
CAFCR: A Multi-view Method for

Embedded Systems Architecting;
Balancing Genericity and Specificity

trecon =

nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+
+

tcol-overhead

tcorrections (nx ,ny)

trow-overhead

tcontrol-overhead

+

) +

) +

Gerrit Muller

ii

This page will not be present in the final thesis

version: 2.9 status: concept date: 2nd June 2004

iii

CAFCR: A Multi-view Method for Embedded Systems Architecting;
Balancing Genericity and Specificity

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 7 juni 2004 om 13:00 uur
door Gerrit Jan MULLER

doctorandus in de natuurkunde
geboren te Amsterdam

iv

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr W.G. Vree

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr. W.G. Vree Technische Universiteit Delft, promotor
Prof.dr. M. Rem Technische Universiteit Eindhoven
Prof.dr.ir. P.A. Kroes Technische Universiteit Delft
Prof.dr.ir. H.J. Sips Technische Universiteit Delft
Prof.dr. R. Wagenaar Technische Universiteit Delft
Prof.dr.ing. D.K. Hammer Technische Universiteit Eindhoven
Prof.dr. P.H. Hartel Universiteit Twente

Prof.dr. M. Rem heeft als begeleider in belangrijke mate aan de
totstandkoming van het proefschrift bijgedragen.

ISBN 90-5639-120-2

Keywords: Systems Architecture, System design, Systems Engineering

These investigations were supported by Philips Research Laboratories, and the Embedded
Systems Institute, both in Eindhoven.

Cover Photograph: René Stouthttp://www.rwstout.com/

Copyright c©2004 by G.J. Muller. This thesis is written as part of the Gaudí project.
Further distribution is allowed as long as the thesis remains complete and unchanged.
Use of figures is allowed as long as a reference to the source is present. Note that the
copyright of photographs resides at the original copyright owners.

http://www.rwstout.com/

Preface

The industrial world and the academic world have drifted far apart in the imma-
ture discipline of systems architecting. The challenge in writing this thesis was to
capture the industrial pragmatic experience in a way that is acceptable for the aca-
demic community. Moreover, the Embedded Systems Institute has the ambition
to mature and extend this discipline. This thesis is a first step in bridging the gap
between industry and academics.

The personal motivation for writing this thesis is best explained by looking
back at my career. I have been active in the hectic product creation environment
for about twenty years. More than 17 years I was responsible for several architec-
tures of medical systems. The drawing on the cover has been made in this period
to visualize the system designer as a monster with twenty heads, and hence twenty
viewpoints. For more than two years I have been heading theSystems Engineering
department at ASML. This period at ASML was very instructive and refreshing. I
very much liked the opportunity to educate and coach future as well as senior sys-
tem engineers in this young discipline. After these twenty years of industrial pres-
sure I joined Philips Research, with as my personal goal to mature the discipline
and to make it more accessible and transferable. The Gaudí sitewww.extra.
research.philips.com/natlab/sysarch/ shows the ongoing results
of this effort. The step from Philips Research to the Embedded Systems Institute1

creates the opportunity to link this experience based work to the academic world.
One of the peculiarities of the academic world is that only people with a doc-

tor’s title seem to be taken seriously. In the process of writing this thesis I have
hit many more aspects of the scientific culture, such as the need to cite others for
every statement being made, an extremely redundant writing style, the preference
for text over figures, and a focus on the argumentation rather than on the clar-
ity or didactic value. Going through this learning experience is very valuable in

1 The Embedded Systems Institute is founded by Philips, ASML, Océ, TNO and the universities
of Delft, Eindhoven and Twente

v

www.extra.research.philips.com/natlab/sysarch/
www.extra.research.philips.com/natlab/sysarch/

vi PREFACE

the interaction with the academic world. I gained a better understanding of the
obsession for publication, peer review, and the noise induced by all citations and
repetitions in scientific publications. Understanding the motivation and the behav-
ior of the academic partners is a prerequisite to bridge the gap between industry
and academics.

My thinking processes make use of visualizations: diagrams, structures, mod-
els, et cetera. This thesis contains over 150 figures. The advantage of figures is
that they show the overview and the parts at the same time, whereas text is linear:
only after reading the entire text the overview might become clear. Lots of energy
has been spent to complement all visualizations with readable text.

The broad and multi-disciplinary scope of systems architecting can easily re-
sult in generic statements. I have attempted to cope with this danger of over-
generalization by providing a very specific case study. This struggle with the
balance between genericity and specificity is the daily world of every systems ar-
chitect. This struggle repeated itself when writing this thesis. The academic value
is in the extraction of more generally applicable knowledge. But the route towards
this knowledge meanders through many highly specific details.

If both academic people as well as industrial people enjoy reading this thesis
then one of my goals has been achieved. So, enjoy reading!

Contents

Preface v

Introduction xi

I Introduction to CAFCR and Threads of Reasoning 1

1 What is Systems Architecting in an Industrial Context? 3
1.1 Introduction . 3
1.2 Description of the Business Context 5
1.3 Internal Stakeholders . 5
1.4 Acknowledgements . 6

2 Overview of CAFCR and Threads of Reasoning 7
2.1 Introduction . 7
2.2 Architecting Method Overview 7
2.3 The CAFCR Model . 8

3 Introduction to Medical Imaging Case Study 13
3.1 Market and Application . 13
3.2 Technology . 15

4 Positioning the CAFCR Method in the World 19
4.1 Introduction . 19
4.2 Related Work . 19
4.3 What is the Unique Contribution of this Work? 22
4.4 IEEE 1471 . 24

vii

viii CONTENTS

5 Research in Systems Architecting 27
5.1 Introduction . 27
5.2 Technology Management Cycle 28
5.3 Challenges to do Research in a Scientific Way 29
5.4 Architecting Research Method 33
5.5 Distance between Industrial Practice and Scientific Research . . . 34
5.6 Research Environment . 35

6 Research Question and Hypothesis 37
6.1 Introduction . 37
6.2 Research Question . 37
6.3 Hypothesis . 39
6.4 Criteria . 41
6.5 Summary . 42

II Theory of CAFCR and Threads of Reasoning 43

7 Basic Methods 45
7.1 Introduction . 45
7.2 Viewpoint Hopping . 46
7.3 Decomposition and Integration 49
7.4 Quantification . 49
7.5 Coping with Uncertainty . 51
7.6 Modeling . 52
7.7 WWHWWW . 53
7.8 Decision Making Approach in Specification and Design 54

8 Submethods in the CAF Views 59
8.1 Introduction . 59
8.2 Key Drivers . 59
8.3 Customer Business Positioning 62
8.4 Modeling in the Customer World 64
8.5 Use Cases . 66
8.6 System Specification . 67
8.7 Overview of the Submethods in the CAF views 74

CONTENTS ix

9 Submethods in the CR Views 75
9.1 Introduction . 75
9.2 Decomposition . 75
9.3 Quality Design Submethods . 82
9.4 Project Management Support . 89
9.5 Overview of the Submethods in the CR views 92

10 Qualities as Integrating Needles 93
10.1 Introduction . 93
10.2 Security as Example of a Quality Needle 94
10.3 Qualities Checklist . 96
10.4 Summary . 101

11 Story Telling 103
11.1 Introduction . 103
11.2 How to Create a Story? . 104
11.3 How to Use a Story? . 105
11.4 Criteria . 105
11.5 Summary . 107

12 Threads of Reasoning 109
12.1 Introduction . 109
12.2 Overview of Reasoning Approach 109
12.3 Reasoning . 114
12.4 Outline of the complete method 116
12.5 Summary . 117

III Medical Imaging Case Description 119

13 Medical Imaging in Chronological Order 121
13.1 Project Context . 121
13.2 Introduction . 122
13.3 Development of Easyvision RF 122
13.4 Performance Problem . 124
13.5 Safety . 127
13.6 Summary . 129

x CONTENTS

14 Medical Imaging Workstation: CAF Views 131
14.1 Introduction . 131
14.2 Radiology Context . 131
14.3 Typical Case . 138
14.4 Key Driver Graph . 139
14.5 Functionality . 144
14.6 Interoperability via Information Model 145
14.7 Conclusion . 146

15 Medical Imaging Workstation: CR Views 149
15.1 Introduction . 149
15.2 Image Quality and Presentation Pipeline 149
15.3 Software Specific Views . 152
15.4 Memory Management . 154
15.5 CPU Usage . 160
15.6 Measurement Tools . 161
15.7 Conclusion . 165

16 Story Telling in Medical Imaging 167
16.1 Introduction . 167
16.2 The Sales Story . 168
16.3 The Radiologist at Work . 169
16.4 Towards Design . 170
16.5 Conclusion . 172

17 Threads of Reasoning in the Medical Imaging Case 173
17.1 Introduction . 173
17.2 Example Thread . 173
17.3 Exploration of Problems and Solutions 175
17.4 Conclusion . 183

IV Evaluation, Discussion and Conclusions 185

18 Evaluation of the Architecting Method 187
18.1 Introduction . 187
18.2 Design Evaluation . 188
18.3 Product Evaluation . 191
18.4 Evaluation of Architecting Method 193

CONTENTS xi

18.5 Usability Evaluation of the Outcome of the Architecting Method . 198
18.6 Conclusion . 199

19 Evaluation from a Wider Context 201
19.1 Introduction . 201
19.2 Research Environment . 202
19.3 Workshops . 204
19.4 Courses . 207
19.5 Conclusion . 209

20 Balancing Genericity and Specificity 211
20.1 Introduction . 211
20.2 Core Qualities . 211
20.3 Genericity and Specificity in the Case 213
20.4 Genericity and Specificity in the Architecting Method 214
20.5 Conclusion . 215

21 Reflection on Research Method to Study Architecting Methods 217
21.1 Introduction . 217
21.2 Research Question . 217
21.3 Hypothesis, Criteria, and Evaluation 218
21.4 Case Description . 218
21.5 Conclusion . 219

22 The Future of Architecting Research 221
22.1 Introduction . 221
22.2 Build up of Body of Knowledge 222
22.3 Curriculum . 223
22.4 Conclusion . 225

23 Conclusion 227

V Appendices and Bibliography 229

Acknowledgements 231

Abbreviations 233

xii CONTENTS

Summary 247

Samenvatting 249

History 251

Introduction

This thesis describes an architecting method that is intended to help architects in
creating embedded systems. The effort to create embedded systems is increasing
exponentially. At the same time system complexity increases significantly, threat-
ening performance, reliability, and other system characteristics. The architecting
method described here is intended to help the architect to cope with the ever in-
creasing complexity. The method described integrates the“CAFCR” model (Sec-
tion 2.3, and Chapters 8 and 9),design via qualities(Chapter 10),story telling
(Chapter 11), andthreads of reasoning(Chapter 12) into an open-ended architect-
ing method (Part II). The method is based on reflection of 20 years of creating
complexsoftware and technology intensivesystems.

A lot of effort is spent in determining an approach to do research on archi-
tecting methods in an accountable way, described in Chapter 5. The architecting
method is mapped on a case of product creation in an industrial environment: a
Medical Imaging Workstation (Part III). This case is used to evaluate the archi-
tecting method (Chapter 18). Additional evaluation information is provided in the
context of research projects, workshops and courses (Chapter 19).

Figure 1 shows the structure of this thesis. Part I provides the context and
goal, provides a preview of the method, introduces the case positions the method,
and describes the research method. The theoretical framework of the architect-
ing method is described in part II. Part III describes the case: medical imaging
workstation. Part IV evaluates the architecting method and discusses the balance
between the need forabstraction, resulting in genericity, and the need fordetails,
requiring to be specific.

xiii

xiv INTRODUCTION

part I

introduction
system architecting
CAFCR
case

positioning CAFCR
research method

research question
hypothesis
criteria

part IV

evaluation
conclusion

part II

theory of method

part III

case description

Figure 1: Structure of this thesis

Recommended literature and other resources:

• “The Art of Systems Architecting”, Rechtin [68]

• “Systems Engineering Guidebook”, Martin [46]

• “Resources for Software Architects”, Bredemeyer [11]

• “Role of the Software Architect”, Bredemeyer [12]

This thesis focuses on the integration aspects of the methods, with the CAFCR
model as core. The wider systems architecting context, the method itself and the
supporting submethods are more extensively described at the Gaudí site:http:
//www.extra.research.philips.com/natlab/sysarch . This the-
sis and more supporting articles can be found at:http://www.extra.research.
philips.com/natlab/sysarch/ArchitecturalReasoning.html .

http://www.extra.research.philips.com/natlab/sysarch
http://www.extra.research.philips.com/natlab/sysarch
http://www.extra.research.philips.com/natlab/sysarch/ArchitecturalReasoning.html
http://www.extra.research.philips.com/natlab/sysarch/ArchitecturalReasoning.html

Part I

Introduction to CAFCR and
Threads of Reasoning

Chapters in Part I:

1. What is Systems Architecting in an Industrial Context?

2.Overview of CAFCR and Threads of Reasoning

3. Introduction to Medical Imaging Case Study

4. Positioning the CAFCR Method in the World

5. Research in Systems Architecting

6. Research Question and Hypothesis

1

Chapter 1

What is Systems Architecting in
an Industrial Context?

1.1 Introduction

This thesis discusses the systems architecting of software and technology inten-
sive products. Typical examples of software and technology intensive products
are televisions, DVD-players, MRI scanners, and printers. The creation of these
products is a multi-disciplinary effort by hundreds of engineers. The time between
first product ideas and introduction into the market is in the order of a few months
to a few years.

The conceptarchitectureis borrowed from the building discipline.Architec-
ture in building has a long history, with well known names as Vetruvius, Gaudí ,
Lloyd Wright, Koolhaas, and many many more.System architecturecan be com-
pared with building architecture. The architecture of a building is for a large part
the experience that people get when they interact with the building, ranging from
“how does it fit in the environment?”, “what impression does it make?”, “is it nice
to be there?”, to “is it useful?”. In other words, the less tangible aspects of the per-
ception of the building and the experience with the building are important aspects
of the architecture. The technical aspects of the structure and the construction of
the building are also part of the architecture. The feasibility of an architectural
vision is enhanced or constrained by these technical aspects. The architecture is
a dynamic entity that evolves during the life-cycle of the building. Every phase
has its own particular needs. Early-on the constructibility is important; later the
usability and adaptability, and finally the disposability, become the points of at-

3

4 WHAT IS SYSTEMS ARCHITECTING IN AN INDUSTRIAL CONTEXT? 1.2

tention.

In this book the system architecture is a close metaphor of the building archi-
tecture. The system architecture covers both the external aspects, often intangible
such as perception and experience, and the internal aspects, often more tangible
such as structure and construction. Note that this definition of architecture is rather
broad, much broader for instance than usual in the software architecture commu-
nity, see the Software Engineering Institute (SEI) inventory [37] for a much wider
variation of definitions for architecture. Essential in this definition is the inclusion
of the user context in architecture.

preceding architecture architecting architecture

PCP team
architect, project leader,

engineers,
product manager

problem know how

solution know how

business context

technology context

human context
legend

stakeholders
expectations, needs,
concerns, constraints

Figure 1.1: Architecting = creating an architecture

The activity of creating an architecture is called architecting, see Figure 1.1.
The process of creating a new product is called Product Creation Process (PCP). A
multi-disciplinary team, the PCP team, creates the product. The input to the PCP
comes from all stakeholders, with their needs, concerns, expectations, et cetera.
The architect is responsible for the quality of the architecture: a system that meets
the stakeholder’s expectations, that provides the stakeholders with an attractive
and useful experience, and that can be realized by the PCP team.

The architecting activity transforms problem and solution know how into a
new architecture. In most cases the architecting is done by adapting preceding
architectures. The preceding architecture is an input for the architecting effort.
Green field architectures (problems without existing architecture, or where the
existing architecture can be completely ignored) are extremely rare.

1.3 DESCRIPTION OF THE BUSINESS CONTEXT 5

1.2 Description of the Business Context

Architecting methods are positioned in the business context by means of a variant
of the “BAPO”-model [58]. The business objectives of the company are the main
inputs for architecting: generating market share, profit, ratio between sales and
investments, et cetera. The specific business objectives depend strongly on the
domain: the type of product, customers, competition, application and market.

product creation

Business Architecting
method

People

Process
Organisation

sets targets

supports

supports

fits in

enables

perform

Figure 1.2: The business context of architecting methods

The business context is shown in Figure 1.2. The business will set targets
for the architecting methods, the architecting methods will support the business.
The product creation uses an architecting method to develop new products. The
architecting method must fit in the processes and the organization. People do the
real work, the method should help people to architect the desired system.

1.3 Internal Stakeholders

Many stakeholders in the business context are involved in the creation, produc-
tion, sales and service of the products. All these operational stakeholders have
their own concerns. These concerns translate into needs that influence the prod-
uct specification. Figure 1.3 shows the internal stakeholders as annotation to fig-
ure 1.2.

Thepolicy and planning processsets the strategy and anticipates on the longer
term future. The scope of this process is at portfolio level. Thepolicy and plan-
ning processhas the overview and strategic insight to allow decisions about prod-
uct synergy and optimizations across products and product families. Also deci-
sions about involving partners and the degree of outsourcing are taken here. These
internal strategic considerations also translate into operational requirements.

The customer-oriented processcovers the entire order realization process as
well as the sales and life-cycle support (service) processes. Manufacturability,
serviceability, and many more requirements are determined by these stakeholders.

6 WHAT IS SYSTEMS ARCHITECTING IN AN INDUSTRIAL CONTEXT? 1.4

product creation

Business Architecting
method

People

Process
Organisation

sets targets

supports

supports

fits in

enables

perform

policy and planning
business, marketing,
operational managers

product creation
project leader, product
manager, engineers,

suppliers

customer-oriented
sales, service,

production, logistics

people, process,
and technology

capability managers,
technology suppliers

Figure 1.3: Stakeholders of the product creation within a company itself

All specification and design work is done in theproduct creation process.
Many contacts with internal and external suppliers take place during product cre-
ation. The operational needs of this process, such as work breakdown, test models,
et cetera, also result in operational requirements.

Thepeople, process, and technology managementis concerned with processes,
methods, tools, skills of people, intellectual property, and technology develop-
ment. These concerns will sometimes result in operational requirements. Care
should be taken that the justification of these requirements is clear. From a busi-
ness point of view these issues are means that must serve the business goals, not
the other way around.

1.4 Acknowledgements

Richard George attended me on the correct spelling ofLloyd Wright.

Chapter 2

Overview of CAFCR and
Threads of Reasoning

2.1 Introduction

At the beginning of the creation of a new product the problem is often ill-defined
and only some ideas exist about potential solutions. The architecting effort must
change this situation in the course of the project into a well articulated and struc-
tured understanding of both the problem and its potential solutions. Figure 2.1
shows that basic methods and an architecting method enable this architecting ef-
fort.

The basic methods are methods that are found in a wide range of disciplines,
for example to analyze, to communicate, and to solve problems. These basic
methods are discussed in Chapter 7.

An overview of the architecting method is given in Section 2.2. The architect-
ing method contains multiple elements: a framework, briefly introduced in Sec-
tion 2.3, and submethods and integrating methods, which are described in part II.

2.2 Architecting Method Overview

Figure 2.2 shows the overall outline of the architecting method. The right hand
side shows the visualization as it will be used in the later chapters. Theframework
is a decomposition into five views, the “CAFCR” model, see Section 2.3.

Per view in the decomposition a collection ofsubmethodsis given. The collec-
tions of submethods are open-ended. The collection is filled by borrowing relevant

7

8 OVERVIEW OF CAFCR AND THREADS OF REASONING 2.3

architecture description:
• articulated
• structured
problem and solution
know-howarchitecting

vague notion
of the problem

vague notion
of potential solutions

basic
methods

architecting method:
• framework
• submethods
• integration methods

Spec

D
es

ig
n

R
ep

or
t

Figure 2.1: An architecting method supports the architect in his process to go from
a vague notion of the problem and a vague notion of the potential solutions to a
well articulated and structured architecture description

methods from many disciplines.
A decomposition in itself is not useful without the complementing integration.

Qualitiesare used asintegratingelements. The decomposition into qualities is
orthogonal to the “CAFCR” model.

The decomposition into CAFCR views and into qualities both tend to be rather
abstract, high levelor generic. Therefore, a complementary approach is added to
explore specific details: story telling. Story telling is the starting point for specific
case analysis and design studies.

These approaches are combined into a thread ofreasoning: valuable insights
in the different views in relation to each other. The basic working methods of
the architect and the decompositions should help the architect to maintain the
overview and to prevent drowning in the tremendous amount of data and relation-
ships. The stories and detailed case and design studies should help to keep the
insights factual.

2.3 The CAFCR Model

The “CAFCR” model is a decomposition of an architecture description into five
views, as shown in Figure 2.3. Thecustomer objectivesview (what does the cus-
tomer want to achieve) and theapplicationview (how does the customer realize
his goals) capture the needs of the customer. The needs of the customer (what

2.3 THE CAFCR MODEL 9

explore
specific details

submethods

framework

integration
via qualities

reasoning

story use
caseanalyse

design

detailed
designanalyse

design

a priori solution know-howmarket
vision

safety

performance

+ key drivers
+ value chain
+ business models
+ supplier map

+ stakeholders
and concerns

+ context diagram
+ entity relationship

models
+ dynamic models

+ use case
+ commercial, logistics

decompositions
+ mapping technical

functions
and several more

+ construction
decomposition

+ functional
decomposition

+ information model
and many more

+ budget
+ benchmarking
+ performance

analysis
+ safety analysis
and many more

Customer
objectives

Application Functional Conceptual Realization

method outline method visualization

throughput processing
library

diagnostic
quality

image
quality IQ spec

pixel
depth

CPU
budget

typical
case

common
console

memory
limit

BoM Moore's
law

purchase
price

CoO

render
engine

M'

S

M

B

U"

P'

T

U

U' P

profit margin
standard workstation

memory budget

Figure 2.2: The outline of the architecting method with the corresponding visual-
ization that will be used in the later chapters.

andhow) provide the justification (why) for the specification and the design.

The functionalview describes thewhat of the product, which includes (de-
spite its name) thenon-functionalrequirements.

Thehow of the product is described in theconceptualandrealizationviews.
The how of the product is split into two separate views for reasons of stability:
the conceptual view is maintained over a longer time period than the fast changing
realization (Moore’s law!).

The job of the architect is to integrate these views in a consistent and balanced
way, in order to get avaluable, usableandfeasibleproduct. Architects do this job
by continuously iterating over many different viewpoints, sampling the problem
and solution space in order to build up an understanding of the business. This is a
top-down approach (objective driven, based on intention and context understand-
ing) in combination with a bottom-up approach (constraint aware, identifying op-
portunities, know-how based), see Figure 2.4.

The CAFCR model in Figure 2.4 is focused on the relation between the cus-
tomer world and the product. Another dimension that plays a role in specification

10 OVERVIEW OF CAFCR AND THREADS OF REASONING 2.3

Customer
What

Customer
How

Product
What

Product
How

What does Customer need
 in Product and Why?

drives, justifies, needs

enables, supports

Customer
objectives

Application Functional Conceptual Realization

Figure 2.3: The “CAFCR” model

and design is theoperationalview. The operational view describes the internal
requirements of the company: what is needed for the operation of the company?
The CAFCR model is focused on the customer world: what determinesvalueand
usabilityof a product? The businessfeasibilityof a product is largely determined
by the operation of the company: satisfactory margins, service levels, potential
for the future. Strategic requirements of the company, which are important for the
long term operation, are also part of theoperationalview.

The customer views and operational view are asymmetric. The customer
world is outside the scope of control of the company. Customers have a free will,
but act in a complex environment with legislation, culture, competition, and their
own customers, who determine their freedom of choices. The operational way of
working of a company is inside the scope of control of the company. The company
is also constrained by many external factors. Within these constraints, however,
the company decides itself how and where to manufacture, to sell, and to provide
service. The operation of the company is organized in such a way that it supports
its customers. The asymmetry is that a company will never tell its customers to
organize in a way that eases the operation of the company1. The operational view
is subject to the customer views.

The CAFCR views and the operational view must be used concurrently, not
top down as in the waterfall model. However, at the end of the architecting job a
consistent description must be available, see [62]. Thejustificationand theneeds
are expressed in the Customer Objectives View, the Application View, and the op-

1In practice it is less black and white. A company interacts with its customers to find a mutual
beneficial way of working. Nevertheless, the provider-customer relationship is asymmetric. If
the provider dictates the way of working of the customer then something unhealthy is happening.
Examples of unhealthy relations can be found in companies with a monopoly position.

2.3 THE CAFCR MODEL 11

Customer
objectives

Application Functional Conceptual Realization

intention

constraint
awareness

objective
driven

context
understanding

oppor-
tunities

know how
based

Customer
What

Customer
How

Product
What

Product
How

What does Customer need
 in Product and Why?

Figure 2.4: Iteration over the CAFCR views and the operational view. The task of
the architect is to integrate all these viewpoints, in order to get avaluable, usable
andfeasibleproduct.

erational view. The technical solution as expressed in the Conceptual View and the
Realization Viewsupportsthe customer to achieve his objectives and support the
company in the operation. The Functional View is the interface between problem
and solution world.

The CAFCR model will be used in this thesis as a framework for a next level of
submethods. Although the five views are presented here as sharp disjunct views,
many subsequent models and methods don’t fit entirely into one single view. This
in itself is not a problem; the model is a means to build up understanding, it is not
a goal in itself.

The “CAFCR” model can be used recursively: many customers are part of a
longer value chain and deliver products to customers themselves. Understanding
of the customer’s customer improves the understanding of the requirements.

The notion ofthe customer is misleading. Many products have an extensive
set of stakeholders in the customer domain. One category of customer stake-
holders are decision makers such as: CEO (Chief Executive Officer), CFO (Chief
Financial Officer), CIO (Chief Information Officer), CMO (Chief Marketing Of-
ficer) and CTO (Chief Technology Officer). Another category are people actually
operating the system, such as users, operators, and maintainers. A last category
mentioned here are the more remotely involved stakeholders, such as department
chiefs and purchasers.

12 OVERVIEW OF CAFCR AND THREADS OF REASONING 2.3

Chapter 3

Introduction to Medical Imaging
Case Study

3.1 Market and Application

The Easyvision is a medical imaging workstation that provides additional printing
functionality to URF X-ray systems, see Figure 3.1. In a radiology department
three URF examination rooms can be connected to a single Easyvision worksta-
tion. The Easyvision can process and print the images of all three URF systems
on transparent film. The radiologist is viewing the film on a light box to perform
the diagnosis.

EasyVision: Medical Imaging WorkstationURF-systems

typical clinical
image (intestines)

Figure 3.1: Easyvision serving three URF examination rooms

13

14 INTRODUCTION TO MEDICAL IMAGING CASE STUDY 3.1

URF systems are used in gastrointestinal examinations. The patient has to
consume barium meal to enhance the contrast. Multiple exposures are made at
different locations in the intestines, while the barium meal progresses. The radi-
ologist applies wedges to expose the area of interest and to minimize the X-ray
dose for the rest of the body.

Examination
Room

Control
Room

Reading
Room

Corridor
or closet

Examination
Room

Control
Room

printer

light box

detector

X ray
source console

Figure 3.2: X-ray rooms with Easyvision applied as printserver

Around 1990 the normal production of transparent film was performed by
means of a multi-format camera that makes screen copies of the CRT-monitor.
The operator selects every image and sends it to the camera. A typical radiology
department layout is shown in Figure 3.2.

The introduction of the Easyvision made it possible to connect three exami-
nation rooms via an Easyvision to a digital laserprinter. Figure 3.2 shows that the
Easyvision can be positioned as a server in some cabinet, in which case the system
is used remotely, without any direct operator interaction. The Easyvision can also
be placed in one of the control rooms, thereby enabling manual processing of the
images and manual formatting of the film.

The introduction of an Easyvision can immediately be justified by reduced
film costs. Figure 3.3 shows a comparison of the conventional way of working,
where images are screen copies of the CRT-monitor, and the films obtained by
means of software formatting, where the film layout can be optimized to maximize
the number of images.

The conventional way of working results in many duplicates of the textual
information around the image itself, because for each image the complete screen
is copied. This is a waste of film space. On top of that all the textual information
is high contrast information, which is distracting while viewing for the diagnosis.

3.2 TECHNOLOGY 15

old: screen copy new: SW formatting

20 to 50% less
film needed

Figure 3.3: Comparison screen copy versus optimized film

The digital availability of images opens all kinds of possibilities. The simplest
is the separation of duplicate text information and images, which makes a much
higher packing of images possible. Secondary possibilities are automatic shutter
detection and zoom-to-shutter.

3.2 Technology

product policy:
standard HW
SW "only"

40 MHz CPU
64 MByte memory
10 MBit/s ethernet
1 GByte disk

image quality image processing

print
throughput

view
response time

ca 1 film / minute
film = 4k*5k pixels

subsecond retrieve
screen = 1k*1k

tension

Figure 3.4: Challenges for product creation

The vision of the original designers of the product was that the technological
innovation in computer hardware is so fast that proprietary hardware development
would hamper future product innovation. A product policy was chosen to create
products with the value in the software, using standard off-the-shelf hardware.
This policy is potentially in conflict with the performance and image quality re-
quirements. This challenge is shown and annotated in Figure 3.4.

Two types of performance are important in this product: throughput (the
amount of film sheets printed per hour) and response time (the user interface re-

16 INTRODUCTION TO MEDICAL IMAGING CASE STUDY 3.2

SW

HWdesk, cabinet

laser printerlaser printer

workstationoptical disc

laser printer

operating system

application application

framework, libraries

remote control

make

buy
network

legend

tools

Figure 3.5: Top-level decomposition

sponse time should be subsecond for image retrieval). This performance must be
achieved with a minimal guarantee in image quality. For instance, pixel replica-
tion for still images on screen is not acceptable, while bi-cubic interpolation is
required for the high resolution of the film images. These requirements must be
realized with the workstation in the 5 to 10 k$ range of that time, which corre-
sponds with a 40 MHz CPU and a maximum amount of memory of 64 MByte.
The examination rooms are connected to the system via 10 Mbit ethernet, which
was state of the art in 1990.

Figure 3.5 shows the top-level decomposition of the system. Most hardware
is off-the-shelf. A custom remote control was added to obtain a very direct and
intuitive user interface. In order to fit the system in the hospital environment, the
packaging of the system was also customized. The packaging part of the system
was decoupled from the hardware innovation rate by a box in a box concept: the
off-the-shelf computer box was mounted in a larger deskside-cabinet.

The software is based on a standard operating system (Unix), but the libraries,
framework and applications are tailor-made. The framework and libraries contain
a lot of clinical added value, but the end user value is in the applications.

The designers of Easyvision introduced many technological innovations in a
relatively conservative product creation environment. The following list shows
the technological innovations introduced in the Easyvision:

• standard UNIX-based workstation

• full SW implementation, more flexible

• object-oriented design and implementation (Objective-C)

• graphical User Interface, with windows, mouse et cetera

• call back scheduling, fine-grained notification

3.2 TECHNOLOGY 17

• data base engine: fast, reliable and robust

• extensive set of toolboxes

• property-based configuration

• multiple coordinate spaces

The introduction of these innovations enabled the later successful expansion into
a family of products, with many application innovations. In Part III we will
show some of these innovations in more detail and in relation to the product
value.

18 INTRODUCTION TO MEDICAL IMAGING CASE STUDY 3.2

Chapter 4

Positioning the CAFCR Method
in the World

4.1 Introduction

This chapter positions the “architectural reasoning”architecting methodrelative
to other engineering and architecting methods.

Section 4.2 describes work that is related to the research of architecting meth-
ods. Section 4.3 articulates explicitly the specific contribution of this thesis. The
IEEE 1471 is explained further in section 4.4, because its contents is highly rele-
vant in this context.

4.2 Related Work

Conventional disciplines, such as mechanical engineering, electronic engineering,
et cetera have a clear set of methods and tools. Students can learn the discipline
by attending universities and following their curriculums.

This is not the case for systems architecting. Only a few universities teach
systems architecting. There are multiple reasons for the fact that teaching systems
architecting methods at universities is difficult. First of all, sufficient depth of
engineering know-how is needed to be able to work in the architecting area. In
other words, a conventional discipline is a prerequisite to become an architect.

Secondly, architecting is done for problems with a wider scope than conven-
tional engineering problems. The larger the scope, the more ill-defined a problem

19

20 POSITIONING THE CAFCR METHOD IN THE WORLD 4.2

very generic
methods

methods also
addressing process

and organization

multi-disciplinary
systems architecting

methods
software architecting

methods

CAFCR and threads
of reasoning

SE practicesSAAM
ATAM

1471 GST
(General System Theory)

TRIZ SEI
INCOSE

IEEE

Altshuller

Systems
architecting

Rechtin
Maier

Martin

9126 ISO

Hitchins
Heylighen

Systems
engineering

ZIFA Zachman

VAP Bredemeyer

mono-disciplinary engineering methods

4+1 Kruchten

4 views Soni

Figure 4.1: Classification of architecting methods

becomes. The methods range fromflexible for ill-defined problems torigid for
well-defined problems1.

Figure 4.1 shows a classification of architecting methods, with the scope of
the method as differentiating factor. The software architecting methods have the
smallest scope. System architecting methods widen the scope to system level.
This thesis addresses the multi-disciplinary systems architecting methods. The
scope can be further increased to include processes and organizational issues. The
widest scope pertains to very generic methods, which claim to be domain agnostic
and to create value by cross-fertilization across domains. At the bottom of the
classification we find the mono-disciplinary methods, which are the fundamentals
on which all methods build.

4.2.1 Software Architecting Methods

A whole class of methods originate in the Information Technology (IT) world and
address software architecting. The software architecting methods do not address
the system level problems, such as hardware/software trade-offs.

The Software Engineering Institute at Carnegie Mellon University, [71] and [72],
increases the problem scope and puts a lot of emphasis on processes, and restricts
itself to software architecture. Examples of methods developed here are Software

1Of course this is an oversimplification. Sometimes agile methods are highly effective in well-
defined problems. Sometimes rigid methods can perform wonders in an ill-defined problem. In
general, mature methods are available for well-defined problems, while the uncertainty in ill-defined
methods requires more flexibility.

4.2 RELATED WORK 21

Architecture Analysis Method (SAAM) [41] and Architecture Trade Off Analysis
Method (ATAM) [40].

Zachman provides a framework for enterprise architectures, see [80]. This
framework defines two dimensions with six aspects each, creating a space with 36
different views. Bredemeyer describes a nice visual method “The Visual Archi-
tecting Process” [13]. The Bredemeyer method provides context views and a path
from context views to design views. Both Zachman and Bredemeyer are software
oriented.

Well known multi-view software architecting methods are Soni [33], and the
4+1 method from Kruchten [43]. These two methods use multiple views. The
scope of Soni methods, however, is completely limited to the technical solution
domain. Kruchten is also focused on the technical solution domain, but he makes
a small step into the problem domain by use cases in the fifth view.

ISO 9126 [38] is a standard that consolidates a quality framework. The frame-
work addresses the same type of qualities that are discussed in chapter 10. Unfor-
tunately ISO 9126 limits itself to software only.

4.2.2 Multi-disciplinary System Architecting Methods

A further increase in scope can be found in theSystems Engineering Community,
with INCOSE[36] (International Council on Systems Engineering) as representa-
tive organization. All stakeholders are taken into account and the full life-cycle
is emphasized. Examples of this approach can be found at the INCOSE web
site [21].

Some standardization work has been done in the scope of systems, stakehold-
ers and the full life cycle. An example is IEEE 1471, which is a framework that
fits into this scope, see section 4.4.

This thesis about architectural reasoning, based on the “CAFCR” method,
also addresses the scope of systems, their stakeholders, and the full life-cycle.
Boundary conditions to the methods in this thesis are structure and characteristics
of the business, the organizations, and the processes.

4.2.3 Methods also Addressing Process and Organization

The architect is often confronted with many more needs, worries, and complica-
tions, originating from human and business aspects. This broad working environ-
ment is full of uncertainties. Rechtin and Maier [68] address this wider scope from
the architecting point of view. Martin [46] comes from the systems engineering

22 POSITIONING THE CAFCR METHOD IN THE WORLD 4.3

community. He provides a method that deals with all the complexity, but that has
less emphasis on the human aspects.

4.2.4 Very Generic Methods

Many system architecting and design methods are universally applicable. General
Systems Theory (GST), for example, addresses any kind of system, ranging from
economical, or ecological, to social, see for instance [31] and [32]. GST suffers
from being extremely abstract and difficult to apply, due to a broad scope and the
generic nature of the theory.

TRIZ [1] is a methodology for innovation that originates in Russia. A set
of innovation patterns is derived from studying large collections of inventions.
These patterns are transformed into innovation methods that can be applied to a
very broad range of applications. One of the starting points of TRIZ is that the way
of innovating in one domain provides inspiration for innovation in other domains.
TRIZ provides a number of useful insights.

The subtitle of this thesis,balancing genericity and specificity, indicates one
of the continuous struggles of the architect: the power and the beauty of generic
solutions versus the uniqueness of effective, individual solutions. Or in other
words, do we get carried away in generic thinking, or do we drown in the details?
In this thesis the scope will be limited to systems with embedded processors and
software. This still pertains to a very broad range of products: from wafersteppers
to televisions, and to systems on a chip).

4.3 What is the Unique Contribution of this Work?

This section discusses the unique contributions of the CAFCR method. Although
every single element mentioned here is present in one of the discussed methods,
the uniqueness of CAFCR is the combined application of all these elements si-
multaneously.

Integral and Multi-disciplinary This work focuses on architecting methods on
thesystemlevel for embedded systems. As described in Subsection 4.2.1,
many methods focus only on a part of the multi-disciplinary system prob-
lem, for instance only on the software architecture. A lot of architecting
methods provide more or less closed and complete solutions. The available
methods are partial methods from a systems viewpoint. The method de-
scribed in this thesis addresses the integration of results obtained with these

4.3 WHAT IS THE UNIQUE CONTRIBUTION OF THIS WORK? 23

more partial methods. Also a number of multi-disciplinary system design
submethods are described in this thesis. The basis for this integration is the
combined use of CAFCR views, qualities, and threads of reasoning.

Goal-Oriented This method stresses the importance of being externally oriented.
Architecting must be goal-oriented or objective-driven. Many existing meth-
ods do not take the goals and objectives into account.

Practical, based on Industrial ExperienceThe method, which is based on a broad
industrial experience, addresses the real problems2 in system design. The
usability aspect can be seen in the light-weight use of formulas, and in the
association of many statements with common sense. Some of the published
methods are more academic, well thought through, but not really addressing
the problems in system design, and difficult to implement in the industrial
practice.

Flexible The wide application range of the creation ofsoftware and technology
intensive products, requires a flexible and adaptive method. The method
must provide guidance, and should not constrain the architect by forcing a
rigid harness on him. In principal thearchitecting methodmust be able to
integrate the results ofanypartial method.

Builds on standards The method builds on top of standards, such as ISO 9126
for qualities and IEEE 1471. In fact the method can be viewed as an instan-
tiation of an IEEE 1471 method, see Section 4.4.

Support for short innovation cycles System engineering methods originate from
the aerospace domain, with very different reliability and safety require-
ments. Such methods tend to be more rigid, resulting in very long devel-
opment cycles. This distinction of “slow but safe” domains versus “fast but
less reliable” domains disappears quickly. Cross-fertilization of these do-
mains can be very useful. In contrast to the aerospace domain theCAFCR
method is intended for domains with short innovation cycles.

2Many problems in system design are caused by unforeseen interactions between independent
designed functions or qualities. See for instance Chapter 13 for examples of system design problems
in the Medical Imaging case.

24 POSITIONING THE CAFCR METHOD IN THE WORLD 4.4

4.4 IEEE 1471

System Architecturehas

Architecture
Description

D
es

cr
ib

ed

by

Stakeholder view

viewpoint

concernhas covers conforms
to

covers

model

defines

Consists of

mn

nn n n n

mn

n

1

11

n

Figure 4.2: The IEEE 1471 model for stakeholders, viewpoints and architecture
descriptions

Figure 4.2 shows a somewhat simplified IEEE 1471 model. IEEE 1471 [6] is
a standard that describes a framework for architecting. The framework introduces
a number of important concepts:

Stakeholders People or organizations that have an interest in the system under
consideration.

Concerns The articulation of the needs and worries of the stakeholders.

Viewpoints The points of view used to describe part of the problem or solution.
IEEE 1471 makes a subtle difference betweenviewandviewpoint. We ig-
nore this difference here.

Models Frequently used method to make problem and solution descriptions.

Architecture description The combination of stakeholders, concerns, viewpoints
and models to describe the architecture of a system.

The main contribution of IEEE 1471 is to provide a framework that covers all
of these aspects. The individual concepts have been in use by many architects for
a long time.

On top of providing the framework, IEEE 1471 also recognizes the fact that
complete consistency in the entire architectural description is an illusion. The

4.4 IEEE 1471 25

real world of designing complex systems is full of stakeholders with fuzzy needs,
often contradictory in itself and conflicting with needs of other stakeholders. The
insights of individual designers are also full of different and changing insights.
This notion of incomplete consistency is not an excuse for sloppy design; quite
the opposite: recognizing the existence of inconsistencies is a much better starting
point for dealing with them. In the end, no important inconsistencies may be left
in the architecture description.

Architecture

Subset of which
architect is aware

Architecture
description

Flattened into

Actually written
by architect(s)

Figure 4.3: The architecture description is by definition a flattened and poor rep-
resentation of an actual architecture.

IEEE 1471 makes another interesting step: it discusses the architecturede-
scriptionnot thearchitectureitself. Thearchitectureis used here for the way the
system is experienced and perceived by the stakeholders3.

This separation ofarchitectureandarchitecture descriptionprovides an inter-
esting insight. Thearchitectureis infinite, rich and intangible, denoted by a cloud
in figure 4.3. Thearchitecture description, on the other hand, is the projection,
and the extraction of this richarchitectureinto a flattened, poor, but tangible de-
scription. Such a description is highly useful to communicate, discuss, decide,
verify, et cetera. We should, however, always keep in mind that the description is
only a poor approximation of thearchitectureitself.

3Long philosophical discussions can be held about the definition ofthe architecture. These
discussions tend to be more entertaining than effective. Many definitions and discussions about the
definition can be found, for instance in [32], [10], or [37]

26 POSITIONING THE CAFCR METHOD IN THE WORLD 4.4

Chapter 5

Research in Systems Architecting

5.1 Introduction

Architectingis an extremely broad subject, taking into account many ill-defined
needs, concerns, expectations, et cetera.Architecting methodsare the result of
consolidation of experience of architects.Architecting methodsshould help ar-
chitects to architect.Research of architecting methodsis again one step more
abstract: it is the study and exploration ofarchitecting methodsin a systematic
way.

methodmethodsystem

system context

users
customers

designers
manufacturer

suppliers

managers

architect

architecting
architecting

thought
processes

method
research

report

method research

legend

specific
tangible

ill defined
intangible

Figure 5.1: Research of architecting methods in the context of system design

Section 5.2 describes atechnology management model. Thetechnology man-
agement modelis used in Section 5.4 to describe the research method used in
this thesis to investigate an architecting method. Section 5.3 discusses the chal-

27

28 RESEARCH IN SYSTEMS ARCHITECTING 5.2

lenges of doing research of architecting methods in a scientific way. Section 5.5
describes how the distance between industrial practice and scientific research can
be bridged. Section 5.6 describes the environment where the research takes place.

5.2 Technology Management Cycle

The creation of software and technology intensive products requires by definition
quite some technology know-how. These technologies can be classified ashard
andsoft:

• Hard technology is the tangible engineering and scientific know-how, such
as software and electronics engineering, and mathematics, physics, chem-
istry, and biology. The know-how from these sciences is very objective and
universally applicable (the elasticity in the USA is the same as the elasticity
in China). The performance of theproductis determined by the right choice
of hard technologies.

• Soft technology is the less tangible know-how of how to create a product
with a team of people. Soft technologies are based on a mixture of sciences
and human arts. The know-how of soft technologies is more subjective,
the human factors are less well reproducible (a method working well in the
USA might fail in China and vice versa). The performance of theproduct
creation teamdepends on the right application ofsofttechnologies.

The intensive use of technology in these products requires explicit manage-
ment of the technology: technology management. Architecting methods are man-
aged as part of the (soft) technology.

Technology management can be modeled as a cyclic process [17], as shown
in Figure 5.2. Most of the time is spent in the application of technology, in other
words in the creation of new systems. After applying the technology it is rec-
ommended to learn from this application by reflection. The learning experience
can be made (partially) accessible to others by consolidating the know-how, for
instance in documentation.

At the end of the consolidation insight will exist in strengths and weaknesses
of the technology, both in the hard technology choices as well as in the soft tech-
nology (the approach taken). It is recommended to take this know-how as a start-
ing point for an exploration phase.

The exploration phase should be used to refresh the designers and architects,
and to open new opportunities in technology. This requires that they know the

5.3 CHALLENGES TO DO RESEARCH IN A SCIENTIFIC WAY 29

Application
of technology

Consolidation
of know how

Exploration
of new ideas

Literature search
Creative option generation
Try out

Industry as laboratory

Reflection
Write articles
Create courses

Figure 5.2: Technology Management Cycle

state of the art in the world, by reading literature, visiting conferences, et cetera.
New technology options can be added by means of creative brainstorms . Promis-
ing technology must be explored hands-on.

In the next application phase a limited set of new technologies is applied in
practice.

This thesis focuses entirely on an architecting method. The architect and the
architecture are heavily involved with a lot of hard technology. However, the
management of hard technologies and soft technologies other than architecting
methods is outside the scope of this thesis.

5.3 Challenges to do Research in a Scientific Way

Science is applied in a wide range of areas, from proof-based mathematics to
descriptive reasoning in human sciences, see Figure 5.3.

The level of certainty of the results decreases when moving from hard sciences
to soft sciences. Mathematical proofs provide certainty1, see also [35]. Physics
provides a confidence level that increases by validating predicted outcomes, or it
applies afalsificationprocess as described by Popper [76].

Medical sciences need a lot more trial and error, where evidence is built up

1As far as the proof is verifiable and the verifiers can be trusted. The absolute certainty is here
also decreased by the human factor: the proof is as certain as the quality of the provider of the proof
and the verifiers of the proof. Automation shifts the problem to the tool, which also in some way
originates in fallible human beings.

30 RESEARCH IN SYSTEMS ARCHITECTING 5.3

hard soft

mathematics physics medicine human
sciences

prove prediction statistics descriptive
reasoning

charlatan

handwaving

architecting methods

example: security

crypto biometric identification human
factor

certainty confidence evidence
based

plausible convincing

no science

soft science

hard science

legend

Figure 5.3: Spectrum of sciences

in extensive statistical studies. The evidence is hampered by many factors that
influence the outcome of the medical study, but that are outside the control of the
experimenter. Worse is that many of the factors are unknown to the experimenter
and his peers. Cause and result are often more ambiguous than people realize.
Despite all these disclaimers the medical sciences have created a large body of
knowledge.

The human sciences (psychology, sociology, pedagogy, et cetera) have already
a tremendous challenge in making statements plausible. Human behavior shows
a wide variation, depending on many factors, such as culture, age, gender, and
status. Individual human behavior is often poorly predictable. Case descriptions
are used in a heuristic approach. The step from case descriptions to a workable
hypothesis needs a lot of interpretation. Adding more case descriptions will help
in making the issue more plausible, but hard evidence is nearly impossible. A
more experimental approach with small scale experiments is possible, but these
experiments are often highly artificial.

The scientific community dislikes the charlatans, who can be very convincing
by hand-waving arguments, but in fact are selling hot air.

Architecting integrates all of these different types of sciences, from mathe-
matical to human sciences. For instance in security design cryptographic proof
is important, and also biometrics authentication. However a security solution that
does not take the human behavior into account fails even before it is implemented.

Research of architecting methods is inherently the combination of hard facts

5.3 CHALLENGES TO DO RESEARCH IN A SCIENTIFIC WAY 31

in an environment full of soft factors. Most of present-day hard disciplines (math-
ematics, physics, electronics, mechanics, et cetera) are frightened away by the soft
factors. Most of the soft disciplines (psychology, philosophy, business manage-
ment) have no affinity with the complexity in the hard facts. The challenge in the
systems discipline is to tackle the soft factors, with sufficient understanding of the
hard side.

make explicit

substantiate

try to validate

research question
hypothesis

heuristics
principles

facts
analysis

evaluate
open debate

body of knowledge
cases

soft is not in conflict with scientific attitude

Figure 5.4: Soft problems can be approached with a scientific attitude

The fact that so many soft factors play a role is no excuse to stay in “trial
and error” mode. The scientific attitude, see Figure 5.4, can also be applied to
the soft kind of problems encountered in systems architecting. The Philosophy of
Science has a long history. Some inspiration for the approach taken here are the
falsificationprocess by Popper, summarized by Tuten in [76], and the notion of
paradigmsby Kuhn, also summarized by Tuten in [77]. Popper formulated the
foundation of scientific methodology, for instance based upon open discussion,
testable statements and a critical attitude. The weakness of the Popper view is the
notion that science progresses linearly. Kuhn introduced the notion ofparadigm
shift to show that scientific progress at some times is non linear and requires a
revolution to make progress. In this thesis we want to assess the value of the
architecting method for industrial application. The use of a hypothesis and evalu-
ation criteria is less rigid than the Popper approach, but at least it supports an open
debate about the merits of the method.

The first step is to make research question and hypothesis explicit. After suffi-
cient research the heuristics and principles will become visible, which can be very
powerful means to capture generic know-how, see [68] for an extensive collection
of systems architecting heuristics. A nice overview is given by Pidwirny [64],

32 RESEARCH IN SYSTEMS ARCHITECTING 5.3

using characteristics such asneutralandunbiased.
The next step is to substantiate the benefits of proposed methods with facts and

analysis. The last step is to strive for validation. For many soft issues validation
will be an unreachable ideal. Increasing the plausibility is then the maximum that
can be achieved.

These steps together contribute to the building of a body of know-how (as all
sciences do), of which a significant part will be based on case descriptions.

creative

systematic

repeated
creative

systematic

creative

systematic

more
performance

and functionality
causes more
complexity
and requires
more effort

active work on

systematic methods
reduces effort and

the need for a lot of

creative effort

systematic methods

new creative

year X year X+4 year X+4

Figure 5.5: A scientific base is required to cope with the growing system effort.
The scientific base provides a systematic approach that helps to solve known types
of problems with less, more systematic, effort.

The relevance for the product creation companies is that the increasing ef-
fort of creating more powerful, but complex systems, is kept manageable. The
ratio between the amount of systematic work, engineering, and the amount of cre-
ative/chaotic work should preferable stay the same. Due to the increasing com-
plexity, in both hard and soft issues, this ratio will worsen if we are not able to
make part of the system work more systematic.

Figure 5.5 shows the amount of systematic work and creative work. In the
electronics industry the effort to create new circuits increases exponentially, more
or less following Moore’s Law. The phenomenon that the product needs and pos-
sibilities increase faster than our design know-how is known as the productivity
gap, see for example [42]. The first bar shows the amount of systematic work at
the bottom and the creative work at the top. The new development shown in the

5.4 ARCHITECTING RESEARCH METHOD 33

second bar, taking place several years later, in this example four years, requires
about twice the amount of work. If we do not develop the system discipline a lot
of the future system work will still be done in “trial and error” mode, represented
by therepeated creativework. The new functionality, performance and complex-
ity challenges also requirenew creativework. If the creative work of the past
can be captured in more systematic approaches then therepeated creativework is
transformed in lesssystematicwork, as shown in the third bar.

One of the symptoms for this trend of increasing creative work is the relative
increase of the integration period and integration effort. The lack of a systematic
approach in the early design phases is solved by applying a lot of creativity in
solving the problems during integration. This effect is visible in complex systems,
such as MRI scanners, wafersteppers, and video processing platforms.

The message behind this figure is that product creation will always have a
creative component. Providing a scientific base will never remove the need for
human creativity. A scientific base will enable the effective use of the creative
talent, not wasting it on problems that could have been solved in a systematic
way.

Figure 5.5 suggests an incremental increase of creation effort. Many products,
such as cardiovascular X-ray systems, wafersteppers, and televisions show such
exponential growth of the effort. When developing system architecting methods
the ambition should be to develop also the development of system design and
implementation methods thatdecreasethe desired effort. Once the know-how is
captured in methods a next step in support can be made by further automation and
supporting tools. Systematizing know how precedes automation and tooling.

5.4 Architecting Research Method

This thesis is based on research by means of the conventional hypothesis (see
Section 6.3) and evaluation method, complemented by case descriptions (Part III).
The research starts with a research question, described in Section 6.2 that after
some exploration work is used to formulate a hypothesis. The hypothesis is next
assessed to be valid or invalid by means of criteria, see Section 6.4.

The research method and the architecting methods are very abstract entities.
These methods are illustrated by case descriptions. Specific case descriptions
make it possible to capture the experience of the otherwise rather generic methods.
The case descriptions describe parts of actual system architectures.

In the human sciences case descriptions are one of the major research meth-

34 RESEARCH IN SYSTEMS ARCHITECTING 5.5

ods [70]. Theory in these sciences define many abstract concepts that are difficult
to make precise. Case descriptions support the definition of the concepts. At
the same time, they complement the abstract concept definitions, by being very
specific, thereby helping to clarify and to educate.

5.5 Distance between Industrial Practice and Scientific
Research

The main challenge in the research of architecting methods is to bridge the dis-
tance between the pragmatic world of product creation in the industrial context
and the scientifically sound research of architecting methods. Figure 5.6 shows
the distance between the practitioners and the scientific foundation as an abstrac-
tion hierarchy.

Application
of technology

Consolidation
of know how

Exploration
of new ideas

archi-
tecting
method

meta0

bottom line:
product

creation

meta1

enabling:
architecting

method

meta2

pro-active:
research of

architecting
method

meta3

scientific foundation:
method to research

architecting methods

architecting
method research

research
method

Figure 5.6: Moving in themetadirection. Research of architecting methods is two
steps of indirection away from the bottom line of product creation. The scientific
foundation for this work is another indirection step

The status quo insystemsarchitecting is that most architects learn by trial
and error2. These architects are directly working in the product creation process,

2 A systematic foundation forsystemsarchitecting is lacking in the companies I have worked for.
Most companies do have extensive process handbooks and quality assurance handbooks, covering
documentation, verification, project management, and many more issues. However, the multidisci-

5.6 RESEARCH ENVIRONMENT 35

where the bottom line is to create successful products.
The approach taken inarchitecting can be abstracted into anarchitecting

method; this is the first step in themeta-direction. Doing systematicresearch
of architecting methodsis a second step in themeta-direction. The definition of
a research method(to investigatearchitecting methods) provides the systematic
research with a scientific foundation: the third step in themeta-direction. These
three levels of abstractions illustrate the different worlds of practitioners and re-
searchers.

The drive behind this thesis is the assumption that building a scientifically
founded body of knowledge will improve product creation effectivenessdirectly
or indirectly. An example ofindirect improvement by means of rationaldesign
methods is described by Parnas and Clements in “A Rational Design Process: How
and Why to Fake It” [62]. Therational design processis in the industrial practice
usedindirectly in the later phases of the product creation for documentation and
communication.

5.6 Research Environment

In this thesis architecting methods are studied by a retrospective analysis of a
finished industrial product development. This way of working, shown as con-
solidation in Figure 5.2, makes knowledge that is obtained in the past explicit.
This knowledge is consolidated to make it accessible for other people. This way
of working does not work foractiveresearch of architecting methods, where we
want to study the effects of potential method improvements.

Figure 5.7 shows multiple environments that can be used to study architecting
methods. This thesis is based onresearch by analysisshown at the left hand
side. A promising research environment is theindustry as laboratory. Research
of architecting in the limited scope of research laboratories is shown astrial in
research environment. Coursesandworkshopsprovide an environment to obtain
additional feedback on architecting methods.

The Industry as Laboratory[65] approach is based on an intimate collabora-
tion of researchers and practitioners. The Embedded Systems Institute uses this

plinary specification and design atsystemlevel is left open.
I have made visits to many other companies, explicitly asking for their systems architecting ap-

proach and how they develop systems architects. I did not find any systematic foundation atsystem
level in any of these companies. The companies I visited are working in the telecommunication
fields, computer industry, and electronics industry.

See Chapter 4 for other work done in this area.

36 RESEARCH IN SYSTEMS ARCHITECTING 5.6

large
industrial
project

>100 man

architecting
research by

analysis

large
industrial project

>100 man

course setting

small research
project

<10 man

method trial
large industrial

project
>100 man

method trial

active
architecting

research

industry as
laboratory

active
architecting

research

trial in research
environment

large
industrial
projects

>100 man

method trial

architecting
research
feedback

feedback from
courses

workshop setting

method as
framework

architecting
research
feedback

feedback from
workshop

method

retrospective
analysis

Figure 5.7: Obtaining practical case data of architecting methods from multiple
sources

model as the basis for research [69]. The industrial environment is used to try out
architecting methods. In the industrial environment the typical time and resource
pressures, and the larger size (one or two orders of magnitude larger than in typical
research projects) are inherently realistic for the industrial context.

Some architecting methods are also explored inresearch projects. For in-
stance,story telling, as described in Chapter 11, is used in ambient intelligence
projects. TheCAFCRmodel has been used many times in research workshops as
a framework. Project reviews and workshop evaluations provide feedback on the
architecting method for thisresearch projectenvironment.

Partial architecting methods (for instancestory tellingagain) are also used in
course settings, where they are applied to many different systems, ranging from
silicon chips to Cardiovascular X-ray systems. More than 300 designers and archi-
tects have participated in Systems Architecting courses, using partial methods for
tens of different systems. This provides valuable feedback of these methods when
applied to real systems. See [51] for the course program. The entire course mate-
rial, including exercises, can be found at:http://www.extra.research.
philips.com/natlab/sysarch/SARCH.html .

The CAFCR method is also used within Philips as a framework for performing
architecture workshops. External and internal project stakeholders present during
the workshops use (parts of) the CAFCR method as a means to structure their
workshop. The evaluation at the end of a workshop provides feedback for the
architecting method. In Chapter 19 the evaluations from many workshops are
discussed.

http://www.extra.research.philips.com/natlab/sysarch/SARCH.html
http://www.extra.research.philips.com/natlab/sysarch/SARCH.html

Chapter 6

Research Question and
Hypothesis

6.1 Introduction

The starting point for the investigation of architecting methods in this thesis is
the research question, articulated in Section 6.2. An hypothesis is formulated in
Section 6.3. The criteria to validate the hypothesis are defined in Section 6.4.
Section 6.5 summarizes all three aspects in a single overview, and shows how the
different parts of the thesis fit together in this thesis.

6.2 Research Question

Figure 6.1 shows the annotated research question. The core research question is
what architecting methods enable the creation of successful products. This core
question is more focused by adding a more specific environment:a dynamic mar-
ketand aheterogeneous industrial context. The product category is also narrowed
down by looking only attechnology and software intensiveproducts.

Successful productsare products that satisfy the customers and result in a
thriving business. In present-day economy this means that time plays a dominant
role, products must bein time. The economic reality and the hefty competition
force economic constraints on the created product and its timing. This economic
reality requires pragmatism in the architecting methods. Many academic meth-
ods, however, suffer from a mismatch with these economic and time constraints.
For instance formal verification systems work well for small well-defined prob-

37

38 RESEARCH QUESTION AND HYPOTHESIS 6.2

What architecting methods enable

the creation of

successful

products

in dynamic markets

developed in a heterogeneous industrial context

satisfied customers
thriving business

some poor,
some excellent,
mostly average

technology and
software intensive

in time within
economic constraints

uncertainty rules
need for innovation
agility required

normal distribution
of engineering skills

views, stakeholders, applications, concerns, needs, expectations, interests,
functions, features, qualities, requirements, systems, technologies, standards, disciplines,
suppliers, sites, cultures, employees, education, tools, legacy, other vendors, legislation

Figure 6.1: Research question

lems, but require too much time and skills to be useful in larger, more uncertain,
problems.

Most product areas become more and more dynamic: customers, competitors,
and other stakeholders interact in complex ways, with a lot of uncertainty. Active
commercial product lifetimes have decreased from years to months. Globalization
enables unexpected competitors to enter the market, based on low-cost labor and
huge work-forces. Constant innovation is required to stay competitive. To follow
the rapid market changes agile procedures and organizations are required.

The context in which we operate is characterized by an increasing variability
and complexity. Products should fit in a very heterogeneous world. The het-
erogeneity is present in aspects such as:views, stakeholders, applications, con-
cerns, needs, expectations, interests, functions, features, qualities, requirements,
systems, technologies, standards, disciplines, suppliers, sites, cultures, employees,
education, tools, legacy, other vendors, legislation.

The industrial context in which the methods have to be used has a popula-
tion of engineers with a normal distribution of engineering skills and intellect.
Some have poor skills, some have excellent skills, but most engineers have av-
erage skills. This is a severe constraint on the architecting methods. Some very
nice methods are too difficult to apply in practical organizations. Note that the
research question is what methods enable the product creation in theindustrial
context. This does not imply that the constraint is that they should fit entirely
in the existing crew. Crew and method should be matched, but the degrees of

6.3 HYPOTHESIS 39

freedom in composing a PCP team in an industrial context are quite limited.

6.3 Hypothesis

The variability of products being created is so large, thatone all encompassing
method is impossible. The dynamic range in requirements spans many orders
of magnitude. For example requirements for power consumption, weight, and
processing needs differ a factor of 1000 for products such as televisions and GSM
cellphones. It is more feasible to grow a rich collection of submethods than to
develop a single all encompassing method. Submethods are methods that address
a smaller part of the problem. This step moves the problem to another area: how
to combine multiple submethods in a useful way?

A rich collection of submethods fitting in a multi-view framework

complemented with reasoning methods enables successful architecting of

technology and software intensive complex systems in heterogeneous environments

by means of generic insights grounded in specific facts

Figure 6.2: Hypothesis

The hypothesis, as shown in Figure 6.2 formulates the need for amulti-view
framework. The submethods must fit in the multi-view framework.Reasoning
methodsare needed to cope with multiple submethods.

The claim is that this combination of arich collection of submethods, multi-
view framework, and reasoning methodsenablesthe successful architecting of
technology and software intensive complex systems in heterogeneous environ-
ments.

The generic termproduct in the research question is replaced by the more
focused notion oftechnology and software intensive systems. The research de-
scribed in this thesis has been limited to embedded systems. Embedded systems
are systems with embedded computing hardware and software that have interac-
tion with the physical world. This interaction with the physical world is technol-
ogy intensive, for example actuator technology and sensor technology.

In addition two crucial characteristics of architecting work are added to the
claim: the use ofgeneric insightsgrounded inspecific facts. These two character-

40 RESEARCH QUESTION AND HYPOTHESIS 6.4

preceding architecture

Architecting

architecture

problem know how

solution know how

business context

technology
context

result
satisfies

meth
od

en

ab
les

 legend

PCP team
architect, project leader,

engineers,
product manager

stakeholders
expectations, needs,
concerns, constraints

human context

Figure 6.3: The hypothesis is valid ifsuccessfularchitecting isenabled.

istics seem to be contradictory: generic insights are often interpreted as ignoring
the details (=specific facts); some details, however, are often needed to appreciate
the essence captured in the generic insight.

Architecting methods need sufficient genericity to have impact. Architects
will lose overview when they have to specify every product detail. The challenge
is to extract the essence from specific facts in such a way that powerful and trust-
worthy generic insights are created.

Many product developments fail in combining the specific facts and the generic
insights. Discussions during the SARCH courses [19] often show organizations
inside and outside Philips where the PCP teams spend all their time in details. The
policy makers in these same organizations are disconnected from the rest of the
PCP team. The PCP team is working onspecificdetails, while the policy makers
are working ongenericinsights, but the two worlds are disconnected. The conse-
quence of the disconnection is that product innovations fail. Small improvements
are made by the PCP team, but the larger changes fail because important details
have not been taken into account.

Figure 6.3 addresses the termsuccessfulin the hypothesis. This is done in a
two-step approach from PCP team to stakeholders. The PCP team is successfully
enabled by an architecting method if the use of the method resulted in the creation
of a successful architecture. An architecture is successful if the stakeholders are
satisfied with the result.

6.4 CRITERIA 41

6.4 Criteria

Figure 6.4 shows the criteria to be used, based on the two step approach shown in
Figure 6.3.

preceding architecture

Architecting

architecture

Stakeholders
expectations, needs, concerns,

constraints

PCP team
architect, project leader,

engineers,
product manager

problem know how

solution know how

result
satisfies

meth
od

en

ab
les

method enables PCP team to create architecture

3. architects benefit from deploying submethods

4. project leaders , product managers and engineers
are able to use the outcome of the submethods

resulting architecture satisfies stakeholders

1. product is a commercial success

2. product family is sustainable
commercially successful

Figure 6.4: From hypothesis to criteria

The resulting architecture satisfies the stakeholdersis indirectly verified by
measuring the1. short term commercial success of the productand the2. sustain-
ability of this commercial success in the following product family. The underlying
assumption is that satisfied customers buy more products and motivate other cus-
tomers to buy this satisfactory product. Dissatisfied customers have a negative
impact on the sales.

In order to exclude incidental success, the long term commercial success is
also required. This long term success can only be measured by means of follow-
on products. The active commercial lifetime of products (1 to 2 years) is too short
to measure long term commercial success with the product itself. The follow-on
product family, based on the same architecture and architecting method, is used
instead.

The architecting method enables the PCP team to create a successful archi-
tectureis sharpened by defining two criteria. The first criterion is for the architect
as primary user: the architect(s) must be able to use the submethods to achieve a
good architecture. Note that the hypothesis mentionssubmethods complemented
with reasoning methods. The criterion for success is not that all submethods are
useable, but the criterion is that3. the architect benefits from the collection of
submethods.

The second criterion to assess is the enabling of the product creation team,
especially the (non-architect) members of the PCP team:4. the outcome of the
architecting method must be usable for the other members of the Product Creation

42 RESEARCH QUESTION AND HYPOTHESIS 6.5

Team (or PCP Team): project leaders, product managers and engineers.
The quality of the design of the product contributes to the sustainability of the

product. The quality of design is also one of the measures for the support that the
method provides to architects. Another measure for the support is the integration:
How well was integration supported by the chosen integration?

6.5 Summary

In this chapter we have discussed the research question, the objectives of the ar-
chitecting method, the hypothesis about the architecting method improvements,
and the criteria to evaluate the method. Figure 6.5 shows the summary of this
chapter: research question, hypothesis and criteria.

hypothesis

research
question

criteria

A rich collection of submethods fitting in a multi-view framework
complemented with reasoning methods enables successful architecting of technology

and software intensive complex systems in heterogeneous environments by means of
generic insights grounded in specific facts

What architecting methods enable the creation of successful products

 in dynamic markets developed in a heterogeneous industrial context

1. product is a commercial success
2. product family is sustainable commercially successful
3. architects benefit from deploying submethods
4. project leaders , product managers and engineers are able to use the

outcome of the submethods

Figure 6.5: Overview of research question, hypothesis and criteria.

Part II will show the theory of the architecting method. Part III describes
the case that is used for the evaluation. In Part IV, in chapters 18 and 19, the
hypothesis and criteria are used for the evaluation.

Part II

Theory of CAFCR and Threads
of Reasoning

Chapters in Part II:

7. Basic Methods

8. Submethods in the CAF Views

9. Submethods in the CR Views

10. Qualities as Integrating Needles

11. Story Telling

12. Threads of Reasoning

43

Chapter 7

Basic Methods

7.1 Introduction

The basic methods used by system architects are covered by a limited set of very
generic patterns:

• Viewpoint hopping, looking at the problem and (potential) solutions from
many points of view, see Section 7.2.

• Decomposition, breaking up a large problem into smaller problems, intro-
ducing interfaces and the need for integration, see Section 7.3.

• Quantification, building up understanding by quantification, from order of
magnitude numbers to specifications with acceptable confidence levels, see
Section 7.4.

• Decision making when lots of data is missing, see Section 7.5.

• Modelling, as means of communication, documentation, analysis, simula-
tion, decision making and verification, see Section 7.6.

• Asking Why, What, How, Who, When, Where questions, see Section 7.7.

• Problem solving approach, see Section 7.8.

Besides these methods the architect needs lots of “soft” skills, to be effec-
tive with the large amount of different people involved in creating the system,
see [68].

45

46 BASIC METHODS 7.2

7.2 Viewpoint Hopping

The architect is looking towards problems and (potential) solutions from many
different viewpoints. A small subset of viewpoints is visualized in Figure 7.1,
where the viewpoints are shown as stakeholders with their concerns.

manufac-
turing

SW
engineer

RF
engineer

project
leader

sales
manager

operator

problem

security

ease of
use

power

tools

differen-
tiation

street
price

space

adjust-
ments

timing

fte's

data
model

functions

architect

financial
manager

cost of
ownership

balance

integration

stake-
holder

concern

Figure 7.1: Small subset of stakeholders, concerns and viewpoints

The architect is interested in an overall view on the problem, where all these
viewpoints are present simultaneously. The limitations of the human brains force
the architect to create an overall view by quickly alternating the individual view-
points. The order in which the viewpoints are alternated is chaotic: problems
or opportunities in one viewpoint trigger the switch to a related viewpoint. Fig-
ure 7.2 shows a very short example of viewpoint hopping. This example sequence
can take anywhere from minutes to weeks. In a complete product creation project
the architect makes thousands1 of these viewpoint changes.

The system description and implementation span a significant dynamic range.
At the highest abstraction level a system can be characterized by its core function
and the key performance figure. Via multiple decomposition steps the description
is detailed to units that can be engineered. The implementation shows orders of
magnitude more details. The source description of today’s products is in the order
of millions lines of code2. The source description expands via synthesis into an

1Based on observations of other architects and own experience.
2In 2003 the software figures for MR scanners, wafersteppers and televisions are all between 1

and 10 million lines of source code. Source code in the broad sense: all formalized definitions, that
are created by humans and maintained and tested. Generated code is not counted.

7.2 VIEWPOINT HOPPING 47

street
price timing functions

cost of
ownership

SW
engineer

project
leader

sales
manager

financial
manager

triggered by :
financing costs, part of cost
of ownership, are
determined by street price.

triggered by :
lowering street price and
time to market are
conflicting. How much
margin do we have in
timing?

triggered by :
timing of the product is
determined by SW. A
trade-off is possible
between functionality and
timing.

Figure 7.2: Short example of viewpoint hopping

order magnitude more wires, gates, transistors and bytes. The amount of states in
actual operation is again orders of magnitude larger.

Figure 7.3 shows this dynamic range. At the left hand abstraction levels in the
creation life-cycle are shown. Both for hardware and software the typical entities
at the different layers of abstraction are shown.

system

subsystems

components

109

106

103

1

states

core function

system functions

subsystem functions

lines of codeconnections, building blocks

wires, gates, transistors bytes

10nnnn

sp
ec

ifi
ca

tio
n

de
si

gn
 d

es
cr

ip
tio

ns

so
ur

ce

co
de

sy

nt
he

-
si

ze
d

ru
n-

tim

e

states

hardware softwaremetric
entities

Figure 7.3: Dynamic range of description and implementation in a product

The viewpoints and dynamic range of abstraction create a huge space for ex-
ploration. Systematic scanning of this space is way too slow. An architect is using
two techniques to scan this space, that are quite difficult to combine: open percep-
tive scanning and scanning while structuring and judging. The open perceptive

48 BASIC METHODS 7.3

mode is needed to build understanding and insight. Early structuring and judging
is dangerous because it might become a self-fulfilling prophecy. The structuring
and judging is required to reach a result in a limited amount of time and effort.
See Figure 7.4 for these 2 modes of scanning.

open
perceptive

scanning

scanning
while

structuring
and judging

drunkard's walk
the world is full
of interesting

needs, technologies, ...

bad

bad

good

goal

straight for the goal
ignore everything

that is not contributing
directly to the goal

Figure 7.4: Two modes of scanning by an architect

The scanning approach taken by the architect can be compared withsimulated
annealing methodsfor optimization. An interesting quote from the book “Nu-
merical Recipes in C; The Art of Scientific Computing”[66], about comparing
optimization methods is:

Although the analogy is not perfect, there is a sense in which all of
the minimization algorithms thus far in this chapter correspond to
rapid cooling or quenching. In all cases, we have gone greedily for
the quick, nearby solution: From the starting point, go immediately
downhill as far as you can go. This, as often remarked above, leads
to a local, but not necessarily a global, minimum. Nature’s own min-
imization algorithm is based on a quite different procedure...

The exploration space is not exclusively covered by the architect(s), engineers
will cover a large part of this space. The architect will focus mostly on the higher
abstraction layers,butsufficient sampling of the lower layers is important to keep
the higher layers meaningful.

7.4 DECOMPOSITION AND INTEGRATION 49

7.3 Decomposition and Integration

The architect applies a reduction strategy by means of decomposition over and
over. Decomposition is a very generic principle, that can be applied for many dif-
ferent problem and solution dimensions. Martin [46] uses the phrase development
layers when the decomposition principle is applied on a system.

Whenever something is decomposed the resulting components will be decou-
pled by interfaces. The architect will invest time in interfaces, since these provide
a convenient method to determine system structure and behavior, while separating
the inside of these components from their external behavior.

The true challenge for the architect is to design decompositions, that in the
end will support an integration of components into a system. Most effort of the
architect is concerned with the integrating concepts, how do multiple components
work together?

Many stakeholders perceive the decomposition and the interface management
as the most important contribution. In practice it is observed that the synthesis or
integration part is more difficult and time consuming.

7.4 Quantification

The architect is continuously trying to improve his understanding of problem and
solution. This understanding is based on many different interacting insights, such
as functionality, behavior, relationships et cetera. An important factor in under-
standing is thequantification. Quantification helps to get grip on the many vague
aspects of problem and solution. Many aspects can be quantified, much more than
most designers are willing to quantify. Thomas Gilb stresses the importance of
quantification and estimation, see for instance [26].

The precision of the quantification increases during the project. Figure 7.5
shows the stepwise refinement of the quantification. In first instance it is important
to get a feeling for the problem by quantifying orders of magnitude. For example:

• How large is the targeted customer population?

• What is the amount of money they are willing and able to spend?

• How many pictures/movies do they want to store?

• How much storage and bandwidth is needed?

The order of magnitude numbers can be refined by making back of the envelop
calculations, making simple models and making assumptions and estimates. From

50 BASIC METHODS 7.4

order of magnitude

guestimates

calibrated estimates

10

50 200

30 300

10030 300

70 140

90 115

feasibility
measure,
analyse,
simulate

back of the
envelope

benchmark,
spreadsheet

calculation

99.999 100.001
cycle

accurate

Figure 7.5: Successive quantification refined

this work it becomes clear where the major uncertainties are and what measure-
ments or other data acquisitions will help to refine the numbers further.

At the bottom of Figure 7.5 the other extreme of the spectrum of quantification
is shown. In this example cycle-accurate simulation of video frame processing
results in very accurate numbers. It is a challenge for an architect to bridge these
worlds.

process
overlay
80 nm

reticle
15 nm

matched
machine

60 nm

process
dependency

sensor
5 nm

matching
accuracy

5 nm

single
machine

30 nm

lens
matching

25 nm

global
alignment

accuracy

6 nm

stage
overlay
12 nm

stage grid
accuracy

5 nm

system
adjustment
accuracy

2 nm

stage Al.
pos. meas.
accuracy

4 nm

off axis pos.
meas.

accuracy

4nm

metrology
stability

5 nm

alignment

repro

5 nm

position
accuracy

7 nm

frame
stability
2.5 nm

tracking
error phi

75 nrad

tracking
error X, Y

2.5 nm

interferometer

stability
1 nm

blue align
sensor
repro

3 nm

off axis
Sensor
repro

3 nm

tracking
error WS

2 nm

tracking
error RS

1 nm

Figure 7.6: Example of a quantified understanding of overlay in a waferstepper

Figure 7.6 shows a graphical example of an “overlay” budget for a wafer-
stepper. This figure is taken from theSystem Design Specificationof the ASML

7.6 COPING WITH UNCERTAINTY 51

TwinScan system, although for confidentiality reasons some minor modifications
have been applied. This budget is based on a model of the overlay functionality
in the waferstepper. The budget is used to provide requirements for subsystems
and components. The actual contributions to the overlay are measured during the
design and integration process, on functional models or prototypes. These mea-
surements provide early feedback of the overlay design. If needed the budget or
the design is changed on the basis of this feedback.

7.5 Coping with Uncertainty

The architect has to make decisions all the time, while most substantiating data is
still missing. On top of that some of the available data will be false, inconsistent
or interpreted wrong.

architecting time

m
os

t i
m

po
rta

nt

m
os

t c
rit

ic
al

 is
su

es

all other issues

10% 90%

20%80%

spent on
spent on

solved

new

Figure 7.7: The architect focuses on important and critical issues, while monitor-
ing the other issues

An important means in making decisions is building up insight, understanding
and overview, by means of structuring the problems. The understanding is used
to determine important (for the product use) and critical (with respect to technical
design and implementation) issues. The architect will pay most attention to these
importantandcritical issues. The other issues are monitored, because sometimes
minor details turn out to be important or critical issues. Figure 7.7 visualizes the
time distribution of the architect: 80% of the time is spent on 10% of the issues.
The well known 80/20 rule matches well with my own observations of how system
architects spend their time. The number of important issues that are addressed in
the 80% of the time is also based on personal observations.

52 BASIC METHODS 7.6

7.6 Modeling

modeling is one of the most fundamental tools of an architect. Gilb [26] defines a
model as

A model is an artificial representation of an idea or a product. The
representation can be in any useful format including specifications,
drawings and physical representations. (Gilb glossary of concepts)

Lieberman [44] explains the difficulty of making good models for human use.
In summary we can say that models are used to obtain insight and under-

standing, and that models serve a clear purpose. At the same time the architect is
always aware of the (over)simplification applied in every model. A model is very
valuable, but every model has its limitations, imposed by the simplifications.

tprocessing = toverhead+ nrows* trow+ nrow* ncol* tpixel

formal analytical model

Req

Ack

Strobe

synchronisation model

position
control

actual
position

required
position
(time)

feedback frequency:
4 kHz (250 sec)

feedback model

model of
co-ordinate system

semiconductor
supplier

box-maker

consumer

retailer service
provider

content
provider

value chain model

x

y

z

Rz

Rx
Ry

6 degrees
of freedom

mock up

wooden model

Figure 7.8: Some examples of models

Models exist in a very rich variety. A few examples of models are shown in
Figure 7.8.

Models have many different manifestations. Figure 7.9 shows some of the
different types of models, expressed in a number of adjectives.

Models can bemathematical(a mature field, see for instance [14]) expressed
in formulas, they can belinguistic, expressed in words, or they can bevisual, cap-

7.7 WWHWWW 53

visual
mathematical

linguistic

formal informal

quantitative qualitative

concrete abstract

executable read only

detailed global

accurate approximate

intuitiverational

Figure 7.9: Types of models

tured in diagrams. A model can be formal, where notations, operations and terms
are precisely defined, or it can be informal, using plain English and sketches.
Quantitative models use meaningful numbers, allowing verification and judge-
ments. Qualitative models show relations and behavior, providing understanding.
Concrete models use tangible objects and parameters, while abstract models ex-
press mental concepts. Some models can be executed (as a simulation), while
other models only make sense for humans reading the model.

7.7 WWHWWW

All “W” questions are an important tool for the architect. Figure 7.10 shows the
useful starting words for questions to be asked by an architect.

Why

What

How

Who

When

Where

Figure 7.10: The starting words for questions by the architect

Why, what andhow are used over and over in architecting. Why, what and
how are used to determine objectives, rationale and design. This works highly
recursively, a design has objectives and a rationale and results in smaller designs

54 BASIC METHODS 7.8

that again have objectives and rationales. Figure 7.11 shows that the recursion
with why questions broadens the scope, and recursion withhow questions opens
more details in a smaller scope.

Why
What
How

Why
What
How

Why
What
How

system

context

subsystem

Figure 7.11: Why broadens scope, How opens details

Who, where andwhen are used somewhat less frequently. Who, where and
when can be used to build up understanding of the context, and are used in coop-
eration with the project leader to prepare the project plan.

7.8 Decision Making Approach in Specification and De-
sign

Many specification and design decisions have to be taken during the product cre-
ation process. For example, functionality and performance requirements need to
be defined, and the way to realize them has to be chosen. Many of these decisions
are interrelated and have to be taken at a time when many uncertainties still exist,
see section 7.5. The need for problem solving and decision making techniques
is clearly recognized in companies like Philips and ASML. Quality improvement
programs in these companies include education in these techniques. The approach
described in this section is based on the techniques promoted by the quality im-
provement programs.

An approach to make these decisions is the flow depicted in Figure 7.12. The
decision process is modeled in four steps. An understanding of the problem is
created by the first stepproblem understanding, by exploration of problem and

7.8 DECISION MAKING APPROACH IN SPECIFICATION AND DESIGN 55

1. Problem understanding by
exploration and simple models

2. Analysis by
+ exploring multiple propositions (specification + design proposals)
+ exploring decision criteria (by evaluation of proposition feedback)

+ assessment of propositions against criteria

3. Decision by
+ review and agree on analysis
+ communicate and document

4. Monitor, verify, validate by
+ measurements and testing

+ assessment of other decisions

insufficient data
no satisfying solution

invalidated solution

conflicting other decision

vague problem statement

Figure 7.12: Flow from problem to solution

solution space. Simple models, in problem space as well as in solution space,
help to create this understanding. The next step is to perform a somewhat more
systematicanalysis. The analysis is often based onexploring multiple proposi-
tions. The third step is thedecisionitself. The analysis results are reviewed, and
the decision is documented and communicated. The last step is tomonitor, verify
and validatethe decision.

low cost and performance 2

throughput
cost
safety

high performance sensor
high speed moves

20 p/m
5 k$

300 ns
10 m/s

high cost and performance

throughput
cost
safety

high performance sensor
high speed moves

additional collision detector

25 p/m
7 k$

200 ns
12 m/s

low cost and performance 1

throughput
cost
safety

high performance sensor
high speed moves

 additional pipelining

20 p/m
5 k$

350 ns
9 m/s

Figure 7.13: Multiple propositions

Theanalysisinvolves multiple substeps:exploring multiple propositions, ex-
ploring decision criteriaandassessing the propositions against the criteria. A

56 BASIC METHODS 7.8

proposition describes both specification (what) and design (how). Figure 7.13
shows an example of multiple propositions. In this example a high performance,
but high cost alternative, is put besides two lower performing alternatives. Most
criteria get articulated in the discussions about the propositions: “I think that we
should choose proposition 2, because...”. Thebecausecan be reconstructed into a
criterion.

The decision to chose a proposition is taken on the basis of the analysis re-
sults. A review of the analysis results ensures that these results are agreed upon.
The decision itself is documented and communicated3. In case of insufficient
data or in absence of a satisfying solution we have to back track to theanalysis
step. Sometimes it is better to revisit the problem statement by going back to the
understandingstep.

Taking a decision requires a lot of follow up. The decision is in practice based
on partial and uncertain data, and is based on many assumptions. A significant
amount of work is to monitor the consequences and the implementation of the de-
cision. Monitoring is partially asoft skill, such as actively listening to engineers,
and partially aengineering activity, such as measuring and testing. The conse-
quence of a measurement can be that the problem has to be revisited, because the
solution is invalidated. An invalidated solution returns the process to theunder-
standingstep in case of serious mismatches (’apparently we don’t understand the
problem at all’). In case of smaller mismatches the process returns to theanalysis
step.

The implementation of taken decisions can be disturbed by later decisions.
This problem is partially tackled by requirements traceability, where known in-
terdependencies are managed explicitly. In the complex real world the amount of
dependencies is almost infinite, that means that the explicit dependability specifi-
cations are inherently incomplete and only partially understood. To cope with the
inherent uncertainty about dependabilities, an open mind is needed when screen-
ing later decisions. A conflict caused by a later decision triggers a revisit of the
original problem.

The same flow of activities is used recursively at different levels of detail, as
shown in Figure 7.14. Asystemproblem will result in a system design, where
many design aspects need the same flow of problem solving activities for the sub-
systems. This process is repeated for smaller scopes until termination at problems
that can be solved directly by an implementation team. The smallest scope of
termination is denoted asatomic level in the figure. Note that the more detailed

3This sounds absolutely trivial, but unfortunately this step is performed quite poorly in practice.

7.8 DECISION MAKING APPROACH IN SPECIFICATION AND DESIGN 57

1. Problem
understanding

2. Analysis

3. Decision

4. Monitor,
verify, validate

1. Problem
understanding

2. Analysis

3. Decision

4. Monitor,
verify, validate

1. Problem
understanding

2. Analysis

3. Decision

4. Monitor,
verify, validate

1. Problem
understanding

2. Analysis

3. Decision

4. Monitor,
verify, validate

system level

subsystem level

atomic level

component level

analysis flow

decision flow

legend

Figure 7.14: Recursive and concurrent application of flow

problem solving might have impact on the more global decisions.

58 BASIC METHODS 7.8

Chapter 8

Submethods in the CAF Views

8.1 Introduction

This chapter describes the submethods in theCustomer objectives, Application
andFunctionalviews.

Section 8.2 describes a submethod to identify key drivers and to relate the key
drivers to product requirements.

Section 8.3 mentions submethods that help in positioning the business of the
customer in the context:analysis of the value chain, analysis of business models,
creation of a map of competitors and complementers, application context diagram
andidentification and articulation of the stakeholders and concerns.

The basic methods modeling and quantification from Chapter 7 are used in
Section 8.4 to identify useful models in the customer world.

Section 8.5 describesuse casesas description and communication means for
behavioral as well as quantitative characteristics.

The leading document in the product creation process is thesystem specifica-
tion, which is discussed in Section 8.6.

Section 8.7 provides an overview of all the submethods discussed in this chap-
ter, and positions the submethods in the CAFCR views.

8.2 Key Drivers

The essence of the objectives of the customers can be captured in terms of cus-
tomer key drivers. The key drivers provide direction to capture requirements and
to focus the development. This method has been successfully deployed to focus

59

60 SUBMETHODS IN THE CAF VIEWS 8.2

the product creation process of ASML [7]. A closely related method is “Goal-
oriented design” [34], which is also based on analysis of the customer needs and
goals in a hierarchical fashion.

The key drivers in the customer objectives view will be linked with require-
ments and design choices in the other views. The key driver submethod gains
its value from relating a few sharp articulated key drivers to a much longer list
of requirements. By capturing these relations a much better understanding of
customer and product requirements is achieved. In Quality Function Deploy-
ment [67], where the termbenefitsis used for key driver, the link betweenbenefits,
engineering requirementsanddesign conceptsis emphasized.

Safety

Effective
Flow

Smooth
Operation

Environment

Reduce Accident rates

Enforce law

Improve Emergency
Response

Reduce delay due to accident

Improve average speed

Improve total network throughput

Optimise road surface

Speed up target groups

Anticipate on future traffic condition

Ensure Traceability

Ensure proper alarm handling

Ensure system health and fault indication

Reduce emissions

Early hazard detection
with warning and signalling

Maintain safe road
condition

Classify and track dangerous
goods vehicles

Detect and warn
non compliant vehicles

Enforce speed compliance

Enforce red light compliance

Enforce weight compliance

Key drivers Derived application drivers Requirements

Automatic upstream
accident detection

Weather condition
dependent control

De-icing

Traffic condition
dependent speed control

Automatic counter
flow traffic detection

Note: the graph is only partially elaborated
for application drivers and requirements

Figure 8.1: Example of the four key drivers in a motorway management system

Figure 8.1 shows an example of key drivers for a motorway management sys-
tem, an analysis performed at Philips Projects in 1999.

Figure 8.2 shows a submethod how to obtain a graph linking key drivers to
requirements. The first step is to define the scope of the key driver graph. For
Figure 8.1 the customer is the motorway management operator. The next step is
to acquire facts, for example by extracting functionality and performance figures
out of the product specification. Analysis of these facts recovers implicit facts.
The requirements of an existing system can be analyzed by repeatingwhyques-
tions. For example: “Why does the system needautomatic upstream accident
detection?”. The third step is to bring more structure in the facts, by building a

8.2 KEY DRIVERS 61

• Build a graph of relations between drivers and requirements
by means of brainstorms and discussions

• Define the scope specific. in terms of stakeholder or market segments

• Acquire and analyze facts extract facts from the product specification
and ask why questions about the specification of existing products .

• Iterate many times increased understanding often triggers the move of issues
from driver to requirement or vice versa and rephrasing

where requirements
may have multiple drivers

• Obtain feedback discuss with customers , observe their reactions

Figure 8.2: Submethod to link key drivers to requirements, existing of the iteration
over four steps

graph, which connects requirements to key drivers. A workshop with brainstorms
and discussions is an effective way to obtain the graph. The last step is to ob-
tain feedback from customers. The total graph can have many n:m relations, i.e.
requirements that serve many drivers and drivers that are supported by many re-
quirements. The graph is good if the customers are enthusiastic about the key
drivers and the derived application drivers. If a lot of explaining is required then
the understanding of the customer is far from complete. Frequent iterations over
these steps improves the quality of the understanding of the customer’s viewpoint.
Every iteration causes moves of elements in the graph in driver or requirement
direction and also causes rephrasing of elements in the graph.

• Use short names, recognized by the customer.

• Limit the number of key drivers minimal 3, maximal 6

for instance the well-known main function of the product• Don’t leave out the obvious key drivers

for instance replace “ ease of use ” by
“minimal number of actions for experienced users ”,

or “efficiency ” by “integral cost per patient ”

• Use market/customer specific names, no generic names

• Don't worry about the exact boundary between
Customer Objective and Application

create clear goal means relations

Figure 8.3: Recommendations for applying the key driver submethod

Figure 8.3 shows an additional set of recommendations for applying the key
driver submethod. The most important goals of the customer are obtained by lim-
iting the number of key drivers. In this way the participants in the discussion are

62 SUBMETHODS IN THE CAF VIEWS 8.3

forced to make choices. The focus in product innovation is often on differenti-
ating features, or unique selling points. As a consequence, the core functionality
from the customer’s point of view may get insufficient attention. An example of
this are cell phones that are overloaded with features, but that have a poor user
interface to make connections. The core functionality must be dominantly present
in the graph. The naming used in the graph must fit in the customer world and be
as specific as possible. Very generic names tend to be true, but they do not help to
really understand the customer’s viewpoint. The boundary between the Customer
Objectives view and the Application view is not very sharp. When creating the
graph that relateskey driversto requirementsone frequently experiences that a
key driver is phrased in terms of a (partial) solution. If this happens either the key
driver has to be rephrased or the solution should be moved to the requirement (or
even realization) side of the graph. A repetition of this kind of iterations increases
the insight in the needs of the customer in relation to the characteristics of the
product. Thewhy, what andhow questions can help to rephrase drivers and re-
quirements. The graph is good if the relations between goals and means are clear
for all stakeholders.

8.3 Customer Business Positioning

The position of the customer in thevalue chainand the business models[63]
deployed by the players in the value chain are important factors in understanding
the goals of this customer. The analysis of thevalue chainof the customer and
the analysis of thebusiness modelsinvolved have been deployed as successful
submethods in theMedical Systems, Consumer ElectronicsandSemiconductors
product divisions in Philips.

Related to the value chain is the way the customers view their suppliers. The
customer sees your company as one of the (potential) suppliers. From the cus-
tomer’s point of view products from many suppliers have to be integrated to create
the total solution for his needs. In terms of your own company this means that you
have to make amap of competitors and complementers, that together will supply
the solution to the customer. Figure 8.4 shows an example of amap of competitors
and complementersin the medical domain taken from [58].

An application context diagramis a diagram that shows all systems that can
be operational in the application context. Theapplication context diagramem-
phasizes the provided functionality. Many systems in the customer domain have
no direct interface with the product under consideration. The interaction of sys-

8.3 CUSTOMER BUSINESS POSITIONING 63

Hospital

Radiology Cardiology …

W
Medical
Systems

Peripheral
Supplier

IT
Integrator

Field
Service
Provider

Software
Supplier

Component
Supplier

Medical
Systems

Medical
Systems

Complementers
(can also be competitors) Competitors

From: COPA tutorial;
WICSA 2001

Figure 8.4: Example map of competitors and complementers from the medical
domain

tems in the context with the product happens in many cases via human operators.
The value of such a diagram is to understand function allocation in the customer
context and to understand the value of potential improvements, such as further
integration or automation.

Figure 8.5 shows a simple context diagram of the motorway management sys-
tem of Figure 8.1. Tunnels and toll stations often have their own local manage-
ment systems, although they are part of the same motorway. The motorway is
connecting destinations, such as urban areas. Urban areas have many traffic sys-
tems, such as traffic management (traffic lights) and parking systems. For every
system in the context questions can be asked, such as:

• is there a need to interface directly (e.g. show parking information to people
still on the highway)?

• is duplication of functionality required (measuring traffic density and send-
ing it to a traffic control center) or not?

Themap of competitors and complementersfocuses on economic parties and
their roles, while theapplication context diagramfocuses on the functional oper-
ation in the customer context.

The IEEE 1471 [6] standard about architectural descriptions uses stakeholders
and concerns as the starting point for an architectural description.Identification
and articulation of the stakeholders and concernsis a first step in understand-
ing the application domain. This approach matches very well with the CAFCR

64 SUBMETHODS IN THE CAF VIEWS 8.4

motorway
management

system
restaurants
gas stations

bus lanes
lorry lanes

maintenance contractors

taxes
car administration
government

airports
railways toll

tunnel

car repair
towing service

fleet management
urban traffic control
advanced vehicle control

environmental monitoring

Figure 8.5: Systems in the context of a motorway management system

approach
In practice theinformal relationships get insufficient attention. In many cases

the formal relationships, such as organization charts and process descriptions, are
solely used for the analysis of the stakeholders and their concerns. The under-
standing of the customer context is then incomplete, often causing the failure of
the solution. Many organizations function thanks to the unwritten information
flows of the social system. Insight in the informal side is required to prevent a
solution that does only work in theory.

8.4 Modeling in the Customer World

The customer context can be statically modelled by deploying modeling tech-
niques from the information technology world, for instance entity relationship
diagrams [29].

Dynamic models are used to model the logical behavior or the behavior in
time. Examples of dynamic models are shown in Figure 8.6:

• flow models that model the flow of goods, people or information

• state diagrams make the dynamics explicit by means of states and state tran-
sitions -

• time line that show the events as a function of time

8.5 MODELING IN THE CUSTOMER WORLD 65

scheduling

flow models
people
goods

information

wait for
screening

wait for
diagnose

problem exam

acute exam

no problem

wait for
examstate diagrams

20:00 20:30 21:00 21:30 22:00 22:30

broadcast

phone rings
pause viewing

finish conversation
resume viewing

start
movie

end
movie

view viewtalk

record

play

time line

p1, intestinal investigation
p 2, simple X-ray

p3, intestinal investigation
p4, intestinal inv

p5, intestinal investigation

8:30 9:00 9:30 10:00 10:30

URF examination room

changing room

waiting room

Figure 8.6: Examples of dynamic models

• resource management by means of scheduling models

Seitz [47] discusses the use oftime domainandsequence domainmodels in elec-
tronic circuit design context.

A comparable class of modelling techniques focuses on economical aspects:
for instanceProductivity modelsandCost of ownership models. The throughput
model shown in Figure 8.7 has been used for wafersteppers. This throughput
model is internally based on a dynamic model. The throughput model can be used
as black box, with a simple parameterized model. In this example the parameters
are thejob that the customer wants to repeat, theconfigurationof the system at the
customer side and theworking conditions. An example of aCost of Ownership
(CoO) model is shown in figure 8.8. Combination of productivity and CoO models
are used for cost benefit analysis. Gartner [4] has done a lot of work in the area of
cost benefit analysis. The Gartner models are well appreciated in industry. These
models can be used as started point for modeling the customer world.

66 SUBMETHODS IN THE CAF VIEWS 8.5

waferstepper
throughput model

wafer
throughput

lithography job
required dose
field size
field map
alignment procedure

Figure 8.7: A throughput model that estimates the throughput as function of user
controlled values

personnel

consumables

service

facilities

financing 10

20

30

40

50

60
radiologist

nurse

security
administration

operator

Cost Of Ownership model

k$

Figure 8.8: Example of a Cost of Ownership model

8.5 Use Cases

Use cases [16] are widely used in software development to describe how the sys-
tem is used. Most software people use theuse casesubmethod only for behavioral
descriptions. In embedded systems design this submethod is also very useful for
quantitative descriptions of the system, for instance for performance.

Figure 8.9 shows a classification of use cases, with several examples from the
Personal Video Recorder (PVR) domain per category. The most typical use of
a PVR is to watch movies: find the desired movie and play it. Additional fea-
tures are the possibility to pause or to stop and to skip forward or backward. The
use case description itself should describe exactly the required functionality. The
required non-functional aspects, such as performance, reliability and exceptional
behavior must be described as well.

Typical use cases describe the core requirements of the products. The bound-
aries of the product must be described as well. These boundaries can be simply
specified (for example, maximum amount of video stored is 20 hours standard

8.6 SYSTEM SPECIFICATION 67

worst case, exceptional, or change
use case(s)

typical use case(s)

interaction flow (functional aspects)
select movie via directory
start movie
be able to pause or stop
be able to skip forward or backward
set recording quality

performance and other qualities
(non-functional aspects)

response times for start / stop
response times for directory browsing
end-of-movie behaviour
relation recording quality and storage

functional
multiple inputs at the same time
extreme long movie
directory behaviour in case of

extreme many short movies

non-functional
response time with multiple inputs
image quality with multiple inputs
insufficient free space
response time with many directory entries
replay quality while HQ recording

Figure 8.9: Classification of use cases, with several examples from the Personal
Video Recorder domain per category.

quality or 10 hours high definition quality) or a set ofworst caseuse cases can be
used.Worst caseuse cases are especially useful when the boundaries are rather
situational dependent. These situations can then be described in the use case.

Exceptional use cases are comparable to worst-case use cases. Exceptions can
be described directly (for example, if insufficient storage space is available the
recording stops and a message is displayed). Hereexceptionuse cases are helpful
if the exception and the desired exceptional behavior depend on the circumstances.

Change use cases are cases that are deployed in a later phase of the prod-
uct creation to assess the extendibility and flexibility of the architecture. Change
cases address expected functional extensions or performance improvements in the
future.

8.6 System Specification

A standard document created during the product creation is the system specifi-
cation. It describes the system from the black box point of view: thewhat of
the system. The system specification fits entirely in thefunctional view. Dif-
ferent acronyms and names are used. For example, in Philips one can find Sys-
tem Requirements Specification (SRS), but also system specification composed
of smaller documents, for instance Functional Requirements Specification (FRS),
while in ASML the name System Performance Specification (SPS) is used.

The system specification must cover multiple aspects:

68 SUBMETHODS IN THE CAF VIEWS 8.6

• commercial, service and goods flow decompositions, see 8.6.1

• functions and features, see 8.6.2

• quantified requirements, such as performance, see 8.6.3

• external system interfaces, see 8.6.4

• standards compliance, see 8.6.5

8.6.1 Commercial, Service and Goods Flow Decomposition

The commercial granularity of sellable features and the allowed configurations
can be visualized in a commercial configuration graph, as shown in Figure 8.10.
All items in such a graph will appear in brochures, folders, and catalogues. Note
that the commercial granularity is often somewhat coarser than the design decom-
position. The commercial packaging is optimized to enable the sales process and
to increase the margin. In some businesses the highest margin is in the add-ons,
the accessories. In that case the add-ons are not part of the standard product to
protect the margin.

basic
product

excluding options

optional option

option dependency

Figure 8.10: Commercial graph as means to describe commercial available varia-
tions and packaging

The commercial graph makes clear what the relations between commercial
options are. Options might be exclusive (for example, either this printer or that
printer can be connected, not both at the same time). Options can also be de-
pendent on other options (for example, high definition video requires the memory
extension to be present). The decomposition model chosen is a commercial deci-
sion, at least as long as the technical implications are feasible and acceptable in
cost.

8.6 SYSTEM SPECIFICATION 69

commercial
decomposition

saleable features

service
decomposition

replaceable items
(such as consumables)

goods flow
decomposition

stockable items
purchasable items

Figure 8.11: Logistic decompositions for a product

The same strategy can be used to define and visualize the decompositions
needed for service (customer support, maintenance) and goods flow (ordering,
storage and manufacturing of goods). Figure 8.11 shows the decompositions with
their main decomposition drivers. These decompositions are not identical, but
they are related. The goods flow decomposition must support the commercial as
well as the service decomposition. The goods flow decomposition has a big im-
pact on the cost side of the goods flow (goods=costs!) and must be sufficiently
optimized for cost efficiency. The service decomposition is driven by the need to
maintain systems efficiently, which often means that minimal parts should be re-
placed. The granularity of the service decomposition is finer than the commercial
decomposition. The goods flow decomposition, which supports the commercial
and the service decomposition, has a finer granularity than both these decom-
positions. At the input side is the goods flow decomposition determined by the
granularity of the supply chain.

All three decompositions are logistics-oriented. These decompositions pro-
vide the structure, which is used in logistics information systems (MRP). In Philips
the information in all three decompositions is stored in the so-called 12NC system,
a logistics identification scheme deployed in theTechnical Product Documenta-
tion (TPD). The TPD is the formal output of the product creation process. The
12NC system defines conventions for decompositions and standardizes the iden-
tification of the components.

70 SUBMETHODS IN THE CAF VIEWS 8.6

8.6.2 Function and Feature Specifications

The product specification defines the functions and features of the product. The
decomposition for this description is again different from the commercial decom-
position. The commercial decomposition is too coarse to use it as a basis for the
product specification. The technical decomposition in functions and features is a
building box to compose commercial products.

technical functions

HD display
SD->HD up conversion

HD->SD down conversion
HD storage
SD storage

HD IQ improvement
SD IQ improvement

HD digital input
SD digital input

SD analog input
6 HQ channel audio

2 channel audio

pr
od

uc
ts

ho
m

e
ci

ne
m

a
sy

st
em

fla
t s

cr
ee

n
ci

ne
m

a
TV

be
dr

oo
m

 T
V

+
+
+
o
o
+
+
+
+
o
+
-

+
+
+
-
-
+
+
+
+
+
o
+

-
-
o
-
o
-
+
o
o
+
-
+

legend
+ present
o optional
- absent

Figure 8.12: Mapping technical functions on products

Figure 8.12 shows a mapping of technical functions and features onto prod-
ucts. The technical functions and features should still be oriented towards thewhat
of the product. In practice this view emerges slowly after many iterations between
design decompositions and commercial, service and goods flow decompositions.
This type of maps is used in several methods, for instance Quality Function De-
ployment (QFD) [67], or in PULSE [20].

8.6.3 Quantified requirements

The system requirements must be specified quantitatively and verifiable in the
functional view, see for instance Gilb’s recommendations in [26]. This holds for
many requirements from performance and reliability to qualities that are more
difficult to quantify such as extendibility.

Quantification can only take place in conjunction with the circumstances in
which this quantification is valid. In easy cases a simple maximum value, which

8.6 SYSTEM SPECIFICATION 71

is valid under all circumstances, is sufficient. In many systems quantification
is more complicated: for instance the system performance depends on the user
settings of the system.

In moderately complex systems it is sufficient to define a limited set of perfor-
mance points in the parameter space. For more performance-critical and complex
systems an external performance model might be required. This describes the re-
quired relation between performance and user settings. An example was shown in
Figure 8.7, which shows a throughput model for a waferstepper, see Section 8.4.

8.6.4 External Interfaces

The external interfaces of the system can be described in a layered fashion, such as
the OSI-ISO Model [81]. A large part of the interface descriptions will be covered
by referring to standards, see Subsection 8.6.5.

The highest layers of the interface describe the semantics of the information.
The syntax and representation aspects are described in the data model or data
dictionary.

patient

examination

scan

2D images

3D volume

attributes

scan procedures

exam procedures

attributes

attributes

attributes

attributes
work-list

attributes

Figure 8.13: Example of a partial information model described by an entity rela-
tionship diagram

An information model in thefunctional viewdescribes the information as seen
from outside the system. It should not contain internal design choices. This in-
formation model is an important means to decouple interoperating systems. The
functional behavior of the systems is predictable as long as all systems adhere to
this information model. Figure 8.13 shows an example of a part of an information
model, based on an entity relationship diagram [29]

The ingredients of an external information model are:

72 SUBMETHODS IN THE CAF VIEWS 8.6

• entities

• relations between entities

• operations on entities

The most difficult part of the information model is to capture the semantics
of the information. An information model defines the intended meaning of the
information, in terms of entities, their meaning, the relation with other entities
and possible operations that can be applied on these entities. Often other means
are required as well such as an ontology, conventions for semantics, and formal
notations.

The technical details of the information model, such as exact identifiers, data
types and ranges are defined in the datamodel. The term data dictionary is also
often used for this lower level of definitions.

8.6.5 Standards

Compliance with standards is part of the product specification. The level of com-
pliance and possible exceptions need to be specified. Duplication of information
in the standard must be avoided, because redundancy creates more maintenance
work and increases the chance of inconsistencies in the specification. The nice
characteristic of standards in general is that the standards are extensively described
and well defined. An implementation that follows a standard is often straightfor-
ward engineering work, without the uncertainty of most other parts of the product
specification.

Architecting work is, nevertheless, required in deciding on standards and in
designing the implementation. Figure 8.14 shows the forces working upon the
selection of standards. The market and business environment more or less dictate a
set of standards. If the product does not comply with those standards the system is
not viable. Some of these standards are mandatory due to legislation (for instance
mandated by the VDE in Germany or the FDA in the United States), others are de
facto musts (for instance DICOM, the medical imaging communication standard).

The use of the standard and the compliance level depend on the intended use.
A key question for the architect is:What is the intention of the standard?Stan-
dards are created by domain experts. The domain experts make all kinds of con-
ceptual assumptions. Using a standard in a way that does not correspond well with
these assumptions, can create many specification and design problems. Good un-
derstanding of the underlying conceptual assumptions is a must for the architect.

The standard can have significant implementation consequences, for instance

8.6 SYSTEM SPECIFICATION 73

well defined standards
and legislation

FDA

HL7
DICOM

HIPAA

VDE
ISO 9001

EMC

business
objectives

application
intention?

realization
consequences

conceptual
assumptions

but many thousands
of pages

Figure 8.14: The standards compliance in thefunctional viewin a broader force
field.

in the amount of effort needed or the amount of license costs involved in creat-
ing the implementation. These costs must be balanced with the created customer
value.

A major problem with standards compliance is the massive amount of docu-
mentation and know-how that is involved. The architect must find out the essence
in terms ofobjectives, intention, assumptionsandconsequencesof standards. In
fact the architect must have aCAFCRmental model per standard1. For communi-
cation purposes the architect can make this model explicit.

1the CAFCR model describes in fact the architecture of the standard itself.

74 SUBMETHODS IN THE CAF VIEWS 8.7

8.7 Overview of the Submethods in the CAF views

Figure 8.15 shows an overview of the submethods that are discussed in this chap-
ter. These submethods are positioned in theCustomer Objectives View, Appli-
cation Viewand theFunctional View. This positioning is not a black and white
proposition, many submethods address aspects from multiple views. However,
the positioning based on the essence of the submethod helps to select the proper
submethod.

Customer objectives Application Functional

key drivers
value chain
business models
suppliers

context diagram
stakeholders and concerns
entity relationship models
dynamic models

case descriptions
commercial decomposition
service decomposition
goods flow decomposition
function and feature specifications
performance
external interfaces
standards

Figure 8.15: Overview of the submethods discussed in this chapter, positioned in
the CAF views

Chapter 9

Submethods in the CR Views

9.1 Introduction

Decomposition is widely used in the conceptual and realization view. Section 9.2
describes a fewdecompositions, and introducesinterfaces. From components to
system qualities is more than a simple accumulation of component data. The sys-
tem behavior and characteristics are described byqualities in Section 9.3. The
conceptual and realization views also provide information to support the project
manager. Section 9.4 describes some submethods to support project manage-
ment.

9.2 Decomposition

Decomposition and modularity are well known concepts, which are the funda-
mentals of software engineering methods. A nice article by Parnas [61] discusses
decomposition methods.

The decomposition can be done along different axes. Subsection 9.2.1 shows
constructionas axis, and Subsection 9.2.2 shows thefunctionaldecomposition.
The decomposition into concurrent activities and the mapping on processes, threads
and processors is called the execution architecture, which is described in Subsec-
tion 9.2.4.

The design of complex systems always requires multiple decompositions, for
instance a construction and a functional decomposition. Subsection 9.2.3 de-
scribes a submethod to cope with multiple decompositions. The relations between
the decompositions are described by mappings, described in Subsection 9.2.5.

75

76 SUBMETHODS IN THE CR VIEWS 9.2

Decompositions results in components. The interfacing between components
is discussed in Subsection 9.2.6.

9.2.1 Construction Decomposition

The construction decomposition views the system from the construction point of
view, see Figure 9.1 for an example. In this example the decomposition is struc-
tured to show layers and the degree of domain know-how. The vertical layering
defines the dependencies: components in the higher layers depend on components
in the lower layers. Components are not dependent on components at the same
or higher layer. The amount of domain know how provides an indication of the
added value of the components. More generic components are more likely to be
shared in a broader application area, and are more likely to be purchased instead
of being developed.

tuner frame-
buffer MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT file-
systemnetworkingetc.

view PIP

browseviewport menu

adjust view
TXT

hardware

driver

applications

services
toolboxes

domain specific generic

signal processing subsystem control subsystem

Figure 9.1: Example of a construction decomposition of a simple TV. The verti-
cal axis is used for layers, where higher layers depend on lower layers, but not
vice versa. In horizontal direction the left hand side shows the domain specific
components, the right hand side shows the more generic components.

The construction decomposition is mostly used for the design management.
It defines units of design, as these are created and stored in repositories and later
updated. The atomic units are aggregated into compound design units. In soft-
ware the compound design units are often calledpackages, in hardware they are
calledmodules. The blocks in Figure 9.1 are at the level of these packages and
modules.Packages and modulesare used as unit for testing and release and they
often coincide with organizational ownership and responsibility.

9.2 DECOMPOSITION 77

In hardware this is quite often a very natural decomposition, for instance into
cabinets, racks, boards and finally integrated circuits, Intellectual property (IP)
cores and cells. The components in the hardware are very tangible. The relation-
ship with a number of other decompositions is reasonably one to one, for instance
with the work breakdown for project management purposes.

The construction decomposition in software is more ambiguous. The structure
of the code repository and the supporting build environment comes close to the
hardware equivalent. Here files and packages are the aggregating construction
levels. This decomposition is less tangible than the hardware decomposition and
the relationship with other decompositions is sometimes more complex.

9.2.2 Functional Decomposition

The functional decomposition decomposes end user functions into more elemen-
tary functions. The elementary functions are internal, the decomposition in el-
ementary functions is not easily observable from outside the system. In other
words, thewhat is worked out inhow. Be aware of the fact that the wordfunction
in system design is heavily overloaded. No attempt is made to define the func-
tional decomposition more sharply, because a sharper definition does not provide
more guidance to architects. Main criterium for a good functional decomposition
is its useability for design. A functional decomposition provides insight how the
system will accomplish its job. MASCOT [9] is an example of a method where a
functional decomposition is based on data flow.

storage

acquisition
processing compress encoding

display
processing

de-
compress decodingdisplay

acquisition

Figure 9.2: Example functional decomposition camera type device

Figure 9.2 shows an example of (part of) a functional decomposition for a
camera type device. It shows a data flow with communication, processing, and

78 SUBMETHODS IN THE CR VIEWS 9.2

storage functions and their relations. This functional decomposition isnot ad-
dressing the control aspects, which might be designed by means of a second func-
tional decomposition, this time taken from the control point of view.

9.2.3 Designing with Multiple Decompositions

Most designers don’t anticipate cross system design issues. During the prepara-
tion of design team meetings designers often do not succeed in submitting system
level design issues. This limited anticipation is caused by the locality of the view-
point, implicitly chosen by the designers. The designers are, while they work-
ing on a component, concerned about many design characteristics. Examples of
design characteristics areSignal to noise ratio (SNR), accuracy, memory usage,
processor load, andlatency.

memory usage

export
server

print
server

database
server

SNR accuracy latencyprocessing

brightnessnextplay movierender filmquery DB

What is the memory usage of
the user interface

when querying the DB

import
server

user
interface

when performing <function>?

of the <component>
How about the <characteristic>

characteristics

components

functions

...

...

...

Figure 9.3: The question generator for multiple decompositions generates a ques-
tion for every point in the Question space. The generic question is shown at the
top. An example is shown below. The table shows a partial population for the
three dimensions. The question at the bottom is generated by substituting one
value from every row.

Figure 9.3 shows a method to help designers to find system design issues,
based on theQuestion space. The question space is a three dimensional space.

9.2 DECOMPOSITION 79

Two dimensions are the decomposition dimensions (construction and functional);
the last dimension is the design characteristic dimension. The design characteris-
tics on this axis must be specific and quantifiable. A source of inspiration to find
these characteristics are the qualities, described in Chapter 10, where the chal-
lenge is to find the specific and quantified characteristics that contribute to the
quality.

For every point in this 3D space a question can be generated in the following
way:
How about the<characteristic> of the <component>when performing<func-
tion>?
Which will result in questions like:
How about thememory usageof theuser interfacewhenquerying the database?

The designers will not be able to answer most of these questions. Simply
asking these questions helps the designer to change the viewpoint and discover
many potential issues. Fortunately, most of the (not answered) questions turn
out to be irrelevant. The answer to the memory usage question above might be
insignificantor small. The more detailed memory usage questions are irrelevant
as long as the total functionality fits in the available memory.

The architect can apply a priori know-how to select the most relevant questions
in the 3D space, for instance:

Critical for system performance Every question that is directly related to criti-
cal aspects of the system performance is relevant. For exampleWhat is the
CPU load of the motion compensation function in the streaming subsystem?
will be relevant for resource constrained systems.

Risk planning wise Questions regarding critical planning issues are also rele-
vant. For exampleWill all concurrent streaming operations fit within the
designed resources?will greatly influence the planning if resources have to
be added.

Least robust part of the design Some parts of the design are known to be rather
sensitive, for instance the priority settings of threads. Satisfactory answers
should be available, where a satisfactory answer might also bewe scheduled
a priority tuning phase, with the following approach.

Suspect parts of the designOther parts of the design may be suspect for a num-
ber of reasons. Experience, for instance, learns that response times and

80 SUBMETHODS IN THE CR VIEWS 9.2

throughput do not get the required attention of software designers (experience-
based suspicion). Or we may have to allocated an engineer to the job with
insufficient competence (person-based suspicion).

Some questions address a line or a plane in the multi dimensional space. An
example of such an improved question is a memory budget for the system, thereby
addressing all memory aspects for both functions and components in one budget.

9.2.4 Execution Architecture

The execution architecture is the run-time architecture of a system. The process1

decomposition plays an important role in the execution architecture. Figure 9.4
shows an example of a process decomposition.

image handlingscan control

scan
control

acq
control

recon
control

xDAS recon

db
control

disk

scan
UI

image handling
UI

archiving
control

media

import
export

network

display
control

display device hardware

server
process

UI process

legend

Figure 9.4: An example of a process decomposition of a MRI scanner.

One of the main concerns for process decomposition is concurrency: which
concurrent activities are needed or running, and how do we synchronize these
activities? Two techniques to support asynchronous functionality are widely used
in operating systems: processes and threads. Processes are self sustained, which
own their own resources, especially memory. Threads have less overhead than
processes. Threads share resources, which makes them more mutually dependent.
In other words processes provide better means for separation of concerns.

The execution architecture must map the functional decomposition on the pro-
cess decomposition. This mapping must ensure that the timing behavior of the
system is within specification. The most critical timing behavior is defined by the
dead lines. Missing a dead line may result in loss of throughput or functionality.

1Process in terms of the operating system

9.2 DECOMPOSITION 81

The timing behavior is also determined by the choice of the synchronization meth-
ods, by the granularity of synchronization and by the scheduling behavior. The
most common technique to control the scheduling behavior is by means of priori-
ties. This requires, of course, that priorities are assigned. Subsystems with limited
concurrency complexity may not even need multiple threads, but these subsystems
can use a single thread that keeps repeating the same actions all the time. The
mapping is further influenced by hardware software allocation choices, and by the
construction decomposition. A well known method in the hard real time domain is
DARTS (Design Approach for Real Time Systems) [27]. This methods provides
guidelines to identify hard real time requirements, translate them in activities and
to map activities on tasks. DARTS then describes how to design the scheduling
priorities.

In practice many components from the construction decomposition are used
in multiple functions, and are mapped on multiple processes. These shared com-
ponents are aggregated in shared or dynamic-link libraries (dll’s). Sharing the
program code run-time is advantageous from memory consumption point of view.

9.2.5 Relations between Decompositions

The decompositions that are made as part of the design are related to each other.
A mapping or allocation is required to relate a decomposition with another de-
composition. For instance the functional decomposition can be mapped on the
construction decomposition: functions are allocated to components in the con-
struction decomposition. Another example is that functions are mapped on threads
in the execution architecture.

The difficult aspect of these mappings is that in most systemsn : m mappings
are needed. Every decompositions serves its own purposes, such asconstruction
andconfiguration managementin the construction decomposition,performance
andimage qualityin the data flow functional decomposition, andtiming andcon-
currencyin the execution architecture. Each decomposition must clearly serve its
intended purpose. On top of that a clear mapping strategy must be described to
relate the decompositions.

9.2.6 Interfaces

The interfaces are the complement of the components in a decomposition. A lot
of work on interface specifications has been done, for instance in KOALA [78].
KOALA adds the notion ofprovidesandrequiresinterfaces to formalize depen-

82 SUBMETHODS IN THE CR VIEWS 9.3

dency relations. A powerful decoupling step is the use ofprotocolsas described
by Jonkers [39]. Protocols according to [39] describe the functional and dynamic
behavior of interfaces.

In Subsection 8.6.4 the interfaces were already discussed in the context of
external interfaces in the functional view. The internal interface can be specified
analogous to the external interfaces. Part of the internal interface is also specified
by an internal information model, for instance modeled via entity relationship
diagrams. The internal information model abstracts from the implementation, by
modelling the data concepts, relationships and activities. The internal information
model extends the external information model with data that are introduced as
design concepts. It can, for instance, show caches, indices and other structures
that are needed to achieve the required performance.

9.3 Quality Design Submethods

This section discusses submethods to achieve the objectives for some of the qual-
ities that will be discussed in Chapter 10.Performanceis discussed in Subsec-
tion 9.3.1. Budgetting, a submethod that can be used for several qualities, is de-
scribed in Subsection 9.3.2. Submethods forSafety, Reliability andSecurityare
discussed in Subsection 9.3.3.Start upandShutdownare discussed in Subsec-
tion 9.3.4. Subsection 9.3.5 describes briefly submethods with respect toValue
andCost. Subsection 9.3.6 discusses granularity, an important the design consid-
eration.

9.3.1 Performance Modeling

System performance is being tackled by using complementary models, such as
visual models and analytical models. For instance, flow can be visualized by
showing the order, inputs, outputs and the type of data, and flow performance can
be described by means of a formula. In figure 9.5 the performance is modeled by
a visual model at the top and an analytical model below. The analytical model is
entirely parameterized, making it a generic model that describes the performance
over the full potential range. For every function in the visual model the order of
the algorithm is determined and the parameterization for the input and output data.
The analytical model should be a manageable formula to provide insight in the
performance behavior. In this example for MR reconstruction Fourier transforms
are ordern ∗ log(n), while the other computations are ordern.

9.3 QUALITY DESIGN SUBMETHODS 83

trecon =

nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+

+

tfft(n) = cfft * n * log(n)

filter FFT FFT correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

tcol-overhead

tcorrections (nx ,ny)

trow-overhead

tcontrol-overhead

+

) +

) +

Figure 9.5: Flow model and analytical model of the image reconstruction in MR
scanners. The analytical model is an algorithm to calculate the inherent computa-
tional costs.

The implementation of the system often reveals additional contributions to
the processing time, resulting in an improved model, as shown in Figure 9.6. The
pipeline model at the top of Figure 9.6, is extended with data transfer functions.
The measurement below the model shows that a number of significant costs are
involved in data transfer and control overhead. The original model of Figure 9.5
focuses on processing cost, including some processing related overhead. In prod-
uct creation2 the overhead plays a dominant role in the total system performance.
Significant overhead costs are often present in initialization, I/O, synchronization,
transfers, allocation and garbage collection (or freeing if explicitly managed).

Analytical performance models as shown in Figure 9.6 are powerful means
to design, analyze and discuss performance. The difficulty in developing these
models is in finding a manageable level of abstraction without losing too much
predictive value. To develop the analytical model algorithmic analysis and empir-
ical analysis need to be combined. It is my experience that analytical models with
a manageable level of abstraction can be made for a wide variety of systems: MRI

2observed and coped with this problem in the following product developments: 1980 Video
Display unit, 1981 Oncology Support, 1984 Digital Cardio Imaging, 1984 MRI user interface, 1986
MRI data acquisition, 1992 Medical Imaging workstation, 2002 Audio/Video processing.

84 SUBMETHODS IN THE CR VIEWS 9.3

overhead

trecon = nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) + +

+

tfft(n)=cfft * n * log(n)

filter FFT FFT correc
tions

tcol-overhead

tcorrections (nx ,ny)trow-overhead +tcontrol-overhead+

) +

) +

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

FFT computations

column overhead

FFT computations

row overhead
correction computations

overhead
filter computations

read I/O

write I/O
malloc, free
transpose

bookkeeping

number
crunching

overhead

focus on overhead
reduction

is more important

than faster algorithms

this is not an excuse
for sloppy algorithms

read
I/O

write
I/O

trans-
pose

nraw-x

ny

nx

ny

nx

ny

tread I/O +twrite I/O+ttranspose

Figure 9.6: Example of performance analysis and evaluation. Implementation
specific functions are added to the flow model and the analytical model. Below
timing measurements are added, and classified as overhead and number crunching.

scanners, Digital Cardio Imaging, Medical Imaging Workstation, Wafersteppers,
and Audio and Video processing systems.

The actual characteristics of the technology being used must be measured and
understood in order to make a good (reliable, cost effective) design. The ba-
sic understanding of the technology is created by performing micro-benchmarks:
measuring the elementary functions of the technology in isolation. Figure 9.7 lists
a typical set of micro-benchmarks to be performed. The list shows infrequent
and often slow operations and frequently applied operations that are often much
faster. This classification implies already a design rule: slow operations should
not be performed often3.

The results of micro-benchmarks should be used with great care. The mea-

3This really sounds as an open door. However, I have seen many violations of this entirely
trivial rule, such as setting up a connection for every message, performing I/O byte by byte et
cetera. Sometimes such a violation is offset by other benefits, especially when a slow operation is in
fact not very slow and when the brute force approach is both affordable as well as extremely simple.

9.3 QUALITY DESIGN SUBMETHODS 85

object creation
object destruction method invocation

component creation
component destruction

open connection
close connection

method invocation
same scope
other context

start session
finish session

perform transaction
query

transfer data

function call
loop overhead
basic operations (add, mul, load, store)

infrequent operations,
often time-intensive

often repeated
operations

database

network,
I/O

high level
construction

low level
construction

basic
programming

memory allocation
memory free

task, thread creationOS task switch
interrupt response

HW cache flush
low level data transfer

power up, power down
boot

Figure 9.7: Typical micro-benchmarks for timing aspects

surements show the performance in totally unrealistic circumstances, in other
words it is the best case performance. This best case performance is a good base-
line to understand performance, but when using the numbers the real life interfer-
ence (cache disturbance for instance) should be taken into account. Sometimes
additional measurements are needed at a slightly higher level to calibrate the per-
formance estimates.

The standard work about performance issues in computer architectures is the
book by Hennesey and Patterson [30]. Here modelling and measurement methods
can be found that can serve as inspiration for performance analysis of embedded
systems.

9.3.2 Budgets

The implementation can be guided by making budgets for the most important
resource constraints, such as memory size, response time, or positioning accuracy.
The budget serves multiple purposes:

• to make the design explicit

• to provide a baseline to take decisions

• to specify the requirements for the detailed designs

• to have guidance during integration

86 SUBMETHODS IN THE CR VIEWS 9.3

• to provide a baseline for verification

• to manage the design margins explicitly

The simplification of the design into budgets introduces design constraints.
Simple budgets are entirely static. If such a simplification is too constraining or
costly then a dynamic budget can be made. A dynamic budget uses situational
determined data to describe the budget in that situation. The architect must ensure
the manageability of the budgets. A good budget has tens of quantities described.
The danger of having a more detailed budget is the loss of overview.

1B model the performance starting with old systems

1A measure old systems

1C determine requirements for new system

2 make a design for the new system

3 make a budget for the new system:

4 measure prototypes and new system

flow model and analytical model

micro-benchmarks, aggregated functions, applications

response time or throughput

explore design space, estimate and simulate

step example

models provide the structure
measurements and estimates provide initial numbers

specification provides bottom line

micro-benchmarks, aggregated functions, applications
profiles, traces

5 Iterate steps 1B to 4

Figure 9.8: Budget-based design flow

Figure 9.8 shows a budget-based design flow. The starting point of a budget
is a model of the system, from the conceptual view. An existing system is used
to get a first guidance to fill the budget. In general the budget of a new system is
equal to the budget of the old system, with a number of explicit improvements.
The improvements must be substantiated with design estimates and simulations
of the new design. Of course the new budget must fulfill the specification of the
new system, sufficient improvements must be designed to achieve the required
improvement.

Early measurements in the integration are required to obtain feedback once
the budget has been made. This feedback will result in design changes and could
even result in specification changes.

9.3 QUALITY DESIGN SUBMETHODS 87

9.3.3 Safety, Reliability and Security

The qualitiessafety, reliability andsecurity share a number of concepts, for ex-
ample:

• containment

• graceful degradation

• interlock, for instance dead man switch

• detection and tracing of failures,

• logging of operational data for post mortem analysis, e.g. flight recorder

• redundancy

All three qualities are covered by an extensive set of methods. Highly recom-
mended is the work of Neumann [56]. A lot of literature is based on work in the
aerospace industry. A good starting point to the literature is the home page of the
International Council on Systems Engineering [36].

A common guideline in applying any of these concepts is that the more critical
a function is, the higher the understandability should be, or in other words the
simpler the applied concepts should be. Many elementary safety functions are
implemented in hardware, avoiding large stacks of complex software.

Specialized engineering disciplines exist for Safety, Reliability and Security.
These disciplines have developed their own methods. One class of methods rele-
vant for system architects is the class of analysis methods that start with a (system-
atic) brainstorm, see figure 9.9. The Medical HACCP Alliance [75] provides ex-
tensive documentation for Hazard Analysis And Critical Control Point (HACCP)
method for medical devices. A more systematic analysis provides input to im-
prove the design.

Walk-through is another effective assessment method. A few use cases are
taken and together with the engineers the implementation behavior is followed
for these cases. The architect will especially assess the understandability and
simplicity of the implementation. An implementation that is difficult to follow
with respect to safety, security or reliability is suspect and at least requires more
analysis.

9.3.4 Start up and Shutdown

The start up and the shutdown of the system are related to many components and
functions of the system. One of the common patterns is therun levelconcept. The

88 SUBMETHODS IN THE CR VIEWS 9.3

potential hazardssafety
hazard analysis

reliability
FMEA

failure modes

security vulnerability risks

probability
severity

effects

consequences

measures

measures

measures

analysis and
assessment

(systematic)
brainstorm

improve
design

Figure 9.9: Analysis methods for safety, reliability and security

start up and shutdown are performed in phases, with increasing functionality and
increasing integration, see for instance [49].

The current trend with more sophisticated power management, software down-
loading and roaming access networks increases the importance of clear design
concepts to support these types of functionality.

9.3.5 Value and Cost

Many design decisions are made on an evaluation of the value of a design option
versus the cost of this option. The production cost4 of a system can be managed
by making a decomposition of the cost and using the decomposition to create a
cost budget.

Determination of the value of a design option is much more difficult. The
value depends on the viewpoint. Some features are valuable for a particular stake-
holder, for instance diagnostics for a service engineer and debugging for the devel-
oper. In general multiple viewpoints need to be somehow accumulated to create
an integral value. QFD [67] uses multiple mappings with weight factors to “add”
values together and create an integral value.

9.3.6 Granularity Determination

The granularity of operations is an important design choice. Fine granularity
offers flexibility and fast response, at the cost of more overhead per operation.

4Within Philips the term Material and Labor Cost (MLC) is frequently used. The MLC deter-
mines the fixed cost of a product. The investment costs are variable costs. Different accounting
practices are used to cope with the investment costs in the integral cost of the product.

9.4 PROJECT MANAGEMENT SUPPORT 89

Coarse granularity creates less overhead, at the cost of less flexibility and longer
latencies. The determination of the granularity is an optimization problem that
can be solved by applying optimization techniques from the operational research,
see for an introduction [8].

Examples of operations where the unit size of operation has to be chosen
are: buffering, synchronization, processing and input/output. In the case of video
processing examples of operation sizes are: pixel, line and frame. In real video
processing systems at this moment the unit size is typical a quarter of a video
frame. The latency of the video chain is critical for two reasons: the time differ-
ence between audio and video must be small (lip-synchronization) and zapping
must be fast. Smaller unit sizes create too much overhead, larger unit sizes create
too much latency.

9.4 Project Management Support

The architect supports the project leader. Typical contributions of the architect are
an initial work breakdownand anintegration plan. Many more project manage-
ment submethods exist, see for instance [28], but most of them are less relevant
for the system architect.

A work breakdown is in fact again another decomposition, with a more orga-
nizational point of view [28]. The work in the different work packages should be
cohesive internally, and should have low coupling with other work packages.

Figure 9.10 shows an example of a work breakdown. The entire project is
broken down in a hierarchical fashion: project, segment, work package. In this
example color coding is applied to show the technology involved and to show
development work or purchasing work. Both types of work require domain know
how, but different skills to do the job.

Schedules, work breakdown and many technical decompositions are heavily
influenced by the integration plan. Integration is the effort of combining the com-
ponents into a (sub)system, and to get the integrated (sub) system to work in the
intended way. During the integration many specification and design inconsis-
tencies, oversights, misunderstandings and mistakes are detected, analyzed and
solved. Integration typically costs a lot of time and effort. The risk in a project is
that the integration takes too much time and effort. Sufficient and regular attention
for the integration viewpoint makes the risk better manageable.

Figure 9.11 shows an example of an integration plan. The systems that are
used for the actual integration, theintegration vehicles, are the limiting resource

90 SUBMETHODS IN THE CR VIEWS 9.4

work packagesproject organization

TIP:NBE
R1

xDAS reconstruction
hardware

viewing

database

scanning

xFEC

run time
acq

prepa-
ration

conver-
sion

algo-
rithms

UIgfxalgo-
rithmsVDU console

import
export archivebulk

dataclinicaldatabase
engine

computing

system

host OS foundation
classes

start up
shutdown

exception
handling

integra-
tionSPS SDS TPS alfa

test
beta
test

conf
man

make SW

make HW

buy SW

buy HW

system

segment

project

legend

Figure 9.10: An example of a work breakdown from MRI scanner development.
The project is organized in segments. The work in every segment is decomposed
in work packages.

for integration. The integration plan is centered around 3 tiers of integration vehi-
cles:

• partial systems to facilitate SW testing

• existing HW systems

• new HW systems

The partial systems for SW testing consist mostly of standard computer infras-
tructure. This computer infrastructure is very flexible and accessible from soft-
ware point of view, but far from realistic from hardware viewpoint. The existing
and new HW systems are much less accessible and more rigid, but close to the
final product reality. The new HW system will be available late and hides many
risks and uncertainties. The overall strategy is to move from good accessible sys-
tems with few uncertainties to less accessible systems with more uncertainties.
A new application is first tested on a partial system for software testing. Then
this application is tested on systems with existing hardware, with little hardware
uncertainties. Finally this application is tested on the new base system. In gen-
eral integration plans try to avoid stacking too many uncertainties by looking for

9.4 PROJECT MANAGEMENT SUPPORT 91

existing base system

new HW subsystem

SW dev system

test HW subsystem

test SW for new
HW subsystem

new application

existing base system

integrate
subsystem

SW dev system
test and refine

application

integrate and refine
application

adopt existing base SW

new base system test new base system
integrate HW

system
integrate
system

SW for new HW
subsystem

adopt existing
base SW

existing new

2 partial
systems for
SW testing

2 existing
base

systems

new base
systems

time

integrated
system

application integration

new subsystem
integration

Figure 9.11: Example of an integration plan, with three tiers of integration vehi-
cles. In this example two partial systems for software testing, two existing base
systems and one new base system

ways to test new modules in a stable known environment, before confronting new
modules with each other.

92 SUBMETHODS IN THE CR VIEWS 9.5

9.5 Overview of the Submethods in the CR views

Figure 9.12 shows an overview of the submethods that are discussed in this chap-
ter. These submethods are positioned in theConceptual Viewand theRealization
View. This positioning is not a black and white proposition, many submethods ad-
dress aspects from multiple views. However, the positioning based on the essence
of the submethod helps to select the proper submethod.

Conceptual Realization

construction decomposition
functional decomposition
designing with multiple decompositions
execution architecture
internal interfaces
performance
start up
shutdown
integration plan
work breakdown
safety
reliability
security

budget
benchmarking
performance analysis
value and cost
safety analysis
reliability analysis
security analysis
granularity determination

Figure 9.12: Overview of the submethods discussed in this chapter, positioned in
the CR views

Chapter 10

Qualities as Integrating Needles

10.1 Introduction

The 5 CAFCR views become more useful when the information in one view is
used in relation with neighboring views. One of the starting points is the use of
the stakeholder concerns. Many stakeholder concerns are abstracted in a large set
of more generic qualities. These qualities are meaningful in every view in their
own way. Figure 10.1 shows the qualities as cross cutting needles through the
CAFCR views.

ApplicationCustomer
objectives

Functional Conceptual Realization

safety

evolvability

usability

Figure 10.1: The quality needles are generic integrating concepts through the 5
CAFCR views

Section 10.2 shows an example of security as quality needle. In Section 10.3
a checklist of qualities is shown, with a definition of all qualities in the checklist.

93

94 QUALITIES AS INTEGRATING NEEDLES 10.2

10.2 Security as Example of a Quality Needle

As an example Figure 10.2 shows security issues for all the views. The green (up-
per) issues are the desired characteristics, specifications and mechanisms. The red
issues are the threats to security. An excellent illustration of the security example
can be found in [45].

ApplicationCustomer
objectives

Functional Conceptual Realization

sensitive
information

trusted

not trusted

selection
classification

people
information

authentication
badges
passwords

locks / walls
guards
administrators

social contacts
open passwords
blackmail
burglary
fraud
unworkable procedures

cryptography
firewall
security zones
authentication
registry
logging

holes between
concepts

functions for
administration
authentication
intrusion detection
logging

quantification

bugs
buffer overflow
non encrypted

storage
poor exception

handling

missing
functionality

wrong
quantification

specific
algorithms
interfaces
libraries
servers
storage
protocols

desired characteristics, specifications & mechanisms

threats

Figure 10.2: Example security through all views

10.2.1 Customer Objectives View

A typical customer objective with respect to security is to keep sensitive informa-
tion secure, in other words only a limited set of trusted people has access. The
other people (non trusted) should not be able to see (or worse, to alter) this infor-
mation.

10.2.2 Application View

The customer will perform many activities to obtain security: from selecting trust-
ful people to appointing special guards and administrators who deploy a security
policy. Such a policy will involve classifying people with respect to their need
for information and their trustfulness, as well as classifying information accord-
ing to the level of security. To recognizetrustedpeople authentication is required

10.2 SECURITY AS EXAMPLE OF A QUALITY NEEDLE 95

by means of badges, passwords and in the future additional biometrics. Physical
security by means of buildings, gates, locks, et cetera is also part of the security
policy.

The security is threatened in many ways, from burglary to fraud, but also from
simple issues like people forgetting their password and writing it on a yellow
sticker. Social contacts of trusted people can unwillingly expose sensitive infor-
mation, for instance when two managers are discussing business in a business
lounge, while the competition is listening at the next table.

Unworkable procedures are a serious threat to security. For instance the forced
change of passwords every month, resulting in many people writing down the
password.

An interesting article is [15]. It shows how secret security procedures, in
this case for passenger screening at airports, is vulnerable. It describes a method
for terrorists how to reverse engineer the procedures empirically, which turns the
effectiveness of the system from valuable to dangerous.

10.2.3 Functional View

The system under consideration will have to fit in the customer’s security. Func-
tions for authentication and administration are required. The performance of the
system needs to be expressed explicitly. For instance the required confidence level
of encryption and the speed of authentication have to be specified.

Security threats are usually caused by missing functionality or wrong quan-
tification. This threat will surface in the actual use, where the users will find work
arounds that compromise the security.

10.2.4 Conceptual View

Many technological concepts have been invented to make systems secure, for ex-
ample cryptography, firewalls, security zones, authentication, registry, and log-
ging. Every concept covers a limited set of aspects of security. For instance
cryptography makes stored or transmitted data non-interpretable for non-trusted
people.

Problems in the conceptual view are usually due to the non-ideal combination
of concepts. For instance cryptography requires keys. Authentication is used to
access and validate keys. The interface between cryptography and authentication
is a risky issue. Another risky issue is the transfer of keys. All interfaces between
the concepts are suspicious areas, where poor design easily threatens the security.

96 QUALITIES AS INTEGRATING NEEDLES 10.3

10.2.5 Realization View

The concepts are realized in hardware and software with specific mechanisms,
such as encryption algorithms and tamper free interfaces. These mechanisms can
be implemented in libraries, running at a distributed computer infrastructure. Ev-
ery specific hardware and software element involved in the security concepts in
itself must be secure, in order to have a secure system.

A secure realization is far from trivial. Nearly all systems have bugs. The
encryption algorithm may be applicable, but if the library implementation is poor
then the overall security is still poor. Well known security related bugs are buffer
overflow bugs, that are exploited by hackers to gain access. Another example is
storage of very critical security data, such as passwords and encryption keys, in
non encrypted form. In general exception handling is a source of security threats
in security.

10.2.6 Conclusion

Security is a quality that is heavily determined by the customer’s way of working
(application view). To enable a security policy of the customer a well-designed
and well-implemented system is required with security functionality fitting in this
policy.

In practice the security policy of customers is a large source of problems.
Heavy security features in the system will never solve such a shortcoming. An-
other common source of security problems is poor design and implementation,
causing a fair policy to be corrupted by the non-secure system.

Note that a very much simplified description of security has been presented,
with the main purpose of illustration. A real security description will be more
extensive than described here.

10.3 Qualities Checklist

Figure 10.3 shows a large set of qualities that can be used as a checklist for ar-
chitecting. This set is classified to ease the access to the list. The qualities are
not independent nor orthogonal, so every classification is at its best a means not a
goal.

The following sections describe the different qualities briefly, in thefunctional
view. Note that every quality can in general be described in each of the views.
For instance, if the system is a head end system for a cable operator, then the

10.3 QUALITIES CHECKLIST 97

usability
attractiveness
responsiveness
image quality
wearability
storability
transportability

usable

safety
security
reliability
robustness
integrity
availability

dependable

throughput or
productivity

effective

serviceability
configurability
installability

serviceable

liability
testability
traceability
standards compliance

liable

ecological footprint
contamination
noise
disposability

ecological

reproducibility
predictability

consistent

efficient
resource utilisation
cost of ownership

cost price
power consumption
consumption rate

(water, air,
chemicals,
et cetera)

size, weight
accuracy

down to earth
attributes

manufacturability
logistics flexibility
lead time

logistics friendly

evolvability
portability
upgradeability
extendibility
maintainability

future proof

interoperable
connectivity
3rd party extendible

Figure 10.3: Checklist of qualities

useability of the (head end) system describes in the functional view the useability
of the system itself, while in the customer objectives view the useability deals with
the cable operator services.

The descriptions below are not intended to bethe definition. Rather the list is
intended to be used as a checklist, i.e. as a means to get a more all round view on
the architecture.

10.3.1 Usable

useability The useability is a measure of usefulness and ease of use of a system.

attractiveness The appeal or attractiveness of the system.

responsivenessThe speed of responding to inputs from outside.

image quality The quality of images (resolution, contrast, deformation, et cetera).
This can be more generally used for output quality, so also sound quality for
instance.

wearability The ease of wearing the system, or carrying the system around.

storability The ease of storing the system.

transportability The ease of transporting the system.

98 QUALITIES AS INTEGRATING NEEDLES 10.3

10.3.2 Dependable

safety The safety of the system. Note that this applies to all the stakeholders, for
instance safety of the patient, operator, service employee, et cetera. Some
people include the safety of the machine itself in this category. In my view
this belongs to system reliability and robustness.

security The level of protection of the information in the system against un-
wanted access to the system.

reliability The probability that the systems operates reliable; the probability that
the system is not broken and the software is not crashed. Here again the non-
orthogonality of qualities is clear: an unreliable X-ray system is a safety risk
when deployed for interventional surgery.

robustness The capability of the system to function in any (unforeseen) circum-
stances, including being foolproof for non-educated users.

integrity Does the system yield theright outputs.

availbility The availability of the system, often expressed in terms of (scheduled)
uptime and the chance of unwanted downtime.

10.3.3 Effective

throughput or productivity The integral productivity level of the system. Often
defined for a few use cases. Integral means here including aspects like
start up shutdown, preventive maintenance, replacement of consumables et
cetera. A bad attitude is to only specify the best case throughput, where all
circumstances are ideal and even simple start up effects are ignored.

10.3.4 Interoperable

3rd party extendable How open is the system for 3rd party extensions? PCs are
extremely open; many embedded systems are not extendable at all.

connectivity What other systems can be connected to the system and what appli-
cations are possible when connected?

10.3 QUALITIES CHECKLIST 99

10.3.5 Liable

liability The liability aspects with respect to the system; who is responsible for
what, what are the legal liabilities, is the liability limited to an acceptable
level?

testability The level of verifiability of the system, does the system perform as
agreed upon?

traceability Is the operation of the system traceable? Traceability is required for
determining liability aspects, but also for post mortem problem analysis.

standards complianceLarge parts of the specification are defined in terms of
compliance to standards.

10.3.6 Efficient

resource utilization The typical load of the system resources. Often specified
for the same use cases as used for the productivity specification.

cost of ownership The cost of ownership is an integral estimate of all costs of
owning and operating the system, including financing, personnel, mainte-
nance, and consumables. Often only the sales price is taken as efficiency
measure. This results in a suboptimal solution that minimize only the ma-
terial cost.

10.3.7 Consistent

reproduceability Most systems are used highly repetitive. If the same operation
is repeated over and over, the same result is expected all the time within the
specified accuracy.

predictability The outcome of the system should be understandable for its users.
Normally this means that the outcome should be predictable.

10.3.8 Serviceable

serviceability The ease of servicing the system: indication of consumable status,
diagnostic capabilities in case of problems, accessibility of system internals,
compatibility of replaceable units, et cetera.

100 QUALITIES AS INTEGRATING NEEDLES 10.3

configurability The ease of configuring (and maintaining, updating the configu-
ration) the system

installability The ease of installing the system; for example the time, space and
skills needed for installing.

10.3.9 Future Proof

evolvability The capability to change in (small) steps to adapt to new changing
circumstances.

portability To be able to change the underlying platform, for instance from Win-
dows NT to Linux, or from Windows 98SE to Windows XP.

upgradeability The capability of upgrading the entire or part of the system with
improved features.

extendability The capability to add options or new features.

maintainability The capability of maintaining the well-being of the system, also
under changing circumstances, such as end-of-life of parts or consumables,
or new safety or security regulations.

10.3.10 Logistics Friendly

manufacturability The ease of manufacturing the system; for example time,
space and skills needed for manufacturing.

logistics flexibility The capability to quickly adapt the logistics flow, for instance
by fast ramp up (or down) supplier agreements, short lead times, low inte-
gration effort and second suppliers.

lead time The time between ordering the system and the actual delivery.

10.3.11 Ecological

ecological footprint The integral ecological load of the system, expressed in “orig-
inal” ecological costs. This means that if electricity is used, the generation
of electricity (and its inefficiency) is included in the footprint.

contamination The amount of contamination produced by the system

10.4 SUMMARY 101

noise The (acoustical) noise produced by the system

disposability The way to get the system disposed, for instance the ability to de-
compose the system and to recycle the materials.

10.3.12 Down to Earth Attributes

These attributes (as the name indicates) are so trivial that no further description is
given.

cost price

power consumption

consumption rate (water, air, chemicals, et cetera)

size, weight

accuracy

10.4 Summary

The qualities of a system can be generalized to the other CAFCR views. This gen-
eralization helps to understand the relationships between the views. Classification
of the qualities is the basis for a checklist of qualities. This checklist is a tool
for the architect: it helps the architect in determining the relevant qualities for the
system to be created.

102 QUALITIES AS INTEGRATING NEEDLES 10.4

Chapter 11

Story Telling

11.1 Introduction

The CAFCR views and the quality needles are generic means to capture an archi-
tecture. The generic nature is powerful, however explorations in more depth are
needed to understand the problem. Story telling followed by specific analysis and
design work is a complementary method to do in depth exploration of parts of the
specification and design. Starting a new product definition often derails in long
discussions about generic specification and design issues. Due to lack of reality
check these discussions can be very risky, and way too academic.

story use
caseanalyze

design

partial
designanalyze

design

a priori solution know howmarket
vision

Customer
objectives

Application Functional Conceptual Realisation

Figure 11.1: From story to design

The method provided here, based on story telling, is a powerful means to get
the product definition quickly in a concrete factual discussion. The method is es-
pecially good in improving the communication between the different stakeholders.

103

104 STORY TELLING 11.2

This communication is tuned to the stakeholders involved in the different CAFCR
views: thestoryanduse casecan be exchanged in ways that are understandable
for both marketing-oriented people as well as for designers.

Figure 11.1 positions the story in the customer objectives view and application
view. A good story combines a clear market vision with a priori realization know
how. The story itself must be expressed entirely in customer terms, no solution
jargon is allowed. The story is used to analyze specific parts of the specification:
a use case. The use case is then used to explore specific parts of the design.

Section 11.2 describes how to create a story. The use of the story is explained
in Section 11.3. The criteria for a good story are discussed in Section 11.4.

11.2 How to Create a Story?

A day in the life of Bob
bla blah bla, rabarber music
bla bla composer bla bla
qwwwety30 zeps.

nja nja njet njippie est quo
vadis? Pjotr jaleski bla bla
bla brree fgfg gsg hgrg

mjmm bas engel heeft een
interressant excuus, lex stelt
voor om vanavond door te
werken.

In the middle of the night he
is awake and decides to
change the world forever.

The next hour the great
event takes place:

This brilliant invention will change the world foreverbecause it is so unique and
valuable that nobody beliefs the feasibility. It is great and WOW at the same time,
highly exciting.

Vtables are seen as the soltution for an indirection problem. The invention of Bob will
obsolete all of this in one incredibke move, which will make him famous forever.

He opens his PDA, logs in and enters his provate secure unqiue non trivial
password, followed by a thorough authentication. The PDA asks for the fingerprint of
this little left toe and to pronounce the word shit. After passing this test Bob can
continue.

draft or sketch of
some essential

applianceca. half a page of
plain English text

Yes

or

No

that is the question

Figure 11.2: Example story layout

As shown in Figure 11.2 a story is a short single page story, preferably illus-
trated with sketches of the most relevant elements of the story, for instance the
look and feel of the system being used. Other media such as cartoons, video or
demonstrations using mockups can be used also. Thedurationor thesizeof the
“story” must be limited to enable focus on the essentials.

Every story has apurpose, something the design team wants to learn or ex-
plore. The purpose of the story is often in the conceptual and realization views.
Thescopeof the story must be chosen carefully. A wide scope is good to under-
stand a wide context, but leaves many details unexplored. A useful approach is to
userecursively refinedstories: an overall story setting the context and a few other
stories zooming in on aspects of the overall story.

The story can be written from severalstakeholder viewpoints. The viewpoints
should be carefully chosen. Note that the story is also an important means of

11.4 HOW TO USE A STORY? 105

communication with customers, marketing managers and other domain experts.
Some of the stakeholder viewpoints are especially useful in this communication.

11.3 How to Use a Story?

The story itself must be very accessible for all stakeholders. The story must be
attractive and appealing to facilitate communication and discussion between those
stakeholders. The story is also used as input for a more systematic analysis of the
product specification in the functional view. All functions, performance figures
and quality attributes are extracted from the story. The analysis results are used to
explore the design options.

Normally several iterations will take place between story, case and design
exploration. During the first iteration many questions will be raised in the case
analysis and design, which are caused by the story being insufficiently specific.
This needs to be addressed by making the story more explicit. Care should be
taken that the story stays in the Customers views and that the story is not extended
too much. The story should be sharpened, in other words made more explicit, to
answer the questions.

After a few iterations a clear integral overview and understanding emerges for
this very specific story. This insight is used as a starting point to create a more
complete specification and design.

11.4 Criteria

Figure 11.3 shows the criteria for a good story. It is recommended to assess a story
against this checklist and either improve the story such that it meets all the criteria
or reject the story. Fulfillment of these criteria helps to obtain a useful story. The
set of five criteria is a necessary but not sufficient set of criteria. The value of a
story can only be measured in retrospect by determining the contribution of the
story to the specification and design process.

Subsections 11.4.1 to 11.4.5 describe every criterion in more detail.

11.4.1 Accessible, Understandable

The main function of a story is to make the opportunity or problem communicable
with all the stakeholders. This means that the story must be accessible and under-
standable for all stakeholders. The description or presentation should be such that

106 STORY TELLING 11.4

• accessible, understandable

• valuable, appealing

• critical, challenging

• frequent, no exceptional niche

• specific

"Do you see it in front of you?"

attractive, important
"Are the customers queuing for this?"

"What is difficult in the realization?"
"What do you learn w.r.t. the design?"

names, ages, amounts, durations, titles, ...

"Does it add significant to the bottomline?"

Customer
objectives

Application

Functional

Conceptual

Realization

Customer
objectives

Application

Application

Application

Figure 11.3: Criteria for a good story

all stakeholders canlive through, experienceor imaginethe story. A “good” story
is not a sheet of paper, it is a living story.

11.4.2 Valuable, Appealing

The opportunity or problem (idea, product, function, or feature) must be signifi-
cant for the target customers. This means that it should be important for them, or
valuable; it should be appealing and attractive.

Most stories fail on this criterium. Some so-so opportunity (whistle and bell-
type) is used, where nobody gets really enthusiastic. If this is the case more cre-
ativity is required to change the story to a useful level of importance.

11.4.3 Critical, Challenging

The purpose of the story is to learn, define, and analyze new products or features.
If the implementation of a story is trivial, nothing will be learned. If all other
criteria are met and no product exists yet, then just do it, because it is clearly a
quick win!

If the implementation is challenging, then the story is a good vehicle to study
the trade-offs and choices to be made.

11.5 SUMMARY 107

11.4.4 Frequent, no Exceptional Niche

Especially in the early exploration it is important to focus on the main line, the
typical case. Later in the system design more specialized cases will be needed to
analyze for instance more exceptional worst case situations.

A typical case is characterized by being frequent, it should not be an excep-
tional niche.

11.4.5 Specific

The value of a story is the specificity. Most system descriptions are very generic
and therefore very powerful, but at the same time very non-specific. A good story
provides focus on a single story, one occasion only. In other words, the thread of
the story should be very specific.

A common pitfall for story writers is to show all possibilities in one story. For
example one paragraph that describes all the potential goodies. Simply leave out
such a paragraph, it only degrades the focus and value of the story.

A good story is inall aspects as specific as possible, which means that:

• persons playing a role in the story preferably have a name, age, and other
relevant attributes

• the time and location are specific (if relevant)

• the content is specific (for instance is listening for2 hours to songs ofthe
Beatles)

This kind of specific data is often needed to assess the other criteria, to bring it
more alive, and in further analysis. If during the use of the story numbers have to
be “invented”, it is recommended to improve the story by adding specific facts to
the story.

11.5 Summary

Story telling is a means to become specific and concrete in the early product cre-
ation phases. Five criteria are described to create and to assess stories: accessibil-
ity, value, challenge, frequency and specificity.

Unfortunately, the research in this area took place many years after the case
study in Part III. Some comparable effort in the case will be discussed in Chap-
ter 16. In Part IV some more evidence from a different context will be provided
for the story telling submethod.

108 STORY TELLING 11.5

Chapter 12

Threads of Reasoning

12.1 Introduction

The submethods provide generic means to cope with a limited part of the system
architecture. The CAFCR model and the qualities provide a framework to position
these results. The story telling is a means to do analysis and design work on the
basis of concrete and specific facts. In this chapter a reasoning method is discussed
to integrate all previous submethods. This reasoning method covers both the high
level and the detailed views and covers the relation between multiple submethods
and multiple qualities. The method is based on the identification of the points of
tension in the problem and potential solutions.

The reasoning approach is explained as a 5 step approach. Section 12.2 pro-
vides an overview of the approach and gives a short introduction to each step. Sec-
tion 12.3 describes the actual reasoning over multiple viewpoints: how to maintain
focus and overview in such a multi-dimensional space? How to communicate and
document? Section 12.4 explains how the threads of reasoning fit in the complete
method.

12.2 Overview of Reasoning Approach

Fast exploration of the problem and solution space improves the quality of the
specification and design decisions, as explained in Chapter 7. It is essential to
realize that such an exploration is highly concurrent, it is neither top-down, nor
bottom-up, see viewpoint hopping and decision making in Sections 7.2 and 7.8. In
practice many designers find it difficult to make a start. In fact this does not have

109

110 THREADS OF REASONING 12.2

to be difficult: most starting points can be used, as long as the method is used with
a sufficient open mind (that means that the starting point can be changed, when the
team discovers that more important specification or design decisions are needed).

2. create insight:
+ submethod in one of CAFCR views
+ qualities checklist

3. deepen insight via facts:
+ via tests, measurements, simulations
+ story telling

4. broaden insight via questions:
+ why
+ what
+ how

5. define and extend the thread:
? what is the most important / valuable
? what is the most critical / sensitive
! look for the conflicts and tension

1. select starting point:
! actual dominant need or problem

continuously

consolidate in simple models

communicate to stakeholders

refactor documentation

Figure 12.1: Overview of reasoning approach

Figure 12.1 shows an overview of the entire reasoning approach. Step 1 is to
select a starting point. After step 1 the iteration starts with step 2create insight.
Step 3 isdeepening the insightand step 4 isbroadening the insightwith the ques-
tions. The next iteration is prepared by step 5refining or selecting the next need
or problem.

During this iteration continuous effort is required tocommunicate with the
stakeholdersto keep them up to date, toconsolidate in simple modelsthat are
used during analysis and discussions and torefactor the documentationto keep it
up to date with the insights obtained.

12.2.1 Selecting a Starting Point

As stated earlier it is more important to get started with the iteration than to spend
a lot of time trying to find the most ideal starting point. A very useful starting
point is to take a need or problem that is very hot at the moment. If this issue

12.2 OVERVIEW OF REASONING APPROACH 111

turns out to be important and critical then it needs to be addressed anyway. If it
turns out to be not that important, then the outcome of the first iteration serves
to diminish the worries in the organization, enabling it to focus on the important
issues.

In practice there are many hot issues that after some iterations turn out to be
non-issues. This is often causes by non-rational fears, uncertainty, doubt, rumors,
lack of facts et cetera. Going through the iteration, which includes fact finding,
quickly positions the issues. This is of great benefit to the organization as a whole.

step 1 starting point

Customer
objectives

Application Functional Conceptual Realization

slow response

Figure 12.2: Example of a starting point: a slow system response discussed from
the designer’s viewpoint

The actual dominant needs or problems can be found by listening to what is
mentioned with the greatest loudness, or which items dominate in all discussions
and meetings. Figure 12.2 shows the response time as starting point for the itera-
tion. This starting point was triggered by many design discussions about the cause
of a slow system response and about potential concepts to solve this problem.

12.2.2 Building up Insight

The selected issue can be modeled by means of one of the many submethods as
described in the CAFCR chapters. Doing this, it will quickly become clear what
is known (and can be consolidated and communicated) and what is unknown, and
what needs more study and is hence input for the next step. Figure 12.3 shows the
response time modelas potential submethod.

An alternative approach is to look at the issue from the perspective of quality.
One then has to identify the most relevant qualities, by means of the checklist in
Figure 10.3. These qualities can be used to sharpen the problem statement. Fig-
ure 12.3 shows theperformanceas quality to be used to understand the response
time issue.

112 THREADS OF REASONING 12.2

step 2 creating insight

Customer
objectives

Application Functional Conceptual Realization

performance

re
sp

on
se

tim

e
m

od
el

Figure 12.3: Example of creating insight: to study the required performance a
response model of the system is made

12.2.3 Deepening the Insight

The insight is deepened by gathering specific facts. This can be done by sim-
ulations, or by tests and measurements on existing systems. At the customer
side story telling helps to get the needs sufficiently specific, as illustrated by Fig-
ure 12.4.

step 3 deepening insight

Customer
objectives

Application Functional Conceptual Realization

story

specific needs

simulations, test,
measurements

specific facts

Figure 12.4: Deepening the insight by articulating specific needs and gathering
specific facts by simulations, tests and simulations

It is important in this phase tosamplespecific facts and not to try to be com-
plete. A very small subset of specific facts can already provide lots of insight. The
speed of iteration is much more important than the completeness of the facts. Be
aware that the iteration will quickly zoom in on the core design problems, which
will result in sufficient coverage of the issues anyway.

12.2 OVERVIEW OF REASONING APPROACH 113

12.2.4 Broadening the Insight

Needs and problems are never nicely isolated from the context. In many cases the
reason why something is called a problem is because of the interaction between
the function and the context. The insight is broadened by relating the need or
problem to the other views in the CAFCR model. This can be achieved by thewhy,
whatandhowquestions as described in Section 7.7 and shown in Figure 12.5.

step 4 broadening insight

Customer
objectives

Application Functional Conceptual Realization

why? what?

how? how?what?

why?

how?

why?
w

ha
t

ho
w

?

Figure 12.5: Broadening the insight by repeating why, what and how questions

The insight in the quality dimension can also be broadened by looking at the
interaction with related qualities: what happens with safety, when we increase the
performance?

12.2.5 Define and Extend the Thread

During the study and discussion of the needs and problems many new questions
and problems pop up. A single problem can trigger an avalanche of new prob-
lems. Key in the approach is not to drown in this infinite ocean full of issues,
by maintaining focus on important and critical issues. The most progress can be
made by identifying the specification and design decisions that seem to be the
most conflicting, i.e. where the most tension exists between the issues.

The relevance of a problem is determined by thevalueor the importanceof
the problem for the customer. The relevance is also determined by how challeng-
ing a problem is to solve. Problems that can be solved in a trivial way should
immediately be solved. The approach as described is useful for problems that re-
quire some critical technical implementation. The implementation can be critical
because it is difficult to realize, or because the design is rather sensitive1 or rather

1for instance in MRI systems the radius of the gradient coil system and the cost price were related
with (rmagnet − rgradientcoil)

5. 1 cm more patient space would increase the cost dramatically,
while at the same time patient space is crucial because of claustrophobia.

114 THREADS OF REASONING 12.3

vulnerable (for example, hard real-time systems with processor loads up to 70%).

Customer
objectives

Application Functional Conceptual Realization

definition in terms of tension

image quality

performance

cost

algorithms

multi processor
pipeline design

Figure 12.6: Example definition of the thread in terms of tension for a digital TV

Figure 12.6 shows the next crucial element to define the thread: identifica-
tion the tension between needs and implementation options. The problem can be
formulated in terms of this tension. A clearly articulated problem is half of the
solution.

The example in Figure 12.6 shows the tension between the customer objec-
tives and the design options. The image quality objective requires good algorithms
that require a lot of processing power. Insufficient processing power lowers the
system performance. The processing power is achieved by a pipeline of multiple
processors. The cost of the number crunching capacity easily exceeds the cost
target.

12.3 Reasoning

The reasoning by the architect is based on a combination of subjective intuition
and objective analysis. The intuition is used to determine the direction and to
evaluate results. The analysis partially validates the direction and partially helps
the architect to develop his intuition further.

The assessment of the solutions is done by means of criteria. An objective
ranking of the solutions can be made based on these criteria. The architect (and
the other stakeholders) have their own subjective ranking based on intuition. By
comparing the objective and subjective rankings a better understanding is achieved
of both problem and solutions. This is shown in Figure 12.7. The increased un-
derstanding of the problem is used to improve the criteria. The increased under-
standing of the problem and the solutions influences the intuition of the architect
(for instance this type of function is more expensive than expected). The increased

12.3 REASONING 115

detect
mismatch

architect
intuition

objective
criteria

objective
ranking

intuitive
ranking

solution

problem

improved solution
understanding

improved problem
understanding

improve criteria

adjust intuition

improve solution

solutionsolution

Figure 12.7: Reasoning as a feedback loop that combines intuition and analysis

understanding of the solution will trigger new solution(s).

Customer
objectives

Application Functional Conceptual Realization

Figure 12.8: Onethread of reasoningshowing related issues. The line thickness
is an indication for the weight of the relation.

During the reasoning a network of related issues emerges, as shown in Fig-
ure 12.8. Figure 12.8 visualizes the network as a graph, where a dot represents a
specification or a design decision and a line represents a relation. Such a relation
can be:is implemented by, is detailed by, is conflicting with, enables or supports
et cetera. The thickness of the line indicates the weight of the relation (thin is
weak, thick is strong).

This graph is a visualization of the thread of reasoning followed by an archi-
tect. Crucial in such a thread is that it is sufficiently limited to maintain overview

116 THREADS OF REASONING 12.4

and to enable discussion and reasoning. A good thread of reasoning addresses
relevant problem(s), without drowning in the real world complexity.

Customer
objectives

Application Functional Conceptual Realization

key
drivers

cost

perfor-
mance

response
time

targetCoO

store

zap

IQ

case
IQ

spec

context

cost
budget

time
budget

pipeline
design

functional
model

processing
library

micro
benchmarks

Figure 12.9: Example of the documentation and communication for a digital TV.
The thread is documented in a structured way, despite the chaotic creation path.
This structure emerges after several iterations.

A continuous concern is to communicate with the stakeholders and to con-
solidate the findings, for instance in documentation. Figure 12.9 shows the more
structured way to document and communicate these findings. The architect needs
several iterations to recognize the structure in the seeming chaotic thread of rea-
soning. This example discusses the thread that has been shown in Figure 12.6.
This single thread of reasoning addresses three key drivers as shown in Figure 12.9:
IQ (Image Quality), costandperformance. Most information in the thread of rea-
soning addresses these key drivers, however some additional information emerges
too, such as thecontextof the digital TV at home, the functionality of thezapand
storefunctions and the internalfunctional models.

12.4 Outline of the complete method

The threads of reasoningare the integration means of the overall method. In this
section a short description is given how thethreads of reasoningare are com-
bined with thesubmethods, quality checklistsandstory tellingto form a complete
method. The steps in the description refer to Figure 12.7. Note that this aspect is
speculative, because it has not been applied and therefore cannot be evaluated at

12.5 SUMMARY 117

this moment. Only an outline can be given now. A more detailed description of
the method has to wait until further research is due.

The starting point (step 1) of a product creation is often a limited product spec-
ification, belonging in theFunctional view. The next step is to explore (step 2)
the customer context (Customer ObjectivesandApplicationviews) and to explore
the technical merits (ConceptualandRealizationviews). This exploration is used
to identify a first set of customer-side opportunities and to identify the biggest
technical challenges. During the exploration thesubmethodsandquality check-
lists are used as a source of inspiration, for instance to determine the opportunity
in the business model of the customer. Next (step 3) astorymust be created that
addresses the most important and valuable opportunities and the biggest technical
challenges. Thestory is used to derive a firstuse caseand to do a more thorough
exploration (step 4) of the specification and the design. At this moment the first
thread of reasoning is already visible (step 5), connecting a coarse product speci-
fication with customer opportunities and technical challenges. From this moment
onwards the steps are repeated over and over, extending the thread of reasoning
and creating one or two more threads of reasoning if needed. The submethods and
the qualities are used during these iterations as a toolbox to describe specific parts
of this creation process.

12.5 Summary

The reasoning approach is a means to integrate the CAFCR views and the qualities
to design a system that fits entirely in the customer needs. Thethreads of reason-
ing approach is described by five steps. The result can be visualized as a graph
of many related customer needs, specification issues and design issues. In this
graph the core reasoning can be indicated around a limited set of key drivers or
quality needs. In Chapter 17 the graph will be visualized for the Medical Imaging
Workstation case.

118 THREADS OF REASONING 12.5

Part III

Medical Imaging Case
Description

Chapters in Part III:

13. Medical Imaging in Chronological Order

14. Medical Imaging Workstation: CAF Views

15. Medical Imaging Workstation: CR Views

16. Story Telling in Medical Imaging

17. Threads of Reasoning in the Medical Imaging Case

119

Chapter 13

Medical Imaging in
Chronological Order

13.1 Project Context

Philips Medical Systems is a very old company, dating back to 1896 when the first
X-ray tubes were manufactured. Many imaging modalities have been added to the
portfolio later, such as Ultra Sound, Nuclear Medicaid, Computed Tomography
and Magnetic Resonance Imaging. Since the late seventies the management was
concerned by the growing effort to develop the viewing functionality of these
systems. Many attempts have been made to create a shared implementation of the
viewing functionality, with failures and partial successes.

In 1987 a new attempt was started by composing a team, that had the char-
ter to create aCommon Viewingplatform to be used in all the modalities. This
team had the vision that a well designed set of SW components running on stan-
dard workstation hardware would be the solution. In the beginning of 1991 many
components had been built. For demonstration purposes aBasic Applicationwas
developed. TheBasic Applicationmakes all lower level functionality available
via a rather technology-oriented graphical user interface. The case description
starts at this moment, when theBasic Applicationis shown to stakeholders within
Philips Medical Systems.

121

122 MEDICAL IMAGING IN CHRONOLOGICAL ORDER 13.3

13.2 Introduction

The context of the first release of Medical Imaging is shown in Section 13.1. The
chronological development of the first release of the medical imaging workstation
is described in Section 13.3. Sections 13.4 and 13.5 zoom in on two specific
problems encountered during this period.

13.3 Development of Easyvision RF

The new marketing manager of theCommon Viewinggroup was impressed by
the functionality and performance of theBasic Application. He thought that a
stand alone product derived from theBasic Applicationwould create a business
opportunity. The derived product was called Easyvision, the first release of the
product was called Easyvision R/F. This first release would serve the URF X-ray
market. TheCommon Viewingmanagement team decided to create Easyvision RF
in the beginning of 1991.

basic application
toolboxes
100 kloc

interactive viewing

marketing opinion:
"All the functionality is available,
we only have to provide a clinical UI"

Easyvision RF
integrated product
360 kloc

print server +
communication +
interactive viewing

1991 19931992

performance
problems

IQ
problems

Figure 13.1: Chronological overview of the development of the first release of the
Easyvision

The enthusiasm of the marketing people for theBasic Applicationwas based
on the wealth of functionality that was shown. It provided all necessary viewing
functions and even more. Figure 13.1 shows the chronology, and the initial mar-
keting opinion. Marketing also remarked: ”Normally we have to beg for more
functionality, but now we have the luxury to throw out functionality”. The ad-
dition of viewing software to the conventional modality products1 was difficult

1Modality productsare products that use one imaging technique such as Ultra Sound, X-ray or

13.3 DEVELOPMENT OF EASYVISION RF 123

for many reasons, such aslegacy code and architecture, andsafety and related
testing requirements. The Easyvision did not suffer from the legacy, and the self
sustained product provided a good means to separate the modality concerns from
the image handling concerns.

This perception of a nearly finished product, which only needed some user
interface tuning and some functionality reduction, proved to be a severe underes-
timation. The amount of code in the 1991Basic Applicationwas about 100 kloc
(kloc = thousand lines of code, including comments and empty lines), while the
product contained about 360 kloc.

user interfacecommunication

data base

export printoptical
storage

optical disk
drive printerdisk drivenetwork

UI devices

system
monitor

Unix
daemons

software
process

associated
hardware

control and
data flow

remote systems
and users user

user

user control
import

legend

Figure 13.2: The functionality present in the Basic Application shown in the pro-
cess decomposition. The light colored processes were added to create the Easyvi-
sion

TheBasic Applicationprovided a lot of viewing functionality, but the Easyvi-
sion as a product required much more functionality. The required additional func-
tionality was needed to fit the product in the clinical context, such as:

• interfacing with modalities, including remote operation from the modality
system

• storage on optical discs

• printing on film

Figure 13.2 shows in the process decomposition what was present and what was
missing in the 1991 code. From this process decomposition it is clear that many
more systems and devices had to be interfaced. Figures 13.2 and 13.3 are ex-
plained further in Chapter 15.

Magnetic Resonance Imaging

124 MEDICAL IMAGING IN CHRONOLOGICAL ORDER 13.4

legend

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard Sun workstationDORHC
interf

RC
interf

 SunOS, SunView

NIXRC
driver

HC
driver

DOR
driver

Spool HCU Store Image Gfx UI DB PMS-
net in

PMS-
net out

Medical Imaging R/F

Start
up

Install

Config

SW
keys

service

dev.
tools Print Store View Cluster

operating system

hardware

application functions

user interface

connected system

SW infrastructure

toolbox

Figure 13.3: The functionality present in the Basic Application shown in the con-
struction decomposition. The light colored components were added to create the
Easyvision

Figure 13.3 also shows what was present and what was missing in the Basic
Application, but now in the construction decomposition. Here it becomes clear
that also the application-oriented functionality was missing. TheBasic Applica-
tion offered generic viewing functionality, exposing all functionality in a rather
technical way to the user. The clinical RF user expects a very specific viewing
interaction, that is based on knowledge of the RF application domain.

The project phases from the conception of a new product to the introduction in
the market is characterized by many architectural decisions. Architecting methods
are valuable means in this period. Characteristic for an immature architecting
process is that several crises occur in the integration. As shown in Figure 13.1
both a performance and a (image quality related) safety crisis happened in that
period.

13.4 Performance Problem

The performance of the system at the end of 1991 was poor, below expectation.
One of the causes was the extensive use of memory. Figure 13.4 shows the per-
formance of the system as a function of the memory used. It is also indicates that
a typically loaded system at that moment used about 200 MByte. Systems which
use much more memory than the available physical memory decrease significantly
in performance due to the paging and swapping to get data from the slow disk to

13.4 PERFORMANCE PROBLEM 125

the fast physical memory and vice versa.

total measured memory usage
pe

rfo
rm

an
ce

physical
memory paging to disk

MB64 200

codeO
S data bulk data fragmen-

tation

MB0 memory usage

Figure 13.4: Memory usage half way R1

The analysis of additional measurements resulted in a decomposition of the
memory used. The decomposition and the measurements are later used to allo-
cate memory budgets. Figure 13.5 shows how the problem of poor performance
was tackled, which is explained in much more detail in Chapter 15. The largest
gains were obtained by the use of shared libraries, and by implementing an anti-
fragmentation strategy for bulk data. Smaller gains were obtained by tuning, and
analyzing the specific memory use more critical.

measured

code

OS

data

bulk data

fragmen-
tation

budget

anti-fragmenting

 budget based

awareness,
measurement

DLLs

tuning

200
MB

74
MB

Figure 13.5: Solution of memory performance problem

Figure 13.6 shows the situation per process. Here the shared libraries are

126 MEDICAL IMAGING IN CHRONOLOGICAL ORDER 13.4

shown separate of the processes. The categoryother is the accumulation of a
number of small processes. This figure shows that every individual process did
fit in the available amount of memory. A typical developer tests one process at
a time. The developers did not experience a decreased performance caused by
paging, because the system is not paging if only one process is active. At the
time of integration, however, the processes are running on the same hardware
concurrently and then the performance is suddenly very poor.

sh
ar

ed
 li

br
ar

ie
s

U
I

co
m

m
un

ic
at

io
n

se
rv

er

st
or

ag
e

se
rv

er

pr
in

t s
er

ve
r

ot
he

r

U
N

IX

10

20

30

0

budget per process (right column)

10

MByte

measured (left column)

da
ta

co

de

20

Figure 13.6: Visualization per process

Many other causes of performance problems have been found. All of these are
shown in the annotated overlay on the software process structure in Figure 13.7.

user interfacecommunication

data base

export printoptical
storage

optical disk
drive printerdisk drivenetwork

UI devices

remote systems
and users user

data base granularity
information model layering

process communication overhead
active data granularity, update

graphics updates
framebuffer access

I/O overhead

network I/O
overhead

processing

file I/O
overhead

Figure 13.7: Causes of performance problems, other than memory use

Many of the performance problems are related to overhead, for instance for
I/O and communication. A crucial set of design choices is related to granularity:

13.5 SAFETY 127

a fine grain design causes a lot of overhead. Another related design choice is the
mechanism to be used: high level mechanisms introduce invisible overheads. How
aware should an application programmer be of the underlying design choices?

For example, accessing patient information might result in an implicit transac-
tion and query on the database. Building a patient selection screen by repeatedly
calling such a function would cause tens to hundreds of transactions. With 25 ms
per transaction this would result in seconds of overhead only to obtain the right
information. The response becomes even worse if many layers of information
have to be retrieved (patient, examination, study, series, image), resulting in even
worse response time.

The rendering to the screen poses another set of challenges. The originalBa-
sic Applicationwas built on Solaris 1, with the SunView windowing system. This
system was very performance efficient. The product moved away from SunView,
which was declared to be obsolete by the vendor, to the X-windowing system.
The application and the windowing are running in separate processes. As a con-
sequence all screen updates cause process communication overhead, including
several copy operations of screen bitmaps. This problem was solved by imple-
menting an integrated X-compatible screen manager running in the same process
as the application, called Nix2.

Interactive graphics require a fast response. The original brute force method
to regenerate always the entire graphics object was too slow. The graphics im-
plementation had to be redesigned, using damage area techniques to obtain the
required responsiveness.

13.5 Safety

The clinical image quality can only be assessed by clinical stakeholders. Clinical
stakeholders start to use the system, when the performance, functionality and re-
liability of the system is at a reasonable level. This reasonable level is achieved
after a lot of integration effort has been spent. the consequence is that image qual-
ity problems tend to be detected very late in the integration. Most image quality
problems are not recognized by the technology-oriented designers. The technical
image quality (resolution, brightness, contrast) is usually not the problem.

Figure 13.8 shows a typical image quality problem that popped up during the
integration phase. The pixel valuex, corresponding to the amount of X-ray dose
received in the detector, has to be transformed into a grey valuef(x) that is used

2A Dutch play on words:niksmeans nothing

128 MEDICAL IMAGING IN CHRONOLOGICAL ORDER 13.5

x

f(x
)

false
contour

10 bits pixel value
8 bits pixel value

Figure 13.8: Image quality and safety problem: discretization of pixel values
causes false contouring

to display the image on the screen. Due to discretization of the pixel values to
8 bits false contoursbecome visible. For the human eye an artefact is visible
between pixels that are mapped on a single grey value and neighboring pixels that
are mapped on the next higher grey value. It is the levelling effect caused by the
discretization that becomes visible as false contour. This artefact is invisible if
the natural noise is still present. Concatenation of multiple processing steps can
strongly increase this type of artifacts.

for user readability the font-size was
determined "intelligently"; causing a dangerous
mismatch between text and imageURF monitor output:

fixed size letters at fixed grid

tumor>

EV output: scaleable fonts in graphics overlay

tumor>

Figure 13.9: Safety problem caused by different text rendering mechanisms in the
original system and in Easyvision

The original design of the viewing toolboxes provided scaling options for tex-
tual annotations, with the idea that the readability can be guaranteed for different
viewport sizes. A viewport is a part of the screen, where an image and related in-
formation are shown. This implementation of the annotations on the X-ray system,

13.6 SUMMARY 129

however, conflicts in a dangerous way with this model of scalable annotations, see
Figure 13.9.

The annotations in the X-ray room are made on a fixed character grid. Some-
times the ’>’ and ’<’ characters are used as arrows, in the figure they point to the
tumor. The text rendering in the medical imaging workstation is not based on a
fixed character grid; often the texts will be rendered in variable-width characters.
The combination of interface and variable-width characters is already quite diffi-
cult. The font scaling destroys the remaining part of the text-image relationship,
with the immediate danger that the annotation is pointing to the wrong position.

The solution that has been chosen is to define an encompassing rectangle at the
interface level and to render the text in a best fit effort within this encompassing
rectangle. This strategy maintains the image-text relationship.

13.6 Summary

The development of the Easyvision RF started in 1991, with the perception that
most of the software was available. During the developement phase it became
clear that a significant amount of functionality had to be added in the area of
printing. Chapter 14 will show the importance of the printing fumctionality. Per-
formance and safety problems popped up during the integration phase. Chapter 15
will show the design to cope with these problems.

130 MEDICAL IMAGING IN CHRONOLOGICAL ORDER 13.6

Chapter 14

Medical Imaging Workstation:
CAF Views

14.1 Introduction

This chapter discusses theCustomer Objectives, ApplicationandFunctionalviews
of the Medical Imaging Workstation. Section 14.2 describes the radiology con-
text. Section 14.3 describes the typical application of the system. Section 14.4
shows the key driver graph, from customer key drivers to system requirements, of
the Medical Imaging Workstation. Section 14.5 shows the development of func-
tionality of the family of medical imaging workstations in time. Section 14.6
discusses the need for standardization of information to enable interoperability of
systems within the department and the broader scope of the hospital. The conclu-
sion is formulated in section 14.7.

14.2 Radiology Context

The medical imaging workstation is used in the radiology department as an add-
on to URF X-ray systems. The main objective of the radiologist is to provide
diagnostic information, based on imaging, to the referring physician. In case of
gastrointestinal problems X-ray images are used, where the contrast is increased
by digestion of barium meal.

The work of the radiologist fits in an overall clinical flow, see Figure 14.1.
The starting point is the patient visiting the family doctor. The family doctor can
refer to a consultant; for gastrointestinal problems the consultant is an internist.

131

132 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.2

radiology departmentfamily
doctor

patient

referring
physician

nurse,
operator

radiologist

consult

request
request

report
report

findings
film

film
imageimage

interaction

interaction

interaction

paper or el. form

electronic

human interaction
intense
weak

legend

Figure 14.1: The clinical context of the radiology department, with its main stake-
holders

The family doctor writes a request to this consultant. In the end the family doctor
receives a report from the consultant.

Next the patient makes an appointment with the consultant. The consultant
will do his own examination of the patient. Some of the examinations are not
done by the consultant. Imaging, for example, is done by radiologist. From the
viewpoint of the radiologist the consultant is the referring physician. The referring
physician uses a request form to indicate the examination that is needed.

The patient makes an appointment via the administration of the radiology de-
partment. The administration will schedule the examination. The examination is
done by hospital personnel (nurses, operator) under supervision of the radiologist.
Most contact is between nurse and patient; contact between radiologist and patient
is minimal.

The outcome of the imaging session in the examination room is a set of films
with all the images that have been made. The radiologist will view these films
later that day. He will dictate his findings, which are captured in written format
and sent to the referring physician. The referring physician performs the overall
diagnosis and discusses the diagnosis and, if applicable, the treatment with the
patient.

The radiology department fits in a complex financial context, see Figure 14.2.
The patient is the main subject from a clinical point of view, but plays a rather lim-
ited role in the financial flow. The patient is paying for insurance, which decouples
him from the rest of the financial context.

14.2 RADIOLOGY CONTEXT 133

radiology

hospital
admini-
stration

governmentinsurance

patient

equipment
and service
providers

facilities

schedules
re

gu
la

tio
ns

bu

dg
et

payment

budget

bill
eq

ui
pm

en
t

se
rv

ic
es

pa
ym

en
t

pa
ym

en
t

payment
budget

equipment
services

payment

regulations
budget

Figure 14.2: The financial context of the radiology department

The insurance company and the government have a strong interest in cost con-
trol1. They try to implement this by means of regulations and budgets. Note that
these regulations vary widely over the different countries. France, for instance,
has stimulated digitalization of X-ray imaging by higher reimbursements for digi-
tal images. The United States regulation is much less concerned with cost control,
here the insurance companies participate actively in the health care chain to con-
trol the cost.

The hospital provides facilities and services for the radiology department. The
financial decomposition between radiology department and hospital is not always
entirely clear. They are mutually dependent.

The financial context is modeled in Figure 14.2 in a way that looks like the
Calculating with Concepts technique, described by Dijkman et al in [22]. The
diagram as it is used here, however, is much less rigorous as the approach of Dijk-
man. In this type of development the main purpose of these diagrams is building
insight in the broader context. The rigorous understanding, as proposed by Dijk-
man, requires more time and is not needed for the purpose here. Most elements

1sometimes it even appears that that is the main interest, quality of health care appears than to
be of secondary importance

134 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.2

in the diagram will not even have a formal interface with the product to be cre-
ated. Note also that the diagram is a simplification of the reality: the exact roles
and relations depend on the country, the culture and the type of department. For
example a university hospital in France is different from a commercial imaging
center in the USA. Whenever entities at this level are to be interfaced with the
medical imaging workstation then an analysis is needed of the greatest common
denominator to be able to define a rigorous interface.

modalities from
other vendors

HIS

Philips
modalities

PACS

RIS

IT infrastructure

CIS LIS

generic

clinical specific
info

image workflow

modality
systems

medical imaging workstation modality
enhancement

administrative
mainframes

archive report review tele print

legend

Figure 14.3: Application layering of IT systems

The medical imaging workstation is playing a role in the information flow in
the hospital, it is part of the large collection of IT systems. Figure 14.3 shows a
layered model of IT systems in the hospital, to position this product in the IT con-
text. It is a layered model, where the lower layers provide the more generic func-
tionality and the higher layers provide the more specific clinical imaging function-
ality.

In the hospital a normal generic IT infrastructure is present, consisting of net-
works, servers, PC’s and mainframes. More specialized systems provide clinical
information handling functions for different hospital departments (LIS for lab-
oratory, CIS for cardio and RIS for radiology) and for the entire hospital (HIS
Hospital Information System).

The generic imaging infrastructure is provided by the PACS (Picture Archiv-
ing and Communication System). This is a networked system, with more spe-
cialized nodes for specific functions, such as reporting, reviewing, demonstration,
teaching and remote access.

The medical imaging workstation is positioned as a modality enhancer: an

14.2 RADIOLOGY CONTEXT 135

add-on to the modality product to enhance productivity and quality of the exam-
ination equipment. The output of the modality enhancer is an improved set of
viewable images for the PACS.

information
handling

image handling

archiving

imaging and
treatment

base technology

localised
patient focus
safety critical
limited variation
due to "nature":

human anatomy
pathologies
imaging physics

distributed
limited variation due to "nature":

human anatomy
pathologies
imaging physics

entirely distributed
wide variation due to "socio-geographics":

psycho-social,
political, cultural factors

service business
not health care specific

extreme robust
fire, earthquake,
flood proof

life time
100 yrs (human life)

not health care specific
short life-cycles
rapid innovation

Figure 14.4: Reference model for health care automation

Figure 14.4 shows a reworked copy of the reference model for image handling
functions from the “PACS Assessment Final Report”, September 1996 [18]. This
reference model is classifying application areas on the basis of those characteris-
tics that have a great impact on design decisions, such as the degree of distribution,
the degree and the cause of variation and life-cycle.

Imaging and treatmentfunctions are provided of modality systems with the
focus on the patient. Safety plays an important role, in view of all kinds of haz-
ards such as radiation, RF power, mechanical movements et cetera. The variation
between systems is mostly determined by:

• the acquisition technology and its underlying physics principles.

• the anatomy to be imaged

• the pathology to be imaged

The complexity of these systems is mostly in the combination of many technolo-
gies at state-of-the-art level.

Image handlingfunctions (where the medical imaging workstation belongs)
are distributed over the hospital, with work-spots where needed. The safety related
hazards are much more indirect (identification, left-right exchange). The variation

136 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.2

is more or less the same as the modality systems: acquisition physics, anatomy
and pathology.

The information handlingsystems are entirely distributed, information needs
to be accessible from everywhere. A wide variation in functionality is caused by
“social-geographic” factors:

• psycho-social factors

• political factors

• cultural factors

• language factors

These factors influence what information must be stored (liability), or must not
be stored (privacy), how information is to be presented and exchanged, who may
access that information, et cetera.

The archiving of images and information in a robust and reliable way is a
highly specialized activity. The storage of information in such a way that it sur-
vives fires, floods, and earthquakes is not trivial2. Specialized service providers
offer this kind of storage, where the service is location-independent thanks to the
high-bandwidth networks.

All of these application functions build on top of readily available IT compo-
nents: thebase technology. These IT components are innovated rapidly, resulting
in short component life-cycles. Economic pressure from other domains stimulate
the rapid innovation of these technologies. The amount of domain-specific tech-
nology that has to be developed is decreasing, and is replaced by base technology.

Figure 14.5 comes from the same report [18] showing the information flow
within this reference model. During this flow the clinical value is increasing:
annotations, comments, and anamnesis can be added during and right after the
acquisition. The preparation for the diagnosis adds analysis results, optimizes
layout and presentation settings, and pre-selects images. Finally the diagnosis is
the required added value, to be delivered to the referring physician.

At the same time the richness of the image is decreasing. The richness of
the image is how much can be done with the pixels in the image. The images
after acquisition are very rich, all manipulation is still possible. When leaving the
acquisition system the image is exported as a system independent image, where
a certain trade-off between size, performance, image quality, and manipulation

2Today terrorist attacks need to be included in this list full of disasters, and secure needs to be
added to the required qualities.

14.2 RADIOLOGY CONTEXT 137

prepare
diagnosis diagnosisacquire

images
report

authorise

archive

clinical
review

education

research

demonstra-
tion

treatment
planningtime

richness

clinical
value

medical
imaging

workstation

Figure 14.5: Clinical information flow

flexibility is made. This is an irreversible step in which some information is in-
herently lost. The results of the preparation for diagnosis are often frozen, so that
no accidental changes can be made afterwards. Because this is the image used to
diagnose, it is also archived to ensure liability. The archived result is similar to an
electronic photo, only a limited set of manipulations can still be performed on it.

Cardiovascular
"high end"

high performance
extensive functionality

Radiography
"low end"

patient throughput
simple functionality

URF
universality
"workhorse"

high end URF
+vascular functionality

low end URF
price fighter

mid end URF

Figure 14.6: URF market segmentation

The first releases of the medical imaging workstation, as described in this case,
are used in conjunction with URF (Universal Radiography Fluoroscopy) systems.
This family of systems is a mid-end type of X-ray system, see Figure 14.6. At

138 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.3

the high end cardiovascular systems are used, with high clinical added value and a
corresponding price tag. At the low end “radiography” systems offer straight for-
ward imaging functionality, oriented at patient throughput. Approximately 70%
of all X-ray examinations are radiographic exposures.

The URF systems overlap with cardiovascular and radiography market seg-
ments: high end URF systems also offer vascular functionality. Low end URF
systems must fit in radiography constraints. The key driver of URF systems is the
universality, providing logistic flexibility in the hospital.

14.3 Typical Case

The specification and design of the medical imaging workstation was based on
“typical” cases. Figure 14.7 shows the typical case for URF examinations. Three
examination rooms are sharing one medical imaging workstation. Every examina-
tion room has an average throughput of 4 patients per hour (patient examinations
are interleaved, as explained below for Figure 14.8).

exam
room 1

exam
room 3

exam
room 2

image production: 20 1024 2 8 bit images per examination

3 examination rooms connected to

examination room: average 4 interleaved examinations / hour

film production: 3 films of 4k*5k pixels each

1 medical imaging
workstation + printer

high quality output
(bi-cubic interpolation)

Figure 14.7: Typical case URF examination

The average image production per examination is 20 images, each of10242

pixels of 8 bits. The images are printed on large film sheets with a size of approx-
imately24 ∗ 30cm2. One film sheet consists of 4k by 5k pixels. The images must
be sufficiently large to be easily viewed on the lightbox. These images are typi-
cally printed on 3 film sheets. Image quality of the film sheets is crucial, which
translates into the use of bi-cubic interpolation.

14.4 KEY DRIVER GRAPH 139

exam
room 1

exam
room 2

exam
room 3

1 hour

time

9:00 10:009:30

patient 1
patient 2

patient 3
patient 4

Figure 14.8: Timing of typical URF examination rooms

Figure 14.8 shows how patient examinations are interleaved. The patient is
examined over a period of about one hour. This time is needed because the bar-
ium meal progresses through the intestines during this period. A few exposures
are made during the passage of clinical relevant positions. The interleaving of
patients in a single examination room optimizes the use of expensive resources.
At the level of the medical imaging workstation the examinations of the different
examination rooms are imported concurrently. The workstation must be capable
of serving all three acquisition rooms with the specified typical load. The latency
between the end of the examination and the availability of processed film sheets
is not very critical.

14.4 Key Driver Graph

Figure 14.9 shows the key drivers from the radiologist point of view, with the de-
rived application drivers and the related requirements, as described in Section 8.2.
The graph is only visualized for the key drivers and the derived application drivers.
The graph from application drivers to requirements is a many-to-many relation-
ship, that becomes too complex to show in a single graph.

The key drivers are discussed in Subsections 14.4.1 to 14.4.5.

140 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.4

many
to

many

report quality

diagnostic quality

safety and liability

cost per diagnose

time per diagnose

Customer
key drivers Requirements

diagnose at light-box with films
all preparation in exam room

interoperability over systems and vendors
multiple images per film
minimise operator handling
multiple applications per system

clear patient identification
left right indicators
follow procedures
freeze diagnostic information

derived
Application drivers

acquisition and viewing settings
contrast, brightness and resolution of light-box

selection of relevant material
use of standards

import
auto-print

parameterized layout
spooling

storage
navigation / selection
auto-delete

viewing
contrast / brightness
zoom
annotate

export

system response
system throughput
image quality

annotation
material cost
operational cost

shared information model
viewing settings
patient, exam info

functionality

qualities

interfaces

Figure 14.9: Key drivers, application drivers and requirements

14.4.1 Report Quality

The report quality determines the satisfaction of the referring physician, who is
the customer of the radiologist. The layout, accessibility, and all these kind of
factors determine the overall report quality. The radiologist achieves the report
quality by:

selection of relevant material The selection of the material to be reported to the
referring physician determines to a large degree the report quality.

use of standardsThe use of standard conventions, for instance pathology classi-
fication, improves the report quality.

14.4.2 Diagnostic Quality

The diagnostic quality is the core of the radiologist’s work. The diagnostic quality
is achieved by:

acquisition and viewing settingsThe actual acquisition settings and the related
viewing settings have a great impact on the visibility of the pathology and
anatomy.

14.4 KEY DRIVER GRAPH 141

contrast, brightness and resolution of lightbox The lightbox has a very good
diagnostic image quality: high brightness, high resolution, and many im-
ages can be shown simultaneously.

14.4.3 Safety and Liability

Erroneous diagnoses are dangerous for the patient; the radiologist might be sued
for mistakes. Also mistakes in the related annotations (wrong patient name, wrong
position) are a safety risk for the patient and hence a liability risk for the radiolo-
gist. The derived application drivers for safety and liability are:

clear patient identification Erroneous patient identification is a safety risk.

left right indicators Erroneous positioning information is a safety risk. Left-
right exchanges are notoriously dangerous.

follow procedures Clinical procedures reduce the chance of human errors. Fol-
lowing these procedures lowers the liability for the radiologist.

freeze diagnostic information Changing image information after the diagnosis
is a liability risk: different interpretations are possible, based on the changes.

14.4.4 Cost per Diagnosis

Insurance and government generate a lot of cost pressure. Cost efficiency can be
expressed in cost per diagnosis. The cost per diagnosis is reduced in the following
ways:

interoperability over systems and vendorsMix and match of systems, not con-
strained by vendor or system lock-ins, allow the radiology department to
optimize the mix of acquisition systems to the local needs.

multiple images per film Film is a costly resource (based on silver). Efficiency
of film real estate is immediately cost efficient. A positive side effect is that
film efficiency is also beneficial for viewing on the lightbox, because the
images are then put closer together.

minimize operator handling Automation of repeated actions will reduce the amount
of personnel needed, which again is a cost reduction. An example is the use
of predefined and propagated settings that streamline the flow of informa-
tion. This is a cost reduction, but most of all it improves the convenience
for the users.

142 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.4

multiple applications per system Universality of acquisition system and work-
station provides logistics flexibility in the radiology department. This will
in the end result in lower cost.

14.4.5 Time per Diagnosis

Time efficiency is partially a cost factor, see 14.4.4, but it is also a personal satis-
faction issue for the radiologist. The time per diagnosis is reduced by the follow-
ing means:

diagnose at lightbox with films This allows a very fast interaction: zooming is
done by a single head movement, and the next patient is reached by one
button, that exchanges the films mechanically in a single move.

all preparation in exam room The personnel operating the examination room
also does the preparation for the diagnosis. This work is done on the fly,
interleaved with the examination work.

14.4.6 Functional Requirements

The functionality that is needed for to realize the derived application drivers is:

import The capability to import data into the workstation data store in a mean-
ingful way.

autoprint The capability to print the image set without operator intervention:

parametrized layout Film layout under control of the remote acquisition
system.

spooling Support for concurrent import streams, which have to be printed
by a single printer.

storage The capability to store about one day of examinations at the workstation,
both as a buffer and to enable later review:

navigation/selection The capability to find and select the patient, exami-
nation and images.

autodelete The capability to delete images when they are printed and no
longer needed. This function allows the workstation to be used in an
operator free server. The import, print and auto-delete run continu-
ously as a standard sequence.

14.5 KEY DRIVER GRAPH 143

viewing All functions to show and manipulate images, the most frequently used
subset:

contrast/brightness Very commonly used grey-level user interface.

zoom Enlarge part of the image.

annotate Add textual or graphic annotations to the image.

export Transfer of images to other systems.

Note that theimport, storageandautoprintfunctionality are core to satisfy the
key drivers, while the viewing and export functionality is onlynice to have.

14.4.7 Quality Requirements

The following qualities need to be specified quantitatively:

system responseDetermines the speed and satisfaction of preparing the diagno-
sis by means of the workstation.

system throughput As defined by the typical case.

image quality Required for preparation of the diagnosis on screen and for diag-
nosis from film. Specific quality requirements exists for the relation be-
tween image and annotation:

annotation The relation between annotation and image is clinically rele-
vant and must be reproducible.

material cost The cost price of the system must fit in the cost target.

operational cost The operational cost (cost of consumables, energy, et cetera)
must fit in the operational target.

14.4.8 Interface Requirements

Key part of the external interfaces is the shared information model that facilitates
interoperability between different systems. The cooperating systems must adhere
to a shared information model. Elements of such an information model are:

viewing settings Sharing the same presentation model to guarantee the same dis-
played image at both systems.

patient, exam info Sharing the same meta information for navigation and identi-
fication.

144 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.5

14.5 Functionality

Figure 14.10 shows a retrospective overview of the development of functionality
over time. The case described here focuses on the period 1992, and 1993. How-
ever the vision of the product group was to design a platform that could serve
many applications and modalities. The relevance of this retrospective overview is
to show the expected (and realized!) increase of functionality.

1992 1993 1994 1995 1996

RF 1.1
URF basis

View, Print
Store, Communicate

RF 1.2
vascular

import

RF 2.1
cardio
bolus chase

RF 2.2
Dicom

X 3.1
spine

Rad 2.1
basis

View, Print
Store ,Communicate

Rad 1.1
PCR

Print

CT/MR 1.1
stack
MPR
dental

CT/MR 1.2
MR

import

CT/MR 2.1
volume
angio

Figure 14.10: Retrospective functionality roadmap

The first release of the product served the URF market and provided the so-
called view-print-store-communicate functionality. We already saw in figure 14.9
that a lot of functionality is hidden in this simple quartet.

Release 1.2 added import from vascular systems to the functionality. Cardio
import and functionality and bolus chase reconstruction were added in release 2.1.
Cardio functionality in this release consisted mostly of analysis functions, such as
cardiac volume and wall motion analysis. The bolus chase reconstruction takes a
series of exposures as input an fuses them together into a single large overview,
typically used to follow the bolus chase through the legs.

Release 2.2 introduced DICOM as the next generation of information model
standard. The first releases were based on the ACR/NEMA standard, DICOM
succeeded this standard. Note that the installed base required prolongation of
ACR/NEMA-based image exchange. Release 3.1 added spine reconstruction and
analysis. The spine reconstruction is analogous to the bolus chase reconstruction,
however spine specific analysis was also added.

On the basis of the URF-oriented R1.1 workstation a CT/MR workstation was

14.6 INTEROPERABILITY VIA INFORMATION MODEL 145

developed, which was released in 1994. CT/MR images are slice-based (instead
of projection-based as in URF), which prompted the development of a stack view
application (fast scrolling through a stack of images). Reconstruction of oblique
and curved slices is supported by means of MPR (Multi Planar Reformatting). A
highly specialized application was built on top of these applications. This was
a dental package, allowing viewing of the jaws, with the molars, and with the
required cross sections.

Release 2.1 of the CT/MR workstation added a much more powerful volume
viewing application and a more specialized angio package, with viewing and anal-
ysis capability.

Also derived from the RF workstation a radiography workstation was built.
R1.1 of this system was mostly a print server, while R2.1 supported the full view-
print-store-communicate functionality.

Thecommercial, serviceandgoods flowdecompositions were present as part
of the formalized documentation (TPD).

14.6 Interoperability via Information Model

The health care industry is striving for interoperability by working on standard
exchange formats and protocols. The driving force behind this standardization is
the ACR/NEMA, in which equipment manufacturers participate in the standard-
ization process.

DICOMACR/NEMA

PhilipsGESiemens

cardio
vascularMRICT medical

imaging

RFbolus
chase

vascular
analyse

vendor

world
standard

product
family

applications

URF

cardio
analyse

high innovation rate

high interoperability

gl
ob

al
 s

ta
nd

ar
di

sa
tio

n
ta

ke
s

m
or

e
th

an
 5

 y
ea

rs

legend

Figure 14.11: Information model, standardization for interoperability

Standardization and innovation are often opposing forces. The solution is

146 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.7

often found in defining an extendable format. and in standardization of the ma-
ture functionality. Figure 14.11 shows the approach as followed by the medical
imaging product group. The communication infrastructure and the mature appli-
cation information is standardized in DICOM. The new autoprint functionality
was standardized at vendor level. Further standardization of autoprint is pushed
via participation in DICOM work groups.

A good strategy is to use the standard data formats as much as possible, and
to build vendor specific extensions as long as the required functionality is not yet
standardized. The tension between standardization and innovation is also present
at many levels: between vendors, but also between product groups in the same
company and also between applications within the same product. At all levels the
same strategy is deployed. Product family specific extensions are made as long as
no standard vendor solution is available.

This strategy serves both needs: interoperability for mature, well defined func-
tionality and room for innovative exploration.

The information model used for import, export and storage on removable me-
dia is one of the most important interfaces of these systems. The functionality
and the behavior of the system depend completely on the availability and correct-
ness of this information. The specification of the information model and the level
of adherence and the deviations is a significant part of the specification and the
specification effort. A full time architect created and maintained this part of the
specification.

14.7 Conclusion

The context of the system in the radiology department has been shown by means
of multiple models and diagrams: clinical context with stakeholders, financial
context, application layers in IT systems, a reference model for health care au-
tomation, clinical information flow, and URF market segmentation. Figure 14.12
shows the coverage in actual documentation of the submethods discussed in part
II. The actual documentation of theCustomer ObjectivesandApplicationviews
was quite poor, as indicated in Figure 14.12. Most of the models and diagrams
shown here were not present in the documentation of 1992. The application of
the system has been shown as typical case. The typical case was documented
explicitly in 1992. The key driver graph, discussed in Section 14.4, is also a re-
construction in retrospect. The limited attention for theCustomer Objectivesand
Applicationviews is one of the main causes of the late introduction of printing

14.7 CONCLUSION 147

functionality.

Customer
objectives

Application Functional

key drivers
value chain

business models
suppliers

context diagram

stakeholders and concerns

entity relationship models
dynamic models

case descriptions
commercial decomposition
service decomposition
goods flow decomposition
function and feature
specifications
performance
external interfaces
standards

explicitly addressed addressed only implicitly not addressed

coverage based on documentation status of first product release
legend

Figure 14.12: Coverage of submethods of the CAF views

The functional view was well documented in 1992. The functions and features
have been discussed briefly in Section 14.5. The functions and features were well
documented in so-calledFunctional Requirement Specifications. Interoperability,
discussed briefly in Section 14.6, was also documented extensively. Figure 14.12
shows that the coverage of theFunctionalview is high.

148 MEDICAL IMAGING WORKSTATION: CAF VIEWS 14.7

Chapter 15

Medical Imaging Workstation:
CR Views

15.1 Introduction

The conceptual and realization views are described together in this chapter. The
realization view, with its specific values, brings the concepts more alive.

Section 15.2 describes the processing pipeline for presentation and rendering,
and maps the user interface on these concepts. Section 15.4 describes the concepts
needed for memory management, and zooms in on how the memory management
is used to implement the processing pipeline. Section 15.3 describes the software
architecture. Section 15.5 describes how the limited amount of CPU power is
managed.

The case material is based on actual data, from a complex context with large
commercial interests. The material is simplified to increase the accessibility, while
at the same time small changes have been made to remove commercial sensitivity.
Commercial sensitivity is further reduced by using relatively old data (between 8
and 13 years in the past). Care has been taken that the value of the case description
is maintained.

15.2 Image Quality and Presentation Pipeline

The user views the image during the examination at the console of the X-ray
system, mostly to verify the image quality and to guide the further examination.
Later the same image is viewed again from film to determine the diagnosis and to

149

150 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.2

prepare the report. Sometimes the image is viewed before making a hardcopy to
optimize the image settings (contrast, brightness, zoom). The user expects to see
the same image at all work-spots, independent of the actual system involved.

what you see
at one work-spot

is

what you get
at another
work-spot

???

X-ray system

image
generation

presen-
tation

monitor

film
network,
storage

Easyvision

application
processing

presen-
tation

monitor

film
network,
storage

3rd party
workstation monitor

Figure 15.1: The user expectation is that an image at one work-spot looks the
same as at other work-spots. This is far from trivial, due to all data paths and the
many parties that can be involved

Figure 15.1 shows many different possible work-spots, with different media.
The user expectsWhat You See Is What You Get(WYSIWYG) everywhere. From
an implementation point of view this is far from trivial. To allow optimal handling
of images at other locations most systems export images halfway their internal
processing pipeline: acquisition specific processing is applied, rendering specific
processing is not applied, but the rendering settings are transferred instead. All
systems using these intermediate images need to implement the same rendering in
order to get the same image perception. The design of these systems is strongly
coupled, due to the shared rendering know-how.

spatial
enhancement

interpolate
Look up table

invert
contrast / brightness

graphics
merge

colour
LUT

HWSW

monitor
image
from

database

ou
tp

ut

input

contrast

brightness
bi-linear
bi-cubic

legend

Figure 15.2: The standard presentation pipeline for X-ray images

15.2 IMAGE QUALITY AND PRESENTATION PIPELINE 151

Figure 15.2 shows the rendering pipeline as used in the medical imaging work-
station. Enhancement is a filter operation. The coefficients of the enhancement
kernel are predefined in the acquisition system. The interpolation is used to re-
size the image from acquisition resolution to the desired view-port (or film-port)
size. The grey-levels for display are determined by means of a lookup table. A
lookup table (LUT) is a fast and flexible implementation of a mapping function.
Normally the mapping is linear: the slope determines the contrast and the vertical
offset the brightness of the image. Finally graphics and text are superimposed on
the image, for instance for image identification and for annotations by the user.

The image interpolation algorithm used depends on desired image quality and
on available processing time. Bi-linear interpolation is an interpolation with a
low-pass filter side effect, by which the image becomes less sharp. An ideal in-
terpolation is based on a convolution with a sinc-function (sin(x)/x). A bi-cubic
interpolation is an approximation of the ideal interpolation. The bi-cubic inter-
polation is parameterized. The parameter settings determine how much the in-
terpolation causes low pass or high pass filtering (blurring or sharpening). These
bi-cubic parameter choices are normally not exported to the user interface, the se-
lection of values requires too much expertise. Instead, the system uses empirical
values dependent on the interpolation objective.

view-port 1 view-port 2

view-port 3 view-port 4

view-
port 5

UI icons, text

1152 pixels

96
0

pi
xe

ls

ca
. 4

60

pi
xe

ls

ca
 2

00

pi
xe

ls

Figure 15.3: Quadruple view-port screen layout

The monitor screen is a scarce resource of the system, used for user interface
control and for the display of images. The screen is divided in smaller rectangular

152 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.3

windows. Windows displaying images are called view-ports. Every view-port
uses its own instantiation of a viewing pipeline. Figure 15.3 shows an example
of a screen layout, viewing four images simultaneously. At the bottom left a fifth
view-port is used for navigational support, for instance in case of zooming this
view-port functions as a roadmap, enabling direct manipulation of the zoom-area.
The fifth view-port also has its own viewing pipeline instance.

The concepts visible in this screen layout are view-ports, icons, text, an im-
age area (with the 4 main view-ports), and a user interface area with navigation
support. The figure adds a number of realization facts, such as the total screen-
size, and the size of the view-ports. The next generation of this system used the
same concepts, but the screen size was 1280*1024, resulting in slightly larger
view-ports and a slightly larger ratio between image area and user interface area.

Screen:
low resolustion
fast response

Film:
high resolution
high throughput

Network:
medium resolution
high throughput

Figure 15.4: Rendered images at different destinations

At all places where source images have to be rendered into viewable images
an instance of the presentation pipeline is required. Note that the characteristics
of the usage of the presentation pipeline in these different processes vary widely.
Figure 15.4 shows three different destinations for rendered images, with the dif-
ferent usage characteristics.

15.3 Software Specific Views

The execution architecture of Easyvision is based on UNIX-type processes and
shared libraries. Figure 15.5 shows the process structure of Easyvision. Most pro-
cesses can be associated with a specific hardware resource, as shown in this figure.
Core of the Easyvision software architecture is the database. The database pro-

15.3 SOFTWARE SPECIFIC VIEWS 153

vides fast, reliable, persistentstorage and it providessynchronizationby means
of active data. The concept of active data is based on thepublish-subscribe pat-
tern [25] that allows all users of a some information to be notified when changes
in the information occur. Synchronization and communication between processes
always takes place via this database.

user interfacecommunication

data base

export printoptical
storage

optical disk
drive printerdisk drivenetwork

UI devices system
monitor

Unix
daemons

client
process

associated
hardware

control and
data flow

remote systems
and users user

client

user control

server
process

operational
process

legend

Figure 15.5: Software processes or tasks running concurrently in Easyvision

Figure 15.5 shows four types of processes:client processes, server processes
database process, andoperational processes. A client interacts with a user (re-
mote or direct), while the servers perform their work in the background. The
database connects these two types of processes. Operational processes belong to
the computing infrastructure. Most operational processes are created by the oper-
ating system, the so called daemons. The system monitoring processes is added
for exception handling purposes. The system monitor detects hanging processes
and takes appropriate action to restore system operation.

A process as unit of design is used for multiple reasons. The criteria used to
determine the process decomposition are:

management of concurrencyActivities that are concurrent run in separate pro-
cesses.

management of shared devicesA shared device is managed by a server process.

unit of memory budget Measurement of memory use at process level is sup-
ported by multiple tools.

unit of distribution over multiple processors A process can be allocated to a
processor, without the need to change the code within the process.

154 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.4

unit of exception handling Faults are contained within the process boundaries.
The system monitor observes at process level, because the operating system
provides the means at process level.

Manageability, visibility and understandability benefit from a limited number of
processes. One general rule is to minimize the amount of processes, in the order
of magnitude of ten processes.

The presentation pipeline, as depicted in Figure 15.2, is used in theuser inter-
faceprocess, theprint server and theexport server.

Figure 15.6 shows the software from the dependency point of view. Soft-
ware in higher layers depends on, has explicit knowledge of, lower layers of the
software. Software in the lower layers should not depend on, or have explicit
knowledge of software in higher layers.

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard IPX workstationDORHC
interf

RC
interf

SunOS

NIXRC
driver

HC
driver

DOR
driver

Spool HCU Store Image Gfx UI DB PMS-
net in

PMS-
net out

Medical Imaging R/F

Start
up

Install

Config

SW
keys

service

dev.
tools Print Store View Cluster

operating system

toolbox

hardware

application functions

user interface

connected system

SW infrastructure

legend

Figure 15.6: Simplified layering of the software

The caption of Figure 15.6 explicitly states this diagram to be simplified. The
original design of this software did not use the layering concept. The software has
been restructured in later years to make the dependency as layering explicit. The
actual number of layers based on larger packages did exceed 15. Reality is much
more complex than this simplified diagram suggests.

15.4 Memory Management

The amount of memory in the medical imaging workstation is limited for cost
reasons, but also for simple physical reasons: the workstation used at that moment
did not support more than 64 MByte of physical memory. The workstation and

15.4 MEMORY MANAGEMENT 155

operating system did support virtual memory, but for performance reasons this
should be used sparingly.

shared code
UI process
database server
print server
DOR server
communication server
UNIX commands
compute server
system monitor

application total

UNIX
file cache

total

R1

2.0
4.2
2.2
4.2

15.4
0.5

28.5

R1

12.0

7.0
2.0

10.0

31.0

R1

6.0
0.2
0.2
0.4
0.4
1.2
0.2

8.6

R1

6.0
14.2

4.4
9.6
6.6

26.6
0.7

66.1

7.0
3.0

76.1

memory budget in Mbytes R2

11.0
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

13.4

R2

3.0
3.2
1.2
2.0
2.0
0.2
0.5
0.5

12.6

R2

12.0
3.0
9.0
1.0
4.0

6.0

35.0

R2

11.0
15.3

6.5
10.5

3.3
6.3
0.5
6.8
0.8

61.0

10.0
3.0

74.0

code object data bulk data total

Figure 15.7: Memory budget of Easyvision release 1 and release 2

A memory budget is used to manage the amount of memory in use. Fig-
ure 15.7 shows the memory budgets of release 1 and release 2 of Easyvision RF
side by side. Three types of memory are distinguished:program or code, read-
only from operating system point of view,object data, dynamically allocated and
deallocated in a heap-based fashion, andbulk datafor large consecutive memory
areas, mostly used for images.

Per process, see Section 15.3, the typical amount of memory per category
is specified. The memory usage of the operating system is also specified. The
dynamic libraries, that contain the code shared between processes, is explicitly
visible in the budget.

The figure shows the realization for two successive releases, for which we can
observe that the concepts are stable, but that the realization changes significantly.
Release 1 used a rather straightforward communication server, operating on all
import streams in parallel, keeping everything in memory. This is very costly with
respect to memory. R2 serializes the memory use of different import streams and
uses the memory in a more pipelined way. These changes result in a significant
reduction of the memory being used. In the same time frame the supplier dictated
a new operating system, SunOS was end-of-life and was replaced by Solaris 2.
This had a negative impact on the memory consumption; the budget shows an
increase of 7 MByte to 10 MByte for the UNIX operating system.

156 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.4

M
B

yt
es

time

10

20

nett used

used address space

gross used

Figure 15.8: Memory fragmentation increase. The difference between gross used
and nett used is the amount of unusable memory due to fragmentation

The decomposition in object data and bulk data is needed to prevent memory
fragmentation. Fragmentation of memory occurs when the allocation is dynamic
with different sizes of allocated memory over time. The fragmentation increases
over time. Due to the paging of the virtual memory system not all fragmentation
is disastrous. Figure 15.8 shows the increase of the amount of memory over time.
The net amount of memory stabilizes after some time, but the gross amount of
memory increases due to ongoing fragmentation. The amount of virtual memory
in use (and the address space) is increasing even more, however a large part of this
virtual memory is paged out and is not really a problem.

virtual memory

physical
memory

memory
management

unit
disk storage

instruction
and data

cache

heap memory, malloc() free()

allocator, chunk

view PixMap
cache

print PixMap
cache

cluster PixMap
cache

operating
system

toolbox

hardware

application
functions

user
interface

Medical imaging R/F cache sizes legend

Figure 15.9: Cache layers at the corresponding levels of Figure 15.6

The hardware and operating system support fast and efficient memory-based
on hardware caching and virtual memory, the lowest layer in Figure 15.9. The
application allocates memory via the heap memory management functions mal-

15.4 MEMORY MANAGEMENT 157

loc() and free(). From an application point of view a sheer infinite memory is
present, however the speed of use depends strongly on the access patterns. Data
access with a high locality are served by the data cache, which is the fastest (and
smallest) memory layer. The next step in speed and size (slower, but significantly
larger) is the physical memory. The virtual memory, mostly residing on disk, is
the slowest but largest memory layer.

The application software does not see or control the hardware cache or virtual
memory system. The only explicit knowledge in the higher software layers of
these memory layers is in the dimensioning of the memory budgets as described
later.

The toolbox layer provides anti-fragmentation memory management. This
memory is used in a cache like way by the application functions, based on aLeast
Recently Usedalgorithm. The size of the caches is parameterized and set in the
highest application layer of the software.

chunk size:3MB

for large images
from 225 kB (480*480*8)
to 3 MB (1536*1024*16)

block size:
256kB

chunk size: 2MB

for small (screen) images
from 8kB
to 225 kB

block size: 8 kB

chunk size: 1MB

for stamp images
96*96*8 (9kB)

block size: 9kB

Figure 15.10: Memory allocators as used for bulk data memory management in
Easyvision RF

The medical imaging workstation deploys pools with fixed size blocks to min-
imize fragmentation. A two level approach is taken: pools are allocated in large
chunks, every chunk is managed with fixed sizeblocks. For every chunk is defined
which bulk data sizes may be stored in it.

Figure 15.10 shows the three chunk sizes that are used in the memory man-
agement concepts chunks, block sizes and bulk data sizes as used in Easyvision
RF. One chunk of 1 MByte is dedicated for so-calledstampimages, 96*96 down
scaled images, used primarily for visual navigation (for instance pictorial index).

158 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.4

The block size of 9 kbytes is exactly the size of a stamp image. A second chunk
of 3 MBytes is used for large images, for instance images with the original ac-
quisition resolution. Small images, such as images at display resolution, will be
allocated in the third chunk of 2 MBytes. The dimensioning of the block and
chunk sizes is based on a priori know-how of the application of the system, as de-
scribed in Section 14.3. The block sizes in the latter two chunks are 256 kbytes for
large images and 8 kbytes for small images. These block sizes result in balanced
and predictable memory utilization and fragmentation within a chunk.

raw
image

resized
image

enhanced
image

grey-
value
image

view-
port

gfx

text

retrieve enhance inter-
polate

lookup merge display

Figure 15.11: Intermediate processing results are cached in an application level
cache

The chunks are used with cache like behavior: images are kept until the mem-
ory is needed for other images. Figure 15.11 shows the cached intermediate re-
sults. This figure is a direct transformation of the viewing pipeline in Figure 15.2,
with the processing steps replaced by arrows and the data-arrows replaced by
stores. In Section 15.5 the gain in response time is shown, which is obtained
by caching the intermediate images.

Figure 15.12 shows how thechunksare being used in quadruple viewing (Fig-
ure 15.3). The10242 images with a depth of 1 or 2 bytes will be stored in the
3 MB chunks. The smaller interpolated images of4602 will go into the 2 MB
chunks, requiring 27 blocks of 8kB for an 1 byte pixel depth or 54 blocks for 2 2
bytes per pixel. Also the screen size images of the navigation view-port fall in the
range that maps on the 2 MB chunk, requiring 5 blocks per2002 image.

Everything added together requires more blocks than available in the 2 and 3
MB chunks. The cache mechanism will sacrifice the least recently used interme-
diate results.

For memory and performance reasons the navigation view-port is using the
stamp image as source image. This image, which is shown in a small view-port at
the left hand side of the screen, is only used for navigational support of the user
interface. Response time is here more important than image quality.

The print server uses a different memory strategy than the user interface pro-

15.5 MEMORY MANAGEMENT 159

Pixmap cache

viewportviewportviewport
grey-
value
image

grey-
value
image

resized
image

resized
image

resized
image

resized
image

raw
image
raw

image
raw

image
raw

image
resized
image

grey-
value
image

gfx

text

retrieve enhance lookup merge display

viewport

4 * 10242

1 byte / pixel
4 * 4602

2 byte / pixel
4 * 4602

1 byte / pixel
4 * 4602

1 byte / pixel

5
retrieve enhance interpolate lookup

962 2002962

merge display

raw
image
raw

image
raw

image
enhanced

image inter-
polate

2002 2002

block size:
9kB

block size:
8 kB

block size:
256kB

4 * 10242

2 byte / pixel

10242 8 bit image requires
4 256kB blocks

8 10242 images require
48 256kB blocks
12 blocks shortage

4602 image 8 bit requires 27 8kB blocks
2002 images require 5 8kb blocks

all screen-size images require
334 8kB blocks, 78 blocks shortage

Figure 15.12: Example of allocator and cache use. In this use case not all interme-
diate images fit in the cache, due to a small shortage of blocks. The performance
of some image manipulations will be decreased, because the intermediate images
will be regenerated when needed.

cess, see Figure 15.13. The print server creates the film-image by rendering the
individual images. The film size of 4k*5k images is too large to render the entire
film at once in memory: 20 Mpixels, while the memory budget allows 9 Mbyte of
bulk data usage. The film image itself is already more than the provided memory
budget!

The film image is built up in horizontal bands, which are sent to the laser
printer. The size of the stroke is chosen such that input image + intermediate
results + 2 bands (for double buffering) fit in the available bulk data budget. At
the same time the band should not be very small because the banding increases
the overhead and some duplicate processing is sometimes needed because of edge
effects.

The print server uses the same memory management concepts as shown in the
figure with cache layers, Figure 15.9. However the application level caching does
not provide any significant value for this server usage, because the image data
flow is straightforward and predictable.

160 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.5

4k pixels

128 pixels
1024 pixels

original images

1024
pixels

Figure 15.13: Print server is based on different memory strategy, using bands

15.5 CPU Usage

The CPU is a limited resource for the Easyvision. The performance and through-
put of the system depend strongly on the available processing power and the effi-
ciency of using the processing power. CPU time and memory can be exchanged
partially, for instance by using caches to store intermediate results.

Figure 15.14 shows typical update speeds and processing times for a single
image user interface layout. Contrast brightness (C/B in the figure) changes must
be fast, to give immediate visual feedback when turning a contrast or brightness
wheel. Working on the cached resized image about 7 updates per second are pos-
sible, which is barely sufficient. The gain of the cached design relative to the
non-cached design is about a factor 8 (7 updates per second versus 0.9 updates
per second). Zooming and panning is done with an update rate of 3 updates per
second. The performance gain for zooming and panning is from application view-
point less important, because these functions are used only exceptionally in the
daily use.

Retrieving the next image (also a very frequent user operation), requires some-
what more than a second, which was acceptable at that moment in time. This
performance is obtained by slightly compromising the image quality: a bilinear
interpolation is used for resizing, instead of the better bi-cubic interpolation. For
the monitor, with its limited resolution this is acceptable, for film (high resolution,
high brightness) bi-cubic interpolation is required.

15.6 MEASUREMENT TOOLS 161

pipeline timing proportional

retrieve enhance interpolate LUT
g
f
x

dis-
play

accumulated processing time in seconds

0.05s0.025s0.075s0.2s0.5s0.3s

raw
image

resized
image

grey-
value
image

gfx

retrieve enhance
lookup
(LUT)

gfx
merge displayview-

port
enhanced

image

inter-
polate

txt

next
0.9s-1

C/B
7 s-1

zoom
3 s-1

update rate for
common user actions

0.10.20.30.40.50.60.70.80.91.01.1 0

10242 9202 9202 920210242

Figure 15.14: The CPU processing times are shown per step in the processing
pipeline. The processing times are mapped on a proportional time line to visualize
the viewing responsiveness

For background tasks a CPU budget is used, expressed in CPU seconds per
Mega-byte or Mega-pixel. This budget is function-based: importing and printing.
Most background jobs involve a single server plus interaction with the database
server.

Two use cases are relevant: interactive viewing, with background jobs, and
pure print serving. For interactive response circa 70% of CPU time should be
available, while the load of printing for three examination rooms, which is a full
throughput case, must stay below 90% of the available CPU time. Figure 15.15
shows the load for serving a single examination room and for serving three ex-
amination rooms. Serving a single examination room takes 260 seconds of CPU
time per examination of 15 minutes, leaving about 70% CPU time for interactive
viewing. Serving three examination rooms takes 13 minutes of CPU time per 15
minutes of examinations, this is just below the 90%.

15.6 Measurement Tools

The resource design as described above is supported in the implementation by
means of a few simple, but highly effective measurement tools. The most impor-
tant tools are:Object Instantiation Tracing, standard Unix utilitiesand aheap

162 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.6

210 s/exam

50 s/exam

communication

data base

print

remote systems
and users

printer

disk

im
po

rt
pr

in
t

3.
5

C
P

U
 s

ec
on

d
pe

r
M

pi
xe

l o
ut

pu
t

2.
5

C
P

U
 s

ec
on

d
pe

r
M

by
te

 in
pu

t
print

10.5 min /
exam

import
2.5 min /

exam

margin
2 min

serving 3
examination

rooms

serving one
examination

room

CPU time
available for
interactive

viewing

30
%

90
%

Figure 15.15: Server CPU load. For a single examination room sufficient CPU
time is left for interactive viewing. Serving three examination rooms fits in 90%
of the available CPU time.

viewer.
The resource usage is measured at well defined moments in time, by means of

events. The entire software is event-based. The event for resource measurement
purposes can be fired by programming it at the desired point in the code, or by a
user interface event, or by means of the Unix command line.

The resource usage is measured twice: before performing the use case under
study and afterwards. The measurement results show both the changes in resource
usage as well as the absolute numbers. The initialization often takes more time in
the beginning, while in a steady running system no more initialization takes place.
Normally the real measurement is preceded by a set of actions to bring the system
in a kind of steady state.

Note that the budget definitions and theUnix utilities fit well together, by
design. The types of memory budgeted are the same as the types of memory
measured by the Unix utilities. The typically used Unix utilities are:

ps process status and resource usage per process

vmstat virtual memory statistics

kernel resource statskernel specific resource usage

Theheap-viewershows the free and allocated memory blocks in different col-
ors, comparable with the standard Windows disk defragmentation utilities.

15.6 MEASUREMENT TOOLS 163

AsynchronousIO
AttributeEntry
BitMap
BoundedFloatingPoint
BoundedInteger
BtreeNode1
BulkData
ButtonGadget
ButtonStack
ByteArray

0
237

21
1034

684
200

25
34
12

156

-3
-1
-4
-3
-1
-3
0
0
0

-4

+3
+5
+8

+22
+9
+3

1
2
1

+12

[819200]
[8388608]

[13252]

class name current
nr of

objects

deleted
since

tn-1

created
since

tn-1

heap
memory
usage

Figure 15.16: Example output of OIT (Object Instantiation Tracing) tool

TheObject Instantiation Tracing(OIT) keeps track of all object instantiations
and disposals. It provides an absolute count of all the objects and the change in
the number of objectives relative to the previous measurement. The system is pro-
grammed with Objective-C. This language makes use of run-time environment,
controlling the creation and deletion of objects and the associated housekeeping.
The creation and deletion operations of this run-time environment were rerouted
via a small piece of code that maintained the statistics per class of object instanti-
ations and destructions. At the moment of a trigger this administration was saved
in readable form. The few lines of code (and the little run time penalty) have paid
many many times. The instantiation information gives an incredible insight in the
internal working of the system.

TheObject Instantiation Tracingalso provided heap memory usage per class.
This information could not be obtained automatically. At every place in the code
where malloc and free was called some additional code was required to get this
information. This instrumentation has not been completed entirely, instead the
80/20 rule was applied: the most intensive memory consumers were instrumented
to cover circa 80% of the heap usage.

Figure 15.16 shows an example output of the OIT tool. Per class the current
number of objects is shown, the number of deleted and created objects since the
previous measurement and the amount of heap memory in use. The user of this
tool knows the use case that is being measured. In this case, for example, the
next imagefunction. For this simple function 8 new BitMaps are allocated and
3 AsynchronousIO objects are created. The user of this tool compares this num-
ber with his expectation. This comparison provides more insight in design and

164 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.6

implementation.

Byte benchmark computer platform performance
OS, shell, file I/O

coarse new hardware
new OS release

test / benchmark what, why accuracy when

SpecInt (by suppliers) CPU integer coarse new hardware

file I/O file I/O throughput medium new hardware

image processing CPU, cache, memory
as function of image, pixel size

accurate new hardware

Objective-C overhead method call overhead
memory overhead

accurate initial

socket, network throughput
CPU overhead

accurate ad hoc

data base transaction overhead
query behaviour

accurate ad hoc

load test throughput, CPU, memory accurate regression

se
lf

m
ad

e
pu

bl
ic

Figure 15.17: Overview of benchmarks and other measurement tools

Figure 15.17 shows an overview of the benchmarking and other measurement
tools used during the design. The overview shows per tool what is measured and
why, and how accurate the result is. It also shows when the tool is being used.

The Objective-C overhead measurements, to measure the method call over-
head and the memory overhead caused by the underlying OO technology, is used
only in the beginning. This data does not change significantly and scales reason-
ably with the hardware improvements.

A set of coarse benchmarking tools was used to characterize new hardware
options, such as new workstations. These tools are publicly available and give a
coarse indication of the hardware potential.

The application critical characterization is measured by more dedicated tools,
such as the image processing benchmark, which runs all the algorithms with dif-
ferent image and pixel sizes. This tool is home made, because it uses the actual
image processing library used in the product. The outcome of these measurements
were used to make design optimizations, both in the library itself as well as in the
use of the library.

Critical system functionality is measured by dedicated measurement tools,
which isolate the desired functionality, such as file I/O, socket, networking and
database.

The complete system is put under load conditions, by continuously importing
and exporting data and storing and retrieving data. This load test was used as

15.7 CONCLUSION 165

regression test, giving a good insight in the system throughput and in the memory
and CPU usage.

15.7 Conclusion

This chapter described several decompositions: a functional decomposition of the
image processing pipeline, a construction decomposition in layers and a process
decomposition of the software. The image quality, throughput and response time
have been discussed and especially the design choices that have been made to
achieve the desired performance level. The design considerations show that design
choices are related to consequences in multiple qualities and multiple CAFCR
views. Reasoning over multiple CAFCR views and multiple qualities is needed to
find an acceptable design solution. All information presented here was explicitly
available in product creation documentation.

Conceptual Realization

construction decomposition
functional decomposition
designing with multiple decompositions
execution architecture
internal interfaces
performance
start up
shutdown
integration plan

work breakdown
safety

reliability
security

budget
benchmarking
performance analysis
granularity determination

value and cost

safety analysis
reliability analysis
security analysis

explicitly addressed addressed only implicitly not addressed

coverage based on documentation status of first product release

legend

Figure 15.18: Coverage of submethods of the CR views

A number of submethods has not been described here, such as start up and
shutdown, but these aspects are covered by the documentation of 1992. Fig-
ure 15.18 shows the coverage of the submethods described in part II by the docu-

166 MEDICAL IMAGING WORKSTATION: CR VIEWS 15.7

mentation of the first release. This coverage is high for most submethods. Safety,
reliability and security were not covered by the documentation in 1992, but these
aspects were added in later releases of the product.

Chapter 16

Story Telling in Medical Imaging

16.1 Introduction

Stories have not been used explicitly in the development of the medical imaging
workstation. Informally however a few stories were quite dominant in creating
insight and focus. These informal stories do not meet all criteria described in
Chapter 11, especially the specificity is missing. The typical case, as described
in Chapter 14 is complementary to the stories. We now add the required specific
quantitative details.

The main stories dominating the development were:

The sales storyhow to capture the interest of the radiologist for the product, see
Section 16.2.

The radiologist at work describing the way a radiologist works. This story ex-
plains why the radiologist isnot interested in viewing, but very interested
in films, see Section 16.3.

The gastro intestinal examination how the URF system is used to examine pa-
tients with gastro intestinal problems. This story is not described here, be-
cause it is outside the scope of the discussed thread of reasoning

Section 16.4 relates the stories to the CAFCR model and discusses the criteria
for stories as described in Chapter 11.

167

168 STORY TELLING IN MEDICAL IMAGING 16.2

16.2 The Sales Story

The main function of the medical imaging workstation is rather invisible: layout
and rendering of the medical images on film. To support the sales of the product
more attractive appealing functionality was needed. The medical community is a
rather conservative community, as far as technology is concerned: computers and
software are mostly outside their scope. The sales approach was to provide an
easy to use product, showing recognizable clinical information.

salesman radiologist

Try it yourself,
see how easy it is

Yes, this is great!

ECR'91 European Congress of Radiology

Figure 16.1: The main sales feature is easy viewing

At the European Congress of Radiology the system was shown to the radiol-
ogist. The radiologists were immediately challenged to operate the system them-
selves, see Figure 16.1.

next / previous examination

next / previous image

increase / decrease contrast

increase / decrease brightness

+-

+-

+-

+-

Figure 16.2: The simple remote control makes the viewing easy

16.3 THE RADIOLOGIST AT WORK 169

The frequently used operations were available as single button operations on
the remote control, see Figure 16.2: Select the examination, by means of pre-
vious/next examination buttons; Select image by previous/next image buttons;
Adapt contrast and brightness by increase/decrease buttons.

Note that this is a nice sales feature, but that in day-to-day life the radiologist
does not have the time to stand behind the workstation and view the images in this
way. The viewing as described in Section 16.3 is much faster and efficient.

16.3 The Radiologist at Work

The radiologist has the following activities that are directly related to the diag-
nosis of a patient: supervising the examination, viewing the images to arrive at a
diagnosis, dictating a report and verifying and authorizing the textual version of
the report. Figure 16.3 shows these activities.

activities of the radiologist

Examination
Room

dictation
room

supervision
of the

examination

view and
diagnose,

dictate report

verify and
authorise

report

auto-
loader

light-box

Figure 16.3: Radiologist work-spots and activities

The radiologist is responsible for the image acquisition in the examination
room. The radiologist is not full-time present in the examination rooms, but su-
pervises the work in multiple rooms. The radio technicians and other clinical
personnel do most of the patient handling and system operation.

The films with examinations to be viewed are collected by clinical personnel
and these films are attached in the right order to carriers in the auto-loader. The
auto-loader is a simple mechanical device that can lift a set of films out of the
store to the front of the lightbox. Pressing the button removes the current set of
films and retrieves the next set of films.

170 STORY TELLING IN MEDICAL IMAGING 16.4

tens of seconds

auto-
loader

light-box

films loaded by
clinical personnel

during the day

looks at
images

moves head
forward / backward

moves head or eyes
left/right/up/down

zoom in overview

image selection, panning

mumbles a few
Latin words or
clinical codes

in recorder

presses
next button

ne
w

 fi
lm

s

ol
d

fil
m

s

report

Figure 16.4: Diagnosis in tens of seconds

The activity of viewing and determining the diagnosis takes an amazingly
short time. Figure 16.4 shows this activity in some more detail. A few movements
of the head and eyes are sufficient to get the overview and to zoom in on the
relevant images and the relevant details. The spoken report consists of a patient
identification, a few words in Latin and or some standard medical codes. The
recorded spoken report is sent to the dictation department; the transcription will
be verified later. The radiologist switches to the next examination with a single
push on the next button of the auto-loader. This entire activity is finished within
tens of seconds.

The radiologist performs this diagnosis sometimes in between patients, but
often he handles a batch of patient data in one session. Later on the day the radi-
ologist will verify and authorize the transcribed reports, again mostly in batches.

16.4 Towards Design

The sales story provides a lot of focus for the user interface design and especially
the remote control. The functions to be available directly are defined in the story.
Implicit in this story is that the performance of these functions is critical, a poor

16.4 TOWARDS DESIGN 171

performance would kill the sales. The performance was not specified explicitly.
However the implied response times were 1 second for image retrieval and 0.1
seconds for a contrast/brightness change. These requirements have a direct effect
on the pipeline design and the user interface design.

sales
story

20 1024 2 8 bit images
3 films of 4k*5k pixels

per examination
4 exams / room

3 rooms/workstation
analyse
design

memory budget
CPU load

network load
disk budget
algorithms

analyse
design

response time, minimal UIease
of use

Customer
objectives

Application Functional Conceptual Realization

radiologist
at work

film
efficiency

processing throughput and quality

response times:
image retrieve, C/B

RC functionality

pipeline design
RC design

Figure 16.5: The stories in relation to the CAFCR views and the derived require-
ments and design choices

Figure 16.5 shows the flow from both stories to requirements and design. It
also shows the inputs that went into the stories: at the commercial side theease
of useas sales feature and thefilm efficiencyas the main application value. The
gain in film efficiency is 20% to 50% relative to the screen copy approach used
originally, or in other words the typical use of 3 to 5 film sheets is reduced to 2 to 3
film sheets. These numbers are based on the typical case described in Section 14.3.

The a priori know-how that the response time in asoftware onlysolution
would be difficult, makes this a challenging story. The technical challenge in this
story is to achieve the desired image quality and throughput, also in thesoftware
onlysolution.

The minimal user interface is also a design challenge. Without the sales story
the user interface provided would have been much too technical, an overwhelming
amount of technical possibilities would have been offered, without understanding
the clinical world view.

The story of the radiologist at work, in combination with the typical case,
is the direct input for the throughput specification. The throughput specification
is used for the memory and disk budgets and the CPU and network loads. The

172 STORY TELLING IN MEDICAL IMAGING 16.5

image quality requirements, in combination with the loads and budgets, result in
algorithmic choices.

The original software completely ignored the need for printing images on film,
it was not even present! The developer crew assumed that radiologists would
use the workstation for “soft” diagnosis. Soft diagnosis is diagnosis from the
monitor screen instead of film. A better understanding of the radiologist was
needed to get the focus on the film printing functionality. The story immediately
clarifies the importance of film sheets for diagnosis. The story also provides input
for the functionality to create the layout of images and text on film. The auto-
print functionality has been added in an extremely pragmatic way, by (mis-)using
examination data fields to request printing. This pragmatic choice could only be
justified by the value of this function as was made clear in this story.

16.5 Conclusion

Stories have not been used explicitly in the case. Somewhat less specific oral sto-
ries were provided by the marketing manager. Quantitative information was de-
scribed in a typical case. The facts for quantification were provided by application
managers. The presence of a quantified typical case provided the means for de-
sign, analysis and testing. The lack of explicit story, in combination with the poor
coverage of theCustomer ObjectivesandApplicationviews as described in Chap-
ter 14 in general, caused the late addition of the printing functionality.

Chapter 17

Threads of Reasoning in the
Medical Imaging Case

17.1 Introduction

The thread of reasoning has not been applied consciously during the development
of the Medical Imaging Workstation. This chapter describes a reconstruction of
the reasoning as it has taken place. In Section 17.2 the outline of the thread is
explained. Section 17.3 describes the 5 phases as defined in Chapter 12:

1. Select starting point (17.3.1)

2. Create insight (17.3.2)

3. Deepen insight (17.3.3)

4. Broaden insight (17.3.4)

5. Define and extend the thread (17.3.5)

17.2 Example Thread

Figure 17.1 shows a set of interrelated customer objectives up to interrelated de-
sign decisions. This set of interrelated objectives, specification issues and con-
cepts is a dominant thread of reasoning in the development of the medical imaging
workstation.

The objectives of the radiologist are at the same time reenforcing and (some-
what) conflicting. To achieve a good diagnostic quality sufficient time is required

173

174 THREADS OF REASONING IN THE MEDICAL IMAGING CASE 17.2

ConceptsCustomer objectives Specification issues

time efficient

diagnostic quality

safety (liability)

system response

system throughput

image quality

resource management
processor, memory

internal logistics
concurrency, processes

image processing
algorithms

re
in

fo
rc

in
g

co
nf

lic
tin

g

re
in

fo
rc

in
g

co
nf

lic
tin

g

de
si

gn

sp
ac

e

Customer
objectives

Application Functional Conceptual Realization

Figure 17.1: The thread of reasoning about the tension between time efficiency on
the one hand and diagnostic quality, safety, and liability on the other hand. In the
design space this tension is reflected by many possible design trade-offs.

or examine and study the results, which can be in conflict with time efficiency.
On the other hand a good diagnostic quality will limit discussions and repeated
examinations later on, by which good diagnostic quality can help to achieve time
efficiency.

The customer objectives are translated into specifications. The diagnostic
quality and safety/liability translate for example into image quality specifications
(resolution, contrast, artefact level). A limited image quality is a primary source
of a poor diagnostic quality. Artifacts can result in erroneous diagnostics, with its
safety and liability consequences.

The time efficiency is achieved by system throughput. The workstation should
not be the bottleneck in the total department flow or in the system response time.
Waiting for results is clearly not time efficient.

Also at the specification level the reenforcing and the conflicting requirements
are present. If the image quality is good, no tricky additional functions are needed
to achieve the diagnostic quality. For instance if the image has a good clinical
contrast to noise ratio, then no artificial contrast enhancements have to be applied.
Function bloating is a primary source of decreased throughput and increased re-
sponse times. The conflicting aspect is that some image quality functions are
inherently time consuming and threaten the throughput and response time.

17.3 EXPLORATION OF PROBLEMS AND SOLUTIONS 175

The design space is full of concepts, where design choices are needed. The
concepts ofresource management, internal logisticsand image processing algo-
rithmshave a large impact on the systemresponse timeandthroughput. Theimage
processing algorithmsdetermine the resultingimage quality.

The design space is not a simple multi-dimensional space, with orthogonal,
independent dimensions. The image processing algorithm has impact on the CPU
usage, cache efficiency, memory usage, and image quality. The implementation
of these algorithms can be optimized to one or two of these entities, often at the
cost of the remaining optimization criteria. For instance: images can be stored
completely in memory, which is most efficient for CPU processing time. An al-
ternative is to store and process small parts of the image (lines) at a time, which
is more flexible with respect to memory (less fragmentation), but the additional
indirection of addressing the image line costs CPU time.

Adding concurrency partially helps to improve response times. Waiting times,
for instance for disk reads, can then be used to do other useful processing. On the
other hand additional overhead in context switching, and locking is caused by the
concurrency.

The essence of the thread of reasoning is to have sufficient insight in the cus-
tomer and application needs, so that the problem space becomes sharply defined
and understood. This understanding is used to select thesweetspots of the de-
sign space, that satisfy the needs. Understanding of the design space is needed to
sharpen the understanding of the problem space; in other words iteration between
problem and solution space is required.

17.3 Exploration of Problems and Solutions

In this section the thread of reasoning is shown as it emerges over time. For every
phase the CAFCR views are annotated with relevant subjects in that phase and the
relations between the subjects.

Figures 17.2 to 17.6, described in Subsections 17.3.1 to 17.3.5, show the
phases as described in Chapter 12. The figures show the main issues under dis-
cussion as dots. The relations between the issues are shown as lines between the
issues, where the thickness of the line indicates the relative weight of the relation-
ship. The core of the reasoning is indicated as a thick arrow. The cluster of issues
at the start point and at the finish are shown as letter in a white ellipse. Some
clusters of issues at turning points in the reasoning are also indicated as white
ellipse.

176 THREADS OF REASONING IN THE MEDICAL IMAGING CASE 17.3

17.3.1 Phase 1: Introvert View

At the moment that the architect (me) joined the product development a lot of
technology exploration had been transformed into a working prototype, the so-
calledbasic application. Main ingredients were the use of Object-Oriented (OO)
technology and the vision that a “software only” product was feasible en benefi-
cial.

Philips operational view
(manufacturing, service, sales)

Conceptual

S

Customer
objectives

Application Functional Realization

purchase
price

response
time

Introvert view: cost and impact of new technologies

useable

efficient

operational
constraints

M

B
profit
margin

SW only

memory
use

OO design

Figure 17.2: Thread of reasoning; introvert phase. The starting point (S) is the
a priori design choice for a SW only solution based on Object Orientation. The
consequence for resource usage, especially memory (M) and the business (B),
especially product margin are explored.

Experienced architects will address two major concerns immediately: will
the design with these new technologies fit in the technical constraints, especially
memory in this case, and will the product fit in the business constraints (do we
make sufficient margin and profit)?

The response time has been touched only very lightly. The system was only
capable of viewing, an activity for which response time is crucial. The proto-
type showed acceptable performance, so not much time was spent on this issue.
Design changes to eventually solve cost or memory issues potentially lower the
performance, in which case response time can suddenly become important.

Figure 17.2 shows the thread of reasoning in this early stage. Striking is the in-
trovert nature of this reasoning: internal design choices and Philips internal needs
dominate. The implicitly addressed qualities are useability and efficiency. Most

17.3 EXPLORATION OF PROBLEMS AND SOLUTIONS 177

attention was for the operational constraints. The direction of the reasoning dur-
ing this phase has been from the Conceptual and Realization views towards the
operational consequences: starting at the designers choice for OO and software
only (S), via concerns over memory constraints (M) towards the business (B) con-
straints margin and profit. The figure indicates that more issues have been touched
in the reasoning, such as response time from user point of view. In the day to day
situation many more related issues have been touched, but these issues had less
impact on the overall reasoning.

17.3.2 Phase 2: Exploring Memory Needs

The first phase indicated that the memory use was unknown and unpredictable.
It was decided to extend the implementation with measurement provisions, such
as memory usage. The OIT in the dynamic run time environment enabled a very
elegant way of tracing object instantiations. At the same time a new concern
popped up: what is the overhead cost induced by the run time environment?

Philips operational view
(manufacturing, service, sales)

Application Realization

M'

U

Functional ConceptualCustomer
objectives

URF exam memory
use

OO
design

dynamic
run-time

run time
overhead

OIT

memory
measure-

ment

heap
allocation

typical
case

bulk data

How to measure memory, how much is needed?
from introvert to extrovert

memory
budget

useable

efficient

Figure 17.3: Thread of reasoning; memory needs. Create insight by zooming in
on memory management (M’). Requirements for the memory management design
are needed, resulting in an exploration of the typical URF examination (U).

The object instantiation tracing could easily be extended to show the amount

178 THREADS OF REASONING IN THE MEDICAL IMAGING CASE 17.3

of memory allocated for the object structures. The large data elements, such as
images, are allocated on the heap and required additional instrumentation. Via
the bulkdata concept this type of memory use was instrumented. Bottom up the
insight in memory use was emerging.

The need arose to define relevant cases to be measured and to be used as the
basis for a memory budget. An URF examination was used to define a typical
case. Now the application knowledge starts to enter the reasoning process, and
the reasoning starts to become more extrovert. Efficiency and usability are the
main qualities addressed.

Figure 17.3 shows the thread of reasoning for Phase 2. The reasoning is still
bottom-up from Realization towards Application View. The realization concerns
about speed and memory consumption (M’) result into concepts for resource man-
agement and measurement support. For analysis and validation a use case descrip-
tion in the Functional view is needed. The use case is based on insight in a URF
examination (U) from application viewpoint.

17.3.3 Phase 3: Extrovert View Uncovers Gaps in Conceptual and
Realization Views

The discussion about the URF examination and the typical case made it very clear
that radiologists perform their diagnoses by looking at the film on the lightbox.
This is for them very efficient in time. Their speed of working is further increased
by the autoloader, which quickly shows all films of the next examination.

To support this typical workflow the production of filmsheets and the through-
put of films and examinations is important. Interactive viewing on the other hand
is from the radiologist’s point of view much less efficient. Diagnosis on the basis
of film takes seconds, diagnosis by interactive viewing takes minutes. The auto-
print functionality enables the production of films directly from the examination
room.

auto-print functionality requires lots of new functions and concepts in the sys-
tem, such as background printing (spooling), defining and using film layouts,
using the right rendering, et cetera. The processing library must support these
functions. Also an execution architecture is required to support the concurrency:
server processes and spool processes are introduced. Last but not least, hardcopy
units (HCU), for example laser printers, need to be interfaced to the system. A
new set of components is introduced in the system to do the printing: hardcopy
interface hardware, hardcopy driver, and the hardcopy units themselves.

During this phase the focus shifted from efficiency to effectiveness. Efficiency

17.3 EXPLORATION OF PROBLEMS AND SOLUTIONS 179

Customer
objectives

Application Realization

U

U'

P

Functional Conceptual

diagnosis
film on
lightbox

time
efficient throughput auto-print

film
layout

spooling

rendering processing
library

spool
processes

HC interface

HC driver

autoloader
server

processes

HCU

printserver

pipeline

URF exam typical
case

Radiologists diagnose from film, throughput is important
Extrovert view shows conceptual and realization gaps!

usable

efficient

 effective

Philips operational view
(manufacturing, service, sales)

Figure 17.4: Thread of reasoning; uncovering gaps. The insight is deepened by
further exploration of the URF examination (U) and the underlying objectives (U’)
of the radiologist. The auto-print functionality is specified as response for the
radiologist needs. The technical consequences of the auto-print are explored, in
this case the need for printing concepts and realization (P).

is mostly an introvert concern about resource constraints. Effectiveness is a more
extrovert concern about the quality of the result. Hitchins clearly explains in [32]
efficiency and effectiveness, and points out that the focus on efficiency alone cre-
ates vulnerable and sub-optimal systems. Usability remains important during this
phase, for example auto-print.

Figure 17.4 shows the thread of reasoning of Phase 3. The insights obtained
during the previous phase trigger a further exploration of the Customer Objectives
and Application View. The insight that an efficient diagnosis (U’) is performed
by means of film sheets on a lightbox (U) triggers the addition of the auto-print
function to the Functional View. New concepts and software functions are needed
to realize the auto-print function (P). The direction of reasoning is now top-down
over all the CAFCR views.

180 THREADS OF REASONING IN THE MEDICAL IMAGING CASE 17.3

17.3.4 Phase 4: from Diagnosis to Throughput

The discussion about URF examinations and the diagnostic process triggers an-
other thread, a thread about the desired diagnostic quality. The high brightness
and resolution of films on a lightbox ensures that the actual viewing is not degrad-
ing the diagnostic quality. The inherent image quality of the acquired and printed
image is critical for the final diagnostic quality.

RealizationCustomer
objectives

Application

U"
P'

T

ConceptualFunctional

diagnosis
film on

light-box

time efficient
throughput

film
layout

rendering processing
library

HC interface
HCU

URF exam

from extrovert diagnostic quality, via image quality,
algorithms and load, to extrovert throughput

diagnostic
quality

image
quality

contrast

dynamic
range

resolution

HCU
processing

pixel
depth

interpolation

barium
meal

pipeline

CPU
budget

typical
case

useable

efficient

 effective

Philips operational view
(manufacturing, service, sales)

Figure 17.5: Thread of reasoning; phase 4. The insight is broadened. Starting at
the objective to performdiagnosisefficient in time (U”), the application is further
explored: type of examination and type of images. The specification of the imag-
ing needs (contrast, dynamic range, resolution) is improved. The consequences
for rendering and film layout on a large set of realization aspects (P’) is elaborated.
The rendering implementation has impact on CPU usage and the throughput (T)
of the typical case.

At specification level the image quality is specified in terms of resolution,
contrast and dynamic range. At application level the contrast is increased by the
use of barium meal, which takes the contrast to the required level in these soft (for
X-ray low contrast) tissues. At the same time the combination of X-ray settings
and barium meals increases the dynamic range of the produced images.

The size of the images depends on the required resolution, which also de-

17.3 EXPLORATION OF PROBLEMS AND SOLUTIONS 181

termines the film layout. The rendering algorithms must fulfil the image quality
specifications. The rendering is implemented as a pipeline of processing steps
from an optimized processing library.

One of the costly operations is the interpolation. One of the design options
was to use the processing in the hardcopy unit. This would greatly relieve the
resource (processor and memory) needs, but it would at the same time be much
less flexible with respect to rendering. It was decided not to use the hardcopy unit
processing.

A CPU budget was created, based on the typical case and taking into account
all previous design know-how. This CPU budget did fit in the required throughput
needs.

Usability, effectiveness and efficiency are more or less balanced at this mo-
ment.

Figure 17.5 shows the thread of reasoning for Phase 4. During this phase
the reasoning iterates over all the CAFCR views. The diagnostic quality (U”)
in the Customer Objectives View results via the clinical acquisition methods in
the Application view in image quality requirements in the Functional View. The
layout and rendering in the Conceptual view result in a large set of processing
functions (P’) in the Realization view. The specific know how of the processing in
the Realization is used for the CPU and memory budgets in the conceptual view,
to validate the feasibility of supporting the typical case in the Functional view.
The typical case is a translation of the throughput (T) needs in the Application
View.

17.3.5 Phase 5: Cost Revisited

At this moment much more information was available about the relation between
resource needs and system performance. The business policy was to use standard
of-the-shelf workstations. The purchase price by the customer could only be met
by using the lowest cost version of the workstation. Another policy was to use
a Philips medical console, which was to be common among all products. This
console was about half of the material cost of the Medical Imaging workstation.

The real customer interest is to have a system that is economically sound, and
where throughput and cost of ownership (CoO) are balanced. Of course the main
clinical function, diagnosis, must not suffer from cost optimizations. A detailed
and deep understanding of the image quality needs of the customer is needed to
make an optimized design.

Note that at this moment in time many of the considerations discussed in the

182 THREADS OF REASONING IN THE MEDICAL IMAGING CASE 17.4

Philips operational view
(manufacturing, service, sales)

Conceptual

efficient

useable

RealizationCustomer
objectives

Application Functional

diagnosis

time efficient
throughput processing

library

cost revisited in context of clinical needs and
realization constraints; note: original threads are significantly simplified

diagnostic
quality

image
quality IQ spec

pixel
depth

CPU
budget

typical
case

common
console

memory
limit

BoM
Moore's

law

purchase
price

CoO
economic

sound

render
engine

effective

operational
constraints

M'

S

M

B

U"

P'

T

U

U' P

profit margin
standard workstation

C

memory budget

Figure 17.6: Thread of reasoning; cost revisited. The entire scope of the thread
of reasoning is now visible. Sufficient insight is obtained to return to the original
business concern of margin and cost (C). In the mean time additional assumptions
have surfaced: a common console and standard workstation to reduce costs. From
this starting point all other viewpoints are revisited: via time efficient diagnosis to
image quality to rendering and processing and back to the memory design.

previous steps are still valid and present. However Figure 17.6 is simplified by
leaving out many of these considerations.

Besides efficiency, effectiveness, and usability, the operational constraint is
back in the main reasoning thread. At this moment in time that makes a lot of
sense, because problem and solution space are sufficiently understood. These con-
straints never disappeared completely, but the other qualities were more dominant
in the intermediate phases.

Figure 17.6 shows the thread of reasoning in Phase 5. The original business
viewpoint is revisited: do we have a commercial feasible product? A full iteration
over all CAFCR views relates product costs (C) to the key drivers in the Customer
Objectives. The main tensions in the product specification are balanced: image
quality, throughput of the typical case and product cost. To do this balancing the
main design choices in the Conceptual and Realization views have to be reviewed.

17.4 CONCLUSION 183

17.4 Conclusion

Philips operational view
(manufacturing, service, sales)

efficient

useable

RealizationConceptualCustomer
objectives

Application Functional

effective

operational
constraints

M'

S M

B

U"

P'

T

U
U'

P

C

phase 1 phase 2 phase 3 phase 4 phase 5

legend

Figure 17.7: All steps superimposed in one diagram. The iterative nature of the
reasoning is visible: the same aspects are explored multiple times, coming from
different directions. It also shows that jumps are made during the reasoning.

The know-how at the start of the product creation was limited to a number
of nice technology options and a number of business and application opportuni-
ties. The designers had the technology know-how, the marketing and application
managers had the customer know-how. The product creation team went through
several learning phases. Figure 17.7 shows the many iterations in the five phases.
During those phases some of the know-how was shared and a lot of new know-
how emerged. The sharing of know-how made it possible to relate customer needs
to design and implementation options. The interaction between the team members
and the search for relations between needs and designs triggered many new ques-
tions. The answers to these questions created new know-how.

The architecting process has been analyzed in retrospect, resulting in this de-
scription ofthreads of reasoning. This ChapterThreads of Reasoningshows that:

• The specification and design issues that are discussed fit in all CAFCR
views or the operational view.

184 THREADS OF REASONING IN THE MEDICAL IMAGING CASE 17.4

• The positioning of the issues and their relationships in the CAFCR views
enable a compact description of the reasoning during the product creation.

• Submethods are used to address one issue or a small cluster of issues.

• Qualities are useful as integrating elements over the CAFCR views.

• Thethreads of reasoningare an explicit way to facilitate the interaction and
the search for relations.

• Thethreads of reasoningcreate an integral overview.

• Thethreads of reasoningfacilitate a converging specification and design.

Part IV

Evaluation, Discussion and
Conclusions

Chapters in Part IV:

18. Evaluation of the Architecting Method

19. Evaluation from aWider Context

20. Balancing Genericity and Specificity

21. Reflection on Research Method to Study Architecting Methods

22. The Future of Architecting Research

23. Conclusion

185

Chapter 18

Evaluation of the Architecting
Method

18.1 Introduction

The hypothesis formulated in Chapter 6 is evaluated by means of the Medical
Imaging Workstation case. This evaluation uses the criteria that have been defined
in Chapter 6.

Figure 18.1 shows how the case maps on the hypothesis and repeats the crite-
ria. This figure is used as the basis for the evaluation of the case.

The hypothesis narrows the scope: the method is applied onsoftware and tech-
nology intensive complex systemsand the product creation takes place inhetero-
geneous environments. The medical imaging workstation fully fits in these con-
straints. The system requires many hardware and software technologies, see Fig-
ure 3.5 and the list of technology innovations in Section 3.2. Also a lot of physics
and clinical application related technologies are required to translate pixels into
clinically relevant information. The heterogeneity of the environment is present in
multiple dimensions:modalities(X-ray, CT, MRI),applications(gastro-intestinal,
vascular, CT and many more) andreleases(URF, vascular, CT, and MRI; each of
them interoperable with multiple releases).

Section 18.2 evaluates the design of the product. The design quality is a mea-
sure for the sustainability of the product and for the support of the method to
the PCP team. Section 18.3 evaluates the product itself. The product evaluation
addresses the criteria 1 and 2, of Figure 18.1, which address thecommercialsuc-
cess. Section 18.4 discusses how themethodhas been instrumental in creating the

187

188 EVALUATION OF THE ARCHITECTING METHOD 18.2

criteria
1. product is a commercial success
2. product family is sustainable commercially successful
3. architects benefit from deploying submethods in multi-view framework
4. project leaders, product managers and engineers are able to use

the outcome of the submethods

hypothesis

A rich collection of submethods fitting in a multi-view framework

complemented with reasoning methods enables successful architecting of technology

and software intensive complex systems in heterogeneous environments by means of

generic insights grounded in specific facts

CAFCR submethods
qualities checklists

story telling
CAFCR

quality needles
threads of
reasoning

medical
imaging

workstation

multi-modality
multi-application

multi-release
small system level

specifications
measurements,

source code, log files
films, images, et cetera

Figure 18.1: Annotated hypothesis and criteria as basis for the evaluation

product and how it has contributed to sustainable success, thus evaluating crite-
rion 3: Criterion 4, the usability of the outcome, is evaluated in Section 18.5. The
conclusion of the complete evaluation is articulated in Section 18.6.

18.2 Design Evaluation

Figure 18.2 shows an evaluation of the design quality, which is based on an inter-
nal technology improvement plan [50].

The community of designers was very content about many of the concepts and
implementations. This assessment is rather subjective, because the designers are
creators and users of the design at the same time. The following three questions
are a somewhat more objective way to make the quality assessment more explicit:

• Does the product, based on this design, fulfill the requirements?

• How does the design support ongoing developments? How is development
effort (in time and manpower) affected when new functionality is added, for
instance as shown in Figure 14.10?

• Benchmarking: How does the product and design compare with other prod-
ucts? For example, compare code size in relation to the offered functionality

18.2 DESIGN EVALUATION 189

Conceptual Realization

+ notification
+ Objective-C
+ standard workstation
+ X bypass
+ Unix

- dependency structure
- interface management

~ modularity
~ distance internal and external information model
~ some bloating due to over-genericity
~ property handling

lots of discussions about :
language choice (why not C++)
windowing system
platform re-use

+ processing pipeline
+ graphics
+ UI toolbox
+ PMSnet
+ database engine

+ memory management
+ DB based communication
+ SW keys
+ OIT

- problem

~ doubt

+ good

based upon technology assessment in "Technology Improvement Plan"

legend

Figure 18.2: Evaluation of the design of the medical imaging workstation

for multiple products.

Most of the success of the first product and its successors, as described in Sec-
tion 18.3, are due to the power, flexibility, expressiveness, and richness of the
concepts and implementations mentioned in the “good”-section of Figure 18.2.

Note that most of the strong point are concepts that have been chosen and
implemented by the software designers rather than by the architect. The SW de-
signers deserve the credit for the selection and implementation of these concepts.
The architect is involved in the selection and deployment of the concepts, but
more supportive and monitoring than leading. The submethods that have been
presented do not deal with the selection of these concepts, although they provide
some means such as criteria. The submethods mostly provide means at higher
integration levels.

A code size comparisonis hard to reconstruct at this moment, mostly because
it requires an objective measure of functionality. The 360kloc (including com-
ments) of code in the medical imaging workstation divides about equally into code
for viewing functionality and code for the modality products. However the work-
station removed many of the constraints of the modality products. It allowed, for
example, arbitrary sized images instead of5122 and10242 images only. In other
words more functionality is offered in about the same amount of code.

190 EVALUATION OF THE ARCHITECTING METHOD 18.2

The designers who actually used the concepts and the implementation were
very positive. People outside of the medical imaging workstation product group,
however, had a lot of critical remarks about the design and implementation. The
feedback of this group was not based on practical experience but rather from doc-
umentation (best case) or hearsay (worst case). This situation was caused by the
political climate within the division, where competition for funding caused a lot
of this kind of non-rational arguments.

The critical remarks of the group of outsiders were taken seriously. As a result
a technology improvement plan was written, on which figure 18.2 is based. The
aspects assessed as “doubtful” and negative are discussed below.

The first phases of the improvement plan focused on improvements of the
modularity, interface management, dependency structure, and thedistance be-
tween internal and external information model. The problem with modularity was
that only fine-grain modularity, at class or file level, existed. No higher aggrega-
tion level existed and no explicit dependency structure was defined. In general the
class level granularity was good. Some classes, however, were too generic, which
resulted in bloating. Inheritance was used too much, which often happens when
development teams start to use OO techniques.

The internal and external data models were two entirely different entities man-
aged by different people. From an interoperability point of view this is a risk. This
risk becomes more prominent when different modalities have to interoperate.

The delayed design choices, and data about installation, configuration, and
customization were all stored in property files. This mechanism did not scale up
well and the information was not recognized as regular code. The risk is compara-
ble with missing source code management. Another risk is loss of overview. Note
that those risks were not yet acute in the first product with its limited configura-
bility and functionality.

The interface management was one of the main issues of this design. The
product did not suffer from any interface management problem, but follow-on
products, which re-used the code base, complained a lot. All changes applied
somewhere in the code could propagate to other parts of the code.

In the organization a lot of noise was present in discussions about the pro-
gramming language (Objective-C [5]). The opinion of managers and engineers
outside of the project was that Objective-C was a non-standard language, which
was dying due to lack of followers in the rest of the world. On the other hand, a
lot of the valuable concepts built upon the dynamic nature of Objective-C. These
concepts would have bloated significantly if C++ would have been used for the
implementation. In retrospect, a language disappears not as fast as predicted by

18.3 PRODUCT EVALUATION 191

many of its opponents. Somewhat less heated was the debate about the windowing
system. Most organizational noise was removed by the use of the X-compatible
bypass (Nix).

A lot of disturbance was caused by the platform expectations in the organiza-
tion. The original objective of the development team [52] was to create a re-usable
platform for Philips Medical Systems. The team focus changed to create medi-
cal imaging workstation products. From the product management point of view
the platform creation became a non-issue: platforms are not sold to external cus-
tomers! The product groups in the context did not follow this focus change. They
expected a cost reduction to be achieved by sharing the development costs of a
viewing platform.

18.3 Product Evaluation

The case describes the development of the first product release of the Medical
Imaging Workstation. Figure 18.3 shows the strong and weak points, as they were
perceived at the outside of the product.

operational
feedback

customer
feedback

Customer
objectives

Application Functional

++ usability film layout
++ film efficiency
+ operator efficiency printing
+ ease of auto-printing

- concurrent viewing and auto-printing

+ throughput
+ image quality
+ interoperability URF

- interoperability vascular

+ sales volume
+ selling price
+ margin
+ time to market

+ manufacturability
+ option handling

~ network installation- return on investment - problem

~ doubt

+ good or
++ very good

legend

Figure 18.3: Evaluation of the medical imaging workstation product

The feedback from the URF customers, obtained via application managers
who visit many URF departments, was very positive about theusabilityof thefilm
layoutand thefilm efficiency. Also theoperator efficiency of printingandease of
auto-printingwas appreciated. Viewing was used only very limited. The few users
who used it also for viewing complained about the simultaneous performance of

192 EVALUATION OF THE ARCHITECTING METHOD 18.3

viewing and auto-printing. Note that this was no surprise; it was even according to
specification. It indicates that to a small subset of the customers the specification
was insufficient.

At specification level thethroughput, image quality, andinteroperability with
URF systemswere according to specification. The specification is appreciated
by the customer. The interoperability with vascular systems was below internal
(product management) expectations. Product management expected vascular sys-
tems to interoperate in the same way as URF systems. However, vascular systems
are used quite differently than URF systems. The functionality and performance
needs of vascular surgeons differ from the radiologist’s needs. The system did
not provide significant value for vascular use. The vascular product group did not
have a clear incentive to improve the interoperability, because of the lack of added
value, Not many customer complaints were filed about this problem1.

From a business point of view the product was clearly a success. It yielded a
goodsales volume(increasing from circa 50 systems in the first year to hundreds
of systems in later years), the rightselling price, a reasonablemargin, and a good
time to market. The return on investment (ROI)2, however, only occurred after
several years.

At the portfolio level of Philips Medical Systems (PMS) the turnover of these
workstations was negligible. Modality systems (MRI, X-ray, CT-scanners) form
the bulk of the turnover. Modality systems have a limited innovation speed, due
to their multi-technology complexity and their safety requirements. The medical
imaging workstation provided a means to introduceimage handlinginnovation
faster, because this product has its own (more dynamic) life-cycle. In later years
the strategic value of an independent platform for image handling innovation at
PMS level turned out to be large. Additional modality3 turnover could be realized
thanks to the image handling capabilities of the medical imaging workstation.

Feedback from manufacturing and service departments indicates that the op-
erational requirements, such asmanufacturabilityandoption handling, were ful-
filled satisfactorily. Installation of networking functionality overlapped with other

1Service engineers and application managers file complaints of users by means of Problem Re-
ports. A control board analyses and discusses incoming Problem Reports regularly.

2 Product groups have a profit/loss responsibility. Losses are accepted for about 2 years, after
such a start-up period a “normal” ROI is demanded. The volume of all products, including options,
was after about 2 years at an acceptable level. Especially the (software) options helped to get at an
acceptable ROI.

3The termmodalitysystem is used for image acquisition systems. The image acquisition tech-
nique, such as MR, CT, US, or X-ray, is dominant in the system design. This technique is called the
modality.

18.4 EVALUATION OF ARCHITECTING METHOD 193

hospital disciplines, such as IT departments and facility management. For the
Philips service work force this was a new area. The networking was not a big
issue, but it required quite a lot operational attention.

18.4 Evaluation of Architecting Method

Subsection 18.4.1 evaluates the use of the submethods, described in the Chapters 8
and 9 and applied in the Chapters 14 and 15. The use of the qualities and the qual-
ity checklist (Chapter 10) are evaluated in Subsection 18.4.2. Subsection 18.4.3
evaluates the story telling (Chapter 11 and 16). The reasoning methods (described
in Chapter 12 and applied in Chapter 17) are evaluated in Subsection 18.4.4. The
integration of all components of the methods is evaluated in Subsection 18.4.5.

18.4.1 CAFCR Submethods

Figure 18.4 shows the submethods per view. Every method is annotated with
its usage in the case. Many submethods are used explicitly, although not always
exactly as described in part II. The fact that these submethods have been used
recognizes the need for these methods.

Some subjects covered by submethods have been discussed during the product
creation, but did not result in any specific consolidation of data in specifications.
In figure 18.4 these submethods are labelled“only implicitly” . Often the coverage
of these subjects was rather partial. They have been discussed, but they were not
thoroughly analyzed.

The fact, for instance, that safety has not been explicitly addressed in the first
release is due to the low severity factor of this product. This product does not
immediately endanger patients or operators. X-ray systems, on the other hand,
use radiation and heavy moving parts that can be dangerous for patients as well as
personnel. These systems take measures to cope with the risks, such as shielding
and detection. In later releases of the medical imaging workstation the safety has
been addressed explicitly, with a mandatory hazard analysis and accompanying
specification and design measures.

The subjects that have not been covered in the first release were less impor-
tant and critical than the covered subjects. This selection process is described in
Figure 7.7. Some of these subjects, for instance security, have been addressed
explicitly in a later release.

The most remarkable observation from Figure 18.4 is that theCustomer Ob-
jectivesandApplicationviews are poorly covered. As discussed in Section 17.3

194 EVALUATION OF THE ARCHITECTING METHOD 18.4

Customer
objectives

Application Functional Conceptual Realization

key drivers
value chain

business models
suppliers

context diagram

stakeholders
and concerns

entity relationship
models

dynamic models

case descriptions
commercial

decomposition
service

decomposition
goods flow

decomposition
function and

feature
specifications

performance
external interfaces
standards

construction
decomposition

functional
decomposition

designing with
multiple
decompositions

execution
architecture

internal interfaces
performance
start up
shutdown
integration plan

work breakdown
safety

reliability
security

budget
benchmarking
performance

analysis
granularity

determination

value and cost

safety analysis
reliability analysis
security analysis

explicitly addressed addressed only implicitly not addressed

coverage based on documentation status of first product release

legend

Figure 18.4: Coverage of submethods discussed in part II

the introvert culture of the development teams causes this unbalance.

18.4.2 Qualities

Figure 18.5 shows the use of qualities that appear in in the documentation struc-
ture in 1996, when the product family was already more mature. A significant
amount of qualities were explicitly documented in separate documents:image
quality, safety, security, throughput or productivity, connectivity, resource utiliza-
tion, configurability and installability. Many other qualities were addressed as
part of other documentation, such as functional requirement specifications or the
technical product documentation.

Figure 18.6 shows the relative coverage of the qualities as they have been
applied in the case. This coverage is determined by the amount of explicit and
implicit information present in the system documentation, see Figure 18.5. The
relative relevance of these qualities for this business is also shown. The relevance

18.4 EVALUATION OF ARCHITECTING METHOD 195

usability
attractiveness
responsiveness
image quality
wearability
storability
transportability

usable

safety
security
reliability
robustness
integrity

reliable

throughput or
productivity

effective

serviceability
configurability
installability

serviceable

liability
testability
traceability
standards compliance

liable

ecological footprint
contamination
noise
disposability

ecological

reproducibility
predictability

consistent

efficient
resource utilisation
cost of ownership

cost price
power consumption
consumption rate

(water, air,
chemicals,
et cetera)

size, weight
accuracy

down to earth
attributes

manufacturability
logistics flexibility
lead time

logistics friendly

evolvability
portability
upgradeability
extendibility
maintainability

future proof

interoperable
connectivity
3rd party extendible

implicit in other documents
in separate document

legend

Figure 18.5: Quality documentation in 1996

is based on experience used in a retrospective assessment. The qualities in this
figure have been aggregated. This aggregated format makes it immediately clear
that only a subset of qualities is relevant per business.

For medical imaging qualities such asecological, logistics friendlyanddown
to earth attributesare relatively unimportant. In other systems, for instance print-
ers, all of these qualities are important.

The conclusion of Figures 18.6 and 18.5 is that the qualities play an impor-
tant role in the product creation. For in this product many qualities were even
documented in separate documents.

18.4.3 Story Telling

Story telling has not been deployed in the medical imaging case in the way de-
scribed in in Chapter 11. In the documentation of the system there is a document
called typical case. This document partially fulfilled this role. Thetypical case
in combination with the oral version, described in Chapter 16, proved to be very
valuable to connect the clinical world and the engineering world. The radiologist
story created the focus on printing on film. The efficient film production became
the number one selling argument of the product.

196 EVALUATION OF THE ARCHITECTING METHOD 18.4

E
co

lo
gi

ca
l

U
sa

bl
e

R
el

ia
bl

e

E
ffe

ct
iv

e

In
te

ro
pe

ra
bl

e

E
ffi

ci
en

t

Li
ab

le

C
on

si
st

en
t

S
er

vi
ce

ab
le

Fu
tu

re
 p

ro
of

Lo
gi

st
ic

s
fri

en
dl

y

D
ow

n
to

 e
ar

th
 a

ttr
ib

ut
es

coverage

relevance

coverage based on amounf of explicit and
implicit availbale information in documentation;
relevance based on retrospective
experience based assessment

completely
covered

not
covered

very
relevant

not
relevant

legend

Figure 18.6: Coverage profile of qualities

18.4.4 Threads of Reasoning

The threads of reasoning were only semi-consciously applied. The fast iteration
over multiple views was consciously applied. The integral understanding emerged
as a result of this fast iteration. In retrospect this approach can be visualized as a
thread of reasoningas described in Chapter 17. It is this integral understanding
that helped to finish the product within the constraints. The integral understanding
can indirectly be observed by the handling of the problems found during integra-
tion, see Sections 13.4 and 13.5.

The introduction date is a very important business constraint: late introduction
means lower market share and lower margins. The integral understanding made
it possible to finish the product in time. Without integral understanding it would
have taken much more time (months or years) to get the product at an acceptable
level.

18.4.5 The Integration of the Method

The hypothesis starts with “A rich collection of submethods fitting in a multi-view
framework complemented with reasoning methods”. In other words thesubmeth-

18.4 EVALUATION OF ARCHITECTING METHOD 197

ods, the multi-view frameworkand thereasoning methodsmust be employable
in a complementary fashion. The integration of components of the methods is
evaluated in this subsection.

The main value provided by the architecting method is in detecting and solving
integral problems, such as thethroughput, image quality, andmemory utilization.
Most local aspects (single concepts, single functions) were engineered in a pro-
fessional way. Integration problems arise across the boundaries of concepts and
functions, and emerge due to the dynamic behavior of many components. The
submethods and the framework add means to do thesystemlevel design.

Many submethods are based on very specific and detailed facts. Thetypical
case, as described in Section 14.3, also focuses on a completely quantified de-
scription, which enables specific analysis and design actions. The specifications
at the system level have to be rather generic to keep the specifications usable and
the size manageable. Typical quality specifications, for instance, were between 4
and 8 pages of content. In other words, in the consolidation of the design there is
very limited room for specific details.

The architect continuously operates in this field of force: the need forgener-
icity in guidelines and rules, while the added value is mostly in the integral under-
standing emerging from a large amount of highlyspecific detailed facts.

In the medical imaging workstation case the amount of viewpoints, submeth-
ods, and qualities used was good: no dramatic problems caused by missing view-
points, submethods or qualities arose later. All of the viewpoints, submethods,
and qualities are highly relevant in solving the integration problems. The duration
of the integration of the first product and of the later products, see Figure 14.10,
was manageable. The relevance of the viewpoints, submethods, and qualities is
shown in Chapter 17. The amount of method components was manageable for the
architects, and the results could be absorbed by the stakeholders. The selection
of the methods emerged by (unconsciously) applying the threads of reasoning.
Conclusion: the reasoning method resulted in a minimal set of required compo-
nents of the method, and the reasoning method supported the integration of these
components.

The balance between genericity and specificity, which is formulated at the end
of the hypothesis “by means of generic insights grounded in specific facts”, did
work out well in the case. Sufficient specific details, such as measurements, source
code, log files, films, and images, were touched to form the basis for the emerging
understanding. The size of the system level documentation was rather limited; the
integral overview was clearly present in the documentation, the overview was not
hidden in a vast amount of details. Some of the engineers, however, criticized the

198 EVALUATION OF THE ARCHITECTING METHOD 18.5

abstraction level of the documentation. This criticism is discussed in Section 18.5,
which evaluates the usability.

18.5 Usability Evaluation of the Outcome of the Archi-
tecting Method

Criterion 4 states “project leaders, product managers and engineers are able to
use the outcome of the submethods”. This section evaluates how the PCP team
members have experienced the outcome of the submethods.

The results of the submethods in the CAFCR views are consolidated in prod-
uct and design specifications. Figure 18.7 shows who uses the results, what the
results are used for, and what complaints have been voiced by the engineers.
These specifications have been used by a wide variety of stakeholders:product
management, application, project leaders, engineers, test engineers, purchasing,
manufacturing, andsuppliersfor a wide range of purposes: tocreate detailed
specifications, to test, to communicate, to derive documentationsuch as manuals,
and as basis forsucceeding products.

results used by:
product management
application
project leaders
engineers
test engineers
purchasing
manufacturing
suppliers

results used for:
detailed specifications
testing
communication
derived documentation (manuals)

used for succeeding products

system
level

module level

submethods, qualities

ga
p

engineers critics
too abstract
too late finalised

too late
project start product release

draft fin
al

re

vie
w

Figure 18.7: Users and usage of the results of the architecting method

Some engineers complained about the level of abstraction of the output. “How
can I use this specification; I need more guidance”. The problem is that the dis-

18.6 CONCLUSION 199

tance from system level specifications (high abstraction level) to module level
implementation (low abstraction level) is very large (from tens of documents to
hundreds of thousands lines of code). For some functional subsystems this gap
was bridged by deploying the architecting method recursively. Some members of
the product creation team were capable of doing this, but for other subsystems the
gap never got bridged.

The solution for this class of problems is often outside the scope of the method.
This gap problem, for instance, can be solved by working on the quality of the PCP
team. To improve the team quality the skills of the individuals can be improved
and the composition of the team can be changed to obtain the required distribution
of skills in the team. The skills of the designers at the module level are increased
to be able to work directly from the system level output. Nevertheless, this will
always be an area of tension: problems that are complex by nature cannot be sim-
plified infinitely. The quality of the PCP team is solved in the wider context of
the PCP, as shown in Figure 1.2: people (skills), organization (team composition),
process (methods).

Another complaint uttered by some of the engineers was that the results were
frozen quite late. Many specifications exist for a long time indraft status, to get
their final review somewhere in the integration phase. On the one hand this is
a fair criticism: most engineers need stable information to make good progress.
The problem on the other hand is that product creation in complex and innovative
environments is full of uncertainties: is it feasible?, what do we need exactly?
how much does it cost? And these questions are often mutually dependent. No
method will ever be able to know the unknowns; in the best case it will help to
cope with the unknowns. Support for unknowns makes it possible to discover
unknown issues early. Another way to cope with the unknowns is to minimize
vulnerability.

18.6 Conclusion

The case has been used to test the hypothesis. The results of the evaluation are
summarized in Figure 18.8. In many aspects the criteria are met:

Design and Integration According to Section 6.4 the quality of the design and
the integration is a measure for Criterion 3, and the quality of the design is a
prerequisite for Criterion 1. The quality of design was good (Section 18.2).
The quality of the integration was also good (Subsection 18.4.5).

Criterion 1 The product is a commercial success (Section 18.3).

200 EVALUATION OF THE ARCHITECTING METHOD 18.6

1. product is a commercial success

2. product family is sustainable commercially successful

3. architects benefit from deploying submethods in multi-view framework

4. project leaders, product managers and engineers are able to use the
outcome of the submethods

+ sales volume
+ selling price
+ margin
+ time to market

multi-view framework

FCAsubmethods ? integration of the method

results used by stakeholders
for many purposes

too late
too abstract ?

derived from Figure 18.3

+ 3 products
+ 10 releases
in 5 years

derived from Figure 14.10

qualities checklist

CR

story telling reasoning

derived from sections
18.4.1
18.4.2
18.4.3

derived from sections
18.4.4
18.4.5

derived from Figure 18.7
OK

doubt

legend

Figure 18.8: The conclusion of the case evaluation

Criterion 2 The product family is sustainable commercially successful (Section 18.3).

Criterion 3 Architects benefit from deploying submethods in a multi-view frame-
work (The submethods, the quality checklist and story telling were respec-
tively evaluated in Subsections 18.4.1, 18.4.2 and 18.4.3). The integration
of the method is supported by the multi-view framework and reasoning
methods (the integration is evaluated in Subsection 18.4.5. The reason-
ing method, based on the threads of reasoning, is discussed in Subsec-
tion 18.4.4).

Criterion 4 The Product Creation team is used by many stakeholders for many
purposes (Section 18.5).

Two evaluation aspects need more evidence or discussion. The submethods in
theCustomer ObjectivesandApplicationviews are insufficiently covered by the
case. In the next chapter other supporting evidence for the use of the submethods
in these views will be supplied. The perception of some engineers that the results
aretoo lateor too abstract(Section 18.5) will be discussed further in Chapter 20.

Chapter 19

Evaluation from a Wider Context

19.1 Introduction

The architecting method has been illustrated by means of the medical imaging
workstation case, and this case was used to evaluate the method. Some aspects
of the method could not be evaluated, mostly because these aspects have not been
made explicit until after the case period.

In Chapter 5 other evaluation possibilities are indicated, such asresearch
projects, workshopsand courses. The significance of this wider context is the
potential of performing architecting method research with a greater statistical sig-
nificance. This chapter does not provide this statistical data. More research, with
well defined research protocols, is needed to obtain more robust results. Observa-
tions from this context are discussed, however, to show the potential of research
in this wider context.

Section 19.2 evaluates the method in the research environment, Section 19.3
in the workshop settings, and Section 19.4 in the course setting. In these sections
the suppotive information is indicated by an identification tag:

c n for CAFCR and multi-view information

q n for quality cheklist information

s n for story telling information

i n for iteration information

u n for usability information

In Section 19.5 the findings are summarized.

201

202 EVALUATION FROM A WIDER CONTEXT 19.2

19.2 Research Environment

For many years research of architecting methods has been performed at Philips
Research in the SwA (Software Architectures) group. The research projects in
which this group participated have been using some of the discussed architecting
(sub)methods consciously.

A short description of the research projects that applied some of the methods
is given below:

Family Asset ManagementHow to manage electronic assets, such as movies,
pictures, and music? The publication is: [73] is based on this work.

Project infrastructure platform Electronic and software infrastructure (closed
circuit TV, security, public access et cetera) to support project organizations
in the domains of industrial buildings, banks, railway stations, airport ter-
minals, and motorways.

Heartcare Image and information integration of all cardio-related information
from cathlab to personal monitoring used at home or away.In [2] story
telling is used in the scenario approach. In [57] story telling, called scenar-
ios in this article, are used to make architectures better future proof.

Platform for portable multi-media Few or single chip electronics and software
platform for the creation of mobile multi-media systems (cellphones, PDAs,
personal audio, et cetera).

Software productivity for audiovisual systems How to create the software for
integrated and connected audio and video systems (TVs, set-top boxes, per-
sonal video recorders, DVD recorders, et cetera) in a limited amount of
time?

Composable architecturesHow to create architectures that support composabil-
ity? This project consolidated and exchanged experiences over a wide range
of products: from televisions to cathlabs. The publications [79], [58], [3],
and [59] are the first articles and presentations of the BAPO (Business, Ar-
chitecture, Process and Organization) and CAFCR models. The PhD the-
sis [48] by Jürgen Müller zooms in on theConceptualandRealizationviews
and provides a method to design components that fulfill multiple qualities.
In these design views these qualities are called aspects.

In particular the following (sub)methods have been used:

19.3 RESEARCH ENVIRONMENT 203

• the decomposition in the 5 CAFCR views

• story telling

• qualities

• iteration over multiple views

Compared to the medical imaging workstation case these research projects
put more emphasis on theCustomer objectivesandApplication views(c1). This
results in more focused research projects and less technology push. Researchers
in the platform-oriented projects (infrastructure, multi-media, software productiv-
ity), for instance, discovered that solutions were being pushed without any clear
need at the customer side(o1).

Story (or scenario) telling has been explicitly researched and will be subject of
continuing research. The following benefits(s1)of story telling were experienced
in the Family Asset management, Heartcare, portable multi-mediaandsoftware
productivityprojects:

• Communication with the less technical stakeholders is improved.

• Exploration discussions are more to the point: less time is lost on too
generic discussions

Explicit attention for qualities (based on the qualities checklist in Figure 10.3)
also helps to focus the research projects and to find the relevant research issues
quicker (q1). Speed of exploration is essential for research projects: identify
promising options, and filtering out unattractive options. The speed of exploration
is improved by identifying the essential qualities and by identifying the qualities
that can be ignored.

Only a very limited improvement in exploration speed has been observed(i1).
The highly individual nature of researchers appears to be a bottleneck. Also the
diversity and fragmentation of the group of stakeholders, with their individual in-
terests, is a bottleneck. Both bottlenecks hamper the sharing of objectives and
the identification of most important qualities. Improvement in exploration speed
is certainly possible, but this requires an interaction of architecting with the con-
text of business, processes, and people. New projects at the Embedded Systems
Institute, which are set up outside the Philips processes and organization, show
promising results. See for instance the Boderc project [23].

No validating or invalidating evidence about thethreads of reasoningis ob-
tained from the research environment. Thethreads of reasoningdid only exist as
a vague notion [55].

204 EVALUATION FROM A WIDER CONTEXT 19.3

19.3 Workshops

The architecting methods have also been used to structure many different kinds
of workshops. The subjects of these workshops covered areas such as: strat-
egy, roadmapping, project definition exploration of problem and solution domain,
cross fertilization, and architecture assessment. The domains that were investi-
gated were quite varied, for example: MR, X-ray, semiconductors, displays, stor-
age, motorway management, and printers.

session 1 session 3session 2

in
tro

w
ra

p
up

plenary
report

group
analysis

plenary
report

group
analysis

plenary
report

group
analysis

9:00 17:00

Figure 19.1: Typical workshop program template

Figure 19.1 shows the typical program template of these workshops. Most
time is used to stimulate interaction among the participants focused on the subject.
This interaction takes place in small teams based on a few predefined questions.
The result of these discussions is presented and discussed plenary. A session with
the interaction from one team and the plenary presentation typically takes two
hours. In a one-day workshop about three successive sessions can be scheduled.
The remaining time is needed for introduction and wrap up.

top-down

bottom-up

exploration
session 3

Customer
objectives

Application Functional Conceptual Realization

story caseanalyse
design

designanalyse
design

session 1 session 2 session 3

session 1session 2session 3

session 1 session 2

Figure 19.2: Workshop approaches

19.3 WORKSHOPS 205

Figure 19.2 shows several approaches to structure the questions for the three
sessions:top-down, bottom-up, andexploration. The basis for all these approaches
is theCAFCRmodel(c2), complemented withstory telling(s2). All approaches
have been used with small variations.

The top-downapproach requires participants that are open and sufficiently
customer aware.What andhow questions help the participants to move the in-
vestigation from customer towards realization.

In thebottom-upapproach the link to the customer world is created by repeat-
ing why questions. The bottom-up approach works well, but should be followed
by a top-down question: “Did we start with thevalid solution?”. The improved
understanding of the customer often results in adjustments to the original solution.
In some cases the participants conclude that the solution is invalid: the solution
is not addressing the need of the customer. In that case more appropriate solution
directions are generated during the workshop.

Theexplorationapproach is more open:

• What is needed?

• What is possible?

• So what are going to create?

The exploration approach is appropriate if sufficient freedom of choice is avail-
able; it works less well in very constrained situations.

Also the level of abstraction must be chosen: very generic, for instance identi-
fying key drivers, or very specific via a story. Both generic and specific approaches
have been used, as well as combinations of the two. The more generic approaches
work well if the participants already have a good shared understanding. If the
understanding is limited or not shared specific approaches work better.

The formulation of the questions for the sessions is critical. The questions
must be specific to trigger a concrete discussion. The questions must be open to
prevent too much bias in the solutions. The CAFCR submethods(c3)and the qual-
ities (q2) are useful sources of inspiration to articulate the questions. Examples in
theCustomer objectivesview are:

• How does the value chain for digital televisions look in 2006?

• What are the key drivers for neuro radiology?

Examples from theRealizationandConceptualviews are:

• What are the most critical system resources for this story? Please quantify.

206 EVALUATION FROM A WIDER CONTEXT 19.3

• What functionality is provided by the Microsoft COM framework? What
functionality do we actually use?

session 2 session 3session 1
time

Customer
objectives

Application

Functional

Conceptual

Realization

at
te

nt
io

n
fo

cu
s

actual

planned

Figure 19.3: Hysteresis due to latency in viewpoint change

The basis of all these approaches is to stimulate the participants to perform
a rapid shared iteration. In facilitating more than 30 of these workshops I have
observed that the iteration speed in these workshops is limited(i2). Many par-
ticipants need time to make the context switch. The consequence of this context
switch time is that an hysteresis occurs in the goal of the workshop program and
the actual execution, as shown in Figure 19.3.

This observation has implications for the usability and efficiency of the archi-
tecting method:

• The iteration speed is limited by the capabilities of the architect using them

• The architect must be well aware of the limited iteration speed of his stake-
holders. Iterating too quickly in interaction with the stakeholders causes a
phase difference between architect and stakeholders. The phase difference
has a negative impact on the communication.

System specification and design problems are often caused by the missing
links between theCAFCRviews. Iteration over theCAFCRviews makes it possi-
ble to identify important and critical issues and their relations earlier. Faster iter-
ations bring problems quicker to the surface. In zeroth order1: the efficiency of a

1If the iteration speed is too high, no practical fact finding and analysis can be applied. A higher
order model will show a drop in efficiency for too high iteration speeds. In small (circa 4 people)
teams, with a shared background, I have observed useful results in iterations of less than 1 hour(i3).

19.4 COURSES 207

method is proportional with the iteration speed. The iteration speed is not directly
dependent on the method. The speed of iteration is determined by the capabilities
of the workshop participants. This again is an area where architecting method and
the process and people interfere: the usability of the architecting method depends
on the skills and the capabilities of the people and the organization.

19.4 Courses

Some of the submethods are being trained as part of a System Architecting Course.
The experiences of teaching this course are described in [54]. As part of the
course the participants have to do exercises, some of them using the submethods.
The course is mostly focused on the non-technical aspects of system architecting.
Five of the course modules, shown in Figure 19.4, have relevant exercises for the
evaluation. In the figure is indicated what submethod is used per exercise. The
course has been given 20 times between November 1999 and February 2003, with
a total amount of participants of about 300.

multi-media case

role play
(no method)

toolkit
story to design

case based on participants context

requirements
key driver

role of SW
multi-view

board of
management

multi-view

Figure 19.4: Submethods used in course exercises

Therole play, which is not yet using any method, is relevant because it func-
tions as a kind of zero measurement. The participants play the roles of product
manager, project leader, and architect. Together they have to define a new multi-
media product, including an indication of business relevance and potential sched-
ule. At the beginning of the course no methods have been provided yet to cope
with this kind of problem.

In the toolkit exercise newly mixed teams have to use thestory telling tech-
nique to discuss the same product as used in therole playexercise. They have to

208 EVALUATION FROM A WIDER CONTEXT 19.4

create a story and to make a start with the analysis and design. Often participants
remark that the method would have helped them greatly in the earlierrole play
exercise(s3). The teacher can observe the difference between defining a product
without method (the zero measurement) and defining a product with a story telling
as method. This order of exercises makes the participants aware of the value of
methods. The learning effect increases by experiencing both situations: without
and with methods.

The other relevant exercises are all based on the daily context of the partici-
pants. The teams are optimized for domain cohesion. Participants are grouped in
such a way that they share more or less the same application area and the same
type of problems. For example, group names are:digital video, MR, X-Ray, auto-
motive, andoptical storage.

In the requirementsexercise they have to make a graph, as described in Sec-
tion 8.2, from key driver to requirements(c4). This is often experienced as an
eye-opener: how much more exists than the internal design, how little do we
know about the customers!

In the role of softwarethe participants have to make a presentation about the
software in their system. The explicit recommendation is to do this with multi-
ple diagrams in the Conceptual and Realization view (functional decomposition,
layering, flows, size, et cetera)(c5). The presentation should make the intangible
software understandable for non-software people. Without this recommendation
most engineers tend to explain the software from a single diagram (the class di-
agram or the layers). Enriching this with other diagrams, such as sizes and other
dimensions, helps significantly to make the software more tangible.

The final exercise is a simulatedBoard of Management (BoM)presentation [53],
where every team has to give a presentation about an important architectural is-
sue to a management team that is significantly higher up in the hierarchy. They
need to deploy a lot of what they learned during the course. To create a success-
ful presentation sufficient customer and business understanding is required (that
is the main interest of this higher management team), but it needs to be related to
multiple relevant architectural views(c6). The choice of views and submethods is
entirely up to the participants.

Many architects struggle in day-to-day life with the perceived lack of under-
standing of architecting issues by higher management. TheBoM exercise ad-
dresses this problem by improving the presentation content of the (potential) ar-
chitects. For many participants it is an eye opener to present design issues (Con-
ceptual or Realization views) in relation with the business justification (Customer
Objectives, Application, and Functional views).

19.5 CONCLUSION 209

In the lecturerequirements engineeringfor the OOTI-curriculum [74]CAFCR
andstory tellingare introduced as means to elicit requirements2. For most of the
postgraduate students customers are far away, they need quite some nudging to
take customer needs into consideration.CAFCR(c7)andStory telling(s4)clearly
help them to think more in customer terms.

19.5 Conclusion

One of the weak spots of the evaluation by means of the medical imaging worksta-
tion was the application of submethods in theCustomer objectivesandApplication
views. These submethods have been used much more in all three categories (re-
search, workshops, and courses). This resulted in a more clear project focus and
more attention for the customer needs in research projects, compared to previous
research projects. Application of these views in workshops improved the atten-
tion for the customer needs and the project focus relative to the situation before
the workshop. More focus is for most projects of today a big improvement.

1. product is a commercial success
2. product family is sustainable commercially successful
3. architects benefit from deploying submethods in multi-view framework

4. project leaders, product managers and engineers are able to use the
outcome of the submethods

multi-view framework

Fsubmethods integration of the method

project focus
more attention for customer needs

qualities checklist

CR

story telling reasoning

c1..c7

o1

CA

c1..c7

iteration speed required ! i1..i3

?

OK

doubt

legend

q1, q2

s1..s4

Figure 19.5: Conclusions of the evaluation in a wider context. The tags are defined
in the Sections 19.2 to 19.4.

Figure 19.5 shows the conclusions of this evaluation. These conclusions do
not address the product and its future, but only the architect and his stakeholders.
The use of theCAFCR multi-view frameworkhelps to cope with complex product

2 Also here the hysteresis effect shown in Figure 19.3 is present: in the five days of this lecture
and execution of a case it is often difficult to do the iteration more than once; the design analysis is
sometimes too superficial, due to the attention on the customer needs.

210 EVALUATION FROM A WIDER CONTEXT 19.5

creation problems. The availablesubmethodsare successfully used in research
environments, workshops, and courses. The qualities from thequality checklist
helped to bring focus to research projects. No supporting evidence with respect to
threads of reasoningis obtained from these sources.

A large majority of people lack the skills to iterate very fast over the CAFCR
views. They have, however, no problems in following the reasoning when ex-
plained. The conclusion is that those who act as architect and deploy this architect-
ing method must have the capability to iterate quickly. In case of an architecting
team at least one of the members of the team must have this iterating capability.

Chapter 20

Balancing Genericity and
Specificity

20.1 Introduction

The subtitle of this thesis is ”Balancing Genericity and Specificity”. The back-
ground of this subtitle is that nearly all development teams of complex systems
seem to struggle with this balance.

Section 20.2 discusses this issue in a generic way. Section 20.3 illustrates the
the role of this balance in case of the medical imaging workstation. Section 20.4
discusses the interaction of generic and specific elements in the context of the
architecting method.

20.2 Core Qualities

The deliverables of the architect are mostly at a high conceptual level. The system
specification defines the outline of the system and the system design provides the
outline of implementation of the system. Most of the output is rather generic:
defining many properties of a system with a minimum set of words and diagrams.
The engineers work at all the specific details of the system, which can be millions
lines of code or millions of transistors on a chip.

Figure 20.1 shows the two approaches, generic and specific, as complemen-
tary approaches in a core quadrant representation, as described by Daniel Off-
man [60]. The top left quadrant describes the core qualities of a generic systems
approach. The top right quadrant describes the pitfalls that occur when the core

211

212 BALANCING GENERICITY AND SPECIFICITY 20.3

 core qualities

big impact
surveyable

pitfalls

intangible
difficult to validate

link to reality?

generic

challenge

concrete
verifiable

understanding

allergies

small impact
drowning in details

specific

desirable

not
desirable

compensateopposite

strengthen

over-
emphasis

 genericity
trap

over-
compensate

legend

Figure 20.1: Core quadrant representation that shows the complementary nature
of generic and specific approaches.

qualities are overemphasized. The bottom right quadrant shows the challenges to
prevent the pitfalls to happen. The challenge is to be sufficiently specific. The
bottom left quadrant shows the allergies: what happens if too much compensation
is applied? These allergies are the opposite of the original core qualities in the top
left quadrant.

Generic definitions are very powerful: one sentence may impact thousands or
even millions lines of code. The compactness of the output allows all stakeholders
to get a good overview of the system and its context.

Working in a too generic way is dangerous: the relation with the real world
can be lost (generic motherhood statements). The generic definitions can be rather
abstract, thereby making the concepts intangible for many stakeholders. Last but
not least, the definitions may have become so generic that their validation is diffi-
cult. What is the value of statements that cannot be validated?

Taking a very detailed, highly specific approach has the advantage of being
very understandable, due to the closeness with the real implementation and the
very concrete nature. Very specific details tend to be easily verifiable.

A disadvantage of a too specific approach is that most individual statements
have a very limited impact. Many details have to be specified to cover the entire
design. In very specific approaches one can easily get lost and drown in a sea of
details.

20.3 GENERICITY AND SPECIFICITY IN THE CASE 213

20.3 Genericity and Specificity in the Case

The entire system specification and design of the medical imaging workstation can
be captured in a very limited set of diagrams and tables. Figure 20.2 shows the
main diagrams that are needed to understand the design of the medical imaging
workstation.

shared code
UI process
database server
print server
DOR server
communication server
UNIX commands
compute server
system monitor

ASW total

UNIX Solaris 2.x
file cache

total

obj data

3.0
3.2
1.2
2.0
2.0
0.2
0.5
0.5

12.6

bulk data

12.0
3.0
9.0
1.0
4.0

0
6.0

0

35.0

code

11.0
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

13.4

total

11.0
15.3

6.5
10.5

3.3
6.3
0.5
6.8
0.8

61.0

10.0
3.0

74.0

memory budget in Mbytes

Figure 15.8
memory budget

Figure 15.1
image quality context

Figure 15.7
construction decomposition

user interfacecommunication

data base

export printoptical
storage

optical
disk
drive

printerdisk drivenetwork

UI
devices

system
monitor

Unix
daemons

remote systems
and users user

X-ray system

image
generation

presen-
tation

monitor

film

network,
storage

Easyvision

application
processing

presen-
tation

monitor

film

network,
storage

3rd party
workstation monitor

Figure 15.5
SW processes

spatial
enhancement

interpolate Look up table graphics
merge

colour
LUT

legend

HWSW

monitor
image
from

database
ou

tp
ut

input

contrast

brightness
bi-linear
bi-cubic

Figure 15.2
processing pipeline

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard IPX workstationDORHC
interf

RC
interf

SunOS

NIXRC
driver

HC
driver

DOR
driver

Spool HC
U

Sto
re Image Gfx UI DB PMS-

net in

PMS-
net
out

Medical Imaging R/F

Start
up

Install

Confi
g

SW
keys

servic
e

dev.
tools Print Store

View Cluster

every block, number of word is based on hundreds of specific
design details (loc, measurements, images, connections, etc.)

high level, generic diagrams:
large impact, providing overview

Figure 20.2: Five generic diagrams are shown. Every diagram is based on hun-
dreds of specific design details.

Note that every diagram or table fits on a single A4 or a single slide. The
amount of information in every diagram is reduced to the level where the diagram
can be explained to stakeholders with a reasonable amount of domain know how
in a very limited amount of time. The compactness of the diagram is important
to create and maintain overview. The combination of the diagrams creates an
integrated understanding of the system design.

Every word, block, or number in every diagram is based on hundreds of de-
tails. A block in the construction diagram typically contains 10,000 lines of code,
with hundreds of instance variables and hundreds of methods. An arrow in the
software process diagram will be used for tens of different connections with hun-
dreds of attributes. Many of these details have been touched by the architect.

214 BALANCING GENERICITY AND SPECIFICITY 20.4

However, many more details will never be touched by the architect, as described
in Sections 7.2 and 7.5. Submethods such as theQuestion Generator, see Sec-
tion 9.2.3, help in finding the details to be covered.

The sampling of reality by touching many of the implementation details is the
balancing factor in generating the required high-level, compact output. System
designs that do not use such fact finding procedures to connect to reality via such
fact finding are very risky and do not deserve to be calledsystem design.

20.4 Genericity and Specificity in the Architecting Method

The architecting method has many submethods, which invite to be generic. The
CAFCR model and the quality checklist are very generic. Every submethod is
powerful, and can have a significant impact on the specification and the design.
Figure 20.3 positions the architecting method with respect to the level of generic-
ity or specificity, using the scale of abstraction levels from Figure 7.3. The story
telling complements the CAFCR submethods and qualities by addressing specific
details. The threads of reasoning integrate and balance the generic and specific
submethods.

generic: provide overview

specific: link to reality via facts

story use
caseanalyse

design

partial
designanalyse

design

Customer
objectives

Application Functional Conceptual Realization

106

103

1

le
ve

l o
f d

et
ai

l,
se

e
fig

ur
e

7.
3

thread of reasoning: integration by fast iteration

Figure 20.3: The CAFCR views provide generic insight; story telling enables
analysis of specific facts.

20.5 CONCLUSION 215

Story telling is an effective means to make discussions concrete. A good story
is overspecific. On purpose a very narrow, but representative, sample of the target
use is described and analyzed. This forces the architect and the designers to look
into many specific details.

The threads of reasoning iterate between the generic models and objectives
and these details that enable or obstruct the design. The threads of reasoning help
to balance genericity and specificity.

Section 7.2 explains the dynamic range of description and implementation
facts that needs to be covered by the submethods. The evaluation in Chapter 18
concludes that the method satisfies the needs. The only exception is that the
outcome is sometimes too abstract and that the outcome is sometimes too late.
The criticism of being too abstract is directly related to the generic nature of the
CAFCR submethods. The step from the generic diagrams in Figure 20.2, with
hundreds of facts, to the detailed designs of modules and components, with tens
of thousands of detailed facts, spans a factor of more than one hundred! Mak-
ing the generic diagrams more detailed worsens the surveyability and worsens the
timely availability, which is the second concern. This tension between the need
for genericity for power and understanding, and the need for specificity for the
link with reality, is the core problem that architecting methods must tackle.

20.5 Conclusion

The overall architecting methods described in this thesis work successfully in
products that span a very large dynamic range of concerns. The criticism of some
of the stakeholders clearly identifies a major attention point for the architect when
he is deploying the method: the balance between genericity and specificity.

The heuristics for the architect in finding the balance are:

• Genericity: overview diagrams fit on a single A4 (20.3).

• Specificity: the coverage of detailed facts may vary widely over different
parts of the system (20.3).

• Story tellingfacilitates specific discussion, analysis, and design (20.4).

• Threads of reasoningintegrate generic and specific viewpoints (20.4).

216 BALANCING GENERICITY AND SPECIFICITY 20.5

Chapter 21

Reflection on Research Method
to Study Architecting Methods

21.1 Introduction

In this chapter we look back at the research method. Where did the research
method support the search for successful architecting methods? What aspects of
the research methods can be improved?

Section 21.2 discusses the value of the research question. Thehypothesis, the
criteria, and theevaluationare discussed in Section 21.3. Section 21.4 looks back
at thecase description. Theconclusionis formulated in Section 21.5.

21.2 Research Question

The explicit formulation of a research question has helped to focus the subject of
research. The research objectives and the context have been made explicit. The
intention of the research question was to limit the scope to a ’manageable’ sized
research project.

The human factor is quite dominantly present in the success probability of
the architecting method. Figure 21.1 shows the original research question, with
a characterization into soft and hard factors. It is immediately clear that many
soft factors dominate in the research question. These soft factors can broaden
the research scope tremendously. A lot of effort in writing the thesis went into
maintaining focus and into balancing hard and soft factors.

217

218 REFLECTION ON RESEARCH METHOD TO STUDY ARCHITECTING
METHODS 21.4

Which architecting methods enable

the creation of

successful

products

in a dynamic market

developed in a heterogeneous industrial context

satisfied customers
thriving business

some poor,
some excellent,
mostly average

in time within
economic constraints

uncertainty rules
need for innovation
agility required

normal distribution
of engineering skills

views, stakeholders, applications, concerns, needs, expectations, interests
functions, features, qualities, requirements, systems, technologies, standards, disciplines
suppliers, sites, cultures, employees, educations, tools, legacy, other vendors, legislation

technology and
software intensive

hard
soft

Figure 21.1: The original research question, characterized with hard and soft fac-
tors

21.3 Hypothesis, Criteria, and Evaluation

The hypothesis (Section 6.3) extended the research question ((Section 6.2) into a
statement that can be validated. The main extension is the addition ofhow. The
criteria (Section 6.4) sharpen the hypothesis by addingwho. The criteria were
very valuable in the evaluation, because they focused the evaluation discussion to
a limited set of issues. The separation of the criteria for the different stakeholders
was essential, because success is measured differently for different stakeholders.

The limitation of this research method is that the hypothesis is only made
plausible. The architecting method has been demonstrated successfully in the
case and partially in other situations. The hypothesis is not invalidated. In this
type of research, with many soft factors, invalidation experiments are difficult: is
the hypothesis invalid or did the context not fit in the soft preconditions? Repeated
invalidation efforts are needed to increase the plausibility of the method.

21.4 Case Description

The case description is indispensable for this type of research. It illustrates the
architecting method much more effectively than any theoretical text can do. The
case is also essential to evaluate the hypothesis. The main weakness is that only
one case is described. The soft factors are seen as context in this thesis. Soft
factors play a dominant role in practice and as shown in Section 21.2. More

21.5 CONCLUSION 219

case descriptions are needed to separate the method contribution better from the
impact of the soft factors. Unfortunately, most cases contain too much sensitive
information for the market or the competition. The research can also be extended
by including more soft factors in the case description. Describing more soft factors
can be privacy sensitive, because it describes behavior of individuals.

Courses and research projects are less competition sensitive. Describing cases
from courses and research projects will help to improve the foundation of research
methods. Of course, real industrial cases are more supportive than the more indi-
rect cases from research and education.

21.5 Conclusion

The overall research method (research question, hypothesis, criteria, case and
evaluation) worked satisfactory, because it helped to articulate the objectives and
to focus the research. More case descriptions and more cases describing soft fac-
tors will increase the value of this type of research. In Chapter 22 future research
directions are discussed.

220 REFLECTION ON RESEARCH METHOD TO STUDY ARCHITECTING
METHODS 21.5

Chapter 22

The Future of Architecting
Research

22.1 Introduction

The development of the system architecting discipline takes place in a dynamic
context as shown in Figure 22.1. The natural habitat for system architects is
formed by the classical academic disciplines, the standardization bodies, and the
communities and conferences. The classical academic disciplines are more ma-
ture, but will continue to develop. Many standardization bodies and professional
societies are working on system engineering and architecting. Many communities
exist where best practices and research results are exchanged in forums, confer-
ences, and many more interactive ways. Sources of inspiration for the develop-
ment of the system architecting discipline are the management disciplines and the
human sciences. Management disciplines are growing, and share the integrating
function with the architecting discipline. The human sciences are perceived as
soft, but as shown in Chapter 21, the architecting discipline will have to cope with
manysoftfactors.

The development of the systems architecting discipline involves the creation a
frame of reference that helps to relate systems architecting with this context. The
associated body of knowledge is discussed in Section 22.2.

Research and consolidation of knowledge is not the only issue to be addressed.
The knowledge does get its value if it there are people with the skills to use this
knowledge. The translation of the results into an education for system architects is
complementary to the knowledge consolidation. Section 22.3 discusses the need

221

222 THE FUTURE OF ARCHITECTING RESEARCH 22.2

natural system architect habitat

system
architecting

classical disciplines

mathematics, physics, chemistry,
biology, medicine, economics,

computer science,
mechanical engineering,
electronical engineering

management disciplines

technology management,
business management,
process management,

quality assurance,
project management

standardisation bodies,
professional societies

IEEE, ISO, ACM, IFIP, INCOSE

communities, conferences

requirements engineering,
reliability engineering,

product lines,
SW architecting,

TRIZ,
RUP

human sciences

psychology
sociology
pedagogy

anthropology
theology

Figure 22.1: The context of architecting

for a systems architecting curriculum.
Section 22.4 summarizes what needs to be done to develop the discipline of

system architecting.

22.2 Build up of Body of Knowledge

The body of knowledge to be built consists of different kinds of information. The
frame of reference contains reference information, which should help people to
position pieces of know-how. For instance:

• classification schemes such as taxonomies or ontologies

• definitions of concepts and terms such as glossaries

• definitions of scope in terms of objectives

• relationships by means of frameworks

• capturing best practices and generic know how in principles and heuristics

• a library of submethods

22.3 CURRICULUM 223

• a library of case descriptions

• connections with the context

• systematic research of soft factors, for instance by means of questionnaires

• supporting tools

In such a framework we need content, such as a library of case descriptions,
and a library of submethods. The methods capture how to approach a system level
design problem. A large set of methods is needed, due to the wide variety of prob-
lems at system level. Case studies are the carriers of research and consolidation
of systems architecting know-how. Very few product developments of industrial
size are documented in publicly accessible ways. One of the main hurdles is the
confidentiality of the information. It is nevertheless crucial to get a richer set of
case descriptions to develop the discipline further. Note that good cases document
the product architecture itself, the architecting methods used, and evaluate the use
of these methods.

One of the big challenges is to keep up with the growth of functionality, per-
formance, and complexity, as described in Section 5.3. This requires a growth
of architecting methods in depth and breadth. More breadth is needed in the ca-
pability of handling an even larger dynamic range of abstraction levels. At the
same time we have to link the new discipline to the existing sciences, a growth in
depth. This link requires a solid research method that facilitates the substantiation
of evidence. In general the body of knowledge must be connected to the context
shown in Section 22.1: classical disciplines, communities, standardization bodies,
management disciplines and the human sciences.

Chapter 19 showed the potential of using courses and workshops to evaluate
architecting methods with somewhat more statistical relevance. However, in order
to use this source of information we need research methods that work in that
environment. The human sciences are much more used to this type of research
and can provide inspiration for this type of research methods.

22.3 Curriculum

The typical growth of an architect is used as reference to define desired educa-
tion steps for architects. The top of Figure 22.2 shows the typical growth of an
architect. The growth early in the career is mostly in technical skills. Later the
non-technical skills get more attention, in areas such as application, business and
process.

224 THE FUTURE OF ARCHITECTING RESEARCH 22.3

ESA
SW

Execution
architecture

SARCH

ESA
stakeholders

available

missing

external

architecture school

root
technical
know-how

generalist
technical

know-how

business, application insight

process insight

psycho-social
skills

apply theory
in practice

become
all-round

experience the
non-technical aspects

see every human
as an individual

System
design
methods

Bredemeyer
SW architecture

Architectural
reasoning

ESA
systemESA

silicon

ESA
mechatronics

marketing, process
and many more

Bredemeyer -
Role of the architect

Thomas Gilb - EVO,
requirements eng

mathematics
physics
chemistry
mechanical
engineering
computer
science
electronical
engineering

conventional
curriculums

advanced
SARCH

reliability engineering
QFD and more

legend

Figure 22.2: Curriculum system architecting

Conventional education is focused on one discipline. This type of education
is a good fundament for a potential architect. An architect must have experience
in at least one of the technology disciplines, to:

• know and understand detailed technical and engineering problems

• be taken serious as peer for mono-disciplinary engineers

The next step is to broaden the potential architect by providing technical edu-
cation in other disciplines. At this moment a few courses in this area are available
in the ESA (Embedded Systems Architecting) course [24]. This course consists of
4 modules: Software, Silicon, System, and Stakeholders. Software, Silicon, and
Systems broaden the technical scope to electronics plus software, illustrated by a
number of system technologies such as audio and video. The “harder” disciplines,
such as mechatronics, are not yet available in this format.

The real gap in education is in the area of multi disciplinary system design
methods. Some communities have created courses in well-defined areas such as
reliability engineering (for example FMEA), or in less tangible areas such as Qual-
ity Function Deployment (QFD). Many existing design problems, however, are
not yet covered by design methods, let alone by education.

The integration of the system level design methods, addressing one or two
objectives, into systematic reasoning at system level is the next challenge. Again
a lot of method development is needed before education makes sense.

22.4 CONCLUSION 225

The next maturity step of the architect is supported by borrowing methods and
educational material from other disciplines (marketing, process and organization,
et cetera).

The most important contribution to the growth of an architect is the practical
experience. Working at real problems is crucial. At Philips Research an archi-
tecture school is set up, where potential architects work on projects, guided by
more experienced engineers. Concurrently they participate in a set of courses, for
example the ESA course mentioned above.

22.4 Conclusion

For the development of system architecting as a discipline, we have to :

• develop a framework to position architecting in the context

• create a library of submethods

• develop supporting tools

• build up a library of case descriptions

• research new architecting methods to cope with more breadth and a larger
dynamic range

• develop research methods to cope with the soft factors

• create a curriculum to educate potential architects

226 THE FUTURE OF ARCHITECTING RESEARCH 22.4

Chapter 23

Conclusion

We have discussed the industrial context of embedded systems architecting, and
the distance between the industrial context and academic research. The challenge
to bridge the gap between the industrial and academic worlds is addressed by
using a research method based on a hypothesis and a case. The hypothesis is
tested by applying the CAFCR method on a Medical Imaging Workstation case.
The CAFCR method maps well on this case, although the CA views have been
underexposed in the historical context of the case. The use of many different
views, submethods, qualities and use cases, as proposed in this thesis, contributed
significantly to the success of the Workstation. The beneficial characteristics of
the CAFCR method are:

• integral and multi-disciplinary

• goal-oriented

• practical, based on industrial experience

• flexible

• builds on standards

• support for short innovation cycles

This area of research has many connections to both the engineering sciences
and the human sciences. One of the main challenges for embedded systems ar-
chitecting research is to balance the genericity and specificity. Very generic state-
ments are difficult to substantiate and use, but very specific statements might be
infeasible due to the sheer amount of required know-how.

Future research work has to be done to substantiate the evaluation from the
wider context. In general the area of embedded systems research is young and

227

228 CONCLUSION 23.0

lots of research work is required to develop this area, ranging from ontologies
and heuristics to extending the library of submethods. Special attention is needed
for the many soft factors involved. Based on this research a curriculum has to be
developed for the education of system architects.

Part V

Appendices and Bibliography

Acknowledgements

Abbreviations

Bibliography

Summary

Samenvatting

229

Acknowledgements

Wim Vree coached me in the scientific mores and provided a lot of inspiration.
Wim helped in determining the focus in the broad subject of systems architecting,
and in structuring the complex material. Wim’s enthusiasm contributed a lot to
this thesis. Martin Rem has provided lots of feedback on the reasoning and logic
of this thesis. As side effect Martin also corrected many language errors, and he
provided many hints to improve the readability significantly. Martin’s relentless
progress and positive attitude were very stimulating.

The other members of the dissertation committee, Peter Kroes, Henk Sips,
René Wagenaar, Dieter Hammer, and Pieter Hartel provided helpful feedback after
reading the manuscript.

Many managers have encouraged me and facilitated me to write this thesis:
Frans Beenker, Rick Harwig, Jaap van der Heijden, Marloes van Lierop, Martin
Rem, and Eric van Utteren.

The composable architecture project at Philips Research invented the acronym
CAFCR and created the foundation of the CAFCR method. Members of this
project were: Pierre America, Marcel Bijsterveld, Peter van den Hamer, Hans
Jonkers, Jürgen Müller, Henk Obbink, Rob van Ommering, William van der Ster-
ren, and Jan Gerben Wijnstra.

Many colleagues contributed to this thesis by providing data or feedback. With
the danger of forgetting someone I acknowledge the contribution of the following
people: Peter Bingley, Robert Deckers, Martien Dijks, Christian Huiban, Eugene
Ivanov, Peter Jaspers, Auke Jilderda, Ton Kostelijk, Nico Schellingerhout, Berry
van der Wijst, and Rik Willems.

My wife Lia Muller-Charité encouraged me during all the phases preceding
the writing of the thesis, as well as during the actual writing. She also helped me
by reflecting and discussing the contents itself.

231

232 ACKNOWLEDGEMENTS

Abbreviations

1471 IEEE standard defining an architecture descriptions

9001 ISO standard defining quality management

9126 ISO standard describing a quality framework

ACR The American College of Radiology

ASML Lithography Company in Veldhoven, the Netherlands

ATAM Architecture Tradeoff Analysis Method by Rick Kazman

BAPO Business Application Process Organization

BoM Board of Management

BoM Bill of Material

CAFCR Customer Objectives, Application, Functional, Conceptual, Realization

C/B Contrast/Brightness

CFO Chief Financial Officer

CIS Cardiology Information System

CMO Chief Marketing Officer

COM Component Object Model, by Microsoft

CoO Cost of Ownership

CPU Central Processing Unit

233

234 ABBREVIATIONS

CT Computer Tomography

CTO Chief Technical Officer

DB DataBase

DICOM Digital Imaging and Communications in Medicine

dll dynamic link library

DOR optical disk

DSP Digital Signal Processor

DVD optical disk succeeding the CD, officially no abbreviation, but some people
use it forDigital Video Discor Digital Versatile Disc

EMC Electro-Magnetic Compatibility

ESA Embedded Systems Architecting course

ESI Embedded Systems Institute

EVO Evolutionary Project Management method by Thomas Gilb

FDA Food and Drug Administration

FFT Fast Fourier Transform

FMEA Failure Mode Effect Analysis

FRS Functional Requirements Specification

fte Full Time Equivalent, unit of planning indicating a full time available person

GE General Electric

gfx graphics

GHz Giga Hertz

GSM Cell phone standard

GST General Systems Theory

HACCP Hazard Analysis And Critical Control Point

ABBREVIATIONS 235

HCU Hardcopy Unit

HD High Definition video

HIPAA Health Insurance Portability and Accountability Act

HIS Hospital Information System

HL7 Health Level 7 standard defining meta information for health care

HQ High Quality audio

HW Hardware

IEEE Institute of Electrical and Electronics Engineers, Inc

INCOSE International Council on Systems Engineering

I/O Input/Output

IQ Image Quality

ISO International Organization for Standardization

IT Information Technology

KOALA a SW component technology used in Philips consumer products

kB kilo Bytes

kloc kilo lines of code

LIS Laboratory Information System

LUT Look Up Table

MB, MByte Mega-Byte

MB, Mbit Mega-bit

MHz Mega Hertz

MLC Material and Labor Cost

MPEG Moving Pictures Experts Group, a compression standard for movies

236 ABBREVIATIONS

MPR Multi Planar Reformatting

mrad milliradial

MRI Magnetic Resonance Imaging

MRP Material Resource Planning

NEMA National Electrical Manufacturers Association

nm nanometer,10−9 meter

OIT Object Instantiation Tracing

OO Object-Oriented

OS Operating System

OSI Open System Interconnect

PACS Picture Archiving and Communication System

PCP Product Creation Process

PCR Radiography based on Phosphor plate reader

PDA Personal Digital Assistant

PIP Picture In Picture

PMS Philips Medical Systems

PMSnet Philips interoperability protocol, extending the ACR/NEMA or DICOM
protocol

ps Unix command to show process statistics

PVR Personal Video Recorder

QFD Quality Function Deployment

RAM Random Access Memory

RC Remote Control

RF Radio Frequency

ABBREVIATIONS 237

RIS Radiology Information System

ROI Return On Investment

RUP Rational Unified Process

SAAM A Method for Analyzing the Properties of Software Architectures by Rick
Kazman

SARCH Course System Architecting at Center of Technical Training (CTT) of
Philips

SD Standard Definition video

SDS System Design Specification]

SE Systems Engineering

SEI Software Engineering Institute

SNR Signal to Noise Ratio

SPC Statistical Process Control

SPS System Performance Specification

SRS System Requirements Specification

SW Software

SwA Software Architectures group at Philips Research

TPD Technical Product Documentation

TPS Test Performance Specification

TRIZ Theory of Inventive Problem Solving

TXT Teletext

UI User Interface

UNIX widely used Operating System

URF Universal Radiography Fluoroscopy

238 ABBREVIATIONS

US Ultra Sound

VAP Visual Architecting Process by Bredemeyer

VDE Verband der Elektrotechnik Elektronik Informationstechnik

VDU Video Display Unit

vmstat Unix command to show (virtual) memory statistics

WWHWWW Why What How Where When Whom

WYSIWYG What You See Is What You Get

X Window management system

xDAS Data Acquisition System, thex is the version or the type

xFEC Front End Controller, thex is the version or the type

ZIFA Zachman Institute for Framework Advancement

Bibliography

[1] Genrich Altshuller.The Innovation Algorithm; TRIZ, systematic innovation
and technical creativity. Technical Innovation Center, Worcester, MA, 2000.
Translated, edited and annotated by Lev Shulyak and Steven Rodman.

[2] Pierre America. Making architectures future-proof using scenarios.
http://www.serc.nl/lac/2003/presentaties/Track1/P.
America.pdf , 2003.

[3] Pierre America, Henk Obbink, Rob van Ommering, and Frank van der Lin-
den. COPAM: A component-oriented platform architecting method family
for product family engineering. In Patrick Donohoe, editor,Proceedings of
the First Software Product Line Conference, August 2000.

[4] Audrey Apfel. BVIT: Frameworks and methodologies that work.
http://www3.gartner.com/resources/113500/113516/
113516.pdf , 2003.

[5] Apple Computer, Inc. The Objective-C Programming Language.
http://developer.apple.com/documentation/Cocoa/
Conceptual/ObjectiveC/index.html , 2003.

[6] Architecture Working Group (AWG).IEEE Recommended Practice for Ar-
chitectural Description of Software-Intensive Systems. The Institute of Elec-
trical and Electronics Engineers, Inc., 2000.

[7] Arthur D Little Global Management Consultants. Technology management
study, 1998. confidential report at ASML. Complete derivation from 5 cus-
tomer key driver to about 250 critical waferstepper technologies.

[8] J. E. Beasley. OR-notes.http://mscmga.ms.ic.ac.uk/jeb/or/
basicor.html .

239

http://www.serc.nl/lac/2003/presentaties/Track1/P.America.pdf
http://www.serc.nl/lac/2003/presentaties/Track1/P.America.pdf
http://www3.gartner.com/resources/113500/113516/113516.pdf
http://www3.gartner.com/resources/113500/113516/113516.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/index.html
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/index.html
http://mscmga.ms.ic.ac.uk/jeb/or/basicor.html
http://mscmga.ms.ic.ac.uk/jeb/or/basicor.html

240 BIBLIOGRAPHY

[9] Per Bjuréus and Axel Jantsch. MASCOT: A specification and cosimulation
method integrating data and control flow.http://jamaica.ee.pitt.
edu/Archives/ProceedingArchives/Date/Date2000/
papers/2000/date00/pdffiles/03a_2.pdf , 2000.

[10] Dana Bredemeyer. Definitions of software architecture.http://www.
bredemeyer.com/definiti.htm , 2002. large collection of defini-
tions of software architecture.

[11] Dana Bredemeyer and Ruth Malan. Resources for software architects.
http://www.bredemeyer.com/ , 1999.

[12] Dana Bredemeyer and Ruth Malan. Role of the software architect.http:
//www.bredemeyer.com/role.pdf , 1999.

[13] Dana Bredemeyer and Ruth Malan. The visual architecting process.
http://www.bredemeyer.com/pdf_files/WhitePapers/
VisualArchitectingProcess.PDF , 2003.

[14] Florian Cajori.A history of Mathematical Notations. The Open Court Pub-
lishing Company, 1928.

[15] Samidh Chakrabarti and Aaron Strauss. Carnival booth: An al-
gorithm for defeating the computer-assisted passenger screening sys-
tem. http://swissnet.ai.mit.edu/6805/student-papers/
spring02-papers/caps.htm , 2002. Shows that security systems
based on secret designs are more vulnerable and less secure.

[16] Alistair Cockburn.Writing Effective Use Cases. Addison-Wesley, 2000.

[17] Hay Management Consultants. Technology management cycle. Hay Man-
agament Consultants showed me this model in 1997/1998, taken from an
article by a Japanese author. The original title of the Japanese article is un-
known.

[18] Gerardo Daalderop, Ann Ouvry, Luc Koch, Peter Jaspers, Jürgen Müller,
and Gerrit Muller. PACS assessment final report, version 1.0. confidential
internal report XLB050-96037, September 1996.

[19] Paul de Witte. CTT course SARCH.http://www.extra.research.
philips.com/ctt/ctt_it/sarch.htm , 1999.

http://jamaica.ee.pitt.edu/Archives/ProceedingArchives/Date/Date2000/papers/2000/date00/pdffiles/03a_2.pdf
http://jamaica.ee.pitt.edu/Archives/ProceedingArchives/Date/Date2000/papers/2000/date00/pdffiles/03a_2.pdf
http://jamaica.ee.pitt.edu/Archives/ProceedingArchives/Date/Date2000/papers/2000/date00/pdffiles/03a_2.pdf
http://www.bredemeyer.com/definiti.htm
http://www.bredemeyer.com/definiti.htm
http://www.bredemeyer.com/
http://www.bredemeyer.com/role.pdf
http://www.bredemeyer.com/role.pdf
http://www.bredemeyer.com/pdf_files/WhitePapers/VisualArchitectingProcess.PDF
http://www.bredemeyer.com/pdf_files/WhitePapers/VisualArchitectingProcess.PDF
http://swissnet.ai.mit.edu/6805/student-papers/spring02-papers/caps.htm
http://swissnet.ai.mit.edu/6805/student-papers/spring02-papers/caps.htm
http://www.extra.research.philips.com/ctt/ctt_it/sarch.htm
http://www.extra.research.philips.com/ctt/ctt_it/sarch.htm

BIBLIOGRAPHY 241

[20] Jean-Marc DeBaud and Klaus Schmid. A systematic approach to derive
the scope of software product lines. In21st international Conference on
Software Engineering; Preparing for the Software Century, pages 34–47.
ICSE, 1999.

[21] J. C. DeFoe (Editor). An identification of pragmatic principles.http://
www.incose.org/workgrps/practice/pragprin.html , 1999.

[22] Remco M. Dijkman, Luís Ferreira Pires, and Stef M.M. Joosten. Calculating
with concepts: a technique for the development of business process support.
In A. Evans, R. France, A. Moreira, and B. Rumpe, editors,Lecture
Notes in Informatics, volume 7, pages 87–98. GI-edition, 2001.http:
//www.google.com/url?sa=U&start=3&q=http://www.ub.
utwente.nl/webdocs/ctit/1/00000068.pdf&e=7764 Pro-
ceedings of the UML 2001 Workshop on Practical UML-Based Rigorous
Development Methods.

[23] Embedded Systems Institute. Boderc project. https:
//www.embeddedsystems.nl/PRO1/general/next.asp?
subrubriekid=2 , 2003.

[24] Embedded Systems Institute. Course on embedded systems archi-
tecting. https://www.embeddedsystems.nl/PRO1/general/
show_document_general.asp?documentid=676 , 2003.

[25] EventHelix.com. Publish-subscribe design patterns. http:
//www.eventhelix.com/RealtimeMantra/Patterns/
publish_subscribe_patterns.htm , 2000.

[26] Thomas Gilb. Competitive engineering.http://www.pimsl.com/
TomGilb/Competitive_Engineering_M.pdf , 1999.

[27] H Gomaa. Software Design Methods for Real-time Systems. Addison-
Wesley, 1993.

[28] Robert J. Graham and Randall L. Englund.Creating an Environment for
Successful Projects; The Quest to Manage Project Management. Jossey-
Bass Publishers, San Fransisco, CA, 1997.

[29] Volker Haarslev. A fully formalized theory for describing visual notations. In
Proceedings, International Workshop on Theory of Visual Languages, Gub-
bio, Italy, 1996.

http://www.incose.org/workgrps/practice/pragprin.html
http://www.incose.org/workgrps/practice/pragprin.html
http://www.google.com/url?sa=U&start=3&q=http://www.ub.utwente.nl/webdocs/ctit/1/00000068.pdf&e=7764
http://www.google.com/url?sa=U&start=3&q=http://www.ub.utwente.nl/webdocs/ctit/1/00000068.pdf&e=7764
http://www.google.com/url?sa=U&start=3&q=http://www.ub.utwente.nl/webdocs/ctit/1/00000068.pdf&e=7764
https://www.embeddedsystems.nl/PRO1/general/next.asp?subrubriekid=2
https://www.embeddedsystems.nl/PRO1/general/next.asp?subrubriekid=2
https://www.embeddedsystems.nl/PRO1/general/next.asp?subrubriekid=2
https://www.embeddedsystems.nl/PRO1/general/show_document_general.asp?documentid=676
https://www.embeddedsystems.nl/PRO1/general/show_document_general.asp?documentid=676
http://www.eventhelix.com/RealtimeMantra/Patterns/publish_subscribe_patterns.htm
http://www.eventhelix.com/RealtimeMantra/Patterns/publish_subscribe_patterns.htm
http://www.eventhelix.com/RealtimeMantra/Patterns/publish_subscribe_patterns.htm
http://www.pimsl.com/TomGilb/Competitive_Engineering_M.pdf
http://www.pimsl.com/TomGilb/Competitive_Engineering_M.pdf

242 BIBLIOGRAPHY

[30] John L. Hennessy, David A. Patterson, and David Goldberg.Computer Ar-
chitecture: A Quantitative Approach. Morgan Kaufmann, 1996.

[31] F. Heylighen and C. Joslyn. What is systems theory?http://pespmc1.
vub.ac.be/SYSTHEOR.html , 1992.Principia Cybernetica Web(Prin-
cipia Cybernetica, Brussels).

[32] Derek K. Hitchins. Putting systems to work.http://www.hitchins.
co.uk/ , 1992. Originally published by John Wiley and Sons, Chichester,
UK, in 1992.

[33] Christine Hofmeinster, Robert Nord, and Dilip Soni.Applied Software Ar-
chitecture. Addison-Wesley, 2000.

[34] Laurence Holt.Goal-oriented design. unknown, 2004 (planned). A preview
was presented at the Gilb Systecture event 2003, London, June 2003.

[35] Robert Hunt. The origins of proof iv: The philosophy of proof.http:
//plus.maths.org/issue10/features/proof4/ , 2000.

[36] INCOSE. International council on systems engineering.http://www.
incose.org/toc.html , 1999. INCOSE publishes many interesting ar-
ticles about systems engineering.

[37] Carnegie Mellon Software Engineering Institute. How do you define soft-
ware architecture? http://www.sei.cmu.edu/architecture/
definitions.html , 2002. large collection of definitions of software
architecture.

[38] ISO/IEC. ISO 9126: The standard of reference.http://www.cse.dcu.
ie/essiscope/sm2/9126ref.html , 1991.

[39] Hans Jonkers. Interface-centric architecture descriptions. InWICSA 2001,
Amsterdam, 2001.

[40] R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture
evaluation.citeseer.nj.nec.com/kazman00atam.html , 2000.

[41] Rick Kazman, Leonard J. Bass, Mike Webb, and Gregory D. Abowd.
SAAM: A method for analyzing the properties of software architectures.
In International Conference on Software Engineering, pages 81–90. ICSE,
1994.

http://pespmc1.vub.ac.be/SYSTHEOR.html
http://pespmc1.vub.ac.be/SYSTHEOR.html
http://www.hitchins.co.uk/
http://www.hitchins.co.uk/
http://plus.maths.org/issue10/features/proof4/
http://plus.maths.org/issue10/features/proof4/
http://www.incose.org/toc.html
http://www.incose.org/toc.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
citeseer.nj.nec.com/kazman00atam.html

BIBLIOGRAPHY 243

[42] Kurt Keutzer and Richard Newton. Productivity gap.http://lark.
vmei.acad.bg/asic/lectures/intro/slide1-5.htm , 2000.

[43] Philippe B. Kruchten. The 4+1 view model of architecture.IEEE Software,
pages 42–50, November 1995.

[44] Ben Lieberman. The art of modeling; part i: Constructing an analyti-
cal framework. http://www.therationaledge.com/content/
aug_03/f_modeling_bl.jsp , 2003.

[45] Charles C. Mann. Homeland insecurity.The Atlantic Monthly, pages 81–
102, September 2002. Volume 290, No. 2T; Very nice interview with Bruce
Schneier about security and the human factor.

[46] James N. Martin.Systems Engineering Guidebook. CRC Press, Boca Raton,
Florida, 1996.

[47] Carver Mead and Lynn Conway, editors.Introduction to VLSI systems.
Addison-Wesley, 1980. Chapter 7: System Timing, by Charles L. Seitz.

[48] Jürgen K. Müller. The Building Block Method: Component-Based Archi-
tectural Design for Large Software-Intensive Product Families.Universiteit
van Amsterdam, 2003. Ph.D. thesis.

[49] James Mohr. The linux tutorial; run-levels. http://
www.linux-tutorial.info/cgi-bin/display.pl?
65&99980&0&3 , 1997.

[50] Gerrit Muller. Technology improvement plan. confidential internal report,
June 1994.

[51] Gerrit Muller. CTT course SARCH.http://www.extra.research.
philips.com/natlab/sysarch/SARCHcoursePaper.pdf ,
1999.

[52] Gerrit Muller. Case study: Medical imaging; from toolbox to product to plat-
form. http://www.extra.research.philips.com/natlab/
sysarch/MedicalImagingPaper.pdf , 2000.

[53] Gerrit Muller. How to present architecture issues to higher manage-
ment. http://www.extra.research.philips.com/natlab/
sysarch/ArchitectManagementInteractionPaper.pdf ,
2003.

http://lark.vmei.acad.bg/asic/lectures/intro/slide1-5.htm
http://lark.vmei.acad.bg/asic/lectures/intro/slide1-5.htm
http://www.therationaledge.com/content/aug_03/f_modeling_bl.jsp
http://www.therationaledge.com/content/aug_03/f_modeling_bl.jsp
http://www.linux-tutorial.info/cgi-bin/display.pl?65&99980&0&3
http://www.linux-tutorial.info/cgi-bin/display.pl?65&99980&0&3
http://www.linux-tutorial.info/cgi-bin/display.pl?65&99980&0&3
http://www.extra.research.philips.com/natlab/sysarch/SARCHcoursePaper.pdf
http://www.extra.research.philips.com/natlab/sysarch/SARCHcoursePaper.pdf
http://www.extra.research.philips.com/natlab/sysarch/MedicalImagingPaper.pdf
http://www.extra.research.philips.com/natlab/sysarch/MedicalImagingPaper.pdf
http://www.extra.research.philips.com/natlab/sysarch/ArchitectManagementInteractionPaper.pdf
http://www.extra.research.philips.com/natlab/sysarch/ArchitectManagementInteractionPaper.pdf

244 BIBLIOGRAPHY

[54] Gerrit Muller. Experiences of teaching systems architecting. To be published
INCOSE 2004 in Toulouse, 2004.

[55] Gerrit Muller, Jürgen Müller, and Jan Gerben Wijnstra. Multi-view archi-
tecting.http://www.extra.research.philips.com/natlab/
sysarch/IntegratingCAFCRPaper.pdf , 2001.

[56] Peter G. Neumann. Homepage peter g. neumann a.o. about safety, security
and reliability.http://www.csl.sri.com/users/neumann/ .

[57] Henk Obbink. Scenario-based architecting: Towards architecting
the future. http://www.serc.nl/lac/2003/presentaties/
Track1/H.Obbink.pdf , 2003.

[58] Henk Obbink, Jürgen Müller, Pierre America, and Rob van Ommering.
COPA; a component-oriented platform architecting method for fami-
lies of software-intensive electronic products.http://www.extra.
research.philips.com/SAE/COPA/COPA_Tutorial.pdf ,
2000.

[59] Henk Obbink, Rob van Ommering, Jan Gerben Wijnstra, and Pierre Amer-
ica. Component oriented platform architecting for software intensive prod-
uct families. In Mehmet Aksit, editor,Proceedings of Software Architectures
and Component Technology. Kluwer Enschede, January 2000.

[60] Daniel Offman. Bezieling en kwaliteit in organisaties.

[61] David L. Parnas. Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, pages 128–138, March 1979.
This article can also be found in ”Software Fundamentals, Collected Papers
by David Parnas”, Addison-Wesley.

[62] D.L. Parnas and P.C. Clements. A rational design process: How and why
to fake it. IEEE Transactions on Software Engineering, SE-12., No. 2:251–
257, February 1986.

[63] Karen Peterson, David Hope-Ross, Andrew White, and Marc Halpern. De-
riving competitive advantage from product value chains.http://www3.
gartner.com/Init , 2002.

http://www.extra.research.philips.com/natlab/sysarch/IntegratingCAFCRPaper.pdf
http://www.extra.research.philips.com/natlab/sysarch/IntegratingCAFCRPaper.pdf
http://www.csl.sri.com/users/neumann/
http://www.serc.nl/lac/2003/presentaties/Track1/H.Obbink.pdf
http://www.serc.nl/lac/2003/presentaties/Track1/H.Obbink.pdf
http://www.extra.research.philips.com/SAE/COPA/COPA_Tutorial.pdf
http://www.extra.research.philips.com/SAE/COPA/COPA_Tutorial.pdf
http://www3.gartner.com/Init
http://www3.gartner.com/Init

BIBLIOGRAPHY 245

[64] Michael J. Pidwirny. Fundamentals of physical geography; chapter
3a scientific method.http://www.geog.ouc.bc.ca/physgeog/
contents/3a.html , 1996.

[65] Colin Potts. Software-engingeering research revisited.IEEE Software, Vol.
10, No. 5:19–28, September/October 1993.

[66] William H. Press, William T. Vetterling, Teulosky Saul A., and Brian P. Flan-
nery. Numerical Recipes in C; The Art of Scientific Computing. Cambridge
University Press, Cambridge, England, 1992. Simulated annealing methods
page 444 and further.

[67] QFD Institute. QFD institute.http://www.qfdi.org/ , 2000.

[68] Eberhardt Rechtin and Mark W. Maier.The Art of Systems Architecting.
CRC Press, Boca Raton, Florida, 1997.

[69] Martin Rem. Trends in embedded systems. http://www.
hightechconnections.org/presentations/martinrem.
pdf , 2004.

[70] Oliver W. Sacks. The Man Who Mistook His Wife for a Hat: And Other
Clinical Tales. Touchstone Books, 1985. Oliver Sacks has published a rich
collection of case descriptions, much more than the descriptions in this book.
He explains in this book the value of case descriptions. Interesting is that
although dr. Sacks is a neurologist, the case descriptions are much richer
and contain many psycho social observations as well.

[71] Carnegie Mellon Software Engineering Institute SEI. Software engineer-
ing management practices.http://www.sei.cmu.edu/managing/
managing.html , 2000.

[72] Carnegie Mellon Software Engineering Institute SEI. Engineering practices.
http://www.sei.cmu.edu/engineering/engineering.
html , 2002.

[73] Alexander Sinitsyn. A synchronization framework for personal mobile
servers. PerWare ’04: Middleware Support for Pervasive Computing; Work-
shop (at 2nd Conference on Pervasive Computing), March 2004.

[74] Stan Ackermans Institute. Ooti: Post-masters program in software technol-
ogy. http://wwwooti.win.tue.nl/ , 2004.

http://www.geog.ouc.bc.ca/physgeog/contents/3a.html
http://www.geog.ouc.bc.ca/physgeog/contents/3a.html
http://www.qfdi.org/
http://www.hightechconnections.org/presentations/martinrem.pdf
http://www.hightechconnections.org/presentations/martinrem.pdf
http://www.hightechconnections.org/presentations/martinrem.pdf
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/engineering/engineering.html
http://wwwooti.win.tue.nl/

246 BIBLIOGRAPHY

[75] The Medical HACCP Alliance. Hazard analysis and critical control point.
http://medicalhaccp.ag.vt.edu/ , 1998.

[76] Henk Tuten. Popper and philosophy of science.http://huizen.
daxis.nl/~henkt/popper-scientific-philosophy.html ,
1999.

[77] Henk Tuten. Thomas kuhn: definition paradigm (shift).http://
huizen.daxis.nl/~henkt/kuhn.html , 1999.

[78] Rob van Ommering. Building product populations with software compo-
nents. InICSE 2002, 2002.

[79] Jan Gerben Wijnstra. Critical factors for a successful platform-based prod-
uct family approach. InProceedings of the Third Software Product Line
Conference, August 2002.

[80] John Zachman. The zachman framework for enterprise architecture.http:
//www.zifa.com/ , 1987.

[81] H Zimmermann. OSI reference model - the ISO model of architecture
for open systems interconnection.IEEE Transactions on communications,
COM-28, No. 4, April 1980.

http://medicalhaccp.ag.vt.edu/
http://huizen.daxis.nl/~henkt/popper-scientific-philosophy.html
http://huizen.daxis.nl/~henkt/popper-scientific-philosophy.html
http://huizen.daxis.nl/~henkt/kuhn.html
http://huizen.daxis.nl/~henkt/kuhn.html
http://www.zifa.com/
http://www.zifa.com/

Summary

This thesis describes an architecting method for embedded systems. Examples
of embedded systems are cell phones, televisions, MRI scanners and waferstep-
pers. Embedded systems are systems where the computer and the accompanying
software are built-in. Moreover, embedded systems are full of other technolo-
gies that are needed to perform the function in the physical world. Examples are
transmission and reception technologies, display technology, optics and all kind
of mechanics to position.

The core of the described method is the use of multiple viewpoints on the sys-
tem and the application of the system. The CAFCR model provides 5 viewpoints:
Customer Objectives (what does the customer want to achieve), Application (how
does the customer realize these objectives), Functional (what must the system
do), Conceptual and Realization(how will the system be implemented). The Con-
ceptual view contains the reusable concepts of the design, while the realization
contains all the technical implementation details. These five views are related by
the quality attributes, such as safety, performance and functionality.

For every CAFCR viewpoint multiple submethods are shown. A system ar-
chitect makes a choice from the presented methods. Every application domain has
specific characteristics that has to be taken into account by the system architect.
The choice of the methods to be used depends on the application domain.

One of the most difficult choices for the system architect is the level of ab-
straction.Story tellingis recommended as a method to have concrete discussions.
Story telling should precede the more generic specification phase.

The system architect must maintain overview in the multitude of viewpoints,
objectives, stakeholders, concerns, technologies and design choices. Moreover,
the system architect has to make choices that fit in the bottomline goals of the
system and the business. It is recommended to iterate fast over all viewpoints and
to generate a graph of relationships between objectives and technology choices.

The method is applied in retrospect on a Medical Imaging Workstation. The

247

248 SUMMARY

casus shows the importance of using multiple viewpoints to analyze multiple qual-
ities.

Architecting of Embedded Systems is a young discipline. There is not much
literature available and the education towards system architect is rather immature
still. In this thesis it is indicated how to start research in this young discipline. it
is also indicated what more has to be done to develop this discipline.

Samenvatting

Dit proefschrift beschrijft een ontwerpmethode voor embedded systemen. Voor-
beelden van embedded systemen zijn GSM telefoons, televisies, MRI scanners
en wafersteppers. Embedded systemen zijn systemen waar de computer met de
bijbehorende software is ingebouwd. Bovendien zijn embedded systemen rijk aan
andere technologieën die nodig zijn om het systeem zijn functie in de physieke
wereld te laten vervullen. Voorbeelden zijn zend- en ontvangsttechnologie, beeld-
schermtechnologie, optiek en allerlei mechanieken om te positioneren.

De kern van de omschreven methode is het gebruik van vele verschillende ge-
zichtspunten op het systeem en de toepassing van het systeem. Het CAFCR model
geeft 5 gezichtspunten: Doelstellingen van de klant (wat wil de klant bereiken),
toepassing (hoe realiseert de klant deze doelstellingen), functioneel (wat moet
het systeem doen), conceptueel en realisatie (hoegaat het systeem gebouwd wor-
den). Het conceptuele gezichtspunt bevat de meer herbruikbare concepten van
het ontwerp, terwijl het realisatie-gezichtspunt alle technische implementatie de-
tails bevat. Deze vijf gezichtspunten kunnen aan elkaar gerelateerd worden door
te kijken naar de gewenste kwaliteitseigenschappen, zoals veiligheid, snelheid en
functionaliteit.

Voor de CAFCR gezichtpunten worden meerdere deelmethodes getoond. Een
systeemontwerper kan een keuze maken uit de geboden methodes. Ieder toepas-
singsgebied heeft specifieke eigenschappen waar de systeemontwerper rekening
mee moet houden. De keuze van de te gebruiken deelmethodes wordt bepaald
door het toepassingsgebied.

Een van de moeilijkste keuzes voor de systeemontwerper is het niveau van ab-
stractie. Het vertellen van verhalen wordt aanbevolen als methode om discussies
voldoende concreet te krijgen, voordat de meer abstracte specificaties worden
opgesteld.

In de veelheid aan gezichtspunten, doelstellingen, belanghebbenden, zorgen,
technologieën en ontwerpkeuzes moet de systeemontwerper het overzicht bewaren.

249

250 SAMENVATTING

Bovendien moet de systeemontwerper daarbij keuzes maken die passen binnen de
uiteindelijke doelstellingen van het systeem en van het bedrijf. Het wordt aanbe-
volen om hiertoe snel te itereren over de gezichtspunten en om een samenhang-
ende graaf te creëren. De graaf legt de relaties tussen doelstellingen en technolo-
giekeuzes.

De gehele methode wordt onderbouwd door de methode retrospectief toe te
passen op een medisch beeldverwerkingsstation. In deze casus wordt getoond hoe
belangrijk het is om vanuit meerdere gezichtspunten naar meerdere kwaliteits-
eigenschappen te kijken.

Het ontwerpen van ingewikkelde embedded systemen is een heel jong vak-
gebied. Er is weinig literatuur over beschikbaar en de opleiding tot systeem-
ontwerper staat ook nog in de kinderschoenen. In dit proefschrift wordt een
aanzet gegeven hoe onderzoek te doen in dit jonge vakgebied. Ook wordt kort
aangegeven wat er moet gebeuren om het vakgebied verder te ontwikkelen.

History

Version: 2.9, date: April 21, 2004 changed by: Gerrit Muller
• fine tuning of layout
• updated the acknowledgements

Version: 2.8, date: April 19, 2004 changed by: Gerrit Muller
• added sentence about success of the method in the case

Version: 2.7, date: April 14, 2004 changed by: Gerrit Muller
• changed layout; chapters start at right hand pages only

Version: 2.6, date: April 7, 2004 changed by: Gerrit Muller
• corrected bibliography entries
• added Chapter Conclusion to part IV
• created part V for appendices and bibliography
• added table of content for each part
• some chapter names changed

Version: 2.5, date: April 6, 2004 changed by: Gerrit Muller
• moved Figure Structure of thesis from Criteria chapter to Introduction.
• changed status to finished

Version: 2.4, date: April 1, 2004 changed by: Gerrit Muller
• added chapter references to Introduction.
• textual changes to Introduction
• changed title of Part I into “Introduction to CAFCR and Threads of Reasoning”

Version: 2.3, date: March 22, 2004 changed by: Gerrit Muller
• added stubs for Preface, Summary and Samenvatting
• removed abstract

Version: 2.2, date: March 16, 2004 changed by: Gerrit Muller
• rewrite of the introduction
• changed status to concept

Version: 2.1, date: February 27, 2004 changed by: Gerrit Muller
• added “conclusion” or “summary” sections to chapters in Part II and Part III

Version: 2.0, date: January 21, 2004 changed by: Gerrit Muller
• removed list of figures
• changed formfactor to B5
• changed frontmatter and backmatter structure

Version: 1.2, date: January 19, 2004 changed by: Gerrit Muller
• updated acknowledgements

Version: 1.1, date: December 5, 2003 changed by: Gerrit Muller
• updated abstract
• changed title in ”CAFCR: A Multi-view Method for Embedded Systems Architecting”

Version: 1.0, date: November 21, 2003 changed by: Gerrit Muller
• textual changes in introduction
• changed status in ”draft”

Version: 0.4, date: October 11, 2003 changed by: Gerrit Muller
• extended the list of abbreviations.

Version: 0.3, date: October 2, 2003 changed by: Gerrit Muller
• moved the Chapter ”Criterions for architecting methods” to the end of Part I.

Version: 0.2, date: September 29, 2003 changed by: Gerrit Muller
• moved the introduction of the case more up front.
• moved chronological case description to the beginning of Part III.

Version: 0.1, date: September 17, 2003 changed by: Gerrit Muller
• Added Appendix "Abbreviations"

Version: 0, date: July 28, 2003 changed by: Gerrit Muller

251

252 HISTORY

• Thesis created by refactoring the book into a scientific oriented thesis and a educational oriented book

	Preface
	Introduction
	I Introduction to CAFCR and Threads of Reasoning
	What is Systems Architecting in an Industrial Context?
	Introduction
	Description of the Business Context
	Internal Stakeholders
	Acknowledgements

	Overview of CAFCR and Threads of Reasoning
	Introduction
	Architecting Method Overview
	The CAFCR Model

	Introduction to Medical Imaging Case Study
	Market and Application
	Technology

	Positioning the CAFCR Method in the World
	Introduction
	Related Work
	What is the Unique Contribution of this Work?
	IEEE 1471

	Research in Systems Architecting
	Introduction
	Technology Management Cycle
	Challenges to do Research in a Scientific Way
	Architecting Research Method
	Distance between Industrial Practice and Scientific Research
	Research Environment

	Research Question and Hypothesis
	Introduction
	Research Question
	Hypothesis
	Criteria
	Summary

	II Theory of CAFCR and Threads of Reasoning
	Basic Methods
	Introduction
	Viewpoint Hopping
	Decomposition and Integration
	Quantification
	Coping with Uncertainty
	Modeling
	WWHWWW
	Decision Making Approach in Specification and Design

	Submethods in the CAF Views
	Introduction
	Key Drivers
	Customer Business Positioning
	Modeling in the Customer World
	Use Cases
	System Specification
	Overview of the Submethods in the CAF views

	Submethods in the CR Views
	Introduction
	Decomposition
	Quality Design Submethods
	Project Management Support
	Overview of the Submethods in the CR views

	Qualities as Integrating Needles
	Introduction
	Security as Example of a Quality Needle
	Qualities Checklist
	Summary

	Story Telling
	Introduction
	How to Create a Story?
	How to Use a Story?
	Criteria
	Summary

	Threads of Reasoning
	Introduction
	Overview of Reasoning Approach
	Reasoning
	Outline of the complete method
	Summary

	III Medical Imaging Case Description
	Medical Imaging in Chronological Order
	Project Context
	Introduction
	Development of Easyvision RF
	Performance Problem
	Safety
	Summary

	Medical Imaging Workstation: CAF Views
	Introduction
	Radiology Context
	Typical Case
	Key Driver Graph
	Functionality
	Interoperability via Information Model
	Conclusion

	Medical Imaging Workstation: CR Views
	Introduction
	Image Quality and Presentation Pipeline
	Software Specific Views
	Memory Management
	CPU Usage
	Measurement Tools
	Conclusion

	Story Telling in Medical Imaging
	Introduction
	The Sales Story
	The Radiologist at Work
	Towards Design
	Conclusion

	Threads of Reasoning in the Medical Imaging Case
	Introduction
	Example Thread
	Exploration of Problems and Solutions
	Conclusion

	IV Evaluation, Discussion and Conclusions
	Evaluation of the Architecting Method
	Introduction
	Design Evaluation
	Product Evaluation
	Evaluation of Architecting Method
	Usability Evaluation of the Outcome of the Architecting Method
	Conclusion

	Evaluation from a Wider Context
	Introduction
	Research Environment
	Workshops
	Courses
	Conclusion

	Balancing Genericity and Specificity
	Introduction
	Core Qualities
	Genericity and Specificity in the Case
	Genericity and Specificity in the Architecting Method
	Conclusion

	Reflection on Research Method to Study Architecting Methods
	Introduction
	Research Question
	Hypothesis, Criteria, and Evaluation
	Case Description
	Conclusion

	The Future of Architecting Research
	Introduction
	Build up of Body of Knowledge
	Curriculum
	Conclusion

	Conclusion

	V Appendices and Bibliography
	Acknowledgements
	Abbreviations
	Summary
	Samenvatting
	History

