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Abstract—We consider the problem of minimization of sum
transmission energy in cellular networks where coupling o¢
curs between cells due to mutual interference. The coupling
relation is characterized by the signal-to-interferenceand-noise-
ratio (SINR) coupling model. Both cell load and transmissio
power, where cell load measures the average level of resoerc
usage in the cell, interact via the coupling model. We presén
fundamental insights on the optimization problem, where paver
and load are to be set for meeting the target amount of data
of users. We prove analytically that operating at full load
is optimal in minimizing sum energy, and provide theoreticd
characterizations to enable the computation of the power dotion
for a given load vector. The insights lead to an iterative powr
adjustment algorithm with guaranteed convergence. We preant
numerical results illustrating the theoretical findings for a real-
life and large-scale cellular network, showing the advantge of
our solution compared to the conventional solution of deplging
uniform power for base stations.

Index Terms—Cellular networks, energy minimization, load
coupling, power coupling, power adjustment allocation, sandard
interference function.

|. INTRODUCTION

of power amplifiers with lower power rating, hence further
reducing the overhead cost involved in turning on power
amplifiers.

In a cellular network where base stations are coupled due
to mutual interference, the problem of energy minimizai®n
challenging, as each cell has to serve a target amount of data
to its set of users, so as to maintain an appropriate level of
service experience, subject to the presence of the coupling
relation between cells. To tackle this energy minimization
problem, we employ an analytical signal-to-interfereace-
noise-ratio (SINR) model that takes into account the load of
each cell [[17]4]19], where a load of a cell translates into
the average level of usage of resource (e.g., resource units
in OFDMA networks) in the cell. This load-coupling equation
system has been shown to give a good approximation for more
complicated load models that capture the dynamic nature of
arrivals and service periods of data flows in the netwbrk,[20]
especially at high data arrival rates. Further comparisbn o
other approximation models concluded that the load-caliple
model is accurate yet tractable [21]. By using this tratabl
model, useful insights can then be developed for the dedign o

Data traffic is projected to grow at a compound annu@ractical cellular systems. In our recent works|[22].| [28F

growth rate of78% from 2011 to 2016[[1], fueled mainly have used the load coupling equation to maximize sum utility
by multimedia mobile applications. This growth will lead tdhat is an increasing function of the users’ rates.

rapidly rising energy cost [2]. In recent years, informatio Previous works[17]+[20][[22][[23] using the load-coui
communication technology (ICT) has become the fifth largetodel all assume given and fixed transmission power. For
industry in power consumptiori|[3]. In cellular networks, iffansmission energy minimization, both power and load be-
particular, base stations consume a significant fractiothef come variables and they interact in the coupling model,
total end-to-end energ¥[4], of whick0%—80% of the power making the analysis more challenging. In fact, the coupling
consumption is due to the power amplifiefs [S]] [6]. Thigelation between cell powers cannot be expressed in closed
observation has motivated green communication techniqf@gm even for given cell loads. The key aspects motivating
for cellular networks [[7]4[14]. These technologies in@udour theoretical and algorithmic investigations are asofed.
adaptive approaches such as switching off power amplifiersftirst, is there an insightful characterization of the ofiata
provide a tradeoff of energy efficiency and spectral efficjen point in terms of load that minimizes the sum transmission
[7], [8], selectively turning off base statioris [9], as wad en- energy? Second, given a system operating point in load, what
ergy minimization approaches for relay systems [10], OFDMA'e the properties of the coupling system in power? Third,
systems [[T1]4[13], and SC-FDMA systenis |[14]. Extensivaven if power coupling cannot be expressed in closed form,
survey of other saving-energy approaches are highlightedi$ there some algorithm that converges to the power solution

[2, [15], [16]. for given cell load?

In this paper, we focus on the important problem of Toward these ends, our contributions are as follows. We

minimizing the sum energy used for transmission in cellul&ow that if full load is feasible, i.e., the users’ data re-

minimizing the transmission energy may lead to selectidPtimalin minimizing sum.transmissio_n energy (Sectiordy-
Theorem[l). If full load is not feasible, however, then no
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and can be numerically computed based on an iterative #@-deliver data. We model the SINR of usgein cell ; as [17]-
gorithm that can be implemented iteratively at each baf&0]
station (Sectiof V=D, Algorithni]1). To prove the algorittami B Digi
result, we make use of the properties of the so-called stdnda SINRy; (@, p) = S  PRGEiTE + 02 @)
interference functior [24]; the proof is however non-stamkl REN\L) !
because the function of interest does not have a closed-fomaere s represents the noise power apg is the channel
expression, and hence we use an implicit method verify i®wer gain from base statianto userj; note thatgy;, k # 1,
properties. We also characterize the load region giveretargepresents the channel gain from the interfering baseostati
data requirements over all possible power allocation {&ect The SINR model[{l1) gives a good approximation of more
V-Cl Theorem$1334). Finally, we obtain numerical results teomplicated cellular network load modells [20]. Intuitiyet;.
illustrate the optimality of the full-load solution on a kéar can be interpreted as the likelihood of receiving intenfese
network based on a real-life scenario[25]. Compared wiffom cell k on all the resource units. Thus, the combined term
the conventional solution where the uniform power is used féprgrjzr) € [0, prgr;] iS interpreted as the average interfer-
base stations, we show the significant advantage of the powgitce taken over time and frequency for all transmissions.
optimal solution in terms of meeting user demand target andGiven the SINR, we can transmit reliably at the maximum
reducing the energy consumption. rates;; = Blog(1 + SINR;;) nat/s per resource block, where
The rest of the paper is organized as follows. Se€fion ligjivé3 is the bandwidth antbg is the natural logarithm. To deliver
the system model of the load-coupled network. Secfich @ rate ofr;; nat for userj, theith base station thus requires
formulates the energy minimization problem. Secfioh IVrehai; £ r;;/Fi; resource units. We assume thaf resource
acterizes the optimality of full load, while Sectigd V dexss Units are available. Thus, we get the load for defls z; =
properties of the power-coupling system and an iterativegoo Zjeji xi; /M, ie.,
allocation algorithm that achieves the power solution. um 1 rij .
ical results are given in SectignVI. Section VIl concludes t Ti= g Z log (1 - SINR; (@.p)) filx) (2
paper. JET;
Notations We de_note a (tall) vec'gor by a bold Iower_cas%r i € N. Without loss of generality, we normalize;
letter, saya, a matrix by a bold capital letter, saj, and its by MB in @) and so we setMB = 1. Let f(z) =

(i,7)th element by its lower case;;. We denote gositive [fi(z), -, fu(x)]T. In vector form, we obtain theon-linear
matrix asA > 0 if a;; > 0 for all ¢, j. Similarly, we denote a |59 coupling equatiofNLCE)

non-negativematrix asA > 0 if a;; > 0 for all 4, j. Similar
conventions apply to vectors. Finall§,and1 denote the all- NLCE: z = f(z;r,p) )
zeros and all-ones vectors of suitable lengths.

for 0 < x < 1, where we have made the dependence of the
load « on the rater and powerp explicit. We note that the

Il. SYSTEM MODEL load  appears in both sides of the equation and cannot be
A. Preliminaries readily solved in closed form.

id il K . b . We collect the QoS constraints 2> d..;,. Without loss of
W(_a consider a cellular network consistingrobase stations generality, we assumé,,;,, is strictly positive, as those users
that interfere with each other due to resource reuse. Wesfo%th sero rate can be excluded from further consideration

on the downlink communication scenario where base stati%nce the power vector satisfips> 0 so as to serve all the

) A i i 5 . .y .
i€ N'={1,---,n} transmits with powep; > 0 per resource o<~ consequently, the load must be strictly positiee, .
unit (in time and frequency). We refer to celinterchangeably 0O<x<1

with base station. For notational convenience, we collect all
power{p;} as vectorp > 0.

We assume a given association of the users to the base
stations. In this association, each base stafimerves one  Our objective is to minimize the sum transmission energy
unique group of users in sef,, where|7;| > 1. Userj € 7; 9ivenby>l" | x;p;. We note that the produ¢t;p;) measures
is served in celli at rater;; that has to be at least a ratehe transmission energy used by base statiobecause the
demand of;; min > 0 Nats. Thusd;; i relates to a quality- load z; reflects the normalized amount of resource units used
of-service (QoS) constraint. We collect all the rates asorec  (in time and frequency) while the powgs is the amount of
and the corresponding minimum demandsias, > 0. Thus, €nergy used per resource unit.

IIl. ENERGY MINIMIZATION PROBLEM

a rate vector meets the QoS constraints if din. The energy minimization problem is given by Problém.
PO : >Iglin>0 xT'p (4a)

B. Load Coupling P
st. x=f(x;r,p), 0<x<1 (4b)

We first consider the load coupling model for the cellular
network. We denote byt = [z1,---,z,]7 the load in the
network, where0 < x < 1. the fractional usage of resourceAs was mentioned earlier, the power and rate variables are
units in celli. In LTE systems, the load can be interpreted asrictly positive to satisfy the non-trivial QoS constraiithe
the fraction of the time-frequency resources that are adedd first constraint [(4b) is imposed to satisfy the NLCE. The

r 2 dmin- (40)



second constrainf(#c) is imposed so that the ratatisfies
the QoS constraint.

We denote an optimal solution to Probldpo asp*, »* and 16l T e
the corresponding load as*. We observe that the load is an 1_4* ;ﬁ&
implicit variable which depends on the power and rate vector |
A key challenge of Problen®0 is that a positive solution pair '
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In Sectior IV-A and Sectioh IV-B, we consider fundamental (a) Power region. (b) Load region.

properties of rate and load, respectively, such that theistse

a power satisfying the NLCE. To study the fundamental propig. 1. Corresponding power region and load region satigfyhe NLCE.
erties, we consider the existence of a positive load satigfy

x > 0. The additional constraint that < 1 is taken into

account in Section IVEC, in which we prove the key result that

full load, i.e.,z = 1, is a necessary and sufficient conditiom. Implementability of Load

for the solution in Problen0 to be optimal. Although LemmallL states that a given power vegpor

P always corresponds to a load vectothat satisfies the NLCE,
A. Satisfiability of Rate : . o .
the reverse is not true. To obtain some intuition why this

We first establish conditions on rate vectorsuch that & jnverse mapping may fail, let us consider the special case
load = exists that satisfies the NLCE, possibly with> 1. 4t ,, — 2 pase stations with channel gain; = 1 for all

We denote the spectral radius of matek as p(A), defined ; ; rater = 1, and noise variance? = 1. We randomly

as the absolute value of the largest eigenvaluglof choose the powep = [p;,p2]” using a uniform distribution

Lemma 1:For any powep > 0, there exists a unique loadgyer o < p, < 2,7 = 1,2, which is plotted in Fig[1(). The

x > 0 satisfying the NLCE if and only if corresponding load: = [z, x5]” obtained using the IAL is
p(A(r)) <1 (5) shown in Fig[1(H). We see that indeed there is a load region

that does not appear to correspond to any pagwer 0.
Given thatr is satisfiable, we say that the load is
N o 0, if 1 =k; 6 implementablef there exists powemp such that the NLCE
ik djes 9kiTij/9iss T iFEk ) is satisfied. The following toy scenario shows that= 1
which is a function ofr (but notp). (full load) is not implementable. We assume = 2 cells

Proof: Follows directly from [23, Theorem 1] with one user per cell, each with rate = 2.1 nat. The
Due to Lemmﬂl we say that the’rate veotds sétisfiable channel gains from a base station to the user it served and
) f . _ ;o
if p(A(r)) < 1. If r is not satisfiable, then there does not exidpe user it does not serve is set gs= 1 .and g = 1/3,
any powerp > 0 that results in a load satisfying constrain{eSpeCt'Ve(;y' No/t;: / that the rate is satisfiable since we get
(48) (which further requires the load vector to be less thakh = grg

o o L . gr/g 0
one). We note that evenifis satisfiable, it is still possible that ¢ isfies [(b). By symmetry, the power allocated for all cells

the_ Iqad _QOe_s not satisfy < 1 and_ hence violate.ﬂ]ﬂfb.). Thus, st be the same with, — ps — p and must thus satisfi2),
satisfiability is a necessary condition for a feasible sotuto i.e.,log(1+gp/(¢'p+02)) = r. But for any noise variance

exist in ProblemP0, but it may not be sufficient.

Henceforth, we assume that a ratés satisfiable; otherwise
no feasible solution exists in Problei0. Given p, we can
then numerically obtair: by theiterative algorithm for load
(IAL) [23] Lemma 1], as follows. Specifically, starting from
an arbitrary initial loadz” > 0, define the solution of théth C. Main Result: Full Load is Optimal
iteration as

where the(i, k)th element ofA(r) is given by

and hencep(A) = 0.49 and hence

and powerp, the left hand side cannot exce2dat and so the
equation cannot hold. Hence, full load is not implementable
in this case.

Our first main result is given by Theordm 1, which states

L __ -1,
@ = f@r,p) (") that full load, if implementable, is optimal to minimize the
for¢=1,2,---, L, whereL is the total number of iterations. sum energy in Problen?0.
Thenz! converges to the fixed-point solutianof the NLCE Theorem 1:Suppose full load, i.e.x = 1, is imple-

asL goes to infinity. The IAL is derived using [24] by showingmentable. Then the optimal solution for Problef is as
that f is a so-called standard interference function. follows: r* = d,;,, andp* is such thate* = 1. The optimal



power vectorp* is thus given implicitly by the NLCE as We say a functionl : R? — R’} is a standard interference
. function if it satisfies the following properties for all iop
Proof: The proof follows from Lemma&l5 and Lemnia 7 1) Positivity: I(p) > 0;

given in the Appendix, which state that = 1 andr* = dp, 2) Monotonicity: If p > p’, thenI(p) > I(p’).
are the optimal solutions, respectively. Substitutingahtmal ~ 3) Scalability: For alla > 1, aI(p) > I(ap).
solutions into the NLCE results ifn](8). ] Next, we consider both the synchronous and asynchronous

From Theorerfil1, serving the minimum required rate is optiersions of theiterative algorithm for power(IAP). Assume
mal. This observation is intuitively reasonable as lessugses an arbitrary initial powep® > 0. In iteration/ = 1, - - - , L, of
are used and hence less energy is consumed. Interestingigsynchronous IAPwhereL is the total number of iterations,
Theoren]l states that having full load is optimal. This secoive obtain
observation is not as intuitive, since it is not immediately p' = I(p'). 9)
clear the effect of using higher load on both the sum energy
and interference. This is because using a high load may I€aigarly, the entire power vector is used and updated itelati
to more interference to neighbouring cells, which may theand any power element gf“ is solely determined by‘~!.
require other cells to use more energy to serve their usel’contrast, theasynchronous IARterates power element by
rates. Mathematically, the reason can be attributed torthefp power element, of which any update comes immediately into
of Lemma[®, which shows that, as the power decreases, ftect for the remaining elements. Specifically, for eaciter

energy as well as the interference for each cell decreasds, witeration/ = 1,---, L, we performn inner iterations. In the
concurrently the load increases. Thus, by using full load, tith inner iterationi = 1,--- ,n, we obtain
energy is minimized. —

N4 Pl =1I(pi"}) (10)

Next, Corollary(1 provides a converse type of result to The-
orem[]. The result follows from a theorem with a generalizetherep; | represents the power vector containing the most
statement, which we defer to Sectibn V-B because the pragidated elements aftd¢ — 1) outer iterations and: — 1)
requires the use of algorithmic notions for finding poweregiv inner iterations (during théth outer iteration). Afterl, outer
load. iterations are fully completed, each withinner iterations, we
Corollary 1: If full load = 1 is not implementable, then obtainp’ as the final power vector solution.
there is no other loagt < 1 with = +# 1 that is implementable. ~ The following result is due td [24, Theorems 2,4]; we omit

Thus, there is no feasible solution for Problérn. the proof.
Proof: The result follows as a special case of Theofém 3 Lemma 2: Suppose a fixed-point solutign exists forp =
later in Section V-B. m I(p). If I is a standard interference function, then starting

Remark 1: TheorenT]l and Corollafyl 1 together thus sho#fom any initial power vector, both the synchronous and asyn
that full load is both necessary and sufficient to achieve tiggronous IAP algorithms converge to the fixed-point sohutio
minimum energy in Problen#0. P, Which is unique.

Remark 2:1t can be easily checked that Theoréi 1 and
Corollary [1 continue to hold even if we generalize th8. Main Result: Existence and Computation of Power Solution

objective function to any functiom(z1py, z2ps, - -+, Znpn) Before proving the main result, we present and prove some
that is increasing in each of its argument. For examplgsoperties on how the elements of the power vector relate
c(y1, -+ yn) = D wiy; gives the weighted sum energy withto each other in NLCE. The properties will then be used to

positive weights{w;,i =1,--- ,n}. establish that the results in_[24] with the notion of stauidar
interference function can be applied.
V. OPTIMAL POWER SOLUTION Let p, be the vector of lengtiin — 1) that contains all

elements inp except forp;. Lemma_B shows that given and
r, the dependency of; on p; (such that the NLCE holds)
qtualifies as a function, even if the function is not in closed

Although full load is optimal for Problen#0, it is still not
clear if the optimal powep* is unique and how to numerically
computep* in (8). Theoreni R shall answer both questions, b
in a more general setting. Namely, we provide theoreticdl an
algorithmic results for finding powes given arbitrary loade
(not necessarily all ones) and arbitrary ratehat is satisfiable
(not necessarily equal td,,,;,), SO as to satisfy the NLCE.

Lemma 3:Let p, x, r satisfy the NLCE, where the vectors
are strictly positive. Then there exists functibn: R’} |, —
R” , satisfyingp; = h;(ps; x,r) foralli =1,--- ,n. Writing
p;'s and h;'s in vector form, we gep = h(p; x, r).

Proof: We fix «,» and drop these notations in the
A. Standard Interference Function function h;(-) for simplicity. To prove the existence of the

Before we state the main result of the section, we introdufgction 2i(-), we need to show that givep;, there exists a
the standard interference function and an iterative aigorj Uniquep; for @ =1,---,n. First, we write the NLCE in[{2)
The algorithm shall be used to obtain the optimal power as
and is also a key step in the proof of the implementability of 1= ij _ 2 ni(pi 11
joad. 2 T bgoom) M) @D




where since both equal one according foJ(11). It is easy to check

a that q1b;;(P:,02) = aqbi;(ap;, ac?). That is, multiplying
Qi = Tij/xi (12) J B ; J _ 2 -
o A i all the terms in the tripletq;, p;,0°) by a positive constant
bij(Di,07) = - 13 [ isfi
i(Di,0”) SRR (13) still allows [I3) to be satisfied. Thus we get frofl(14)
are both independent of;. We fix p; > 0 ando? > 0. It ni(aqr, opi, a0®) = ni(qz, aps, %), (15)

follows thatb,;(p;, %) > 0 and son;(p;) > 0. Observe that

m:(p:) Is @ strictly decreasing function pf. Sincen: (p;) — o0 o output of the function strictly decreases wjtand strictly

asp; — 0, andn;(p;) — 0 asp; — oo, there exists a unique . . o :
pi > 0 such thaty:(p;) = 1, and thus satisfie€L1). Hencdhcreases withe. By the equality in[(1b), it follows that.q; >

there exists a function of the forgy — h(p,), for anyi. m 92 becausenc? > 2. Taking into account of the definition
Remark 3:The functionh;(-) does not submit to a closed-Of 71 andgs, we have zrovedyrizépi) > hi(ap:). d - id
form solution. For example, consider expressindn terms US'”9 Lemma(B an Lem 4, we are ready to provide
of p, in @) where the number of summands|i&| > 1. the main result, stating that NLCE can be expressed in an
Because each of them is non-linearzip the dependency of alternative form with the power taken as the subject of eger
p: on p; is not explicit The proof is non-standard, because the relations among the
K3 3 "

Remark 4: Although h;(-) cannot be expressed in closedower elements do not submit to a closed form (Rerfidrk 3).
form, we can numerically obtain the outputof the function Hence, it has been necessary to first establish that théorelat

h; given the inputp;. Equivalently, this means that we want tPetween one power element and the others qualifies as a
obtain the value of; such that[(TlL) holds. This is computedfuncuon (LemmaB). Next, we have used an implicit method to

for example, by a bisection search gfp;) = 1, making use prove thath(-) i; indeed an interference function (Lemfia 4).
of the property thaty;(p;) is a strictly decreasing function. 1heorem 2:Given loadz and rater, the powerp that
Specifically, we first choose an arbitrary but small power satisfies the NLCE can be _represent_ed equwalent!y in thre for
such thaty; (p') > 1 and an arbitrary but large powsf’ such of a non-lineampower coupling equation (NPCE) given by
thatn; (p”") < 1. Next we use the new power= (p’ +p’)/2 NPCE: p = h(p;z,r) (16)
and evaluate ify(p) is greater or smaller than one, then replace

p’ or p” by p, respectively. By performing this procedurevhere h(-) is a standard interference function. Given that
iteratively, we have guaranteed convergence to the degired solutionp exists, thenp is unique and can be obtained
that satisfies);(p;) = 1. This forms the basis for the proposechumerically by the IAP.

algorithm later in Sectiop VI. Proof: Lemma[3 states the existence of the functiap),

We observe thak(-) is to some extent similar t¢(-) in the  and hence allows us to obtain the NPCE. Lenfiina 4 states that
NLCE (3). From Remarkl3, however, the functibir) cannot p(.) satisfies all the properties required for a standard inter-
be readily written as a closed-form expression. Thus, p@viference function. The uniqueness and iterative computatio
properties related té(-) is more challenging, as compared tg, then follows from Lemma&J2 with the standard interference
the case off (-) for which a closed-form solution is available function h(-). ]
Nevertheless, Lemnid 4 states that) qualifies as a standard Remark 5:So far we have assumed that there is no max-
interference function as defined in [24]. imum power constraint imposed for any element of power

Lemma 4:Given loadz > 0 and rater > 0, h(p;@,7) iS p If such power constraints are imposed, then a so-called
a standard interference function jn standard constrained interference function defined in §24]

Proof. For notational convenience, we drop the depefys ysed instead to perform the IAP, in which the output of each
dence of these entities in the notationfdf). We consider an jieration is set to the maximum power constraint value, aftth
arbitraryi and refer ton;(p;), ai;, bi; as defined inl(11)[(12) retyrned fromh is higher. This type of iteration converges to

and [13), respectively, throughout the proof. For this firbis 5 unique fixed point[24, Corollary 1].
useful to denote the function (p;) explicitly as»;(p;, bi, o2)

to ease the discussion. We prove each of the three properties o 3
required for standard interference function below. C. Characterization on Implementability of Load

Positivity. From the proof of Lemm@l3, there exists a unique Theorem[® provides a monotonicity result for load im-
pi > 0 that satisfies[(11), i.eh;(p;) > 0. This holds for all plementability. We recall that a load vectar is said to be

i, thush(p) > 0. implementable if there exists powgr such that the NLCE
Monotonicity From [11), we observe thali(pi,Pi,0%) holds.

strictly increases ap; decreases, or as any element®f  Theorem 3:Consider two load vectors with! > z and
increases. Hence, to satisfy(p;, pi,0”) = 1, p; strictly /4 it 2 is implementable, them:’ is implementable.

increases if any element @; increases. We note that aN\vioreover, the respective corresponding powgrsand p’
equivalent representation f (p;, P, 02) = 1 is p; = hi(P;). satisfyp’ < p.
It foIIows_that hi(p;) is inc_reasing in any of_the arguments. Proof: Supposex is implementable, i.e., there exists
. %cbalablhtthet 1 = hi(pi) andgz = hi(api), wherea > powerp such that the NPCE (or equivalently the NLCE) holds.
- Observe that From TheoreniI3h(-) is a standard interference function. We
ni(q1, Pi, 02) = ni(q2, apy, 0%) (14) shall prove thate’ is also implementable, i.ep’ exists.

With the second argument in;(y, -, z) fixed, we note that



Before we consider the general caseadf> x, we first
focus on the special case that strict inequality holds oaly f
the first element (with re-indexing if necessary), i.e.,=
[z1, 29, 2,7 andax’ = [2}, 22, -+, 2,]T with 2} > 2.
We now use the asynchronous IAP](10) with logld and we
set the initial power ap® = p. Our objective is to show that
the power converges tp’ that satisfies the NPCE.

The next theoretical characterization is on the imple-
mentable load regior over all non-negative power vectors
for any given satisfiable rate, i.e., L £ {z > 0 : z =
f(z;r,p),p > 0}. Theorem# states that the boundary of
this region is open.

Theorem 4:Suppose load: is implementable with power

Consider the asynchronous IAP_]10) with outer iteratiop and rater. Then there exists > 0, such that any load

¢ =1 and inner iteration = 1,2,--- ,n:

o Fori = 1: Consider the NLCE for cell with the original
load x and powerp:

le

xr1 =
jeg 1Og (1 + Zk22

17
P1914 ( )
PkYrjTr+o?

In the first iteration,z; andp; are updated by the actual
load of interestr;, and the iterated powes, respectively,
with other load and power unchanged. Sin¢e> x;, we
must havep} < p.

From the proof in Lemmd]5, the energy = pia;
with py,x; given by [17) satisfiede; /0p; > 0. Since
Oe1/0x1 = dey/Ip1-Op1/0x1 and clearlydp; /0x1 < 0,
we getde; /0z; < 0. Thus,piz) < p1z;.

py < pY = pe. The NLCE for cell2 with the original
load x and powerp can be written as:

T24

D292j
D191 1+ ) >3 PhOkj Tht0>

o =

)

Upon updating cell 2, we have updated,p; to the
newly iteratedx’, pi, respectively. Sinceiz] < pir;
as mentioned earliep} < ps.

JET2 1Og (1 +

similarly thatp! < p? = p; for i = 3,---,n. This
completes the first outer iteration.

At this point, we getpl < p. It can be similarly shown that
pitt < pf for £ > 1.

For large number of iterations, the decreasing sequence

pY,pL,--- must converge sincg’, > 0 (i.e., it is bounded
from below) for any? due to the positivity of the standard
interference function. Thus, the power solution exists, i’

is implementable.

At convergence, we havﬁm,-ﬁoopﬁ p’ < p. So
far we have assumed that only one element of the load
strictly increased. In general, if more than one load elersen
increased, repeating the argument sequentially for ewsh s

element proves that power exists and is decreased. Thus, i

generalz’ is implementable for’ > x, wherep’ <p. &

From Theoreni 13, we also obtain the equivalent result th
x is not implementable if’ is not implementable. Moreover,
by using Theoreril3, we conclude immediately that full loa
minimizes the sum energy (or minimizes the more gene

objective function such as sum weighted energy as given

in Remark[2). Thus, an alternative proof for Theorgm 1
obtained by applying Theorefd 3; the proof in Theorgn
however requires the concept of standard interferencdifumc
which is not needed in the proof of Theoréin 1.

For ¢ > 3: For subsequent iterations, it can be show

vectorz’ with ||’ — x| < J is implementable. Moreover, the
implementable load regiod is open.

Proof: Let p = 8p with 8 > 1, and let the corresponding
load satisfying the NLCE with rate be . Note thatz exists,
because the existence of load does not depend on power (cf.
Lemmall). By applying the IAL in[{7) to obtai@ (using
power p) with the initial load set ag® = z, it can be easily
checked that the load vector decreases in every iteratinoe S
x > 0, the iterations must converge #= lim; _, ., =¥ < x.
By Theoreni B, any’ > z is implementable. A& < z, there
is an implementable neighbourhoodof That is, there exists
d > 0, for which any load vector’ satisfying|jz’ — x|| < ¢
is implementable. Since the result holds for anyin £, it
follows that £ is open. ]

Fori = 2: We shall show that the iterated power satisfie®. Algorithm for Optimal Power Vector

By Theoreni®2, we can use the IAP to compute the optimal
power p* for (@) in Theoren{IL for implementable loact.
To obtain the output of the functioh(-) in each step of the
IAP, bisection search is able to determine the powesuch
thatn;(p;) = 1 (see Remarkl4). Putting together the theoretical
insights results in the following formal algorithmic deigdion
(Algorithm[d) for computingp*.

n Given:
- target load vector* = [z}, 25, - -,
- rate vectorr such thato(A(r)) < 1
- arbitrary initial power vectop
- tolerancee > 0
Output: p* with «* = f(x*;r,p*)
1: Initialize  «+ f(x*;r,p).
2: while ||z —x*|| > e do

*

T

e

D

3: fori=1:ndo
4: pieft « ¢ for any ¢ such thaty; (§) > 1
5: P&« 4 for any ¢ such thaty,(v) < 1
o 6 while |n;(p;) — 1] > e do
is .
7: if mi(p;) <1 then
8 PE e p,
in: else ifn;(p;) > 1 then
' o Pt p;
at 11 end if _
12: pi  (plfe + piE™) /2
q 13 end while
14:  end for
al
5. x + f(xz*;7r,p)
16: end while

e
S
3 17: p* < p, returnp*

Algorithm 1: TAP algorithm for computing optimal power.




TABLE | 8000
NETWORK AND SIMULATION PARAMETERS

7000

Parameter Value

Service area size 7509 7500 n?

Pixel resolution 50x 50 m? s000L Lt
Number of sites 50 Ny
Number of cells 148

Number of pixels 22,500 7
Number of users 1480 R
Thermal noise spectral density  -145.1 dBm/Hz

Total bandwidth per cell 4.5 MHz

Bandwidth per resorce unit 180 KHz 4000#
Tolerancee in IAP 106

Initial power vectorp in IAP 1w

30007

20005

Algorithm 1 solves the NPCE for givem*, by iteratively 4op0#7" %
updating the power vector and re-evaluating the resultiagl | i Py R Iy /5
f(x*;7,p). The bulk of the algorithm starts at Lifié 2. Th ~ F« / &7 =0 Bl 0y A
outer loop terminates if the load vecter has converged to % 1000 2000 3000 4000 5000 6000 7000 8000
x*. For each outer iteration, the inner loop is run starting

Line[d, for which the power vector for each celk updated. In Fig. 2. Network layout and user distribution in an area ofxalederplatz,
' Berlin. The units of the axes are in meters. Digital M&p: OpenStreetMap

each update, the power range is first initia!ize%m/)]' Whe_re contributors, the map data is available under the Open Bagahicense.
& < 1, such thaty;(£) > 1 andn; (1) < 1. Since the function

n;(-) is a strictly decreasing function, the bisection searcmfro
Lines[IE12 ensures convergence to the unique solution for

ni(pi) = 1, or equivalently, the value ok;(p;;z,r). Load g Results
re-evaluation is then carried out in Lifel15.

Our objective is to numerically illustrate the relatiorshi
among the load, power, and sum transmission energy. First,
VI. NUMERICAL EVALUATION we consider the use of uniform load with= ¢1 for various
0 < ¢ < 1, with ¢ = 1 being the case of full load.
Given the load vector, the optimal power solutiorp is
In this section, we provide numerical results to illusttite then obtained by using the IAP described by Algorithin 1.
theoretical findings. The simulations have been performed fNext, for benchmarking, we consider the conventional sehem
a real-life based cellular network scenario, with publialil- that employs uniform power allocation = 51,5 > 0. We
able data provided by the European MOMENTUM projedthooses that results in the minimum sum energy subject to
[25]. In our simulations, the data we have used are deriv8ite constraint that the corresponding load satidfiesz < 1,
from real measurements for the network of a sub-area @$ follows. From the proof of Lemnid 5, the energy (given by
Alexanderplatz in the city of Berlin. The scenario is ilksed the product of load and power) for each cell strictly decesas
in Fig.[2. The scenario has 50 base station sites, sectdried as the power strictly decreases. Thus, to minimize the sum
148 cells. In Fig[R, the red dots indicate base station sitels energy, we choose the smallgssuch thatx < 1; this can be
the green dots represent the location of users. Most of teg siobtained by a bisection search starting with sufficientlyam
have three sectors (cells) equipped with directional aren and large values o8. For any3 under consideration, the IAL
The blue short lines represent the antenna directions of tsgised to obtain the load corresponding to the pgwer 1.
cells. The entire service area of the Berlin network scenari In the first numerical experiment, we consider the sum
is divided into22, 500 pixels as shown Fid.]2. That is, eachenergy for rate demand = £1 with ¢ being successively
pixel represents a small square area, with resolutionx50 increased, while keepingsatisfiable. Fid.13 compares the sum
50 n?, for which signal propagation is considered uniformenergy for various uniform load levels, including full lqgahd
Users located in the same pixel are assumed to have the s#ma¢ obtained uniform power allocation. From Hig. 3, the sum
channel gains. The cell-pixel gain values originate froml reenergy for all cases appear to grow exponentially fast as the
measurements. In our simulations, each cell serves up to tate demand increases, and will approach infinity as the rate
randomly distributed users in its serving area as defineddan tdemand approaches the respective dotted vertical lines. Th
MOMENTUM data set. The total bandwidtii B of each cell lines correspond to the boundary when the rate demand is
is 4.5 MHz. Following the LTE standards, we use one resournet satisfiable, i.e.p(A(r)) = 1. This behaviour is consistent
block to represent a resource unit with 180 KHz bandwidthith Lemmal. Deploying full load achieves the smallest sum
each in the simulation. Network and simulation parameters @&nergy, in accordance with Theoréin 5. The reduction in sum
summarized in Tablg I. energy is particularly evident in comparison to the scheme

A. Simulation Setup
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some fixed (small) value, which suggests that, for any 0,
the load cannot become arbitrarily small, irrespectiveafigr.

In the last part of experiments, we investigate the conver-
gence behavior of the IAP. In Fi@] 5, we set the target load
vectorz* = 1 and the initial power vectop = 1 Watt, with
rate demand- = ¢1 where¢ € {350, 450,550,600} Kpbs.
The Euclidean distance between the iteratand targetr*
is given by | — «*||. The evolution of|jx — x*|| for the
four different rate demand cases is illustrated in Eig. 5. We
consider the algorithm as converged||it — x*|| < ¢, with
e = 1075, For the four rate demand cases, convergence is
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o
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&
T

o
T

S . reached after 11, 19, 36 and 59 iterations, respectivelierGi
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ the size of the network (148 cells), the values are moderate.
0z 08040800 0T 0808 ' Also, we notice that when the rate demand increases, more

iterations are required for convergence with a longerdil-
This is mainly because of a high rate demand which means
that, in general, the NPCE is operating in the high SINR
regime. The amount of progress in load in an IAP iteration
is mainly dependent on the denominator (3). For high
of uniform power — the relative saving #% or higher for SINR regime, the relative change in load is lesser due to the
the rate demand shown in Fifil 3. Conversely, for a fixddgarithm operator, thus slowing down the progress. Mogeov
amount of sum energy, deploying full load and optimizing thghe number of iterations depends on the initial power point.
corresponding power allows for maximizing the rate demand general, fewer iterations are required if the startingv@o
that can be served. point is closer to the optimum. Note that no matter what the
Next, we examine the energy consumption by progressivehjtialization is, the convergence of the |AP is guarantegd
increasing the uniform load for three rate demand leveldieoreniR.
r = £1 with £ taking the values of 350 Kbps, 450 Kbps In case of the presence of some time constraints in a
and 550 Kbps. The results are shown in Fij. 4. We obsermpeactical application, the IAP may be terminated beforé ful
that the sum energy decreases monotonically by increaseng tonvergence is reached. Thus, the capability of delivering
load. The reduction of sum energy appears to be expongntiall load-feasible and close-to-convergent solution wittew f
fast in the low-load regime, but is much slower in the highiterations is of significance. It can be seen in Hib. 5 that a
load regime. In addition, the numerical results also raitéo majority of the iterations is due to the tailing-off effect —
the fact that some load vectors are not implementable. ttme load vector is in fact close to the target value within
particular, it is not always possible to obtain a power vegto about half of the iterations. For all the rate demand levels,
for a load vectoer = ¢1 with very small¢ > 0. From Fig[4, convergence is in effect achieved in less than 20 iteratiies
the sum energy surges to infinity when the load approachssgromising for the practical relevance of the proposed IAP

Fig. 4. Sum transmission energy with respect to cell load.



scheme. Finally, to ensure that the load is strictly lesa fo#
load for practical implementation, we may set= (1 —¢')1
with € > e.

the same load:; but with a larger rater;cj as compared to
the optimal rater ;. In summary, we thus have > r*. &
Lemma 6 (Theorem 2 [23])Consider the NLCE[{3) with
power p fixed. Given the rate vectors’ andr with »’ > r
and»’ # r, the corresponding load vectoi$ and x satisfy

. . "> .
We have obtained some fundamental properties for tIEIEe

. . We omit the proof of LemmAl6, which is given in]23].
cellular network modeled by a non-linear load coupling equa Lemma. 7-For ProblemP0. the optimal rate vector satisfies
tion (NLCE), from the perspective of minimizing the energy , ' ' bt v ISt

consumption of all the base stations. To obtain analytical :Pd“’i“f: S h imalitv. th . |
results on the optimality of full load, and the computation fool: Suppose that at optimality, there exists at least one

and existence of the power allocation, we have investigat e element} that is strictly greater than its corresponding

VIl. CONCLUSION

a dual to the NLCE, given by a non-linear power couplin inimum) rate demand; .. Taking the power to be fixed

equation (NPCE). Interestingly, although the NPCE cann
be stated in closed-form, we have obtained useful propert
that is instrumental in proving the analytical results. OUJ_‘
results suggest that in practice, communication systemats t
are active should focus on using all available resources to
satisfy the users’ rate demand, so as to minimize the total
energy consumption.

[1]

APPENDIX

Lemma 5:For ProblemP0, the optimal solution is such (2]

that the load vector satisfies” = 1.
Proof: Note that the the load satisfies > 1 for all cell &

to satisfy non-trivial rate demands. Assume that at opiimal
we have0 < z* < 1 where there exists at least one cell
i € N with load 0 < 27 < 1 and powerp;. With all other
power p; and loadz} fixed, k # i, we reduce the power;
to p’ = p! —€,¢ > 0. Using [2), the corresponding loag}
strictly increases ta’ = 27 + ¢',¢’ > 0. We choose: > 0
such thatz’ < 1. With this new power-load paitp’, «’) for
cell 4, we claim that: (i) the objective function is reduced, and{6]
(i) the corresponding rate vectef is such that’ > r*, i.e.,
the NLCE constraint is satisfied sine¢ > d,.;,. The two
claims together imply that* with 0 < 2} < 1 is not optimal,
independent of the actual ce€ll By contradiction,z} = 1 for
all i, i.e,z* = 1. (8]

We now prove the first claim. Denote the energy used
in cell 7, as a function of its powep;, ase; = x;p; = 9]
Y e Tatitespy Wherec; = 9ij/ (Chenn (i) PRI Tk +
o) does not depends gn nor z;. Then

aei - Z ris

api Jj€T:

(4

(5]

(7]

[10]
(1 + cijpi) log(1 + cijpi) — cijpi
1Og2(1 + C1gpz)(1 + Cijpi)

(18) 1]

It can be verified by calculus that the numerator of each
summand is strictly increasing fgr; > 0, i.e., ggi > 0. [12]
Hence, when the power for cell is decreased, the energy
e; decreases. Thus, the objective function also decreases. [13]
To prove the second claim, we first note that for gelve
have constrained the new power-load p@if, z’) to satisfy [14]
(2). Thus, the new rate for cell denoted byri;,j € Ji, is
the same as the optimal ratg corresponding to the power- ;g
load pair(p},«F). Next, we observe that the product’ is
strictly smaller as compared to}p}, according to the first
claim. Thus, for usej € J; in cell k # i, SINR; () strictly
increases. It follows that the NLCE for cdllis satisfied with

§p*, if we decrease} to d; min, then the load will strictly
ecrease while satisfying the constraini](4b) by Leniha 6.
hus, the objective function value decreases. This coittiad
e optimality ofry. Thusr* = din.
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