive.

dx.doi.org/10.1016/j.artmed.2010.10.005
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
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18 O. Frunza et al. / Artificial Intelligence

Tasks

Reviewer1
generates

Individual labels 
Test Set

Individual labels 
Train Set

Individual labels 
Train Set

System is 
trained

Reviewer2 
generates

System labels 
Test Set

Combine

System-Human

Combine

F
a

i
e
p
a
t
b
t
s

w
o
s
U
f
p
c
t
r
l
w
c
s
r
c
e
h
w
t
f
r

b
c
n
a

measure was applied to report the reduction in reviewers’ work
when retrieving 95% of the relevant documents, but the precision
was very low. The present study focuses on developing a classifier
performance

ig. 1. Embedding automatic text classification in the process of building a system-
tic review.

This paper proposes using an automatic system during the
nitial (abstract) screening phase in order to reduce the human
ffort involved in preparing a systematic review. Under the pro-
osed approach, one reviewer will still read the entire collection of
bstracts, but the other reviewer will have to label only the articles
hat will be used to train the classifier, the rest of the articles will
e labeled by the classifier. Ideally the proportion of articles that
he reviewer must label in order to train the classifier will be small,
o as to achieve a higher workload reduction.

We envision two ways to obtain the labels of the abstracts that
ill be used in training the classifier. The labels could be based only

n the decisions made by the assisted reviewer, or they could repre-
ent the final decisions resulting from the work of both reviewers.
sually, if either reviewer believes that an article should receive

urther screening, it is labeled for inclusion (the benefit of doubt
lays an important role in the decision process). The decision pro-
ess for the labels when the two reviewers’ opinions are used can be
he same as the one used in the initial screening phase: if at least one
eviewer agreed to include the abstract, the abstract will have the
abeled as included. For the experiments performed in this paper,

e used the labels obtained after the two reviewers’ decisions are
ombined. This approach should both maintain reliability of the
ystematic review and reduce the overall workload. With regard to
eliability, even if one of the reviewers is assisted by an automatic
lassifier, the chances that both the human judge and the classifier
xclude the same abstract will be approximately the same as if two
uman judges had directly reviewed the abstract. The reduction in
orkload is from the time required for the usual two passes through

he whole collection of abstracts (by both humans) to only one
ull pass plus a lesser amount of activity by the classifier-assisted
eviewer.
Fig. 1 graphically presents in flowchart form the process of
uilding a systematic review when the labels for training the
lassifier are based on the decisions of both reviewers. Alter-
ative processes are also possible; for example, some of the
bstracts labeled by the classifier could be double-checked by the
in Medicine 51 (2011) 17–25

assisted human reviewer who would then make the final labeling
decisions.

An automatic system helping with the tedious process of decid-
ing the relevance or non-relevance of each abstract could make
systematic reviews easier, faster, more scalable, and more afford-
able to complete. Machine learning techniques could fulfill this
need [2]. Specifically, a subfield of machine learning called auto-
matic text categorization is highly relevant to the development of
an intelligent systematic review system, since the task that must
be completed is a text classification task intended to classify an
abstract as relevant or not relevant to the topic of review.

The methods described in this paper apply machine learning
to the preparation of systematic reviews. The hypothesis guiding
this research is that replacing some of the manual screening of
abstracts with the use of an automatic classifier, which can be
trained to determine the relevance of abstracts at modest cost,
will save time while still achieving good performance. The exper-
iments described herein are designed to show that appropriate
methodological design and classification algorithms can attain this
combination of reduced effort and suitably rigorous review.

2. Background

The traditional way to collect and triage the abstracts in a
systematic review begins with the use of simple query search
techniques based on MeSH (www.nlm.nih.gov/mesh, accessed on
24 September 2008) or keyword terms. The queries are usually
Boolean-based and are optimized either for precision (to retrieve
only few non-relevant articles) or for recall (to miss as few relevant
articles as possible). Studies such as [3] show that it is difficult to
obtain high performance for both measures.

Although the task of selecting papers for a systematic review is a
natural application of a well-developed area of automatic text clas-
sification, prior efforts to exploit this technology for such reviews
has been limited. The research done by [2] appears to be the first
such attempt. In that paper, the authors experimented with a vari-
ety of text classification techniques, using the data derived from
the ACP Journal Club1 as their corpus. They found that support vec-
tor machine (SVM) was the best classifier according to a variety
of measures, but could not provide a comprehensive explanation
as to how SVM decides whether a given abstract is relevant. The
authors emphasized the difficulties related to the predominance
of one class in the datasets (i.e., the number of relevant abstracts
is only a small portion of the total), along with the difficulty of
achieving both good recall and good precision.

Further work was done by [1], focused mostly on the elimination
of non-relevant documents. As their main goal was to save work
for the reviewers involved in systematic review preparation, they
defined a measure, called work saved over sampling (WSS), that
captured the amount of work that the reviewers would save with
respect to a baseline of just sampling for a given value of recall.
The idea is that a classifier can return, with high recall, a set of
abstracts, and that the human needs to read only those abstracts
and weed out the non-relevant ones. The savings are measured with
respect to the number of abstracts that would have to be read if a
random baseline classifier were used. Such a baseline corresponds
to uniformly sampling a given percentage of abstracts (equal to the
desired recall) from the entire set. In the work done by [1], the WSS
for systematic review preparation, relying on characteristics of the

1 http://www.acpjc.org/.

http://www.nlm.nih.gov/mesh
http://www.acpjc.org/
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Table 1
The set of questions used by reviewers to determine if an abstract is relevant to the systematic review’s topic.

ID Question Type of response

1 Is this article about a dissemination strategy or a behavioral intervention? Yes/No
2 Is this paper relevant as background although it does not meet inclusion criteria? Yes/No
3 Is the population in this article made of individuals age 65 or older, or does it comprise individuals who serve the elderly

population’s health needs (i.e., health care providers, policy makers, organizations, community)?
Yes/No

4 Is this a primary study? Yes/No
5 Is this article about:a Text
6 Other reason for exclusion. Please specify Text
7 Is this a review? Yes/No
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8 Is there an abstract? Answering this question does not create an e

a This is an open-ended question which the reviewers can answer by typing wha
f building the systematic review.

ata that were not included in the method used by [1], and therefore
e cannot perform a direct comparison of results here. Also, the
ata sets that [1] used in their experiments are significantly smaller
han the one that we used here.

The following issues are central to the process of using machine
earning techniques for systematic review tasks:

Distribution of the data – in most systematic reviews, the number
f relevant documents is much smaller than the number of non-
elevant documents creating a class imbalance which can cause
roblems for the machine-learning algorithms.

Noise – when reviewers are not sure from an abstract whether
he article is relevant, a final decision will be made during the sec-
nd screening process where the entire document is reviewed. This
benefit of the doubt” approach will affect the quality of the data
sed to train the classifier, since a certain amount of “noise” is

ntroduced, in that abstracts that are in fact non-relevant are often
abeled as relevant in the first screening process.

Labeling cost – the labeling process is expensive both in human
ffort and money, so a key goal of the machine learning approach
s to reduce the human effort required.

Misclassification cost – if an abstract does not pass the first
evel of screening, the article will not be examined for information
xtraction during the second level of screening. Failure to identify
relevant abstract in the first screening process can have a pro-

oundly negative impact on the validity of systematic review results
1]. Identifying all relevant abstracts, therefore, is critical.

Representation – due to the vast number of abstracts in the medi-
al domain repositories, the machine learning representation must
ake into account the huge number of attributes or words that can
e extracted.

Training cost – if the overhead cost associated with training and
uning a machine learning classifier is too high, this expense may
egate the economic value of the solution. Similarly, if the training

nterface and process for the machine learning classifier are too
omplex for a non-technical user, its relevance to the systematic
eview community will be negligible.

. Methods

In our current work we propose two machine learning tech-
iques to assist humans in the systematic review process. The first
ne uses standard text classification techniques [1], while the sec-
nd one is a new technique that takes into account the specifics
f the systematic reviews – that is, the questions and answers that
re commonly part of the systematic review protocol. We believe
hat this second approach is an especially promising way to obtain
esirable results.
.1. The data set

A set of 47,274 abstracts with titles was collected from MEDLINE
http://medline.cos.com, accessed on 24 September 2008) as part
on rule. Yes/No

believe is the topic of the article. This information can be used later in the process

of a systematic review done by McMaster University’s Evidence-
Based Practice Center using TrialStat Corporation’s Systematic
Review System (www.trialstat.com, accessed on 24 September
2008), a web-based software platform used to conduct systematic
reviews.

The initial set of abstracts was collected using a set of Boolean
search queries that were run for the specific topic of the system-
atic review (which was “the dissemination strategy of health care
services for elderly people of age 65 and over”). Normally, such
queries are intentionally very general so as not to miss any relevant
abstracts. The goal of the queries is to provide close to 100% recall,
even if at the expense of precision. It is not known if this bound of
recall performance is actually achievable. The explicit terms that
created the query are not disclosed; we only have the collection
of abstracts and the label attached by the reviewers to each one.
The process by which labels were assigned is described below, as it
follows a specific systematic review protocol. The label determines
if the abstract is relevant or not to the topic of interest.

In the protocol applied, two reviewers worked in parallel, read-
ing the entire collection of 47,274 abstracts and answering a set of
questions to determine if an abstract is relevant or not to the topic
of review. Table 1 presents the set of questions used to determine
if an abstract was relevant or not.

The set of questions, or screening protocol, is prepared during
the setup stage of a systematic review when the topic of the review
and the search space are defined.

Using the questions presented above and the answers of the
two reviewers, an abstract was considered not relevant in the first
screening phase if at least one question was answered negatively
by both reviewers. Otherwise the abstract was selected for stricter
screening in the next phase.

In our experiments we worked with the collection of abstracts
and labels determined from the two reviewers’ opinions, after pos-
sible disagreements were solved (the two reviewers could discuss
and change the labels for some abstracts before they were passed
into the second level of screening). From the entire collection of
abstracts, 7173 were considered relevant and the remaining 40,101
non-relevant. As noted previously, when the abstract did not enable
reviewers to decide whether an article was relevant, the reviewers
preferred to keep the document, giving it the benefit of the doubt,
so as not to risk overlooking a relevant article. Some of the docu-
ments that passed the first screening process were in fact discarded
in the second screening process, when the full-text of the article
offered more information to support the decision. The abstracts
considered irrelevant in the initial screening phase do not enter
the next screening steps; they are removed from the systematic
review. The method proposed in this article focuses on the initial

screening phase, during which decisions are made based only on
the text of the abstract.

Using the collection of abstracts and their titles, labeled as rele-
vant or not relevant to the topic of the review, our task is to develop

http://medline.cos.com/
http://www.trialstat.com/
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Table 2
Training and testing data sets.

classification. We have chosen to use binary feature values, which
have been shown to outperform weighted values for text classifi-
cation tasks in the medical domain [1] and to provide more stable
results than frequency values can provide on similar tasks [6].
ig. 2. Example of confusion matrix [TI = the number of true inclusions; FE = the
umber of false exclusions; FI = the number of false inclusions; TE = the number of
rue exclusions].

rom this labeled collection an automatic classifier that will appro-
riately mark each abstract as relevant (included) or non-relevant
excluded).

.2. Evaluation measures

When we evaluate performance in classifying abstracts, two
bjectives are of great importance: to ensure the completeness of
he systematic review (i.e., to maximize the number of relevant
ocuments included) and to reduce the reviewers’ workload (by
aximizing the number of irrelevant documents excluded). Our

valuation measures of machine learning system performance are
omputed from the confusion matrix [4] that contains information
bout the actual class into which each abstract falls according to
uman review and the class selected by the classifier. Fig. 2 presents
n example of a confusion matrix.

The following evaluation measures, commonly used in informa-
ion retrieval and classification tasks are used here:

Recall = the ratio of correctly classified included instances to the
otal number of included = TI/(TI + FE). This evaluation measure is
nown to the medical research community as sensitivity. It indi-
ates the proportion of items that the system incorrectly failed to
elect and it measures how well we achieve our Objective 1.

Precision = the ratio of correctly classified included instances to
he total number classified as included = TI/(TI + FI). This measure
eflects our Objective 2 and assesses to what extent the system
as inaccurately included abstracts that it should have excluded as
on-relevant.

F-measure = the harmonic mean between precision and
ecall = 2 * Precision * Recall/(Precision + Recall) [5].

Since Objective 1 is more important than Objective 2, a decre-
ent of recall (leaving out relevant documents) is more costly than
decrement of precision (including non-relevant documents that
ill be filtered out in the next screening stage).

For comparison purposes, we use the results of a simple query-
ased system as an extreme baseline, along with a random-baseline
lassifier that randomly generates a real number between 0 and 1
nd uses the prevalence of the two classes to decide. If the generated
umber is less or equal to the threshold the label is relevant, oth-
rwise it is non-relevant. An automatic classification system must,
bviously, exceed the results attained by these two baselines to be
f any value.

.3. Global text classification method

The first method that we propose for the text classification
ask entailed in the systematic review process is a straightforward

achine learning approach. We trained a classifier on a collection of

bstracts and then evaluated the classifier’s performance on a sepa-
ate collection of abstracts representing the test data set. The power
f this classification technique, also used by [1], stands in the ability
o use a suitable classification algorithm and a good representation
or the text classification task.
Data set No. of abstracts Class distribution (included:excluded) (ratio)

Training 20,000 3,056: 16,944 (1:5.6)
Testing 27,274 4,117: 23,157 (1:5.6)

We used the same machine learning algorithm to train several
classifiers for the second method that we propose, described in
detail in Section 4. In this method we used additional knowledge
from the systematic review protocol described in Section 3.1 with
an ensemble of classifiers trained on different data sets, with a final
classification decision for each testing instance taking into account
the predictions of the ensemble of trained classifiers. This approach
arose from consideration of the multiple, broad questions, cover-
ing different concepts, that are used in the initial screening phase
of systematic reviews. It seemed that dividing up the questions
(among multiple classifiers) and then combining the end results
could increase performance. As we will show later in the results
section, our intuition was confirmed.

We made the transition from the first method to the second
method by first combining the global method with information
from the answers that the reviewers gave to the questions for
each abstract. This information takes the form of the three possible
answers to each closed-ended question (yes, no, or not applicable).
We randomly split the data set of abstracts into a training set and a
test set. We used the first part of the split for training and the second
one to evaluate the classifier’s performance in deciding whether to
include or exclude an abstract. We decided to work with a training
set smaller than the test set because, ideally, good results should be
obtained without relying on too large an amount of training data.
We have to take into consideration that, if we want to train a clas-
sifier for a particular topic of review, human effort will be required
to annotate at least part of the collection of abstracts.

From the collection of 47,274 abstracts, 20,000 were randomly
taken to be part of the training data set and the remaining 27,274
represented the test set.2 Table 2 presents a summary of the data
along with the class distribution in the training and test data sets.
We verified that the original overall inclusion/exclusion distribu-
tion of 1:5.6 between the two classes remains in both subsets.

To evaluate the effect of training set size, we ran additional
experiments with different splits of the data set, changing its size
from 10% to 50% in increments of 10%. We decided not to include
more than 50% of the data for training, because doing so would
increase the workload of the human judge, and our final goal is to
use as little training data as possible.

3.4. Representation

The next preprocessing step to be addressed is to choose a rep-
resentation of the documents that can be used in the machine
learning task. We used three types of representations: bag-of-
words (BOW), concepts from the Unified Medical Language System
(UMLS), and a combination of BOW and UMLS concepts.

The bag-of-words representation is commonly used for text
2 We believe that the cross-validation evaluation technique is not appropriate for
our task since splitting the data using a time-line stamp is a realistic scenario when
integrating a trainable automatic system into the human workflow. Also, cross-
validation is normally used when the data set is not large enough to split it into
training and test sets.
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The selected features were words of greater than three char-
cters, delimited by spaces and simple punctuation marks that
ppeared at least three times in the training collection. The fre-
uency threshold of three is commonly used for text collections,
specially large ones, because it removes non-informative features
nd strings of characters that might be the result of a wrong tok-
nization when splitting the text into words, and because very short
cronyms in the medical domain could be highly ambiguous. We
lso removed stop words (e.g., the, it, of, an), using the stop-word list
www.site.uottawa.ca/∼diana/csi5180/StopWords, accessed on 24
eptember 2008). These function words appear in every document
nd, therefore, do not help in the classification.

Even with these feature selection constraints, the remaining
umber of features is very large – approximately 30,000 word fea-
ures. In order to reduce the number of features we experimented
ith several feature selection algorithms, but the results were not

etter than when using all the features. We used the InfoGain [7],
hi-square [8], and bi-normal separation (BNS) [9] feature selection
echniques. No improvements in results were obtained with any of
hese methods.

UMLS concepts: To supply a representation that provides fea-
ures more general than the words in the abstracts, we also added
MLS [10] concept representations. UMLS is a knowledge source
eveloped at the U.S. National Library of Medicine (NLM) that
ontains a metathesaurus, a semantic network, and the specialist
exicon for biomedical domain.

The metathesaurus is organized around concepts and mean-
ngs; it links alternative names and views of the same concept and
dentifies useful relationships between different concepts.

UMLS contains more than 1 million biomedical concepts and
ore than 5 million concept names, which are hierarchically orga-

ized. Each unique concept present in the thesaurus has multiple
ext string variants (slight morphological variations of the concept)
ssociated with it. NLM created this knowledge base by unifying
undreds of other medical knowledge bases and vocabularies (such
s MeSH and SNOMED CT) to create an extensive resource that pro-
ides synonymy links, as well as parent–child relationships, among
ingle or multi-word concepts. All concepts are assigned at least one
emantic type from the semantic network; this linkage provides a
eneralization of the existing relations between concepts. There
re about 135 semantic types in the knowledge base, and they are
inked through 54 relationships.

In addition to the UMLS knowledge base, NLM created a set of
ools that allow easier access to the useful information. MetaMap
11], one of these tools, maps free text to biomedical concepts in
he UMLS, or, equivalently, it discovers metathesaurus concepts
n a text. With this software, text is processed through a series
f modules that in the end will give a ranked list of all possible
oncept candidates for a particular noun-phrase. We used as fea-
ures the top concept candidate for each phrase identified by the

etaMap system. The UMLS concept representation is similar to a
ulti-word expression representation. For the simple BOW repre-

entation, each feature is represented by a single word. Using UMLS
oncepts, features are often represented by a sequence of words.

Another reason to use a UMLS concept representation is the
concept drift” phenomenon that can appear in a BOW representa-
ion. This is an especially frequent problem in the medical domain
12]. New articles on a certain topic frequently use new terms that

ight not match the ones encountered previously in the training
rocess. Using a more general representation rather than individual
ords can still capture these articles.
.5. Classification algorithms

As a classification algorithm we chose to use the complement
aive Bayes (CNB) [13] classifier from the Weka [4] tool. The reason
Training Data Size

Fig. 3. Algorithm for per-question classification method. Recall and precision plots
when varying the training size for per-question technique.

for this choice is that the CNB classifier implements state-of-the-
art modifications of the standard multinomial naive Bayes (MNB)
classifier for a classification task with highly skewed class distri-
bution. As the systematic reviews usually identify a large majority
of abstracts as not relevant, resulting in skewness reaching even
below 1%, it is appropriate to use classifiers that take this problem
into account. CNB modifies the standard MNB classifier by applying
asymmetric word count priors, reflecting skewed class distribution
[13]. We experimented with other classifiers from Weka as well
(such as decision trees, support vector machine, instance-based
learning, and boosting), and the results obtained with CNB were
better than those with the other classifiers.

Naïve Bayes (NB) is a classifier that is known to work well with
text. It is fast and easy to integrate in a more complex system. Its
performance is comparable to that of the SVM classification, and
a previous study [14] showed that the NB classification algorithm
works better than SVM with a high number of features. In that study
the authors compared SVM, NB, and k-nearest neighbor (kNN) clas-
sification algorithms for text classification tasks. They found that all
classifiers obtained comparable results, but that NB worked best
for various sizes of the training data set. The difference in results
between SVM and NB was not significant, but, from the point of
view of the running times and parameter settings, the NB classifier
is definitely a more suitable choice than SVM for our task.

4. Per-question classification method

The second method that we propose for solving our task takes
into account the specifics of the systematic review process. More
exactly, it takes advantage of the set of questions that the reviewers
use to decide whether an abstract is relevant. These questions are
created in the design step of the systematic review, and almost all
systematic reviews include such a set of questions, similar to the
ones presented in Table 1. Ref. [1] represented such information
in the form of a closed set of reasons for the exclusion of a spe-
cific abstract, but this information was not used by the classifier
developed in their work.

In the worst case, the design of a systematic review has only one
question, in which case the method will be similar to the global text
classification technique that we presented earlier. The algorithm for
the method that we propose is described in Fig. 3.

We have chosen to use only the questions that have inclu-

sion/exclusion criteria, because they are the most important ones
for reviewers as they make a decision on an abstract.

To collect training data for each question, we used the same
training data set as in the previous method (note that not all the
abstracts have answers for all the questions; therefore the training

http://www.site.uottawa.ca/~diana/csi5180/StopWords
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Table 3
Data sets for the per-question classification method.

Question Training data set Included class Excluded class

Q1 – Is this article about a dissemination strategy or a behavioral intervention? 14,057 1,145 12,912
Q3 – Is the population in this article made of individuals age 65 or older, or does it comprise

vider
15,005 7,360 7,645
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individuals who serve the elderly population’s health needs (i.e. health care pro
makers, organizations, community)?

Q4 – Is this a primary study?
Q7 – Is this a review?

et sizes differ for each question). We also kept the same test data
et. When we created a training data set for each question sepa-
ately, we removed the abstracts for which only one of the human
xperts had given a “yes” answer, to eliminate “noise” in the train-
ng data. We need to train classifiers only on reliable data, to the
xtent possible. Table 3 presents the subset of questions that we
elected and the number of instances (abstracts) present in each
raining data set for each class.

Combining the per-question classifiers: For each of the questions
rom Table 3, we trained a CNB classifier on the corresponding data
et. We used the same representations for the per-question clas-
ifiers as we did for the global classifier: BOW, UMLS (using the
oncepts that appeared only in the new question-oriented train-
ng data sets), and the combination BOW + UMLS. We used each
rained model to obtain a prediction for each instance from the test
et; therefore each test instance was assigned four prediction val-
es of 0 or 1. The predictions have values of 0 or 1. To assign a final
lass for each test instance from the prediction of all four classi-
ers, the class of a test instance was decided according to one of
he following four schemes:

. If any one vote is Excluded, the final class of a test instance is
Excluded.

. If any two votes are Excluded, the final class of a test instance is
Excluded.

. If any three votes are Excluded, the final class of a test instance is
Excluded.

. If all four votes are Excluded, the final class of a test instance is
Excluded.

These alternatives will be referred to in the results section as
he “one-vote scheme,” “two-vote scheme,” and so forth. When we
ombined votes for all of the classifiers, we gave each classifier an
qual importance, to decide the final classification.

. Results

Before presenting the results of the two methods, we mention
reliminary results obtained for the purpose of considering what is
he best training–testing split for the global method. These results
re presented in Table 4.
These results led us to use a 40–60% split in the remaining exper-
ments, as a 50–50 split produced only modest improvement in
ecall along with a loss of precision.

For the experiment in which we combined the global method
ith the answers for the questions involved in the systematic

able 4
esults for the global method using the BOW representation technique for various splits

Train-test split True included False included True excluded

10–90% 1,137 1,179 34,898
20–80% 2,721 3,665 28,404
30–70% 2,969 5,087 23,019
40–60% 2,692 5,022 18,135
50–50% 2,316 4,524 14,615
s, policy

8,825 6,895 1,930
6,429 5,640 789

review protocol, we obtained a recall value of 67.5%, a precision
value of 37.9%, and an F-measure value of 48.5%. Comparing these
results with the ones that we obtained with the global method, we
observed that the precision result is fairly strong but that the recall
is not acceptable.

In order to determine the performance of the human–machine
workflow that we propose in this paper, we computed the recall
values when the human reviewer’s labels are combined with the
labels obtained from the proposed classifier. We present these
results in Table 5. The same labeling technique is applied as for the
human–human workflow: if at least one decision for an abstract is
to include it in the systematic review, then the final label is Included.

We also calculated the evaluation measures for the two review-
ers independently. The evaluation measures for the human judge
who remained in the human–machine workflow, identified as
Reviewer 1 in Fig. 1, are 64.29% for recall and 75.20% for pre-
cision. The evaluation measures for the reviewer to be replaced
in the human–machine classification (Reviewer 2 in Fig. 1) were
59.66% for recall and 85.09% for precision. The recall value for the
two human judges combined is 85.26% and the precision value is
85%. (These figures, incidentally, show the importance of using two
reviewers, as the results when both reviewers participate are much
higher than the results for each of them individually.)

5.1. Results for the global method

The results for the global text classification method are reported
for the BOW representation, the UMLS representation, and their
combination using the CNB classifier (see Table 5).

The BOW features were identified following the guidelines pre-
sented in Section 3.4, and a total of 23,906 features were selected.
To determine the UMLS concepts we used the MetaMap system
described earlier. From the whole training abstracts collection,
a total of 459 UMLS features were identified. As Table 5 shows,
under the global method the UMLS representation obtained the
highest recall results, 67.8% but much lower precision, 23.8% com-
pared to 34.9% for BOW representation. The hybrid representation
BOW + UMLS had similar results to those with BOW alone. Recall
increased slightly for the hybrid representation compared to BOW
alone, but the level of recall is still not acceptable. These recall
results indicate that it is not viable to use a single classifier in place
of a human judge in the workflow of building a systematic review.
5.2. Results for the per-question classification method

We now turn to our second method, which trains a classifier
for each question in the systematic review protocol. The results

of the training and test data sets.

False excluded Recall Precision F-measure

5,332 17.58% 49.09% 25.89%
3,029 47.32% 42.61% 44.84%
2,017 59.55% 36.85% 45.53%
1,425 65.39% 34.90% 45.51%
1,092 67.96% 33.86% 45.20%
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Table 5
Experimental results for several methods of screening 27,274 PubMed abstracts, selected for a systematic review on the dissemination strategy of health care services for
people age 65 and over, of which 4117 are labeled Inc. (Included class) and 23,157 are labeled Exc. (Excluded class). For each method, the table reports the four entries of
the confusion matrix (first four columns) followed by the recall and precision for the class of interest (included), the F-measure, and then the recall and precision for the
human–machine workflow.

Method True Inc. False Inc. True Exc. False Exc. Recall (%) Precision (%) F-measure (%) Human–machine
recall/precision (%)

1. Baseline methods
IncludeAll 4117 23,157 0 0 100.0 15.0 26.2 100.0/15.0
ExcludeAll 0 0 23,157 4117 0.0 100.0 0.0 64.2/15.2
Random-Bias 370 2019 21,138 3747 8.9 15.4 11.3 67.8/15.3
2. Global method
BOW 2692 5022 18,135 1425 65.3 34.9 45.5 87.7/17.8
UMLS 2793 8922 14,235 1324 67.8 23.8 35.2 88.6/16.9
BOW + UMLS 2715 5086 18,071 1402 65.9 34.8 45.5 87.7/17.8
3. One-vote threshold for the per-question method
BOW 1262 745 22,412 2855 30.6 62.8 41.2 75.3/17.1
UMLS 1222 2266 20,891 2895 29.6 35.0 32.1 74.8/16.5
BOW + UMLS 1264 741 22,416 2853 30.7 63.0 41.2 75.4/17.1
4. Two-vote threshold for the per-question method
BOW 3181 9976 13,181 936 77.2 24.1 36.8 91.6/17.0
UMLS 2603 9505 13,652 1514 63.2 21.5 32.0 86.6/16.4
BOW + UMLS 3283 10,720 12,437 834 79.7 23.4 36.2 92.7/17.0
5. Three-vote threshold for the per-question method
BOW 3898 18,915 4242 219 94.6 17.0 28.9 97.9/15.7
UMLS 3480 16,472 6685 637 84.5 17.4 28.9 94.2/15.7
BOW + UMLS 3890 18,881 4276 227 94.4 17.0 28.9 97.8/15.7
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An ideal solution for our task would be a point in the upper right
corner, combining good recall with good precision. As the figure
shows, the best results are achieved by the per-question classifica-
tion method. This setting delivered the best balance between the
6. Four-vote threshold for the per-question method
BOW 4085 21,946 1211 32
UMLS 3947 20,869 2288 170
BOW + UMLS 4086 21,964 1193 31

btained with the one-vote scheme, two-vote scheme, three-vote
cheme, and four-vote scheme are presented in Table 5.

For the per-question method, we also ran experiments with var-
ous data sizes. The classifier used for these experiments is the
wo-vote scheme with BOW + UMLS feature representation (the
lassifier that obtained the best performance level). Fig. 3 presents
he recall and precision plots for these experiments. The results
how that precision and recall tend to increase with larger train-
ng sets. The improvement was gradual when more than 40% of the
raining set is used, but a jump in recall occurred when we used the
ull collection of abstracts in the training set.

The results obtained by this method, especially the ones using
he two-vote scheme, are the best obtained so far in terms of the
alance between the two objectives of recall and precision. A large
umber of abstracts are appropriately excluded, while very few
bstracts are inaccurately excluded (far fewer than with the global
lassification method).

The two-vote scheme performs better than the one-vote
cheme, as it eliminates the errors that can arise from a single
uestion-based classifier. When the classifiers for two different
uestions agree that the abstract is relevant, the chance of correct
rediction is higher. When the classifiers for three or four questions
re used, precision decreases.

For the per-question technique, the recall value peaked at 99.2%
ith the four-vote scheme using BOW and BOW + UMLS repre-

entation techniques and CNB as classifier. However, the lowest
recision value of any per-question technique, 15.6%, is obtained
ith the same experimental setting. It is important to aim for a high

ecall, but not to dismiss the precision values. A difference of even
2% in precision values can require reviewers to read additional
housands of documents, as observed in the confusion matrices for
he two-vote, three-vote, and four-vote methods in Table 5. The
ifference in precision between 24.1% (with the two-vote method)

nd 15.6% (with the four-vote method) would require reviewers
o go through 11,988 additional documents! The two-vote scheme
as a 79% recall level, compared to 92% for the four-vote scheme;
his different would represent 904 more articles missed by the two-
ote classifier. However, keep in mind that recall will be higher in
99.2 15.6 27.1 99.6/15.3
95.8 15.9 27.2 98.3/15.3
99.2 15.6 27.0 99.6/15.3

the human–machine workflow that we propose, because most of
the articles misclassified by the machine will still be identified as
relevant by the human judge. We observe this impact when look-
ing at the recall levels for the human–machine protocol in Table 5.
Keeping one human in the loop makes our method acceptable as a
workflow for building a systematic review.

Taking these facts into consideration, we conclude that the best
experimental setting is the two-vote scheme with BOW + UMLS
features.

Fig. 4 offers a graphical comparison of the results of the var-
ious methods. The two dimensions in the figure illustrate recall
and precision results for several variants of the two methods. The
points have different shapes and corresponding labels in this two-
dimensional space.
Fig. 4. Summary of results for both the global and per-question method (for the
per-question method, the voting scheme used is indicated in the names by subscript
numbers).
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wo measures, while still providing a high level of recall (the most
mportant evaluation measure).

. Discussion

The global method achieved good results in terms of precision,
ut its recall level was low and significantly outperformed by the
er-question method. Overall, the best results were obtained by
sing the per-question method with the 2-vote scheme, including
OW representation with or without UMLS features. The results
btained by the three-vote scheme UMLS representation are close
o the results obtained by the two-vote scheme, but F-measure
esults indicate that the 2-vote scheme is superior. Other per-
uestion settings obtained better levels of recall (see the upper left
orner of Fig. 4), but the level of precision is too low.

The per-question technique is also more robust, offering several
ptions as to the desired type of performance. If the reviewers are
illing to read almost the entire collection of documents in order

o obtain high recall then a three- or four-vote scheme can be set up
though these schemes are not likely to achieve 100% recall because
ew abstracts contain answers to three or more of the questions
ssociated with the systematic review). If the reviewers prefer to
ead a smaller collection of articles, nearly all of which will be rel-
vant, then a one-vote scheme can be applied. The per-question
ethod results confirm that a committee or ensemble of classi-

ers is better than one classifier; this conclusion is supported in
he machine learning literature [15].

Balancing recall and precision is a known problem in the
achine learning community. As our primary task is to obtain

reater levels of recall, the choice of using the entire collection of
raining data for the per-question technique appears to be sup-
orted by the results presented in Fig. 4.

When we combined the automatic classification system with
ne human reviewer, we obtained a major improvement in recall.
ooking at the human–machine results for the classifier alterna-
ive that obtained the best results (the two-vote scheme with a
OW + UMLS representation technique), we find that, among the
34 abstracts falsely excluded by the automatic system, 537 were

dentified as relevant by the first human reviewer, the one who read
nd labeled the entire collection of retrieved abstracts. The over-
ll recall of the human–machine combination was 92.7%, while the
recision level was 17%. When we combined the human and classi-
er decisions, the precision level decreased slightly relative to the
ne obtained by the machine only, suggesting that the first human
eviewer included some abstracts that were rightly excluded by the
achine.
Our goal of improving the recall level at the first level of screen-

ng was achieved, since integrating both the classifier and the
uman judge in the workflow enabled the recall level to jump to
2.7%. As stated in previous studies by our research group [16], the

evel of recall achieved by two human judges is usually between
0 and 95 percent. We can conclude that the two human judges

nvolved in the process of building the review generally correct each
ther’s mistakes and, together, identify nearly all relevant articles in
he first screening stage. The low levels of precision are corrected
n the second level of screening, where the complete documents
re reviewed and more refined questions are asked so that only the
ruly relevant articles are retained.

The relatively low precision levels achieved in the first screen-
ng phase are not our primary concern. Our main objective in this

hase is to achieve high levels of recall, since an abstract labeled
s non-relevant at this point will not be reviewed afterwards and
ill be excluded from the systematic review. Precision can be

chieved in the second screening phase, where the information
vailable to make the decision is richer. Our results show that using
in Medicine 51 (2011) 17–25

a human–machine workflow in the first screening phase can signif-
icantly reduce the human workload in this tedious process while
maintaining acceptable recall.

Further research is required before replacing a human reviewer
with an automatic classifier becomes a standard practice, but the
results that we obtained with the per-question method encourage
us to believe that the human–machine workflow can be effec-
tively implemented. This application of a machine learning solution
could be of significant value in completing a task that human
experts find both tedious and, as demonstrated by the system-
atic reviews released each year (e.g., the Cochrane Collaboration
www.cochrane.org/index.htm, accessed on 24 September 2008),
challenging.

7. Conclusions and future work

We presented two methods that can be used in automatic classi-
fication of abstracts for a systematic review task. The two methods
are (1) the global method, where a classifier is built based on the
labeled training set of relevant and non-relevant abstracts, and (2)
an alternative method, exploiting a protocol commonly used by
human reviewers in screening abstracts for systematic reviews.
This protocol consists of asking a series of simple questions for
each abstract and aggregating the answers to these questions into
a binary decision. The skewed class distribution was taken into
account by using special classifiers (CNB). When we used the per-
question technique, noise in the data was reduced by removing
unreliable instances where possible. Our evaluation measures paid
attention to the relative importance of the two types of misclassi-
fication (with false exclusions posing a more serious problem than
false inclusions).

Using a real-life data set, we have shown that applying the
question-based systematic-review protocol and machine learning
techniques can help us build better automatic models and thereby
reduce the tedious workload for human experts. The continued use
of one human judge enhances reliability, as the abstracts included
by the human judge will still be examined in the next screening
phase even if the automatic system overlooked them, and makes
our proposed system a viable alternative to the usual two-human
process of building systematic reviews.

In the future we plan to investigate whether the CNB classifier
that we used in our approach, and which is designed specifically to
address classification tasks with skewed class distribution, would
also work well with the data sets used in [1] and possibly improve
their results. Furthermore, we will focus on reducing the amount of
training data required, by using active learning techniques to select
the best cases for training. The system will ask a human reviewer
to label a small amount of training data that would be most useful
in training a classifier. Another direction of future work is to use
classifiers in updating existing systematic reviews, as a classifier
can be deployed to identify newly published articles from Medline
that are relevant to the topic of the systematic review. In this way,
updated information can be added to an already existing review on
a certain topic.

Other possible directions for future research could include
experiments that give variable weight to the decision of each clas-
sifier in the per-question method, or that combine the classifiers’
decisions by using a meta-classifier instead of a voting technique.

Finally, it would be interesting to extend the machine learn-

ing approach to the next stage of the systematic review process,
in which the full texts of the papers are screened for relevance.
Since the full text would provide a much richer BOW representa-
tion the results of the automatic classification system should be
significantly stronger than in the first screening phase.

http://www.cochrane.org/index.htm
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