
Introduction

The problem of object pose from 2D to 3D correspon-
dences has received a lot of attention both in the photo-
grammetry and computer vision literatures. Various
approaches to the object pose (or external camera parame-
ters) problem fall into two distinct categories: closed-form
solutions and non-linear solutions. Closed-form solutions
may be applied only to a limited number of correspon-
dences [1,2]. Whenever the number of correspondences is
larger than four, closed-form solutions are not efficient and
iterative non-linear solutions are necessary [3,4]. The latter
approaches have two drawbacks: (i) they need a good ini-
tial estimate of the true solution, and (ii) they are time con-

suming. Therefore, such approaches can not be used in
tasks that require high speed performance (visual servoing,
object tracking, …) [5,6,7,8]. To our knowledge, the
method proposed by DeMenthon and Davis [9] is among
the first attempts to use linear techniques, associated with
the weak perspective camera model in order to obtain the
pose that is associated with the perspective camera model.
The method starts with computing the object pose using a
weak perspective model and after a few iterations con-
verges towards a pose estimated under perspective.

In this paper we show how the initial method proposed
by DeMenthon [9] (iterative weak perspective algorithm)
can be used with both points and straight lines. Moreover,

1077-2014/99/030215 + 16 $30.00/0 © 1999 Academic Press

Pose Estimation using Point and Line
Correspondences

he problem of a real-time pose estimation between a 3D scene and a single camera is a funda-
mental task in most 3D computer vision and robotics applications such as object tracking, visualTservoing, and virtual reality. In this paper we present two fast methods for estimating the 3D pose

using 2D to 3D point and line correspondences. The first method is based on the iterative use of a weak
perspective camera model and forms a generalization of DeMenthon’s method (1995) which consists of
determining the pose from point correspondences. In this method the pose is iteratively improved with
a weak perspective camera model and at convergence the computed pose corresponds to the perspec-
tive camera model. The second method is based on the iterative use of a paraperspective camera model
which is a first order approximation of perspective. We describe in detail these two methods for both
non-planar and planar objects. Experiments involving synthetic data as well as real range data indicate
the feasibility and robustness of these two methods. We analyse the convergence of these methods and
we conclude that the iterative paraperspective method has better convergence properties than the itera-
tive weak perspective method. We also introduce a non-linear optimization method for solving the pose
problem.

© 1999 Academic Press

Fadi Dornaika and Christophe Garcia

RWCP Theorical Foundation GMD Laboratory, Institute For System Design Technology
GMD – German National Research Center for Information Technology, 53754 Sankt Augustin, Germany

Email: christophe.garcia@gmd.de

Real-Time Imaging 5, 215–230 (1999)
Article No. rtim.1997.0117, available online at http://www.idealibrary.com on

we establish a link between paraperspective pose and per-
spective pose (iterative paraperspective algorithm). It has
been argued that since features like straight lines are deter-
mined by a large number of pixels, the redundancy makes it
possible to locate them accurately in the image.
Furthermore, lines can be extracted even if they are par-
tially hidden.

The remainder of this paper is organized as follows. In
the following section we recall the fundamental equations
relating image features (points and lines) to the pose para-
meters associated with the perspective camera model. The
subsequent sections then describe the iterative weak per-
spective algorithm, and the iterative paraperspective algo-
rithm, and provide details for solving the linear equations
associated with pose computation in the case of planar
objects. Then there are sections which describe a non-linear
optimization method for determining the pose parameters,
analyse the convergence of both the iterative weak and
paraperspective algorithms, and provide an experimental
comparison of the two methods described in this paper
together with a comparison with the non-linear method.
The final section provides some examples of application of
pose estimation.

Background and Notations

We denote by Pi a 3D point with coordinates (Xi, Yi, Zi) in a
frame that is attached to the object — the object frame
(Figure 1). The origin of this frame is the object point P0. We
denote by Dj a 3D line that is described parametrically by its
direction Vj and by a point vector Wj. We suppose that the
observed scene contains n points (P1, …, Pn) (in addition to
the reference point P0) and m straight lines (D1, …, Dm).
These points and lines are expressed in the object frame.

An object point Pi projects onto the image in pi with nor-
malized camera coordinates xi and yi. An object line Dj
projects onto the image in dj with normalized coefficient
(aj, bj, cj). We denote by Pi the vector from point P0 to Pi.
The normalized camera coordinates of pi are given by:

These equations describe the classical perspective camera
model where the rigid transformation from the object frame
to the camera frame is:

Vectors iT, jT, and kT represent the three rows of the rota-
tion matrix R.

The relationship between the normalized camera coordi-
nates and the image coordinates may be obtained by intro-
ducing the intrinsic camera parameters:

In these equations au and av are the horizontal and vertical
scale factors and uc and vc are the image coordinates of the
intersection of the optical axis with the image plane.

Similarly one can express the normalized perspective
projection of the straight line Dj as:

d a x b y cj j j j: + + = ()0 6

u x u

v y v

i u i c

i v i c

= + ()
= + ()

α
α

4

5

T

t

t

t

R

T
x

T
y

T
z

=

=

()

i

j

k

t

0 0 0 1

0 0 0 1
3

x
X

Z

t

t

y
Y

Z

t

t

i
ci

ci

i x

i z

i
ci

ci

i y

i z

= = ⋅ +
⋅ +

()

= =
⋅ +
⋅ +

()

i P
k P

j P

k P

1

2

216 F. DORNAIKA AND C. GARCIA

Center of
projection

C
k

j

i

x

y

Camera frame

pi p0

dj

Image plane

Dj

u

v

Optical axis

z

Y
X

Z
Pi

t

Pi
P0

Object frame

Figure 1. The pin-hole camera model.

where x and y are related to the pose parameters by these
two equations:

with Pj being a point on the line Dj.

We divide both the numerator and the denominator of
Eqns (1), (2), (7), and (8) by tz. We introduce the following
notations:

● I 5 i/tz is the first row of the rotation matrix scaled by
the z-component of the translation vector;

● J 5 j/tz is the second row of the rotation matrix scaled by
the z-component of the translation vector;

● x0 5 tx / tz and y0 5 ty / tz are the normalized camera coor-
dinates of p0 which is the projection of P0 (the origin of
the object frame);

● ei 5 k·Pi/tz.

One can notice that I and J encapsulate the pose para-
meters (R and t). We now rewrite the perspective equations
(1), (2), and (6) as:

Pose by Weak Perspective Iterations

Definition and equations

Weak perspective assumes that the object lies in a plane
parallel to the image plane passing through the origin of the
object frame (P0). Geometrically the weak perspective pro-
jection is performed as follows (Figure 2). The object point
Pi is first projected to the plane passing through the refer-
ence point P0, which is parallel to the image plane. This
projection is performed by using a ray that is parallel to the
optical axis. Then the obtained point is perspectively pro-
jected to the image plane. We therefore obtain the point pw

i.
This is equivalent to a zero-order approximation:

Using this approximation we can rewrite Eqns (9) and (10)
as:

In these equations xw
i and yw

i are the camera coordinates
of the weak perspective projection of Pi. By identification
with Eqns (9) and (10) we obtain the relationship between
the weak perspective and the perspective projections of Pi:

From Eqns (9) and (10) one can conclude that each point
correspondence provides the following two constraints:

Each line Dj is described parametrically by its direction
Vj and by a point vector Wj. Thus, the equation of the
line Dj in the object frame will be given by:

P W Vj j j j j= + ∈() ()λ λ R 16

P I

P J

i i i

i i i

x x

y y

⋅ = +() − ()
⋅ = +() − ()

1 14

1 15

0

0

ε

ε

x x

y y

i
w

i i

i
w

i i

= +() ()
= +() ()

1 12

1 13

ε

ε

x x

y y

i
w

i

i
w

i

= ⋅ +

= ⋅ +

I P

J P

0

0

1

1
1 1

+
≈ ∀ ∈{ }

ε i

i i n , L

a x b y

c t

j j j j

j j z

I P J P

k P

⋅ +() + ⋅ +() +

+ ⋅() = ()
0 0

1 0 11/

x
x

y
y

i
i

i

i
i

i

= ⋅ +
+

()

= ⋅ +
+

()

I P

J P

0

0

1
9

1
10

ε

ε

x
t

t

y
t

t

j x

j z

j y

j z

=
⋅ +
⋅ +

()

=
⋅ +
⋅ +

()

i P

k P

j P

k P

7

8

POSE ESTIMATION USING POINT AND LINE CORRESPONDENCES 217

Focal distance = 1

tz

Center of
projection

k

i

C

p0

pi
w

pi
p

pi

Pi

P0

Optical axis

Normalized
image plane

Plane approximating
the object

Weak perpective

Paraperspective

Perspective

Figure 2. Weak perspective and paraperspective projections.

where Pj is a vector from the origin frame P0 to any point
belonging to the line Dj. By substituting this expression
into Eqn (11) we obtain:

Since this equation holds true for all lj, we obtain the fol-
lowing two constraints:

where hj and jj are given by:

In brief, each point correspondence provides the two con-
straints (14) and (15), and each line correspondence pro-
vides the two constraints (17) and (18). In matrix form these
equations can be written as (we have n points and m lines):

where G and z are a (2n 1 2m) 3 6 matrix and a (2n 1
2m) vector, respectively:

Pose by successive approximations

In order to estimate the pose parameters one is left with the
estimation of the vectors I and J. One can notice that if ei,

hj, and jj are set to zero then (i) the matrix equation (19)
becomes linear in I and J and (ii) the image features are
supposed to be obtained with a weak perspective camera
model [see Eqns (12) and (13)]. Once the pose parameters
have been derived from I and J, one can update the value
of ei, hj, and jj (this in turn will update the entries of the
vector z). Thus it is possible to solve equation (19) by suc-
cessive linear approximations. In this case the pose algo-
rithm starts with a weak perspective camera model and
computes an approximated pose. This approximated pose is
improved iteratively as follows:

2. Solve the overconstrained linear system (19) which
provides an estimation of vectors I and J:

3. Compute the pose parameters, i.e. the position and orien-
tation of the object frame with respect to the camera
frame:

4. For all i and j, compute:

If the changes in ei, hj, and jj in two consecutive iterations
are below a fixed threshold then stop the procedure, other-
wise go to step 2.

The matrix G has full rank since it is assumed that the
observed scene is non-coplanar. One may notice that the

ε η ξi
i

z
j

j

z
j

j

zt t t
= ⋅ =

⋅
=

⋅k P k W k V
, ,

i
I
I

i
J
J

k i j

=

=

= ×

t

t x t

t y t

z

x z

y z

= +

=
=

1

2

1 1

0

0

I J

I

J
z

= ()−
G G GT T1

1. For all and ,i j i n j m n m

i j j

∈{ } ∈{ } +() ≥

= = =

1 1 3

0 0 0

L L, , ,

, , .ε η ξ

G
a b

a b

x x

y y

a x b y c

i
T T

T
i
T

j j
T

j j
T

j j
T

j j
T

i i

i i

j j j

=

=

+() −

+() −

− − −

M M

M M

M M

M M

M M

M

M

M

P 0

0 P

W W

V V

z

1

1

0

0

0 0

ε

ε

11 +()

−

η

ξ

j

j jc

M

M

G
n m n m2 2 6 2 2 1

19
+()× + ×

= (){ {
I

J
z

()

η

ξ
j j z

j j z

t

t

= ⋅

= ⋅

k W

k V

/

/

a b a x b y c

a b c

j j j j j j j j

j j j j j j

W I W J

V I V J

⋅ + ⋅ + + + +() = ()
⋅ + ⋅ + = ()

0 0 1 0 17

0 18

η

ξ

a b a x b y c t

a b c t

j j j j j j j j z

j j j j j j j z

W I W J k W

V I V J k V

⋅ + ⋅ + + + + ⋅() +

⋅ + ⋅ + ⋅() =

0 0 1

0

/

/λ

218 F. DORNAIKA AND C. GARCIA

pseudo-inverse of G [i.e. (GTG)21 GT] can be computed
once and for all, and hence it can be computed indepen-
dently of the loop presented above. Therefore the estima-
tion of I and J is particularly efficient. The initial value of
ei, hj, and jj can be fixed with any value that is not neces-
sarily null. However, the null value is a heuristic choice
since ei, hj, and jj have algebraic values (generally, the
scene features can lie on either side of the plane passing
through the reference point P0).

Pose by Paraperspective Iterations

Definition and equations

The notion of paraperspective projection was introduced by
Ohta et al. [10] and named by Aloimonos [11]. Geo-
metrically paraperspective is performed as follows (Figure
2). The point Pi is first projected to the plane passing
through the reference point P0, which is parallel to the
image. This projection is performed by using a ray that is
parallel to the ray going through the projection center C and
the reference point P0. The obtained point is then perspec-
tively projected to the image plane. We therefore obtain the
point y p

i.

Paraperspective may be viewed as a first-order approxi-
mation of perspective:

By using this approximation in Eqns (9) and (10) we obtain
the paraperspective projection of Pi:

where the term 1/t2z was neglected. There is a similar
expression for y p

i.

Thus, the paraperspective equations are:

By identification with Eqns (9) and (10) we obtain the
relationship between the paraperspective and the perspec-
tive projections of Pi:

The paraperspective coordinates are related to the pose
parameters by:

By substituting Eqns (20) and (21) in Eqns (22) and (23),
we obtain:

with:

The relationship between vectors (I, J) and vectors (Ip, Jp)
can be derived from (26) and (27):

By substituting these expressions into Eqns (17) and (18),
these become:

where hj and jj are given by:

a b

a x b y c

a b a x b y c

j j p j j p

j j j j

j j p j j p j j j i

W I W J

V I V J

⋅ + ⋅ +

+ +() +() = ()

⋅ + ⋅ + + +() = ()
0 0

0 0

1 0 28

0 29

η

ξ

I I
k

J J
k

= +

= +

p
z

p
z

x

t

y

t

0

0

I
i k

J
j k

p
z

p
z

x

t

y

t

= − ()

= − ()

0

0

26

27

P I

P J

i p i i

i p i i

x x

y y

⋅ = −() +() ()
⋅ = −() +() ()

0

0

1 24

1 25

ε

ε

x x
x

t

y y
y

t

i
p

z
i

i
p

z
i

− = − ⋅ ()

− = − ⋅ ()

0
0

0
0

22

23

i k
P

j k
P

x x x

y y y

i
p

i i i

i
p

i i i

= +() − ()
= +() − ()

1 20

1 21

0

0

ε ε

ε ε

x x x

y y y

i
p

i i

i
p

i i

= ⋅ + −

= ⋅ + −

I P

J P

0 0

0 0

ε

ε

x x

x x

t
x x

t

i
p

i i

i i

i

z

i

z

= ⋅ +() −()
≈ ⋅ + −

= ⋅ + − ⋅

I P

I P

i P k P

0

0 0

0 0

1 ε
ε

1

1
1 1

+
≈ − ∀ ∈{ }

ε
ε

i
i i i n , L

POSE ESTIMATION USING POINT AND LINE CORRESPONDENCES 219

In brief, each point correspondence provides the two
constraints (24) and (25), and each line correspondence
provides the two constraints (28) and (29). In matrix form
these equations can be written as:

where G has the expression given in a previous section and
zp is a (2n 1 2m) vector:

Pose by successive approximations

As in the weak perspective case, one may notice that if ei,
hj, and jj are set to zero then (i) Eqn (30) becomes linear
in Ip and Jp; and (ii) the image features are supposed to be
obtained with a paraperspective camera model [see Eqns
(20) and (21)]. Therefore, it is possible to solve this equa-
tion by successive linear approximations. In the following,
we show how the pose parameters can be computed from Ip
and Jp.

Pose parameters. The pose parameters can be derived from
Ip and Jp as follows.

First, one may notice that:

We obtain:

Second, we derive the three orthogonal unit vectors i, j,
and k. From Eqns (26) and (27) we can write:

The third vector, k is the cross-product of these two vec-
tors:

Let V(a) be the skew-symmetric matrix associated with a
3-vector a and I333 the identity matrix. The previous
expression can now be written as follows:

This equation allows us to compute k, provided that the
linear system above has full rank. Indeed, the 3 3 3 matrix
A:

is of the form:

Its determinant is always strictly positive:

Therefore, one can easily determine k using Eqn (33) and i
and j, using Eqns (31) and (32).

det A() = + + +1 2 2 2α β γ

A =
−

−
−

1

1

1

γ β
γ α
β α

A I t y t xz p z p= − () + ()×3 3 0 0Ω ΩI J

I t y t x tz p z p z p p3 3 0 0
2 33× − () + ()() = × ()Ω ΩI J k I J

k i j

I J I k J k

= ×

= × + × − ×t t y t xz p p z p z p
2

0 0

i I k

j J k

= + ()
= + ()

t x

t y

z p

z p

0

0

31

32

t
x y

t x t

t y t

z
p p

x z

y z

=
+

+
+

=
=

1

2

1 10
2

0
2

0

0

I J

I
i k i k

J

p
z z

p
z

x x

t

x

t

y

t

2 0 0
2

0
2

2

2 0
2

2

1

1

=
−() ⋅ −()

= +

= +

x x y y

a x b y c

a x b y c

i i i i

j j j j

j j j j
T

−() +()[−() +()
− + +() +()
− + +()]

0 0

0 0

0 0

1 1

1

ε ε

η

ξ

, , , ,

, ,

,

L L

L

L

G
n m

p

p
p

n m2 2 6 2 2 1

30
+()× +()×

 = (){ {

I

J
z

η

ξ
j j z

j j z

t

t

= ⋅

= ⋅

k W

k V

/

/

220 F. DORNAIKA AND C. GARCIA

Pose by successive approximations. The algorithm can be
written as follows.

2. Solve the overconstrained linear system (30) which pro-
vides an estimation of vectors and Ip and Jp:

3. Compute the pose parameters, i.e. the position (tx, ty, and
tz) and orientation (i, j, and k) as explained above;

4. For all i and j, compute:

If the changes in ei, hj, and jj in two consecutive iterations
are below a fixed threshold then stop the procedure, other-
wise go to step 2.

Planar Objects

If the object is planar then the matrix G is not of full rank.
Therefore, step 2 of both the weak perspective and paraper-
spective algorithms cannot be considered anymore. In this
case, we consider the plane of the object and let u be the
unit vector orthogonal to this plane. Vectors Ip and Jp (and
equivalently I and J) can be written as a sum of a vector
belonging to this plane and a vector perpendicular to this
plane (Figure 3).

By substituting these expressions for Ip and Jp into Eqn
(30) we obtain:

These linear equations can be solved provided that the
following additional linear constraints are used:

Therefore we obtain solutions for I0 and J0 as follows.

With G9 defined by:

Obviously, the rank of G9 is equal to 6. In order to esti-
mate Ip and Jp (and equivalently I and J) one is left with
the estimation of two scalars, l and m. In the case of weak
perspective one can determine a solution using the con-
straints iIi 5 i Ji and I·J 5 0. In the case of paraperspective
we use the following constraints onto Ip and Jp [derived
from Eqns (26) and (27)]:

By eliminating tz we obtain two constraints:

I

J

I J

p
z

p
z

p p
z

x

t

y

t

x y

t

2 0
2

2

2 0
2

2

0 0
2

1

1

= +

= +

⋅ =

′ =

G

G
T T

T T

u 0

0 u

,

,

I

J

z
0

0

1
0

0

 = ′ ′() ′

−
G G GT T

p

u I

u J

⋅ =
⋅ =

0

0

0

0

G p

I

J
z0

0

 =

I I u

J J u

p

p

= + ()
= + ()

0

0

34

35

λ

µ

ε η ξi
i

z
j

j

z
j

j

zt t t
= ⋅ =

⋅
=

⋅k P k W k V
, ,

I

J
z

p

p

T T
pG G G

= ()−1

1. For all and ,i j i n j m n m

i j j

∈{ } ∈{ } +() ≥

= = =

1 1 3

0 0 0

L L, , ,

, , .ε η ξ

POSE ESTIMATION USING POINT AND LINE CORRESPONDENCES 221

D2P3

P0

D1
I0

P1
u

J0

P2

Jp
Ip

u

P5

P4

Figure 3. A planar object.

By substituting in these expressions Ip and Jp given by
Eqns (34) and (35) we obtain:

And finally, by eliminating m we obtain a biquadratic
equation in one unknown:

With:

In order to study the number of real roots of Eqn (36) we
substitute l2 by t:

We examine the signs of the roots of this equation.
Therefore we have to examine the sign of their product, i.e.
C /A. We have:

Therefore, the value of C /A is either negative or null.
Thus there is one positive (or null) root and one negative
(or null) root for t. Hence, there are two real roots for l —
a positive one and a negative one — and two imaginary
roots.

The two real roots for l provide two solutions for m and
hence there are two solutions for Ip and Jp. These two solu-
tions are shown on Figure 4. The points Pi (lying on the
planar object in one orientation) and P9i (lying on the planar
object in another orientation) have the same paraperspec-
tive projection but different perspective projections. Notice
that these object orientations are symmetric with respect to
a plane which is perpendicular to the line of sight passing
through P0.

Therefore, the iterative algorithm described in the previ-
ous section produces two poses at each iteration. The two
poses have the same translation vector but different orien-
tations. Hence, after n iterations there will be 2n solutions.
In order to avoid this redundancy we proceed as follows.
At the first iteration we retain both solutions, while at the
next iteration we retain only one solution — the solution
which is the most consistent with the data. At convergence
we obtain two solutions for the orientation of the planar
object: one solution associated with the ‘left’ branch of the
search tree and another solution associated with the ‘right’
branch of the search tree (Figure 5). Among the final two
solutions, one of them is generally closer to the image data
than the other. However, if the orientation of the planar
object is close to the orientation of the plane of symmetry,
the ambiguity remains and the algorithm provides two
solutions.

Non-linear Optimization

In this section we propose to estimate the pose parameters
associated with the perspective model of the camera. For
this purpose, we rewrite the perspective Eqns (1) and (2)
associated with the point Pi as:

C
A = ()

=
− − +() + +()

+ +

= −
− +()[]

+ +

f x y c d

x y d x c x y x cd

x y

x y d x c

x y

0 0

0
2

0
2 2

0
2 2 2

0 0 0
2

0
2

0
2

0 0 0
2 2

0
2

0
2

1 2 1

1

1

1

, , ,

 A B Ct t2 0+ + =

A
B
C

= −

= − + −

= + −

=
+

=
+

= ⋅

=

=

= +
+

a g

a d gd e ac

a d c acd

a
x y

x

b
x y

y

c

d

e

g
y

x

2

2

2 2 2

0 0

0
2

0 0

0
2

0 0

0
2

0
2

0
2

0
2

2 2

2

1

1

1

1

I J

I

J

A B Cλ λ4 2 0 36+ + = ()

I J I

I J J

0 0
0 0

0
2 0

2 2

0 0
0 0

0
2 0

2 2

1

1

⋅ + =
+

+()
⋅ + =

+
+()

λµ λ

λµ µ

x y

x

x y

y

I J I

I J J

p p p

p p p

x y

x

x y

y

⋅ =
+

⋅ =
+

0 0

0
2

2

0 0

0
2

2

1

1

222 F. DORNAIKA AND C. GARCIA

where (Xi, Yi, Zi) are the 3D coordinates of Pi.

Let q 5 (q0, qx, qy, qz)
T be the unit quaternion associated

with the rotation R [12], therefore the matrix R can be writ-
ten as:

R

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q

T

T

T

x y z x y z x z y

x y z x y z y z x

x z y y z

=

=

+ − − −() +()
+() − + − −()
−()

i

j

k

0
2 2 2 2

0 0

0 0
2 2 2 2

0

0

2 2

2 2

2 2

++() − − +

q q q q q qx x y z0 0

2 2 2 2

r X r Y r Z t x r X r Y r Z t

r X r Y r Z t y r X r Y r Z t

i i i x i i i i z

i i i y i i i i z

11 12 13 31 32 33

21 22 23 31 32 33

0

0

+ + + − + + +() =

+ + + − + + +() =

POSE ESTIMATION USING POINT AND LINE CORRESPONDENCES 223

C

Center of
projection

Image plane

Optical axis

First object
orientation

Plane of symmetry

Second object
orientation

Paraperspective
projection of Pi and Pi'

Pi

Pi'

P0

P0

Pi'

Pi

Figure 4. A planar object and a paraperspective camera model produces two orientations. However, these two object orientations have
distinct perspective projections – pi and p9i.

First iteration

Second iteration

Nleft iteration

Nright iteration

.

.

.

.

.

.

Right branchLeft branch

–

–

–

–

–

–+

+

+

+

+

+

Pose 1

Pose 2

Figure 5. A binary tree search for selecting the best object pose
when the object is planar. The algorithm produces two poses at
each iteration (1: a good solution, 2: a bad solution).

From point correspondences one can build a positive error
function fpoints:

We now rewrite the constraints (17) and (18) associated
with the line Dj as:

These constraints can be written more compactly as:

with Nj 5 (aj, bj, cj)
T.

Similarly one can build a positive error function flines:

Thus the problem of pose estimation from point and line
correspondences can be stated in terms of the following
minimization problem:

which has the form of sum of squares of non-linear func-
tions, and l (1 2 qTq)2 is a penalty function that guarantees
that q has a module equal to 1. lp and ll are two weights,
and l is a real positive number. High values for l ensure
that the module of the quaternion is close to 1.

In order to minimize this function we have used the
Levenberg-Marquardt non-linear minimization method as
described in Press et al. [13]. In all our experiments we
have:

An Analysis of Convergence

In order to analyse the convergence of the two algorithms
(see previous sections) we consider Figure 6. On this figure
are depicted the three kinds of projection of the point Pi.
The two iterative procedures start with the perspective pro-
jection pi to automatically compute locations pw

i and pp
i.

Therefore the convergence properties (i.e. the rate of con-
vergence and the number of iterations) of the two proce-
dures will depend on distances i pi 2 pw

i i and ipi 2 pp
ii,

respectively.

The projection error in the case of the iterative weak per-
spective algorithm will be given by [see Eqns (12) and
(13)]:

where e*i is the true value that the algorithm is supposed to
compute. Thus, this error is proportional to the distance
between pi and the image center.

The projection error in the case of the iterative paraper-
spective algorithm will be given by [see Eqns (20) and
(21)]:

This error is proportional to the distance i pi p0i . We can
conclude that the convergence properties of the iterative
weak perspective method depend on the translational offset
of the object from the optical axis. On the other hand the
convergence properties of the paraperspective method do
not depend on this offset. Whenever one wants to use the
paraperspective method, the choice for p0 is crucial. The
best way to choose p0 is to compute the center of gravity of
all image features and to select the image point which is the
closest to this center of gravity.

∆ i
p

i i
p

i i i

i i

p p

x x y y

p p

= −

= −() + −()
= −

∗

∗

0
2

0
2

0

ε

ε

∆i
w

i i
w

i i i

p p

x y

= −

= + ∗2 2 ε

λ λ
λ

p l= =
=

1

2 107.

min
,

 37
q t

q qλ λ λp l lines
Tf fpoints + + −()

 ()1

2

f R Rlines j j j j
j

m

= ⋅ ()() + ⋅ +()()

=

∑ N V N W t
2 2

1

N W t

N V

j j

j j

R

R

⋅ +() =

⋅ () =

0

0

a b c a t b t c t

a b c

j j j j j j j x j y j z

j j j j j j

W i W j W k

V i V j V k

⋅ + ⋅ + ⋅ + + + =

⋅ + ⋅ + ⋅ =

0

0

f r X r Y r Z t

x r X r Y r Z t

r X r Y r Z t

y r X r Y r Z t

i i i x
i

n

i i i i z

i i i y

i i i i z

points = + + +(−

+ + +()) +

+ + +((−

+ + +())

=
∑ 11 12 13

0

31 32 33
2

21 22 23

31 32 33
2

224 F. DORNAIKA AND C. GARCIA

Experiments

Convergence comparison

In this section we compare the convergence of the iterative
weak and paraperspective algorithms as a function of posi-
tion and orientation of the object with respect to the cam-
era. We consider a simulated object formed by a
configuration of four points, such that the three line seg-
ments joining the reference point to the other three points
are equal and perpendicular to each other. We performed
the following kinds of experiments. The first kind is meant
to compare the number of iterations needed by each algo-
rithm to converge to the theoretical solution. In order to
take into account the effect of the offset from the optical
axis, we constrain the origin of the object frame to belong
to a fixed line of sight. The object offset can now be
defined as the angle between this line and the optical axis.
For each such offset and for each depth we randomly
selected 1000 different orientations and ran both algorithms
for each such position and orientation. We plot the average
value of the number of iterations over all the 1000 orienta-
tions.

Figure 7 shows the number of iterations as a function of
relative depth. The lines with squares correspond to the
weak perspective algorithm, the lines with triangles corre-
spond to the paraperspective algorithm. Figures (7a) and
(7b) correspond to two offsets, 23° and 30°, respectively.

On average, the paraperspective algorithm is up to three
times faster than the weak perspective algorithm.

The second kind is meant to compare the rate of conver-
gence of each one of these algorithms for small
distance/size ratios. Figures 8(a) and 8(b) show the percent-
age of the convergence of both algorithms as a function of
depth. One can verify that the convergence properties of the
paraperspective algorithm (number of iterations and rate of

POSE ESTIMATION USING POINT AND LINE CORRESPONDENCES 225

∆ i
p

pi
p

pi

y

∆ i
w

pi
w

x

p0

Figure 6. Projection errors 4w
i and 4p

i which are associated with
the weak perspective and paraperspective camera models, respec-
tively.

26

21

3
2

Distance to camera/object size

N
u

m
be

r
of

 it
er

at
io

n
s

(a
ve

ra
ge

)

22

6

18

15

12

9

6 10 14 18

(b)

26

16

3
2

Distance to camera/object size

N
u

m
be

r
of

 it
er

at
io

n
s

(a
ve

ra
ge

)

22

5

11

9

7

6 10 14 18

(a)

13

Figure 7. Speed of convergence as a function of depth, the offset
is equal to 23˚ (a), and to 30˚ (b), (triangles: paraperspective,
squares: weak perspective).

convergence) do not depend on the object offset as
expected in the previous section (Figures 7 and 8).

Stability comparison

In this section we study the precision of pose as a function
of image noise. More quantitatively, we compute the error

between the theoretical pose and the pose computed by an
algorithm. The pose errors are: rotation error and transla-
tion error. The rotation error is defined as the rotation angle
in degrees required to align the coordinate system in its
computed orientation with the coordinate system in its the-
oretical orientation. The translation error is defined as the
norm of the vector which represents the difference between
the two translation vectors: the computed one and the theo-
retical one, divided by the norm of the second vector.

Table 1 shows the average of pose errors as a function of
image uniform noise. The second and the third columns
correspond to the paraperspective algorithm while the
fourth and the fifth columns correspond to the non-linear
method. The iterative weak perspective algorithm yields the
same errors as the paraperspective algorithm. The simu-
lated object is a cube (with seven vertices and four edges).
Its distance to the camera divided by its size is equal to 7.
The number of trials for each noise level is equal to 100.
The uniform noise has been added to the 2D lines.

Examples

Figure 9 shows an example of convergence of the paraper-
spective algorithm when it is applied to compute the pose
of a cube. We extract intensity edges from the image using
the optimal Deriche edge detector [14]. Edge pixels are
labeled using a simple hysteresis threshold method. Then
the equation of each straight line is obtained by applying
the Hough Transform to the set of edge pixels.

The left column shows the algorithm behavior using
seven vertices and six edges, the right column shows the
behavior using seven vertices and nine edges. The first iter-
ation of the algorithm found a paraperspective pose (top-
right). After only three iterations the algorithm correctly
determined the pose of the cube (bottom-right). This com-
putation (right column) takes three iterations (3.3 ms on an
Ultra-Sparc). As one can easily notice, the pose computa-
tion may become more accurate by increasing the number
of lines [Figure 9 (bottom left) and (bottom right)]. The
application of the weak perspective algorithm to the same
cube gives the same behavior as the paraperspective algo-
rithm since the cube is centered in the image.

Table 2 illustrates the speed of convergence and the
computation time of the iterative paraperspective and the
non-linear algorithms as a function of line correspondences
(Figure 9). The non-linear algorithm was initialized with
the solution obtained at the first iteration of the paraper-
spective algorithm.

226 F. DORNAIKA AND C. GARCIA

2.0

100

62
1.2

Distance to camera/object size

P
er

ce
n

ta
ge

 o
f

co
n

ve
rg

en
ce

83

78

69

1.4 1.6 1.8

(b)

90

2.0

100

65
1.2

Distance to camera/object size

P
er

ce
n

ta
ge

 o
f

co
n

ve
rg

en
ce

83

77

71

1.4 1.6 1.8

(b)

89

95

Figure 8. Rate of convergence as a function of depth, the offset is
equal to 30˚ (a), and to 35˚ (b), (triangles: paraperspective,
squares: weak perspective).

Figure 10 illustrates the pose estimation of a cube (its
size is 7 cm) and a gripper by the paraperspective algo-
rithm. The gripper is identified by five vertices and five
edges, the cube is identified by six vertices and seven
edges. By combining the obtained poses one can obtain the
relative position and orientation of the gripper with respect
to the cube. For example, the relative position which is
given by the translation vector gripper-cube has been found
to be: (20 cm, 1.9 cm, 2 5.9 cm)T. The origins of the two
coordinate systems are shown by large crosses [Figure 10
(right)]. Therefore, by tracking the gripper location in the
image, one can apply visual servoing approaches in order to
guide the gripper such that it can grasp the cube [8,15,16].
Table 3 gives the residual errors in the image plane
between the true features and the projected 3D model asso-
ciated with the two computed poses (gripper and cube).

We now consider the plane formed by the upper face of
the gripper (four vertices and three edges). We apply the
three algorithms presented in this paper: the weak perspec-
tive algorithm, the paraperspective algorithm and the non-
linear algorithm. The corresponding computation times are:
4.5 ms, 3.2 ms and 17 ms, respectively. Since this object is
not near the optical axis then it is evident that the paraper-
spective algorithm is faster than the weak perspective algo-
rithm.

Figure 11 illustrates the application of the paraperspec-
tive algorithm to two planar objects: a screen and a table.
The screen is identified by four points and four lines. The
table is identified by four points and three lines. Using the
two obtained poses one can compute the relative orientation
between the two planes. This orientation has been found to
be 27°.

Conclusion

In this paper we focused on the problem of pose computa-
tion from 2D to 3D point and line correspondences. We pro-
posed two fast methods. The first one is a generalization of
DeMenthon’s algorithm (the weak perspective algorithm).

POSE ESTIMATION USING POINT AND LINE CORRESPONDENCES 227

Table 1. Average error in rotation and translation as a function of image uniform noise. The simulated object is a cube (with seven
points and four lines). Its distance to the camera divided by its size is equal to 7. The noise is added to the 2D line parameters. The num-
ber of trials for each noise level is equal to 100.

Iterative paraperspective Non-linear
Noise level (%) Rot. error (deg.) Trans. error (%) Rot. error (deg.) Trans. error (%)

1 0.45 0.24 0.08 0.06
2 0.88 0.50 0.16 0.13
3 1.32 0.75 0.24 0.19
4 1.72 0.99 0.32 0.26
5 2.20 1.25 0.41 0.32
6 2.63 1.49 0.49 0.41

Table 2. A comparison of the iterative paraperspective and the non-linear method as a function of the number
of correspondences, the computer being used is an Ultra-Sparc.

Iterative paraperspective Non-linear
No. of correspondences No. of iterations CPU time (ms) CPU time (ms)

7 points 3 1.64 12.8
7 points 1 1 edge 3 1.86 14.2
7 points 1 2 edges 3 2.04 15.6
7 points 1 3 edges 4 2.39 17.0
7 points 1 4 edges 4 2.58 18.3
7 points 1 5 edges 4 2.76 19.8
7 points 1 6 edges 6 3.34 21.6
7 points 1 7 edges 3 2.95 22.6
7 points 1 8 edges 3 3.13 24.0
7 points 1 9 edges 3 3.31 25.6

Table 3. Pose estimation of both the gripper and the cube using
the paraperspective algorithm, the computer being used is an
Ultra-Sparc.

Residual error (image space) Gripper Cube

Vertices locations (pixels) 0.8 0.9
Edges orientations (deg.) 0.38 1.4
Edges locations (pixels) 0.72 6.0

Number of iterations 3 3
CPU time (ms) 2.3 2.8

The second one establishes a link between paraperspective
and perspective. The resulting methods are very elegant,
very fast, and quite accurate. It seems that these two meth-
ods do not fail for complex scenes. We studied, both theo-
retically and experimentally, the convergence of the
iterative weak and paraperspective algorithms. We showed
that the convergence properties of the second algorithm do
not depend on the distance of the object with respect to the
optical axis. We showed that, for compact objects, the sec-
ond algorithm requires 2.5 times less iterations than the first

algorithm. Moreover, when the object is relatively close to
the camera and at some distance from the optical axis, then
the chance of convergence of the paraperspective algorithm
is higher than the chance of the weak perspective algo-
rithm. However, these two algorithms always converge for
scenes that are not too close to the camera.

We also described a non-linear method for computing
object pose with a perspective camera model. We showed
that, in the presence of noise, the performances of the itera-

228 F. DORNAIKA AND C. GARCIA

Figure 9. An example of applying the iterative paraperspective algorithm to a cube. The left column corresponds to seven vertices and
six edges (peripheral), the right column corresponds to seven vertices and nine edges. This computation takes three iterations (3.3 ms on
an Ultra-Sparc) (right column).

tive linear methods degrade faster with increasing noise
amplitude than the non-linear method. Whenever speed is
an important concern, iterative linear methods should how-
ever be preferred. They can be included in real-time vision
and robotics applications.

References

1. Dhome, M., Richetin, M., Lapreste, J.T. & Rives, G. (1989)
Determinition of the attitude of 3D objects from a single per-
spective view. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 11: 1265–1278.

POSE ESTIMATION USING POINT AND LINE CORRESPONDENCES 229

Figure 10. An example of applying the paraperspective algorithm to both a gripper and a cube. The two obtained poses allow one to
compute the relative position and orientation between them.

Figure 11. Pose estimation of two planar objects with the paraperspective algorithm: a screen and a table. The screen is identified by
four points and four lines. The table is identified by four points and three lines. The two computed poses allow the computation of the
relative orientation between the two planes. In this case, the relative orientation has been found to be 27˚.

2. Horaud, R., Conio, B., Leboulleux, O. & Lacolle, B. (1989)
An analytic solution for the perspective 4-point problem.
Computer Vision, Graphics, and Image Processing, 47:
33–44.

3. Yuan, J. (1989) A general photogrammetric method for deter-
mining object position and orientation. IEEE Transactions on
Robotics and Automation, 5: 129–142.

4. Phong, T.Q., Horaud, R., Yassine, A. & Pham, D.T. (1993)
Optimal estimation of object pose from a single perspective
view. In: Proceedings of the Fourth International Conference
on Computer Vision.

5. Papanikolopoulos, N., Khosla, P. & Kanade, T. (1993) Visual
tracking of a moving target by a camera mounted on a robot: a
combination of control and vision. IEEE Transactions on
Robotics and Automation, 9: 14–35.

6. Denker, A., Sabanovic, A. & Kaynak, O. (1994) Vision-con-
trolled robotic tracking and acquisition. In: Proceedings of the
IEEE/RSJ/GI International Conference on Intelligent Robots
and Systems, 3: 2000–2006.

7. Espiau, B., Chaumette, F. & Rives, P. (1992) A new approach
to visual servoing in robotics. IEEE Transactions on Robotics
and Automation, 8: 313–326.

8. Hager, G.D. (1994) Real-time feature tracking and projective
invariance as a basis for hand-eye coordination. In: Pro-
ceedings of the 1994 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 533–539

9. DeMenthon, D. & Davis, L. (1995) Model-based object pose
in 25 lines of code. International Journal of Computer Vision,
15: 123–141.

10. Ohta, Y., Maenobu, K. & Sakai, T. (1981) Obtaining surface
orientation from texels under perspective projection. In:
Proceedings of the 7th IJCAI.

11. Aloimonos, J. (1989) Shape from texture. Biological
Cybernetics, 58: 345–360.

12. Horn, B.K.P. (1987) Closed-form solution of absolute
orientation using unit quaternions. J Opt Soc Amer A, 4:
629–642.

13. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Wetterling,
W.T. (1988) Numerical Recipes in C: The Art of Scientific
Computing. New York: Cambridge University Press.

14. Deriche, R. (1987) Using Canny’s criteria to derive an opti-
mal edge detector recursively implemented. International
Journal of Computer Vision, 2: 167–187.

15. Hollinghurst, N. & Cipolla, R. (1993) Uncalibrated stereo
hand-eye coordination. In: Proceedings of the Fourth British
Machine Vision Conference (BMVC 93).

16. Horaud, R., Dornaika, F., Bard, C. & Laugier, C. (1995)
Integrating grasp planning and visual servoing for automatic
grasping. In: Proceedings of the Fourth International
Symposium on Experimental Robotics.

230 F. DORNAIKA AND C. GARCIA

	Introduction
	Background and Notations
	Figure 1

	Pose by Weak Perspective Iterations
	Figure 2

	Pose by Paraperspective Iterations
	Planar Objects
	Figure 3

	Non-linear Optimization
	Figure 4
	Figure 5

	An Analysis of Convergence
	Figure 6
	Figure 7
	Figure 8

	Examples
	Table 1
	Table 2
	Table 3
	Figure 9
	Figure 10
	Figure 11

	Conclusion
	References

