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Abstract

Compressed sensing provides a new sampling theory for data acquisition, which says

that compressible signals can be exactly reconstructed from highly incomplete sets of linear

measurements. It is significant to many applications, e.g., medical imaging and remote

sensing, especially for measurements limited by physical and physiological constraints, or

extremely expensive. In this paper we proposed a recovery algorithm from a view of reaction-

diffusion equations, by applying curvelet thresholding in inverse scale space flows. Numerical

experiments in medical CT and aerospace remote sensing show its good performances for

recovery of detailed features from incomplete and inaccurate measurements, in comparison

with some existing methods.

Index Terms

Inverse problem, compressed sensing, image recovery, incomplete measurements, geometric

wavelets, aerospace remote sensing.

I. Introduction

Compressed sensing (CS) or compressive sampling [7–10, 18] is a new direction in the

fields of signal processing. It says that we can recover an compressible signal u from a

very small set of incomplete measurements f . The CS needs far fewer measurements than

conventional measurements that are limited by Shannon/Nyquist sampling theorem: the
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sampling rate must be at least twice the maximum frequency of signal. If we let Φ ∈ CK,N ,

K << N be a CS matrix or an imaging lens in optical architecture, the encoding can be

described as

f = Φu + ε. (1)

Here ε denotes possible measurement noises. It seems hopeless solving the ill-posed under-

determined equations since the rows are much fewer than the columns in Φ. Most time, the

x is compressible by a transform Ψ, thus we have f = ΦΨϑ + ε. The CS told us that we can

accurately recover the sparse coefficients ϑ thus u by solving a constrained optimal problem.

min ‖ϑ‖l1 , subject to ‖ΦΨϑ− f‖l2 ≤ ε. (2)

Promising performances of CS theorems have been demonstrated in a few potential

applications including compressive imaging, wireless sensing, analog-to-information con-

version, biosensing for DNA microarrays, optical architecture, and surface metrology (see

e.g., [1, 3, 11, 27, 28, 31, 32] and http://www.dsp.ece.rice.edu/cs/). To make the CS work

well, one must handle successfully two goals: constructing of CS matrices and designing of

nonlinear recover algorithms. To construct the CS matrices, Candès et al. [7, 10] proposed

a sufficient condition, named restricted isometry property (RIP). Roughly speaking, the CS

matrix should be noise-like incoherent in the sparse transform domain. The greater incoher-

ence, the smaller number of measurements needed. Frequent-used measurements are random

matrices which are incoherent to most transforms. So far, a few special CS measurement

matrices have been presented, including sparse 0/1 random matrices [2], Toeplitz block ma-

trices [40], structurally random matrices and scrambled block Hadamard ensemble [23], etc.

How to build determined measurement matrices that satisfy a modified RIP was considered

by DeVore [17]. Very recently, Romberg [38] presented a new framework named random con-

volution measurement, i.e., convolution with a random pulse waveform followed by random
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time domain subsampling. Elad [20] proposed to design optimal adjustable measurement

matrices by using an average measure of the so-called mutual-coherence of the effective

dictionary. On the other hand, a few recovery algorithms have been proposed in the last

couple of years. Typically, e.g., linear programming [7], gradient projection sparse recon-

struction [22], orthogonal matching pursuit (OMP) [43], stagewise OMP [19], and iterative

thresholding (IT) [4, 15, 16, 31, 32, 36]. Here we concern ourselves to the nonlinear recovery

algorithm from a new way: partial differential equation (PDE) method.

In fact, the PDE method is one of classical filtering methods in signal processing. It

has been successfully explored for denoising and enhancement of signals. Unlike tools from

computational harmonic analysis (CHA) (e.g., wavelets) that suffer from pseudo-Gibbs arti-

facts and shift/rotation variance, applications of PDE (e.g., anisotropic nonlinear diffusion)

are almost free from the lacks of CHA. Recent researches are increasingly focusing on the

relations and combinations of both, see e.g., [29,30,41] among lots of literature. The essential

idea of PDE is scale space theory. For a nonlinear diffusion

∂u(x, t)

∂t
= ∇ · (g(|∇u(x, t)|)∇u(x, t)) (3)

with the given noisy image as initial condition u0 = u(x, 0) = f(x) and periodic boundary

conditions. Here the time t acts as a scale parameter for filtering, which is known to lead to a

stronger smoothing of u with increasing t. A various t produces scale space. The diffusivity

g controls the smoothing process by admitting strong diffusion if the gradient ∇u is small

(possibly caused by small-scale feature) and slowing down the smoothing for large gradients.

Recently, an inverse scale space (ISS) was introduced by Scherzer and Groetsch [39] for

ill-posed inverse problems. Unlike traditional forward diffusions that start with the observed

noisy image and gradually smooth it, the ISS methods start with an arbitrary image and

approach the observation image f as time increases. It generates a data representation in
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inverse scale space from a smooth u0 to detailed f at a continuum of scales t. If we stop

at a suitable time, detailed features are still missing while large scale features have been

reconstructed.

So far, only little literature on ISS has been published. Burger et al. [5] provided a so-

called relaxed inverse flow for numerical computation of the ISS method. Lie and Nordbotten

[26] further proved that the relaxed inverse flow is convergent for convex regularization

functionals. Xu and Osher [45] applied the nonlinear inverse scale space method to wavelet

domain denoising, in which the authors replaced the gradient ∇u by wavelet coefficients thus

the original PDE is uncoupled. When we finished the draft, we make aware of references

[24,46] that respectively involve Bregman iteration and ISS method for CS. As declared in [24]

and [5], the ISS method is more efficient than the Bregman iteration in terms of computation

cost and performance. In the following section 2 we will show the close relation between the

Bregman iteration and ISS. However, both methods in [24,46] did not consider the constraint

of sparse transform, and also can not recover well the detailed textural components. In this

paper we apply a curvelet-combined ISS method for recovery of CS from incomplete and

inaccurate measurements. In numerical experiments, we show the superior performance of

our method to reconstruct the detailed features, in comparison to ISS method, wavelet-TV

reconstruction, and iterative curvelet thresholding without the combination of ISS.

II. Curvelet-combined inverse scale space for CS

A. Curvelet transform

Curvelet transform [12,13] is a new geometric multiscale transform. As wavelet transform

owns good performance to represent isotropic point singularities, curvelet transform allows

an optimal sparse representation of objects with C2 singularities. The needle-shape elements

of this transform own very high directional sensitivity and anisotropy. For a smooth object
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f with discontinuities along smooth curves, the best m-term approximation f̃m by curvelet

thresholding obeys ‖f − f̃m‖2
2 ≤ Cm−2 (log m)3, while for wavelets the decay rate is only

m−1.

Unlike wavelets, indexed by two parameters, a system of curvelets is indexed by three

parameters. Let µ be the collection of triple index (j, l, k), where j, l and k = (k1, k2)

are respectively scale, orientation and translation parameters. The curvelets are defined as

functions of x ∈ R2 by

ψµ (x) = ψj (RθJ
(x− kδ)) . (4)

In the above, ψ is a waveform oscillatory in the horizontal direction and bell-shaped (nonoscil-

latory) along the vertical direction. RθJ
is a rotation matrix of angle θJ = 2π · 2−bj/2c · l,

J = (j, l) indexing the scale/angle, with b·c denoting the integer part, while the translation

parameter is given by kδ = R−1
θJ

(
k1 · 2−j, k2 · 2−j/2

)
. The curvelet elements are obtained by

anisotropic dilations, rotations and translations of a collection of unit scale oscillatory blobs.

For a function f , the curvelet coefficients are given by

ϑµ = 〈f, ψµ〉 =

∫

R2

f (x) ψ̄µ (x) dx, (5)

and it can be directly evaluated by frequency-window partitions in the second-generation

version of discrete curvelet transform [13]. The forward and inverse curvelet transform

have the computational cost of O(N2 log N) for an (N × N) image. We refer readers to

[12,13,30,33,42] for details of curvelet transform and its applications.

The curvelet thresholding function can be defined,

Sσ(f) =
∑

µ

χ(ϑµ(f)) ψµ, (6)
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where χ can be taken as a soft thresholding function defined for a fixed threshold σ > 0,

χs(x) =





x− σ, x ≥ σ,

0, |x| < σ,

x + σ x ≤ −σ,

or a hard thresholding function

χh(x) =

{
x, |x| ≥ σ,

0, |x| < σ,

B. Curvelet-based inverse scale space

In this section, we first briefly review the theorem of ISS and a relaxed ISS scheme

for practical computation, then we apply the ISS scheme combining with iterative curvelet

thresholding for CS.

Considering additive fidelity term, we can rewrite a general diffusion form of Eq. (3) as

∂tu = −∂uJ(u) + λ∂uH(f, u), (7)

or in regularization form

u = min
u
{J(u) + λH(f, u)}. (8)

Here J(u) is a convex regularization functional, e.g., J(u) = |u|BV =
∫

Ω
|∇u| for total

variation regularization/diffusion. H(f, u) is a convex fidelity functional, e.g., 1
2
‖f − u‖L2 .

We further deduce a so-called iterated refinement method (IRM) or Bregman iteration

[34] as

uk = min
u
{D(u, uk−1) + λH(f, u)}, (9)

where D is a Bregman distance function defined by

D(u, v) = J(u)− J(v)− 〈u− v, p〉 p ∈ ∂uJ(u). (10)
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Omitting constant parts that are not relevant to the minimization from Eq. (10), we obtained

uk = min
u
{J(u)− 〈u, p(uk−1)〉+ λH(f, u)}. (11)

By deducing the Euler-Lagrange equation of (11) and assuming λ → 0, we obtain a

constrained PDE for inverse scale space

∂tp = −∂uH(f, u), p ∈ ∂uJ(u). (12)

with initial conditions u|t=0 = 0, p|t=0 = 0.

The ISS method can provide more accurate results than the IRM because we can compute

the stopping time more accurately in the ISS due to the continuous evolution. The IRM can

be interpreted as an implicit Euler discretization of the ISS. But in comparison with IRM,

we have a much faster approximate algorithm, so-called relaxed ISS flow for the computation

of ISS [5, 6]:

∂tu = −p + λ(−∂uH(f, u) + v),

∂tv = −α∂uH(f, u), (13)

with initial conditions u|t=0 = 0, v|t=0 = 0.

In particular, taking e.g., H=1
2
‖f − Φu‖L2 = 1

2
‖f − ΦΨϑ‖L2 , we have the following ISS

scheme for CS.

∂tu = ∇ · (g(|∇(S ∗ u)|)∇u) + λ(ΦT (f − Φu) + v),

∂tv = αΦT (f − Φu). (14)

The first term on the right side of ∂tu is a diffusion with a certain regularization S

to smooth u, while the second term is a fidelity to sharp u and make it approach the

observations f . Here the S is an optional smoothing operator or pre-filtering regularization,
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which acts as a preprocessing to reduce the influence of noise during the diffusion process.

The classical S is taken as Gaussian-filtering regularization [14]. Other possibilities, e.g.,

time-delay regularization, wavelet and curvelet regularization can be also considered [30,37].

The frequently applied diffusivity is total variation (TV) diffusivity g(x) := 1/x, and Perona-

Malik (PM) diffusivity [35] g(x) := 1/(1 + x2/γ2) with a suitable chosen contrast parameter

γ. This model is essentially a reaction-diffusion equation.

In the CS theorem a sparse transform Ψ can be seen as a prior knowledge. For instance,

we can take Ψ as curvelet transform if the measurement objects consist of curve singularities.

There are at least two ways to take advantage of the prior knowledge in our model. The

first way is that one computes the equations in coefficient ϑ domain by taking advantage

of the sparsity of the instant field u in the transform domain. But, following this way,

one has to learn knowledge on multiscale sparse computing of PDEs, and has to deal with

the boundary condition in curvelet domain, which is a challenge problem in curvelet-based

solving of PDEs. The second way is that one applies thresholding Sσ(x) for the fidelity term,

e.g., Sσ(ΦT (f − Φu)) in Eq. (14). In order to make it work robustly, in practice, we can

directly apply the thresholding as Sσ(u + ΦT (f − Φu)) instead of the residual parts. Using

the forward difference with step τ for discretization of time variable, we propose a ISS-IT

scheme

uk+1 = Sσ(uk + τλΦT (f − Φuk)) + τ∇ · (g(|∇(S ∗ uk)|)∇uk) + τλvk, (15)

vk+1 = αΦT (f − Φuk). (16)

The first term of the right side in Eq. (15) is a thresholding term, which is related to

weighted IT methods [4, 16, 31, 36]. Readers can check the difference easily between these

IT methods and our method. Our model combines the diffusion to suppress the sharpened

artifacts resulted from the fidelity. The model is also motivated by our recent reaction-
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diffusion equation [37] and iterative curvelet thresholding method [31]. We refer readers

to [16,37] for analysis of related mathematical properties.

Now we give a remark for the regularization operator S in the above inverse diffusion

equations. In spite of having many desirable properties, the classic PM model is a notoriously

ill-posed problem [14,21,25]. Another drawback of the PM diffusion is its sensitivity to noise.

Noise often introduces very large oscillations of the gradient ∇u, therefore the gradient-

based model possibly misjudges true edges and heavy noise leading to undesirable diffusion

in regions where there is no true edge. In [14], a classical Gaussian regularization is proposed

by using Gaussian pre-filtering. However, Gaussian filtering blurs edges and finer textures.

This behavior seems somewhat against the purpose of the PM equation (i.e. sharpen the

edges). In [37], we suggested to take the regularization operator as the curvelet-shrinkage. In

this paper, we apply the second-generation discrete curvelet transform [12,13] for the digital

filtering and thresholding in the ISS-IT scheme. The curvelet pre-processing can effectively

remove the noise while preserving the edges well, leading to better discontinuity-preserving

diffusion.

C. Numerical procedure

We apply a four-pixel scheme [44] for spatial discretization of the inverse diffusion equa-

tion (15). As recommend by one of the reviewers, we provide the numerical procedure of

computing the divergence term ∇ · (g(|∇(S ∗ u)|)∇u). For simplify, we use ũ to denote the

S ∗ u below.

The divergence expression can be decomposed by means of two orthonormal basis vectors

x1, x2,

∇ · (g(|∇ũ|)∇u) = ∂x1(g(|∇ũ|) ∂x1u) + ∂x2(g(|∇ũ|) ∂x2u).

Choosing x1 = (1, 0), x2 = (0, 1), and replacing the derivatives by finite differences, we
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obtain the discrete scheme

∇ · (g(|∇ũ|)∇u) = g(|ũk
i+1,j − ũk

i,j|) (uk
i+1,j − uk

i,j)

−g(|ũk
i,j − ũk

i−1,j|) (uk
i,j − uk

i−1,j)

+g(|ũk
i,j+1 − ũk

i,j|) (uk
i,j+1 − uk

i,j)

−g(|ũk
i,j − ũk

i,j−1|) (uk
i,j − uk

i,j−1).

Here, uk
i,j denotes the sampled values of uk, i.e., uk

i,j = uk(i, j) for the suitable scaled image.

Analogously, choosing the diagonal directions x1 = 1√
2
(1, 1), x2 = 1√

2
(1,−1) we find

∇ · (g(|∇ũ|)∇u) =
1

2
(g(
|ũk

i+1,j+1 − ũk
i,j|√

2
)(uk

i+1,j+1 − uk
i,j)

−g(
|ũk

i,j − ũk
i−1,j−1|√
2

)(uk
i,j − uk

i−1,j−1)

+g(
|ũk

i+1,j−1 − ũk
i,j|√

2
)(uk

i+1,j−1 − uk
i,j)

−g(
|ũk

i−1,j+1 − ũk
i,j|√

2
)(uk

i−1,j+1 − uk
i,j)).

Averaging the two equations leads to a four-direction finite differences for the divergence

term,

∑1
r,s=−1

(r,s) 6=(0,0)

g(
√

2
1−|r|−|s|

(|ũi+r,j+s−ũi,j |))(ui+r,j+s−ui,j)

r2+s2 .

It should be stressed that the computing is not applied in curvelet-coefficient space, but

by a spacial discretization. This means that each time this term is computed, the curvelet

thresholding is used for u before the diffusion operator is applied. This does not seems to

be very efficient in terms of computational cost. But in practices, one only needs to use

the curvelet regularization S in the starting several iterations to get a satisfying result. As

mentioned in our previous work [30,37], there is a way to compute the diffusion operator in

curvelet space by replacing gradient term by curvelet coefficients, i.e., use g(|ϑµ|) instead of
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g(|∇Su|). This strategy can reduce the computational cost, but creates artifacts to some

extent. There is big room for future work.

III. Experiments

Figure 1 shows the good performance of our proposed method in comparison with other

methods. Fig. 1 (a) is an original Shepp-Logan phantom in CT imaging. We assume that

the image is unknown and any pixel information can not be used in our recovery methods.

We want to recover the unknown image from a few random measurements. The only prior

knowledge that we can use is its sparsity in curvelet domain. The measurement matrix Φ

that we consider in this paper is pseudo-random undersampling measurements in Fourier

frequency domain. Fig. 1 (b) shows an example of Φ, i.e., a various-density point mask

with 25% undersampling factor [27, 28]. Fig. 1 (c) is the reconstruction by zero-filling with

density compensation (zf-w/dc) suggested in [27]. This result is used as an initial value in the

following iterative methods. Fig. 1 (d) is recovered by the wavelet−TV method proposed by

Lustig et al. [27], i.e., solving a minimization of ‖ϑ‖l1 +λwTV (u) subject to ‖ΦΨϑ− f‖ ≤ ε.

Here the ϑ denotes wavelet coefficients. This method is implemented based on a nonlinear

projection gradient technique instead of iterative thresholding. The Daubechies DB4 wavelet

transform with three-level decomposition and the weight λw = 0.01 are used in this case.

Fig. 1 (e) is recovered by iterative curvelet thresholding proposed by the author in [31],

with decreasing hard threshold value σ = σ0(1− k/knumber), where initial threshold value is

σ0 = 0.04, k is the index of iterations, and knumber = 120 is the number of total iterations.

Fig. 1 (f) is recovered by ISS with TV diffusivity, in which the detailed features are lost.

Fig. 1 (g) is the result recovered by our ISS-curvelet method with TV diffusivity. Here

we use parameters τ = 0.002, α = 100, λ = 500, iteration knumber = 120 times, and hard

thresholding with decreasing threshold value σ = σ0(1− k/knumber), σ0 = 0.04. Fig. 1 (h) is
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recovered by the ISS-curvelet method with PM diffusivity, using parameters τ = 0.02, α =

10, λ = 50, γ = 0.002, the same iterations and thresholding. For contrast-enhancement

cases, the PM diffusion often displays better performances. It should be noted that the best

experiential parameter setting has been taken for all methods.

Figure 2 shows the removed components by the above methods. (a)-(d) are the compo-

nents removed by wavelet − TV , iterative curvelet thresholding, ISS, and our ISS-curvelet

with TV diffusivity, respectively. It can be seen that the wavelet and TV methods kick out

the edge features too much while the proposed method recovers the detail feature very well,

and also achieves a higher SNR (signal-to-noise ratio) in comparison with other methods.

Furthermore, Figure 3 shows the various of SNR and l1− norm recovery errors as the itera-

tion increases, in term of the proposed method. Study of the rate of change will be helpful

for adaptive choose of parameters in future researches.

We also tested that the proposed method is robust for measurement noises and various

numbers of measurements. More iterations are needed for bigger noises and fewer measure-

ments. Quantitative speaking, using the above ISS-curvelet with the same parameters for

noise case (ε is produced by 0.01 times random numbers), we got similar clear image but

with SNR=40.88 dB. And using 150 iterations and keeping other parameters unchanged, we

have SNR=44.82 dB.

Compressed sensing based methods, e.g. single-pixel camera, have been applied suc-

cessfully on satellite remote sensing in [32]. It is very significant in this field to reduce the

number of sensors, imaging time, storage space and power consumption of on-board cameras

in satellites, and reduce the data to be transmitted back to earth [32]. In figure 4, we apply

the proposed ISS-IT method for recovery of compressed remote sensing. Since we consider

the random Fourier measurement in these experiments, in fast, this is a multi-pixel but
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one-times (MPOT) imaging camera, as described in [32]. Fig. 4 (a) is an original unknown

cloud image with 512× 512 size, considering measurement noise (0.005 times random num-

bers) and the same 25% sampling strategy as above. Fig. 4 (b) and (c) are respectively

the zero-filling reconstruction and wavelet− TV reconstruction. Fig. 4 (d) is the proposed

ISS-IT reconstruction with 50 iterations. In this case, the elapsed computation time of the

wavelet− TV and ISS-IT is 2382.13 seconds and 2710.37 seconds using a laptop with Intel

Pentium processor 1.86 GHz and 512 MB memory, respectively.

Our method achieves higher visual quality and SNR, because it takes advantage of

the merits of iterative curvelet thresholding and inverse anisotropic diffusion. Of course,

the combining algorithm needs to pay more computational costs than simple thresholding.

However, in the CS-based remote sensing, this computational costs can be done in a rather

cheap way by digital computers on ground, instead of on-board chips of camera in satellites

or probes. In practice, there are two way to improve the computational speed: 1) The

number of iterations can be reduced than respective iterative methods, due to the curvelet

thresholding and anisotropic can benefit from each other in the ISS-IT framework, especially

for textural images with noises. 2) The regularization S can be applied only for the first few

iterations.

IV. Conclusion

This paper is concerned with a computational method for compressed sensing based on

inverse scale space and curvelet thresholding. A combination of several existing methodolo-

gies (inverse scale space flow, nonlinear diffusion, curvelet thresholding) is used to build a

new iterative algorithm to reconstruct sparse representations from fewer measurements. The

motivation of this method is that we apply a diffusion to suppress the sharpened artifacts

resulted from the fidelity in a reaction-diffusion system. In comparison with some existing
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methods, the proposed method can recover the detailed features much better. Applications

on medical CI imaging and satellite remote sensing show great potential to reduce the data

acquisition.

The current version can be improved at least from two aspects in future work. 1) The

number of parameters in this method: τ , λ, σ, and knumber probably can be decreased by

finding out a good combination. 2) To improve the iterative computational expenses, and

do more detailed comparisons to the alternatives in terms of computational speed.
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(a) (b)

SNR = 35.28 dB

(c) (d)

SNR = 38.11 dB
SNR = 27.81 dB

(e) (f)

Fig. 1. Compressed sensing for a Shepp-Logan phantom using different methods. (a) original unknown
image. (b) 25% pseudo-random undersampling mask in frequency domain. (c) recovery by zero-filling
reconstruction. (d) by wavelet-TV reconstruction. (e) by iterative curvelet thresholding. (f) by ISS method
with TV diffusivity. (g) by our ISS-curvelet method with TV diffusivity. (h) by our ISS-curvelet method
with PM diffusivity.
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SNR = 48.77 dB SNR = 39.51 dB

(g) (h)
Figure 1: continue.
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(a) (b)

(c) (d)

Fig. 2. Recovery error by different reconstruction methods. (a) by wavelet-TV method. (b) by iterative
curvelet thresholding. (c) by ISS. (d) by ISS-curvelet with TV diffusivity.
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Fig. 3. The SNR vs. iterations (a) and recovery error vs. iterations (b) using our ISS-curvelet method.
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SNR = 26.47 dB

(a) (b)
SNR = 37.14 dB SNR = 41.68 dB

(c) (d)

Fig. 4. CS for satellite remote sensing. (a) original image. (b) zero-filling reconstruction (SNR=26.47 dB).
(c) wavelet− TV reconstruction (SNR=37.14 dB). (d) our ISS-curvelet reconstruction (SNR=41.68 dB).
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