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On Power and Load Coupling in Cellular Networks
for Energy Optimization
Chin Keong Ho, Di Yuan, Lei Lei, and Sumei Sun

Abstract—We consider the problem of minimization of sum
transmission energy in cellular networks where coupling oc-
curs between cells due to mutual interference. The coupling
relation is characterized by the signal-to-interference-and-noise-
ratio (SINR) coupling model. Both cell load and transmission
power, where cell load measures the average level of resource
usage in the cell, interact via the coupling model. We present
fundamental insights on the optimization problem, where power
and load are to be set for meeting the target amount of data
of users. We prove analytically that operating at full load
is optimal in minimizing sum energy, and provide theoretical
characterizations to enable the computation of the power solution
for a given load vector. The insights lead to an iterative power
adjustment algorithm with guaranteed convergence. We present
numerical results illustrating the theoretical findings for a real-
life and large-scale cellular network, showing the advantage of
our solution compared to the conventional solution of deploying
uniform power for base stations.

Index Terms—Cellular networks, energy minimization, load
coupling, power coupling, power adjustment allocation, standard
interference function.

I. I NTRODUCTION

Data traffic is projected to grow at a compound annual
growth rate of78% from 2011 to 2016 [1], fueled mainly
by multimedia mobile applications. This growth will lead to
rapidly rising energy cost [2]. In recent years, information
communication technology (ICT) has become the fifth largest
industry in power consumption [3]. In cellular networks, in
particular, base stations consume a significant fraction ofthe
total end-to-end energy [4], of which50%–80% of the power
consumption is due to the power amplifiers [5], [6]. This
observation has motivated green communication techniques
for cellular networks [7]–[14]. These technologies include
adaptive approaches such as switching off power amplifiers to
provide a tradeoff of energy efficiency and spectral efficiency
[7], [8], selectively turning off base stations [9], as wellas en-
ergy minimization approaches for relay systems [10], OFDMA
systems [11]–[13], and SC-FDMA systems [14]. Extensive
survey of other saving-energy approaches are highlighted in
[2], [15], [16].

In this paper, we focus on the important problem of
minimizing the sum energy used for transmission in cellular
networks. Besides reducing the energy cost for transmission,
minimizing the transmission energy may lead to selection
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of power amplifiers with lower power rating, hence further
reducing the overhead cost involved in turning on power
amplifiers.

In a cellular network where base stations are coupled due
to mutual interference, the problem of energy minimizationis
challenging, as each cell has to serve a target amount of data
to its set of users, so as to maintain an appropriate level of
service experience, subject to the presence of the coupling
relation between cells. To tackle this energy minimization
problem, we employ an analytical signal-to-interference-and-
noise-ratio (SINR) model that takes into account the load of
each cell [17]–[19], where a load of a cell translates into
the average level of usage of resource (e.g., resource units
in OFDMA networks) in the cell. This load-coupling equation
system has been shown to give a good approximation for more
complicated load models that capture the dynamic nature of
arrivals and service periods of data flows in the network [20],
especially at high data arrival rates. Further comparison of
other approximation models concluded that the load-coupled
model is accurate yet tractable [21]. By using this tractable
model, useful insights can then be developed for the design of
practical cellular systems. In our recent works [22], [23],we
have used the load coupling equation to maximize sum utility
that is an increasing function of the users’ rates.

Previous works [17]–[20], [22], [23] using the load-coupling
model all assume given and fixed transmission power. For
transmission energy minimization, both power and load be-
come variables and they interact in the coupling model,
making the analysis more challenging. In fact, the coupling
relation between cell powers cannot be expressed in closed
form even for given cell loads. The key aspects motivating
our theoretical and algorithmic investigations are as follows.
First, is there an insightful characterization of the operating
point in terms of load that minimizes the sum transmission
energy? Second, given a system operating point in load, what
are the properties of the coupling system in power? Third,
even if power coupling cannot be expressed in closed form,
is there some algorithm that converges to the power solution
for given cell load?

Toward these ends, our contributions are as follows. We
show that if full load is feasible, i.e., the users’ data re-
quirements can be satisfied, then operating at full load is
optimal in minimizing sum transmission energy (Section IV-C,
Theorem 1). If full load is not feasible, however, then no
feasible solution exists (Section IV-C, Corollary 1). Thus,
full load is necessary and sufficient to achieve the minimum
transmission energy. Moreover, the optimal power allocation
for all base stations is unique (Section V-B, Theorem 2),
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and can be numerically computed based on an iterative al-
gorithm that can be implemented iteratively at each base
station (Section V-D, Algorithm 1). To prove the algorithmic
result, we make use of the properties of the so-called standard
interference function [24]; the proof is however non-standard,
because the function of interest does not have a closed-form
expression, and hence we use an implicit method verify its
properties. We also characterize the load region given target
data requirements over all possible power allocation (Section
V-C, Theorems 3–4). Finally, we obtain numerical results to
illustrate the optimality of the full-load solution on a cellular
network based on a real-life scenario [25]. Compared with
the conventional solution where the uniform power is used for
base stations, we show the significant advantage of the power-
optimal solution in terms of meeting user demand target and
reducing the energy consumption.

The rest of the paper is organized as follows. Section II gives
the system model of the load-coupled network. Section III
formulates the energy minimization problem. Section IV char-
acterizes the optimality of full load, while Section V derives
properties of the power-coupling system and an iterative power
allocation algorithm that achieves the power solution. Numer-
ical results are given in Section VI. Section VII concludes the
paper.

Notations: We denote a (tall) vector by a bold lower case
letter, saya, a matrix by a bold capital letter, sayA, and its
(i, j)th element by its lower caseaij . We denote apositive
matrix asA > 0 if aij > 0 for all i, j. Similarly, we denote a
non-negativematrix asA ≥ 0 if aij ≥ 0 for all i, j. Similar
conventions apply to vectors. Finally,0 and1 denote the all-
zeros and all-ones vectors of suitable lengths.

II. SYSTEM MODEL

A. Preliminaries

We consider a cellular network consisting ofn base stations
that interfere with each other due to resource reuse. We focus
on the downlink communication scenario where base station
i ∈ N , {1, · · · , n} transmits with powerpi ≥ 0 per resource
unit (in time and frequency). We refer to celli interchangeably
with base stationi. For notational convenience, we collect all
power{pi} as vectorp ≥ 0.

We assume a given association of the users to the base
stations. In this association, each base stationi serves one
unique group of users in setJi, where|Ji| ≥ 1. Userj ∈ Ji
is served in celli at raterij that has to be at least a rate
demand ofdij,min ≥ 0 nats. Thus,dij,min relates to a quality-
of-service (QoS) constraint. We collect all the rates as vector r
and the corresponding minimum demands asdmin ≥ 0. Thus,
a rate vector meets the QoS constraints ifr ≥ dmin.

B. Load Coupling

We first consider the load coupling model for the cellular
network. We denote byx = [x1, · · · , xn]T the load in the
network, where0 ≤ x ≤ 1. the fractional usage of resource
units in celli. In LTE systems, the load can be interpreted as
the fraction of the time-frequency resources that are scheduled

to deliver data. We model the SINR of userj in cell i as [17]–
[20]

SINRij(x,p) =
pigij∑

k∈N\{i} pkgkjxk + σ2
(1)

whereσ2 represents the noise power andgij is the channel
power gain from base stationi to userj; note thatgkj , k 6= i,
represents the channel gain from the interfering base stations.
The SINR model (1) gives a good approximation of more
complicated cellular network load models [20]. Intuitively, xk
can be interpreted as the likelihood of receiving interference
from cell k on all the resource units. Thus, the combined term
(pkgkjxk) ∈ [0, pkgkj ] is interpreted as the average interfer-
ence taken over time and frequency for all transmissions.

Given the SINR, we can transmit reliably at the maximum
rate r̃ij = B log(1 + SINRij) nat/s per resource block, where
B is the bandwidth andlog is the natural logarithm. To deliver
a rate ofrij nat for userj, the ith base station thus requires
xij , rij/r̃ij resource units. We assume thatM resource
units are available. Thus, we get the load for celli as xi =∑

j∈Ji
xij/M , i.e.,

xi =
1

MB

∑

j∈Ji

rij
log (1 + SINRij(x,p))

, fi(x) (2)

for i ∈ N . Without loss of generality, we normalizerij
by MB in (2) and so we setMB = 1. Let f(x) =
[f1(x), · · · , fn(x)]T . In vector form, we obtain thenon-linear
load coupling equation(NLCE)

NLCE : x = f(x; r,p) (3)

for 0 ≤ x ≤ 1, where we have made the dependence of the
load x on the rater and powerp explicit. We note that the
load x appears in both sides of the equation and cannot be
readily solved in closed form.

We collect the QoS constraints asr ≥ dmin. Without loss of
generality, we assumedmin is strictly positive, as those users
with zero rate can be excluded from further consideration.
Hence the power vector satisfiesp > 0 so as to serve all the
users. Consequently, the load must be strictly positive, i.e.,
0 < x ≤ 1.

III. E NERGY M INIMIZATION PROBLEM

Our objective is to minimize the sum transmission energy
given by

∑n
i=1 xipi. We note that the product(xipi) measures

the transmission energy used by base stationi, because the
loadxi reflects the normalized amount of resource units used
(in time and frequency) while the powerpi is the amount of
energy used per resource unit.

The energy minimization problem is given by ProblemP0.

P0 : min
p>0,r>0

xTp (4a)

s.t. x = f(x; r,p), 0 < x ≤ 1 (4b)

r ≥ dmin. (4c)

As was mentioned earlier, the power and rate variables are
strictly positive to satisfy the non-trivial QoS constraint. The
first constraint (4b) is imposed to satisfy the NLCE. The
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second constraint (4c) is imposed so that the rater satisfies
the QoS constraint.

We denote an optimal solution to ProblemP0 asp⋆, r⋆ and
the corresponding load asx⋆. We observe that the load is an
implicit variable which depends on the power and rate vectors.
A key challenge of ProblemP0 is that a positive solution pair
(p, r) is considered feasible only if there exists a load such
that (4b) holds. Whether this existence holds is not obvious
due to the non-linearity of the NLCE. As such, the convexity
of the optimization problem cannot be readily established,and
hence standard convex optimization techniques do not apply
readily.

IV. OPTIMALITY OF FULL LOAD

In Section IV-A and Section IV-B, we consider fundamental
properties of rate and load, respectively, such that there exists
a power satisfying the NLCE. To study the fundamental prop-
erties, we consider the existence of a positive load satisfying
x > 0. The additional constraint thatx ≤ 1 is taken into
account in Section IV-C, in which we prove the key result that
full load, i.e.,x = 1, is a necessary and sufficient condition
for the solution in ProblemP0 to be optimal.

A. Satisfiability of Rate

We first establish conditions on rate vectorr such that a
load x exists that satisfies the NLCE, possibly withx > 1.
We denote the spectral radius of matrixA as ρ(A), defined
as the absolute value of the largest eigenvalue ofA.

Lemma 1:For any powerp > 0, there exists a unique load
x > 0 satisfying the NLCE if and only if

ρ(Λ(r)) < 1 (5)

where the(i, k)th element ofΛ(r) is given by

λik =

{
0, if i = k;∑

j∈Ji
gkjrij/gij , if i 6= k

(6)

which is a function ofr (but notp).
Proof: Follows directly from [23, Theorem 1].

Due to Lemma 1, we say that the rate vectorr is satisfiable
if ρ(Λ(r)) < 1. If r is not satisfiable, then there does not exist
any powerp > 0 that results in a load satisfying constraint
(4b) (which further requires the load vector to be less than
one). We note that even ifr is satisfiable, it is still possible that
the load does not satisfyx ≤ 1 and hence violates (4b). Thus,
satisfiability is a necessary condition for a feasible solution to
exist in ProblemP0, but it may not be sufficient.

Henceforth, we assume that a rater is satisfiable; otherwise
no feasible solution exists in ProblemP0. Given p, we can
then numerically obtainx by the iterative algorithm for load
(IAL) [23, Lemma 1], as follows. Specifically, starting from
an arbitrary initial loadx0 > 0, define the solution of theℓth
iteration as

xℓ = f(xℓ−1; r,p) (7)

for ℓ = 1, 2, · · · , L, whereL is the total number of iterations.
ThenxL converges to the fixed-point solutionx of the NLCE
asL goes to infinity. The IAL is derived using [24] by showing
that f is a so-called standard interference function.
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Fig. 1. Corresponding power region and load region satisfying the NLCE.

B. Implementability of Load

Although Lemma 1 states that a given power vectorp

always corresponds to a load vectorx that satisfies the NLCE,
the reverse is not true. To obtain some intuition why this
inverse mapping may fail, let us consider the special case
of n = 2 base stations with channel gaingij = 1 for all
i, j, rate r = 1, and noise varianceσ2 = 1. We randomly
choose the powerp = [p1, p2]

T using a uniform distribution
over 0 ≤ pi ≤ 2, i = 1, 2, which is plotted in Fig. 1(a). The
corresponding loadx = [x1, x2]

T obtained using the IAL is
shown in Fig. 1(b). We see that indeed there is a load region
that does not appear to correspond to any powerp ≥ 0.

Given that r is satisfiable, we say that the loadx is
implementableif there exists powerp such that the NLCE
is satisfied. The following toy scenario shows thatx = 1

(full load) is not implementable. We assumen = 2 cells
with one user per cell, each with rater = 2.1 nat. The
channel gains from a base station to the user it served and
the user it does not serve is set asg = 1 and g′ = 1/3,
respectively. Note that the rate is satisfiable since we get

Λ =

[
0 g′r/g

g′r/g 0

]
and henceρ(Λ) = 0.49 and hence

satisfies (5). By symmetry, the power allocated for all cells
must be the same withp1 = p2 = p and must thus satisfy (2),
i.e., log(1+gp/(g′p+σ2)) = r. But for any noise varianceσ2

and powerp, the left hand side cannot exceed2 nat and so the
equation cannot hold. Hence, full load is not implementable
in this case.

C. Main Result: Full Load is Optimal

Our first main result is given by Theorem 1, which states
that full load, if implementable, is optimal to minimize the
sum energy in ProblemP0.

Theorem 1:Suppose full load, i.e.,x = 1, is imple-
mentable. Then the optimal solution for ProblemP0 is as
follows: r⋆ = dmin, andp⋆ is such thatx⋆ = 1. The optimal
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power vectorp⋆ is thus given implicitly by the NLCE as

1 = f(1;dmin,p
⋆). (8)

Proof: The proof follows from Lemma 5 and Lemma 7
given in the Appendix, which state thatx⋆ = 1 andr⋆ = dmin

are the optimal solutions, respectively. Substituting theoptimal
solutions into the NLCE results in (8).

From Theorem 1, serving the minimum required rate is opti-
mal. This observation is intuitively reasonable as less resources
are used and hence less energy is consumed. Interestingly,
Theorem 1 states that having full load is optimal. This second
observation is not as intuitive, since it is not immediately
clear the effect of using higher load on both the sum energy
and interference. This is because using a high load may lead
to more interference to neighbouring cells, which may then
require other cells to use more energy to serve their users’
rates. Mathematically, the reason can be attributed to the proof
of Lemma 5, which shows that, as the power decreases, the
energy as well as the interference for each cell decreases, while
concurrently the load increases. Thus, by using full load, the
energy is minimized.

Next, Corollary 1 provides a converse type of result to The-
orem 1. The result follows from a theorem with a generalized
statement, which we defer to Section V-B because the proof
requires the use of algorithmic notions for finding power given
load.

Corollary 1: If full load x = 1 is not implementable, then
there is no other loadx ≤ 1 with x 6= 1 that is implementable.
Thus, there is no feasible solution for ProblemP0.

Proof: The result follows as a special case of Theorem 3
later in Section V-B.

Remark 1:Theorem 1 and Corollary 1 together thus show
that full load is both necessary and sufficient to achieve the
minimum energy in ProblemP0.

Remark 2: It can be easily checked that Theorem 1 and
Corollary 1 continue to hold even if we generalize the
objective function to any functionc(x1p1, x2p2, · · · , xnpn)
that is increasing in each of its argument. For example,
c(y1, · · · , yn) =

∑
wiyi gives the weighted sum energy with

positive weights{wi, i = 1, · · · , n}.

V. OPTIMAL POWER SOLUTION

Although full load is optimal for ProblemP0, it is still not
clear if the optimal powerp⋆ is unique and how to numerically
computep⋆ in (8). Theorem 2 shall answer both questions, but
in a more general setting. Namely, we provide theoretical and
algorithmic results for finding powerp given arbitrary loadx
(not necessarily all ones) and arbitrary rater that is satisfiable
(not necessarily equal todmin), so as to satisfy the NLCE.

A. Standard Interference Function

Before we state the main result of the section, we introduce
the standard interference function and an iterative algorithm.
The algorithm shall be used to obtain the optimal powerp⋆,
and is also a key step in the proof of the implementability of
load.

We say a functionI : Rn
+ → R

n
+ is a standard interference

function if it satisfies the following properties for all input
p ≥ 0 [24]:

1) Positivity: I(p) > 0;
2) Monotonicity: If p ≥ p′, thenI(p) ≥ I(p′).
3) Scalability: For allα > 1, αI(p) > I(αp).
Next, we consider both the synchronous and asynchronous

versions of theiterative algorithm for power(IAP). Assume
an arbitrary initial powerp0 > 0. In iterationℓ = 1, · · · , L, of
thesynchronous IAP, whereL is the total number of iterations,
we obtain

pℓ = I(pℓ−1). (9)

Clearly, the entire power vector is used and updated iteratively,
and any power element ofpℓ is solely determined bypℓ−1.
In contrast, theasynchronous IAPiterates power element by
power element, of which any update comes immediately into
effect for the remaining elements. Specifically, for eachouter
iteration ℓ = 1, · · · , L, we performn inner iterations. In the
ith inner iteration,i = 1, · · · , n, we obtain

pℓi = I(pℓ−1
i−1 ) (10)

wherepℓ−1
i−1 represents the power vector containing the most

updated elements after(ℓ − 1) outer iterations and(i − 1)
inner iterations (during theℓth outer iteration). AfterL outer
iterations are fully completed, each withn inner iterations, we
obtainpL

n as the final power vector solution.
The following result is due to [24, Theorems 2,4]; we omit

the proof.
Lemma 2:Suppose a fixed-point solutionp exists forp =

I(p). If I is a standard interference function, then starting
from any initial power vector, both the synchronous and asyn-
chronous IAP algorithms converge to the fixed-point solution
p, which is unique.

B. Main Result: Existence and Computation of Power Solution

Before proving the main result, we present and prove some
properties on how the elements of the power vector relate
to each other in NLCE. The properties will then be used to
establish that the results in [24] with the notion of standard
interference function can be applied.

Let p̄i be the vector of length(n − 1) that contains all
elements inp except forpi. Lemma 3 shows that givenx and
r, the dependency ofpi on p̄i (such that the NLCE holds)
qualifies as a function, even if the function is not in closed
form.

Lemma 3:Let p,x, r satisfy the NLCE, where the vectors
are strictly positive. Then there exists functionhi : Rn

++ →
R

n
++ satisfyingpi = hi(p̄i;x, r) for all i = 1, · · · , n. Writing

pi’s andhi’s in vector form, we getp = h(p;x, r).
Proof: We fix x, r and drop these notations in the

function hi(·) for simplicity. To prove the existence of the
function hi(·), we need to show that given̄pi, there exists a
uniquepi for i = 1, · · · , n. First, we write the NLCE in (2)
as

1 =
∑

j∈Ji

aij
log (1 + pibij(p̄i, σ2))

, ηi(pi) (11)
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where

aij , rij/xi (12)

bij(p̄i, σ
2) ,

gij∑
k∈N\{i} pkgkjxk + σ2

(13)

are both independent ofpi. We fix p̄i > 0 and σ2 ≥ 0. It
follows that bij(p̄i, σ

2) > 0 and soηi(pi) > 0. Observe that
ηi(pi) is a strictly decreasing function ofpi. Sinceηi(pi)→∞
aspi → 0, andηi(pi)→ 0 aspi → ∞, there exists a unique
pi > 0 such thatηi(pi) = 1, and thus satisfies (11). Hence
there exists a function of the formpi = hi(p̄i), for any i.

Remark 3:The functionhi(·) does not submit to a closed-
form solution. For example, consider expressingpi in terms
of p̄i in (11) where the number of summands is|Ji| > 1.
Because each of them is non-linear inpi, the dependency of
pi on p̄i is not explicit.

Remark 4:Although hi(·) cannot be expressed in closed
form, we can numerically obtain the outputpi of the function
hi given the input̄pi. Equivalently, this means that we want to
obtain the value ofpi such that (11) holds. This is computed,
for example, by a bisection search onηi(pi) = 1, making use
of the property thatηi(pi) is a strictly decreasing function.
Specifically, we first choose an arbitrary but small powerp′

such thatηi(p′) > 1 and an arbitrary but large powerp′′ such
that ηi(p′′) < 1. Next we use the new powerp = (p′ + p′′)/2
and evaluate ifg(p) is greater or smaller than one, then replace
p′ or p′′ by p, respectively. By performing this procedure
iteratively, we have guaranteed convergence to the desiredp
that satisfiesηi(pi) = 1. This forms the basis for the proposed
algorithm later in Section VI.

We observe thath(·) is to some extent similar tof(·) in the
NLCE (3). From Remark 3, however, the functionh(·) cannot
be readily written as a closed-form expression. Thus, proving
properties related toh(·) is more challenging, as compared to
the case off(·) for which a closed-form solution is available.
Nevertheless, Lemma 4 states thath(·) qualifies as a standard
interference function as defined in [24].

Lemma 4:Given loadx ≥ 0 and rater ≥ 0, h(p;x, r) is
a standard interference function inp.

Proof: For notational convenience, we drop the depen-
dence of these entities in the notation ofh(·). We consider an
arbitrary i and refer toηi(pi), aij , bij as defined in (11), (12)
and (13), respectively, throughout the proof. For this proof, it is
useful to denote the functionηi(pi) explicitly asηi(pi, p̄i, σ

2)
to ease the discussion. We prove each of the three properties
required for standard interference function below.

Positivity: From the proof of Lemma 3, there exists a unique
pi > 0 that satisfies (11), i.e.,hi(p̄i) > 0. This holds for all
i, thush(p) > 0.

Monotonicity: From (11), we observe thatηi(pi, p̄i, σ
2)

strictly increases aspi decreases, or as any element ofp̄i

increases. Hence, to satisfyηi(pi, p̄i, σ
2) = 1, pi strictly

increases if any element of̄pi increases. We note that an
equivalent representation ofηi(pi, p̄i, σ

2) = 1 is pi = hi(p̄i).
It follows thathi(p̄i) is increasing in any of the arguments.

Scalability: Let q1 = hi(p̄i) andq2 = hi(αp̄i), whereα >
1. Observe that

ηi(q1, p̄i, σ
2) = ηi(q2, αp̄i, σ

2) (14)

since both equal one according to (11). It is easy to check
that q1bij(p̄i, σ

2) = αq1bij(αp̄i, ασ
2). That is, multiplying

all the terms in the triplet(q1, p̄i, σ
2) by a positive constant

still allows (11) to be satisfied. Thus we get from (14)

ηi(αq1, αp̄i, ασ
2) = ηi(q2, αp̄i, σ

2). (15)

With the second argument inηi(y, ·, z) fixed, we note that
the output of the function strictly decreases withy and strictly
increases withz. By the equality in (15), it follows thatαq1 >
q2 becauseασ2 > σ2. Taking into account of the definition
of q1 andq2, we have provedαhi(p̄i) > hi(αp̄i).

Using Lemma 3 and Lemma 4, we are ready to provide
the main result, stating that NLCE can be expressed in an
alternative form with the power taken as the subject of interest.
The proof is non-standard, because the relations among the
power elements do not submit to a closed form (Remark 3).
Hence, it has been necessary to first establish that the relation
between one power element and the others qualifies as a
function (Lemma 3). Next, we have used an implicit method to
prove thath(·) is indeed an interference function (Lemma 4).

Theorem 2:Given loadx and rater, the powerp that
satisfies the NLCE can be represented equivalently in the form
of a non-linearpowercoupling equation (NPCE) given by

NPCE : p = h(p;x, r) (16)

where h(·) is a standard interference function. Given that
a solutionp exists, thenp is unique and can be obtained
numerically by the IAP.

Proof: Lemma 3 states the existence of the functionh(·),
and hence allows us to obtain the NPCE. Lemma 4 states that
h(·) satisfies all the properties required for a standard inter-
ference function. The uniqueness and iterative computation of
p then follows from Lemma 2 with the standard interference
functionh(·).

Remark 5:So far we have assumed that there is no max-
imum power constraint imposed for any element of power
p. If such power constraints are imposed, then a so-called
standard constrained interference function defined in [24]can
be used instead to perform the IAP, in which the output of each
iteration is set to the maximum power constraint value, if that
returned fromh is higher. This type of iteration converges to
a unique fixed point [24, Corollary 1].

C. Characterization on Implementability of Load

Theorem 3 provides a monotonicity result for load im-
plementability. We recall that a load vectorx is said to be
implementable if there exists powerp such that the NLCE
holds.

Theorem 3:Consider two load vectors withx′ ≥ x and
x′ 6= x. If x is implementable, thenx′ is implementable.
Moreover, the respective corresponding powersp and p′

satisfyp′ < p.
Proof: Supposex is implementable, i.e., there exists

powerp such that the NPCE (or equivalently the NLCE) holds.
From Theorem 3,h(·) is a standard interference function. We
shall prove thatx′ is also implementable, i.e.,p′ exists.



6

Before we consider the general case ofx′ ≥ x, we first
focus on the special case that strict inequality holds only for
the first element (with re-indexing if necessary), i.e.,x =
[x1, x2, · · · , xn]T andx′ = [x′1, x2, · · · , xn]

T with x′1 > x1.
We now use the asynchronous IAP (10) with loadx′, and we
set the initial power asp0 = p. Our objective is to show that
the power converges top′ that satisfies the NPCE.

Consider the asynchronous IAP (10) with outer iteration
ℓ = 1 and inner iterationi = 1, 2, · · · , n:

• For i = 1: Consider the NLCE for cell1 with the original
loadx and powerp:

x1 =
∑

j∈J1

r1j

log
(
1 +

p1g1j∑
k≥2

pkgkjxk+σ2

) . (17)

In the first iteration,x1 andp1 are updated by the actual
load of interestx′1 and the iterated powerp11, respectively,
with other load and power unchanged. Sincex′1 > x1, we
must havep11 < p1.
From the proof in Lemma 5, the energye1 , p1x1
with p1, x1 given by (17) satisfies∂e1/∂p1 > 0. Since
∂e1/∂x1 = ∂e1/∂p1 ·∂p1/∂x1 and clearly∂p1/∂x1 < 0,
we get∂e1/∂x1 < 0. Thus,p11x

′
1 < p1x1.

• For i = 2: We shall show that the iterated power satisfies
p12 < p02 = p2. The NLCE for cell2 with the original
loadx and powerp can be written as:

x2 =
∑

j∈J2

r2j

log
(
1 +

p2g2j
p1g1jx1+

∑
k≥3

pkgkjxk+σ2

)

Upon updating cell 2, we have updatedx1, p1 to the
newly iteratedx′1, p

1
1, respectively. Sincep11x

′
1 < p1x1

as mentioned earlier,p12 < p2.
• For i ≥ 3: For subsequent iterations, it can be shown

similarly that p1i < p0i = pi for i = 3, · · · , n. This
completes the first outer iteration.

At this point, we getp1
n < p. It can be similarly shown that

pℓ+1
n < pℓ

n for ℓ > 1.
For large number of iterationsL, the decreasing sequence

p0
n,p

1
n, · · · must converge sincepℓ

n ≥ 0 (i.e., it is bounded
from below) for anyℓ due to the positivity of the standard
interference function. Thus, the power solution exists, i.e.,x′

is implementable.
At convergence, we havelimL→∞ pL

n = p′ < p. So
far we have assumed that only one element of the load is
strictly increased. In general, if more than one load element is
increased, repeating the argument sequentially for every such
element proves that power exists and is decreased. Thus, in
generalx′ is implementable forx′ ≥ x, wherep′ < p.

From Theorem 3, we also obtain the equivalent result that
x is not implementable ifx′ is not implementable. Moreover,
by using Theorem 3, we conclude immediately that full load
minimizes the sum energy (or minimizes the more general
objective function such as sum weighted energy as given
in Remark 2). Thus, an alternative proof for Theorem 1 is
obtained by applying Theorem 3; the proof in Theorem 3
however requires the concept of standard interference function
which is not needed in the proof of Theorem 1.

The next theoretical characterization is on the imple-
mentable load regionL over all non-negative power vectors
for any given satisfiable rater, i.e., L , {x ≥ 0 : x =
f(x; r,p),p ≥ 0}. Theorem 4 states that the boundary of
this region is open.

Theorem 4:Suppose loadx is implementable with power
p and rater. Then there existsδ > 0, such that any load
vectorx′ with ‖x′−x‖ ≤ δ is implementable. Moreover, the
implementable load regionL is open.

Proof: Let p̃ = βp with β > 1, and let the corresponding
load satisfying the NLCE with rater be x̃. Note thatx̃ exists,
because the existence of load does not depend on power (cf.
Lemma 1). By applying the IAL in (7) to obtaiñx (using
power p̃) with the initial load set asx0 = x, it can be easily
checked that the load vector decreases in every iteration. Since
x̃ > 0, the iterations must converge tõx = limL→∞ xL < x.
By Theorem 3, anyx′ ≥ x̃ is implementable. As̃x < x, there
is an implementable neighbourhood ofx. That is, there exists
δ > 0, for which any load vectorx′ satisfying‖x′ − x‖ ≤ δ
is implementable. Since the result holds for anyx in L, it
follows thatL is open.

D. Algorithm for Optimal Power Vector

By Theorem 2, we can use the IAP to compute the optimal
powerp⋆ for (8) in Theorem 1 for implementable loadx⋆.
To obtain the output of the functionh(·) in each step of the
IAP, bisection search is able to determine the powerpi such
thatηi(pi) = 1 (see Remark 4). Putting together the theoretical
insights results in the following formal algorithmic description
(Algorithm 1) for computingp⋆.

Given:
- target load vectorx⋆ = [x⋆1, x

⋆
2, · · · , x

⋆
n]

T

- rate vectorr such thatρ(Λ(r)) < 1
- arbitrary initial power vectorp
- toleranceǫ > 0
Output : p⋆ with x⋆ = f(x⋆; r,p⋆)

1: Initialize x← f(x⋆; r,p).
2: while ‖x− x⋆‖ > ǫ do
3: for i = 1 : n do
4: plefti ← ξ for any ξ such thatηi(ξ) > 1
5: prighti ← ψ for anyψ such thatηi(ψ) < 1
6: while |ηi(pi)− 1| > ǫ do
7: if ηi(pi) ≤ 1 then
8: prighti ← pi
9: else if ηi(pi) > 1 then

10: plefti ← pi
11: end if
12: pi ← (plefti + prighti )/2
13: end while
14: end for
15: x← f(x⋆; r,p)
16: end while
17: p⋆ ← p, returnp⋆

Algorithm 1: IAP algorithm for computing optimal power.
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TABLE I
NETWORK AND SIMULATION PARAMETERS

Parameter Value
Service area size 7500× 7500 m2

Pixel resolution 50× 50 m2

Number of sites 50
Number of cells 148
Number of pixels 22,500
Number of users 1480
Thermal noise spectral density -145.1 dBm/Hz
Total bandwidth per cell 4.5 MHz
Bandwidth per resorce unit 180 KHz
Toleranceǫ in IAP 10

−6

Initial power vectorp in IAP 1 W

Algorithm 1 solves the NPCE for givenx⋆, by iteratively
updating the power vector and re-evaluating the resulting load
f(x⋆; r,p). The bulk of the algorithm starts at Line 2. The
outer loop terminates if the load vectorx has converged to
x⋆. For each outer iteration, the inner loop is run starting at
Line 3, for which the power vector for each celli is updated. In
each update, the power range is first initialized to[ξ, ψ], where
ξ < ψ, such thatηi(ξ) > 1 andηi(ψ) < 1. Since the function
ηi(·) is a strictly decreasing function, the bisection search from
Lines 7-12 ensures convergence to the unique solution for
ηi(pi) = 1, or equivalently, the value ofhi(p̄i;x, r). Load
re-evaluation is then carried out in Line 15.

VI. N UMERICAL EVALUATION

A. Simulation Setup

In this section, we provide numerical results to illustratethe
theoretical findings. The simulations have been performed for
a real-life based cellular network scenario, with publiclyavail-
able data provided by the European MOMENTUM project
[25]. In our simulations, the data we have used are derived
from real measurements for the network of a sub-area of
Alexanderplatz in the city of Berlin. The scenario is illustrated
in Fig. 2. The scenario has 50 base station sites, sectorizedinto
148 cells. In Fig. 2, the red dots indicate base station sitesand
the green dots represent the location of users. Most of the sites
have three sectors (cells) equipped with directional antennas.
The blue short lines represent the antenna directions of the
cells. The entire service area of the Berlin network scenario
is divided into22, 500 pixels as shown Fig. 2. That is, each
pixel represents a small square area, with resolution 50×
50 m2, for which signal propagation is considered uniform.
Users located in the same pixel are assumed to have the same
channel gains. The cell-pixel gain values originate from real
measurements. In our simulations, each cell serves up to ten
randomly distributed users in its serving area as defined in the
MOMENTUM data set. The total bandwidthMB of each cell
is 4.5 MHz. Following the LTE standards, we use one resource
block to represent a resource unit with 180 KHz bandwidth
each in the simulation. Network and simulation parameters are
summarized in Table I.

Fig. 2. Network layout and user distribution in an area of Alexanderplatz,
Berlin. The units of the axes are in meters. Digital Map:c© OpenStreetMap
contributors, the map data is available under the Open Database License.

B. Results

Our objective is to numerically illustrate the relationship
among the load, power, and sum transmission energy. First,
we consider the use of uniform load withx = φ1 for various
0 < φ ≤ 1, with φ = 1 being the case of full load.
Given the load vectorx, the optimal power solutionp is
then obtained by using the IAP described by Algorithm 1.
Next, for benchmarking, we consider the conventional scheme
that employs uniform power allocationp = β1, β > 0. We
chooseβ that results in the minimum sum energy subject to
the constraint that the corresponding load satisfies0 ≤ x ≤ 1,
as follows. From the proof of Lemma 5, the energy (given by
the product of load and power) for each cell strictly decreases
as the power strictly decreases. Thus, to minimize the sum
energy, we choose the smallestβ such thatx ≤ 1; this can be
obtained by a bisection search starting with sufficiently small
and large values ofβ. For anyβ under consideration, the IAL
is used to obtain the load corresponding to the powerp = β1.

In the first numerical experiment, we consider the sum
energy for rate demandr = ξ1 with ξ being successively
increased, while keepingr satisfiable. Fig. 3 compares the sum
energy for various uniform load levels, including full load, and
that obtained uniform power allocation. From Fig. 3, the sum
energy for all cases appear to grow exponentially fast as the
rate demand increases, and will approach infinity as the rate
demand approaches the respective dotted vertical lines. The
lines correspond to the boundary when the rate demand is
not satisfiable, i.e.,ρ(Λ(r)) = 1. This behaviour is consistent
with Lemma 1. Deploying full load achieves the smallest sum
energy, in accordance with Theorem 5. The reduction in sum
energy is particularly evident in comparison to the scheme
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Fig. 4. Sum transmission energy with respect to cell load.

of uniform power – the relative saving is90% or higher for
the rate demand shown in Fig. 3. Conversely, for a fixed
amount of sum energy, deploying full load and optimizing the
corresponding power allows for maximizing the rate demand
that can be served.

Next, we examine the energy consumption by progressively
increasing the uniform load for three rate demand levels
r = ξ1 with ξ taking the values of 350 Kbps, 450 Kbps
and 550 Kbps. The results are shown in Fig. 4. We observe
that the sum energy decreases monotonically by increasing the
load. The reduction of sum energy appears to be exponentially
fast in the low-load regime, but is much slower in the high-
load regime. In addition, the numerical results also reinforce
the fact that some load vectors are not implementable. In
particular, it is not always possible to obtain a power vector p
for a load vectorx = φ1 with very smallφ > 0. From Fig. 4,
the sum energy surges to infinity when the load approaches
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Fig. 5. The evolution of the Euclidean distance between the iteratex and
the targetx⋆, given by‖x − x

⋆‖, over iterations with toleranceǫ = 10
−6

andx⋆
= 1.

some fixed (small) value, which suggests that, for anyr > 0,
the load cannot become arbitrarily small, irrespective of power.

In the last part of experiments, we investigate the conver-
gence behavior of the IAP. In Fig. 5, we set the target load
vectorx⋆ = 1 and the initial power vectorp = 1 Watt, with
rate demandr = ξ1 whereξ ∈ {350, 450, 550, 600} Kpbs.
The Euclidean distance between the iteratex and targetx⋆

is given by ‖x − x⋆‖. The evolution of‖x − x⋆‖ for the
four different rate demand cases is illustrated in Fig. 5. We
consider the algorithm as converged if‖x − x⋆‖ ≤ ǫ, with
ǫ = 10−6. For the four rate demand cases, convergence is
reached after 11, 19, 36 and 59 iterations, respectively. Given
the size of the network (148 cells), the values are moderate.
Also, we notice that when the rate demand increases, more
iterations are required for convergence with a longer tail-off.
This is mainly because of a high rate demand which means
that, in general, the NPCE is operating in the high SINR
regime. The amount of progress in load in an IAP iteration
is mainly dependent on the denominator in (3). For high
SINR regime, the relative change in load is lesser due to the
logarithm operator, thus slowing down the progress. Moreover,
the number of iterations depends on the initial power point.
In general, fewer iterations are required if the starting power
point is closer to the optimum. Note that no matter what the
initialization is, the convergence of the IAP is guaranteedby
Theorem 2.

In case of the presence of some time constraints in a
practical application, the IAP may be terminated before full
convergence is reached. Thus, the capability of delivering
a load-feasible and close-to-convergent solution within few
iterations is of significance. It can be seen in Fig. 5 that a
majority of the iterations is due to the tailing-off effect –
the load vector is in fact close to the target value within
about half of the iterations. For all the rate demand levels,
convergence is in effect achieved in less than 20 iterations; this
is promising for the practical relevance of the proposed IAP
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scheme. Finally, to ensure that the load is strictly less than full
load for practical implementation, we may setx⋆ = (1− ǫ′)1
with ǫ′ > ǫ.

VII. C ONCLUSION

We have obtained some fundamental properties for the
cellular network modeled by a non-linear load coupling equa-
tion (NLCE), from the perspective of minimizing the energy
consumption of all the base stations. To obtain analytical
results on the optimality of full load, and the computation
and existence of the power allocation, we have investigated
a dual to the NLCE, given by a non-linear power coupling
equation (NPCE). Interestingly, although the NPCE cannot
be stated in closed-form, we have obtained useful properties
that is instrumental in proving the analytical results. Our
results suggest that in practice, communication systems that
are active should focus on using all available resources to
satisfy the users’ rate demand, so as to minimize the total
energy consumption.

APPENDIX

Lemma 5:For ProblemP0, the optimal solution is such
that the load vector satisfiesx⋆ = 1.

Proof: Note that the the load satisfiesxk > 1 for all cell k
to satisfy non-trivial rate demands. Assume that at optimality,
we have0 < x⋆ ≤ 1 where there exists at least one cell
i ∈ N with load 0 < x⋆i < 1 and powerp⋆i . With all other
powerp⋆k and loadx⋆k fixed, k 6= i, we reduce the powerp⋆i
to p′ = p⋆i − ǫ, ǫ > 0. Using (2), the corresponding loadx⋆i
strictly increases tox′ = x⋆i + ǫ′, ǫ′ > 0. We chooseǫ > 0
such thatx′ ≤ 1. With this new power-load pair(p′, x′) for
cell i, we claim that: (i) the objective function is reduced, and
(ii) the corresponding rate vectorr′ is such thatr′ ≥ r⋆, i.e.,
the NLCE constraint is satisfied sincer⋆ ≥ dmin. The two
claims together imply thatx⋆ with 0 < x⋆i < 1 is not optimal,
independent of the actual celli. By contradiction,x⋆i = 1 for
all i, i.e, x⋆ = 1.

We now prove the first claim. Denote the energy used
in cell i, as a function of its powerpi, as ei = xipi =∑

j∈Ji

rijpi

log(1+cijpi)
where cij , gij/(

∑
k∈N\{i} pkgkjxk +

σ2) does not depends onpi nor xi. Then

∂ei
∂pi

=
∑

j∈Ji

rij
(1 + cijpi) log(1 + cijpi)− cijpi

log2(1 + cijpi)(1 + cijpi)
. (18)

It can be verified by calculus that the numerator of each
summand is strictly increasing forpi > 0, i.e., ∂ei

∂pi
> 0.

Hence, when the power for celli is decreased, the energy
ei decreases. Thus, the objective function also decreases.

To prove the second claim, we first note that for celli, we
have constrained the new power-load pair(p′, x′) to satisfy
(2). Thus, the new rate for celli, denoted byr′ij , j ∈ Ji, is
the same as the optimal rater⋆ij corresponding to the power-
load pair(p⋆i , x

⋆
i ). Next, we observe that the productx′p′ is

strictly smaller as compared tox⋆i p
⋆
i , according to the first

claim. Thus, for userj ∈ Jk in cell k 6= i, SINRkj(x) strictly
increases. It follows that the NLCE for cellk is satisfied with

the same loadxk but with a larger rater′kj as compared to
the optimal rater⋆kj . In summary, we thus haver′ ≥ r⋆.

Lemma 6 (Theorem 2, [23]):Consider the NLCE (3) with
powerp fixed. Given the rate vectorsr′ and r with r′ ≥ r

andr′ 6= r, the corresponding load vectorsx′ andx satisfy
x′ > x.

We omit the proof of Lemma 6, which is given in [23].
Lemma 7:For ProblemP0, the optimal rate vector satisfies

r⋆ = dmin.
Proof: Suppose that at optimality, there exists at least one

rate elementr⋆i that is strictly greater than its corresponding
(minimum) rate demanddi,min. Taking the power to be fixed
asp⋆, if we decreaser⋆i to di,min, then the load will strictly
decrease while satisfying the constraint (4b) by Lemma 6.
Thus, the objective function value decreases. This contradicts
the optimality ofr⋆i . Thusr⋆ = dmin.
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