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Abstract 

With the popularity of navigation applications and the integration of GPS in user devices, 
location-awareness is becoming an essential feature demanded by users. Nevertheless, location-
awareness in indoor environments is still limited by the inability of GPS to operate indoors. 
With a centimeter-level ranging resolution, Ultra-Wideband (UWB) is one of the most 
promising technologies to provide indoor location. Several location & tracking algorithms have 
been proposed in the literature to compute user’s position according to the estimated distances 
to some reference nodes, each one providing the best performance in certain conditions. 
Nevertheless, most of these proposals are evaluated under too specific or simplistic conditions 
that do not account realistically for the specific implications of the UWB-based distance 
estimation and the indoor environment. This paper aims to evaluate the performance of different 
location and tracking algorithms on a realistic indoor scenario and with a specific UWB indoor 
ranging model, analyzing their advantages and drawbacks in relation to different conditions and 
system design parameters. 
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1 Introduction 

Location-awareness is rapidly becoming an essential feature of many commercial, public 
service, and military wireless networks. Whereas in outdoor environments GPS is widely 
extended in applications such as vehicle navigation, fleet management or emergency calls 
localization, the potential of location-awareness in indoor environments is not being exploited 
as GPS is unable to operate indoors. 

In general, location determination comprises two phases, distance estimation, which is 
commonly referred to as ranging, and position calculation. Distance estimation can be based on 
different parameters such as Received Signal Strength Indication (RSSI), Angle of Arrival 
(AOA) and Time of Arrival (TOA) of reference signals exchanged between the element to be 
located and some reference nodes. On the other hand, several location & tracking (LT) 
algorithms can be used to compute the position according to the estimated angles or distances. 

Multiple studies can be found in the literature concerning both ranging (Dardari et al., 
2009) (Dashti et al., 2008) and location & tracking algorithms (Seco et al., 2009). Algorithms 
can be classified into four main categories: geometry-based, cost function minimization, 
fingerprint and Bayesian techniques. Geometry-based techniques compute the position based on 
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estimated angles or distances using simple algebraic relationships, and range from simple 
techniques such as triangulation or trilateration to more advance approaches such as least square 
minimization (Cheung et al., 2004) and multidimensional scaling (Wei et al., 2008). Cost 
function minimization assumes the knowledge of the measurement statistical model to minimize 
a certain cost function (Caffery and Stuber, 1998). Fingerprinting methods are based in the 
comparison of the measurements with a previous survey of the location area in a calibration 
stage (Kaemarungsi and Krishnamurthy, 2004). Finally, Bayesian techniques, such as Kalman 
and particle filters, infer position from past and present measurements and require knowledge of 
both motion and measurement statistical models (Fox et al., 2003). 

Positioning accuracy is highly dependent on the signal parameters and especially on the 
wireless technology used, since it determines the quality of the estimation of those parameters. 
Coarse location information can be obtained from cellular networks but, especially in indoor 
environments, their accuracy is unsuitable for most of applications. Several proposals can be 
found in the literature for indoor LT systems based on different radio technologies such as 
WiFi, Bluetooth, ZigBee or Ultra-wideband (UWB) with different levels of accuracy, range and 
complexity (Liu et al., 2007) (Gu, Lo and Niemegeers, 2009). In general LT systems based on 
RSSI estimation are not very suitable for indoor location, as RSSI is very sensitive to multipath 
and non-line-of-sight (NLOS) situations and their accuracy is usually within a few meters (Bahl 
and Padmanabhan, 2000). 

UWB is one of the most promising technologies for indoor location, combining remarkable 
features concerning size and power consumption, providing high accuracy on distance 
estimation and allowing simultaneous location and data transmission (Yang and Giannakis, 
2004). IR (Impulse Radio) UWB communication systems are based on the transmission of very 
short duration pulses, which originates very high bandwidth signals. The short duration of the 
pulses allows a high level of accuracy in TOA estimation with centimeter-level ranging 
resolution and unmatched performance on multipath environments (Gezici et al., 2005). Low 
complexity and power consumption is essential in order to design battery-powered sensors. In 
contrast, short range and limited data rate are the main drawbacks of IR UWB systems. 

Although most of the proposals of tracking algorithms that can be found in the literature 
include the evaluation of these proposals against other existing algorithms, many times these 
studies are too simplistic and do not account realistically for the implications of the indoors 
environment and the distance estimation technology (Choi et al., 2007) (Shen, Zetik and Thomä, 
2008). Therefore, the main objective and contribution of this paper is the evaluation of different 
kind of algorithms, both parametric and non-parametric, for IR UWB indoor tracking systems. 
With this purpose, a realistic indoor scenario, defined by a layout of walls and corridors, and a 
specific UWB indoor ranging model, which was identified through a measurement campaign in 
an office environment with real UWB equipment, are used. 

2  Location System Proposal 

The proposed indoor LT system is composed of multiple UWB picocells, although for 
simplicity a single picocell is considered. The picocell is composed of mobile nodes to be 
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tracked (targets) and fixed nodes with known positions (anchors). Distances between the target 
and the anchor nodes are estimated through a ranging frame exchange. Distances are sent to a 
location controller (LC) that executes the tracking algorithm to obtain the estimated position of 
the targets. 

2.1 Distance Estimation. Ranging model 

In order to track the position of the target nodes, the distances between the target and the 
anchor nodes must be estimated. This is done through the ranging procedure. The procedure 
initiator (target or anchor) transmits a ranging request to another node, which estimates the time 
of arrival and sends a ranging response after a predefined time. The initiator measures the time 
of arrival of the response and can estimate the transmission delay and the distance between the 
nodes (Two Way Ranging). In order to improve the accuracy of distance estimation, two 
ranging responses can be sent in order to compensate for the clock drift (Three Way Ranging).  

A ranging model is used to characterize the ranging error distribution and to generate the 
distance estimation samples. Range measurements based on round-trip TOA estimation through 
n-Way Ranging transactions can be modeled as: 

ijijijijijij ndndd +=++= '~ ε
 

where dij is the actual distance between nodes i and j, d’ij is the biased distance (with bias 
εij) and nij is a residual noise term. As proposed in (Denis, Pierrot and Abou-Rjeily, 2006), the 
biased distance d’ is modeled as a weighted sum of Gaussian and Exponential components 
conditioned upon the actual distance d and channel configuration C that takes its value among 
{LOS, NLOS, NLOS2}. The model is enhanced by taking into account the probability WC(d) to 
have a particular channel configuration at a distance d. As a result of the indoor measurement 
campaign in (Denis, Pierrot and Abou-Rjeily, 2006), these weights were described as Gaussian-
like functions. The residual noise is modeled as additive and centered, with a variance σn

2 that 
depends on detection noise terms affecting unitary TOA estimates (i.e. receiver sampling rate) 
and involved protocol durations, and is independent of the distance. This ranging model was 
proposed and validated through a measurement campaign with real UWB equipment in an 
office environment in (Denis, Pierrot and Abou-Rjeily, 2006), where the values for the different 
parameters of the model were also identified. 

2.2 Tracking Algorithms 

With respect to the tracking technique itself, parametric and non-parametric approaches can 
be distinguished. Parametric approaches compute the location based on the a priori knowledge 
of a model, while non-parametric approaches process straightforward the data with the usage, in 
some cases, of some statistic parameters. Specifically, the following algorithms are considered 
in this study: Trilateration, Weighted Least Square with Multidimensional Scaling (WLS-
MDS), Least Square with Distance Contraction (LS-DC), Extended Kalman Filter (EKF) and 
Particle Filter (PF). More information on the mathematical background of each algorithm can be 
found in the references. 
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Trilateration is a non-parametric algorithm that computes the position based on the distance 
estimated between the target and three anchor nodes using a geometrical method for 
determining the intersection of three sphere surfaces (Sahinoglu, Gezici and Güvenc, 2008). 
Consequently, regardless of the number of anchors selected, only the three with smallest 
estimated distance to the target are used for position computation. 

The algorithm WLS-MDS is a completely non-parametric approach combining 
Multidimensional Scaling (MDS) with Weighted Least Squares minimization (WLS) 
(Macagnano and de Abreu, 2006). MDS is a multivariate data analysis technique used to map 
“proximities” into a space. These “proximities” can be dissimilarities (distance-like quantities). 
Given n points and corresponding dissimilarity, MDS finds a set of points in a space such that a 
one-to-one mapping between the original configuration and the reconstructed one exists. MDS 
is used to obtain a previous estimation of the solution. Then the Procrustes transformation is 
used to map back the solution to the absolute reference system. Finally, an iterative low-
complexity minimization algorithm known as SMACOF is applied to optimize the solution. 
Weights based on the dispersion of the estimated distances are used in the optimization phase in 
order to diminish the importance of less reliable estimations. 

Distance Contraction (DC) aims to correct the distance measurements by subtracting a 
certain value in order to minimize the impact of biased measurements on the Least Square (LS) 
objective function (Destino and Abreu, 2010). First the existence of a feasibility region, defined 
as the area formed by the intersection of the circles with centre at the anchors and radio equal to 
the estimated distance, is checked and an initial solution is computed inside the feasibility area. 
The contracted distances are computed as the shortest distance from each anchor to the 
feasibility region. Once the contracted distances are computed, then the LS-objective function is 
generally convex, and any optimization method (i.e. global distance continuation, steepest 
descent) can be used to find the global minimum, thus reducing complexity. Specifically, we 
have used SMACOF as optimization method. 

The Extended Kalman Filter (EKF) is a Bayesian technique known for its low-complexity, 
performance and stability as a tracking algorithm (Daum, 2005). The Kalman-based tracking 
algorithm has two major stages, namely, the update and the correction stages, which are iterated 
k times for every observation occurring at a given time. A state vector x is defined that contains 
the variables of the process, namely target’s position and speed. A measure vector z is defined 
containing the process observations, namely the estimated distances between the target and the 
anchors. A function f that describes the evolution of the state vector through time, and a 
function h that describes the relation between the state vector and the measure vector, are 
identified. Process noise (acceleration) and measurement noise (ranging error) are Gaussian 
with a certain variance that was optimized through simulations.  

Finally, Particle Filters (PF) are recursive implementations of Monte Carlo based statistical 
signal processing. The use of particle filters for positioning in wireless networks was proposed 
in (Gustafsson, 2002). The particle filter is based on a high number of samples of the state 
vector (particles), which are weighted according to their importance (likelihood) in order to 
provide an estimation of the state vector. As for EKF, a state vector x, a measure vector z and 
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functions f and h are defined. On each step, the particles are moved according to the process 
model and the weights are updated according to the likelihood of the observations (estimated 
distances) according to the distribution of the measurement error. The advantage of the particle 
filters over other parametric solutions is that non-linear models and non-Gaussian noise can be 
defined. Specifically, two different measurement error models have been defined as a weighted 
sum of two and three Gaussian components for the different channel configurations 
(LOS/NLOS and LOS/NLOS/NLOS2). Consequently, the filter is defined by the variance of 
process noise (acceleration) and the parameters of the measurement error model that were 
optimized through simulations. As a drawback, its computational complexity is higher, so it is 
suitable in applications where computational power is rather cheap and the sampling rate slow. 

2.3 Design Parameters 

Tracking may be performed with all the anchors in coverage of a given target or with a 
subset of them. The number of anchors used for position calculation is an important design 
parameter, as a higher number of anchors provides higher reliability, although distant anchors 
provide less accurate distance estimations, which degrades accuracy. Another important 
parameter is the distance between anchors. A shorter distance between anchors entails more 
accurate estimations, but a higher number of anchors are needed to cover the scenario, 
increasing the cost and complexity of the tracking system. Finally, position update rate defines 
how often the positions of the mobile nodes are updated. Frequent updates allow more precise 
tracking of mobile targets, but require a higher amount of resources. Position update rate is 
closely related to target mobility. 

3  Performance Evaluation 

3.1 Simulation Scenario and System Evaluation Parameters 

In order to evaluate the impact of the different system design alternatives and parameters, 
we have developed a specific simulation application using C++. The simulation scenario is the 
representation of a relatively wide indoors area of size 50 m x 50 m. A UWB network, 
composed of Na anchors, regularly distributed, and Nm mobile targets, is deployed. Two 
scenarios with 10 m and 12.5 m between anchors are considered, which result in 36 and 25 
anchors respectively (Fig. 1). A wall layout is defined as well as the area where the targets may 
be located. Targets move along the corridors according to previously defined probabilities of 
going forward or backwards, and a random speed that remains constant along a corridor. 

The system performance has been evaluated in terms of the average absolute positioning 
error. The number of targets to be tracked has been set to 10. Concerning the dynamics of the 
mobile nodes, minimum and maximum speeds have been set to 0.1 and 3 m/s respectively. 
Position update rate has been set to 1 update per second and UWB nodes range to 15 m. Ideal 
anchor selection has been considered so the closest anchors are always selected. 
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Figure 1: Simulation scenarios with 10 m and 12.5 m between anchors 

3.2 Algorithm Comparison 

The performance of each algorithm has been evaluated depending on the number of 
anchors used for positioning for the different scenarios, i.e. distance between anchors. 

Fig. 2 shows the average positioning error for the scenario with 10 m between anchors and 
ranging residual noise σn = 0.7 m. As it can be observed, the best performance is achieved with 
the 3-component particle filter (PF-3C). Nevertheless, the performance of PF-3C is far better 
than it can be expected in a real situation. The reason is that the 3-component measurement 
error model behaves almost exactly as the ranging model used to generate the distance 
estimation samples. Consequently, the 3-component particle filter can deal even with highly 
biased measurements and the error decreases as the number of anchors used for location 
increases. In a real system, the precise characterization of the specific ranging model of the 
scenario would require costly measurement and calibration phases, and the use of a generic 
model would not provide so good results. In fact, results for the 2-component particle filter (PF-
2C) are worse as it does not take into account NLOS2 situations. 

LS-DC, WLS-MDS and EKF have a similar evolution with an optimum number of anchors 
for location of 5. As more anchors are used, the added anchors are likely to be in NLOS or 
NLOS2, so the positioning error increases for EKF and LS-DC. Nevertheless, the error does not 
increase for WLS-MDS due to link weighting, as anchors in NLOS/NLOS2 situations will have 
a lower weight and will not be detrimental to position optimization. Finally, trilateration shows 
the worst performance, which is independent on the number of anchors used to compute the 
position, as only the three closest anchors will be used. For every algorithm, there is an increase 
of the error when only 3 anchors are used. 
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Figure 2: Positioning error. Distance between anchors = 10 m. σn=0.7 m 

The performance for the scenario with 12.5 m between anchors is shown in Fig. 3. 
Consequently, some of the anchors used for positioning will be relatively far from the target and 
accuracy is degraded for all the algorithms. In this situation, PF-3C outperforms the other 
algorithms, as it takes advance of its precise measurement error model, which can deal with 
highly biased estimations from distant anchors. PF-2C does not provide so good results, as its 
simple LOS/NLOS model cannot deal with the NLOS2 situations. Concerning the rest of 
algorithms, LS-DC and WLS-MDS show a performance comparable to PF-2C, as distance 
contraction and dispersion-based weighting are able to deal with the high bias of the distant 
anchors. Finally, EKF and trilateration show the worst performance. It must be noted that the 
error is constant for 6 or more anchors, as for this configuration the target is not likely to be in 
coverage of more than 5 anchors. 
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Figure 3: Positioning error. Distance between anchors = 12.5 m. σn=0.7 m 

Following the performance of the tracking algorithms is evaluated considering that TOA 
detection is improved, for example increasing the sampling frequency, so the residual ranging 
noise is reduced. Fig. 4 shows the average error for the scenario with 10 m. between anchors 
and a residual ranging noise σn = 0.3 m. As expected, performance is improved for all the 
algorithms compared to the same configuration with ranging residual noise σn = 0.7 m and the 
minimum error for all the algorithms is between 15 and 25 cm. The improvement for 
trilateration is especially remarkable, with only PF-3C getting better results. This means that 
trilateration requires accurate TOA estimation in order to provide good results, as it always uses 
three measurements for position computation and cannot take advance of diversity of 
measurements. As ranging residual noise is reduced, the impact of ranging bias is more 
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important and anchors in LOS provide much more accurate estimations than anchors 
NLOS/NLOS2. Consequently, the optimum number of anchors is reduced to 4 for EKF and 
LS-DC and 5 for WLS-MDS, and performance severely degrades as the number of anchors 
increases. 
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Figure 4: Positioning error. Distance between anchors = 10 m. σn=0.3 m 

3.3 Effect of Target Mobility 

In this section the effect of target mobility and position update rate is discussed. 10 m. 
between anchors and 4 anchors used for location have been considered. Fig. 5 shows the 
average error depending on target speed. As it could be expected, non-parametric methods such 
as trilateration and LS-DC show no dependence on target speed, as position computation is 
independent on previous position estimations. Nevertheless, WLS-MDS shows a slight 
dependency on target speed due to link weighting, as weights are based on the dispersion of 
distance estimations computed using the last 5 samples, so it degrades as target speed increases. 
On the other hand, EKF shows good results when target speed is below 1.5 m/s but severely 
degrades for higher speeds, as position is computed using previous position and target’s 
dynamic model. Finally, although the particle filter uses the target’s dynamic model to move the 
particles, it is almost independent on target speed, as particles are weighted on each step 
according to the likelihood of their position in relation to the measurements, so the new position 
is almost independent of the previous one. 

Fig. 6 shows the positioning error depending on position update rate, or inversely the time 
between position updates. As expected, trilateration and LS-DC are independent of time 
between updates, whereas WLS-MDS shows a slight dependency due to dispersion-based 
weighting. EKF shows good results for update intervals shorter than 800 ms and severely 
degrades as the time between updates increases. As the new position is computed based on 
previous position, the interval between two successive updates must be as short as possible in 
order to accurately track the target. Finally, positioning accuracy for the particle filter shows a 
slight dependence on time between updates, increasing from 45 cm. for 400 ms between updates 
to 55 cm. for 2 s between updates. 
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Figure 5: Positioning error depending on target speed 
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Figure 6: Positioning error depending on time between updates 

4  Conclusion 

According to the analysis presented here, the particle filter shows the best performance. 
Nevertheless, this algorithm assumes that the ranging error model is known, which would entail 
an exhaustive calibration campaign in order to identify the specific model of the location where 
the tracking system is going to be deployed. Alternatively a generic ranging model may be used, 
but the filter performance would be degraded. WLS-MDS and LS-DC provide high accuracy in 
most of the configurations simulated. Furthermore, no characterization of the target dynamics or 
the measurement model is required. EKF has a good performance on static and slow moving 
targets (less than 1 m/s), but severely degrades as speed increases. Trilateration only performs 
well when TOA estimations are very accurate. 

With the developed simulator as a test-bed for algorithm evaluation, the focus is now on the 
enhancement of existing algorithms with the addition of techniques such as measurement pre-
filtering and NLOS identification. A particular enhancement envisioned is the improvement of 
positioning accuracy taking advance of the available geographical information, such as the 
knowledge of user routes and walls location. 
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