
John von Neumann Institute for Computing

Analytical Performance Models of Parallel
Programs in Clusters

Diego R. Martı́nez, Vicente Blanco, Marcos Boullón,
José Carlos Cabaleiro, Tomás F. Pena

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 99-106, 2007.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38



Analytical Performance Models
of Parallel Programs in Clusters

Diego R. Martı́nez1, Vicente Blanco2, Marcos Boullón1, José Carlos Cabaleiro1, and
Tomás F. Pena1

1 Dept. of Electronics and Computer Science
University of Santiago de Compostela, Spain

E-mail: {diegorm, marcos, caba, tomas}@dec.usc.es
2 Dept. of Statistics and Computer Science

La Laguna University, Spain
E-mail: vicente.blanco@ull.es

This paper presents a framework based on an user driven methodology to obtain analytical
models on parallel systems and, in particular, clusters. This framework consists of two intercon-
nected stages. In the first one, the analyst instruments the source code and some performance
parameters are monitored. In the second one, the monitored data are used to obtain an ana-
lytical model using statistical processes. The main functionalities added to the analysis stage
include an automatic fit process that provides accurate performance models and the automatic
data collection from monitoring. Some examples are used to show the automatic fit process.
The accuracy of the models is compared with a complexity study of the selected examples.

1 Introduction

Performance prediction is important in achieving efficient execution of parallel programs.
Understanding performance is important not only for improving efficiency of applications,
but also for guiding enhancements to parallel architectures and parallel programming en-
vironments. As systems become more complex, as in the case of multiprocessor environ-
ments or distributed systems, accurate performance estimation becomes a more complex
process due to the increased number of factors that affect the execution of an application.
In addition to relatively static information, there are many dynamic parameters that must
be taken into account in the performance estimation. These dynamic parameters may not
be known until run time10.

Performance models can be grouped into three categories: analytical modelling, simu-
lation modelling, and measurement18. Analytical model evaluation takes a little time since
it is based on solutions to mathematical equations. However, it has been less successful in
practice for predicting detailed quantitative information about program performance due
to the assumptions and simplifications built in the model. Simulation modelling constructs
a reproduction, not only of the behaviour of the modeled system, but also its structure and
organization. Simulation model should be more accurate than analytical models but it is
more expensive and time consuming, and can be unaffordable for large systems. Mea-
surement methods permits to identify bottlenecks on a real parallel system. This approach
is often expensive because it requires special purpose hardware and software, and in real
system they are not always available. Performance measurement can be highly accurate
when a correct instrumentation design is carried out for a target machine.

99



Although analytical approaches are generally less accurate than simulation approaches,
they are faster and more efficient since the behaviour is described through mathematical
equations. Moreover, analytical modelling provides an abstract view of the hardware and
software. Analytical modelling is a common issue in performance evaluation of parallel
systems: parallel performance analytical models based on scalar parameters, like BSP16,
LogP6 or LogGP1, are widely used to evaluating parallel systems; the information of an-
alytical models can be useful to optimize load balancing strategies11; Bosque et. al. pro-
pose a heterogeneous parallel computational model based on the LogGP model4. Some
approaches combine empirical experimentation, analytical modelling and perhaps some
light-weight forms of simulation5, 7, 15. The experimentation and simulation are used to
characterize the application while the analytical model is used to predict the performance
behaviour in terms of the characterization of the algorithm and the knowledge of the plat-
form. This approach is getting relevance in Grid environments2, 9. Its use is important not
only for achieving efficient execution of parallel programs, but also for taking advantage
of its qualities. For example, a quick evaluation of the performance behaviour of an appli-
cation is desirable in a scheduler in order to obtain an efficient use of the computational
resources of the grid8, 19.

The proposed framework uses both measurement and analytical modelling and pro-
vides an easy to use tool that allows the analyst to obtain analytical models to characterize
the performance of parallel applications in clusters. The framework helps the analyst in the
process of tuning parallel applications and automatically performs some tedious processes
related to performance analysis. Its modular design makes it possible to introduce new
tools in the framework, or even to substitute current functionalities, with a minimal impact
on the rest of the framework. Analytical models are automatically obtained by a statistical
analysis of measurements from real parallel executions. Therefore, the behaviour of an ap-
plication can be characterized in terms of parameters such as the problem size, the number
of processes, the effective network capacity, etc.

In this paper the methodology used to obtain analytical models from instrumentation
data is described in detail, and some examples of its use are illustrated. Section 2 introduces
the proposed framework based on two stages. The second stage where analytical models
are obtained is described in detail in Section 3, and selected examples are used in Section 4
to show its use. Finally, Section 5 presents the main conclusions of this work and future
developments.

2 The Modelling Framework

A methodology to obtain analytical performance models of MPI applications is introduced
in this section. Fig. 1 shows a scheme of the whole framework that consists of two stages.
The first stage is devoted to instrumentation, where information about the performance of
the execution of the parallel application is monitored. The second stage uses this infor-
mation to obtain an analytical model by means of statistical analysis to characterize the
performance of the parallel code. This stage will be explained detailed in Section 3.

The instrumentation stage is based on CALL3, which is a profiling tool for interacting
with the code in an easy, simple and direct way. It controls external monitoring tools
through the so called CALL drivers, that implement an application performance interface to
those external tools. Therefore, CALL is a modular tool and new drivers can be developed

100



Figure 1. The two stages of the framework.

as new monitoring tools are available. CALL is based on pragmas that allow the user
to define areas of interest in the source code. In these parts of the code, some selected
parameters are monitored, so specific kernels or functions may be modeled instead of the
whole application.

The measurements of the monitored parameters during the execution of the instru-
mented code are gathered and stored in XML files, one file for each CALL driver used to
monitor the performance parameters. Some CALL drivers were specifically designed for
cluster environments, like the NWS CALL driver and the Ganglia CALL driver12. The
NWS CALL driver uses NWS17 to monitor the effective latency and bandwidth of a paral-
lel environment. Through a configuration file, the analyst can establish which nodes must
be monitored during the execution of a NWS CALL experiment. The Ganglia CALL driver
provides several performance metrics, both static and dynamic, of the nodes in a parallel
system13. These two drivers play an important role in this stage, and their data are used in
the analysis stage.

3 Analysis Stage

The second stage is the analysis one, that is based on R14, a language and environment for
statistical analysis. In early versions of CALL, the statistical analysis was integrated with
the instrumented stage so that information about the behaviour of the CALL experiments
had to be incorporated before the instrumented code was actually executed. The analysis
stage was redesigned to get both stages fully uncoupled. Therefore, specific R functions
were developed to process the data from multiple executions of a CALL experiment and
to automatically perform analytical models of CALL experiments by means of an iterative
fitting process. These functions are grouped into modules with well defined interfaces, so
any change in a module produces a minimal impact on the others, and the capabilities of
the analysis environment can be easily extended. Fig. 2 shows a scheme of the analysis

101



Figure 2. The modules of the analysis stage based on R.

stage and the relationship among its five modules.
The information stored in XML files from a particular CALL experiment is loaded into

the environment, and it is stored in suitable structures for the statistical processing (IM-
PORT module in Fig. 2). At this point, some preprocessing may be necessary to obtain
derived parameters. For example, NWS CALL driver provides information about the net-
work state of some point-to-point communications. In general, this information consists
of an array of values, where the impact of network fluctuations is present, and it could be
necessary to obtain the mean of these values in order to associate only one value of latency
and bandwidth to one execution of a CALL experiment.

The resulting object of the IMPORT module is an array of registers. Each register con-
tains the monitored information related to a specific execution of the CALL experiment.
In parallel applications, each parallel task has its own register. The number of fields of the
register depends on the number of monitored parameters during the execution of the instru-
mented code. This object contains a huge amount of useful information, so the relevant
data for a particular performance analysis must be extracted (SIEVE module in Fig. 2).
For example, in a parallel program, the elapsed time of the slowest task is the elapsed time
of the whole parallel program, so the elapsed time of the other tasks may be unnecessary;
although this information can be useful if the user is interested in load balancing studies,
for example. Therefore, a selection of useful information for the later analysis is performed
guided by the user. In this step, the statistical outliers are checked, so executions with a
elapsed time too far from the mean for executions under the same experimental conditions
are not considered.

At this point, the framework has been designed to save this information in a file with a
specific statistical format (cache in Fig. 2). Therefore, gathering information from CALL
experiments becomes an independent process from the generation of a performance model.
All the files concerning a specific CALL experiment can be stored, so that the volume of
data increases as new executions of a instrumented code are performed. These files can be
joined in the same data structure for the next fit process (JOIN module in Fig. 2). Note that
only the common parameters in all instances of a CALL experiment are taken into account.

Once the information from all considered sources is ready, these data are fitted to an
analytical expression which accurately describes the behaviour of the elapsed time of the
CALL experiment as a function of the monitored parameters (FIT module in Fig. 2). This

102



is the main concern of the analysis stage. It starts from an initial attempt function as a first
approximation of the elapsed time and continues with a set of iterations. In each iteration,
the accuracy of the fit is established based on the standard error of the coefficients of the
function. If the relative error of a coefficient is greater than a certain threshold (in our
experiments, we consider 10%), it is assumed that such term can be neglected or that the
model does not fit properly. Then, this term is removed and a new iteration is performed.
This iterative process ends when all coefficients have an error smaller than the threshold.
This process can start with a set of functions so that the process is applied to each individual
function and the best fit is selected as the final result. The time consumption of the fitting
process depends both on the number of terms of the initial function and on the size of data.

The user can provide the initial function or the initial set of functions of this process.
Otherwise, a set of predefined and generic functions is used. These predefined functions
implement a simple model based on the combination of a computational term (related to
the number of processors) and a communication term (related to the latency and bandwith
of the network). Each term is defined as a sum of different terms, which can be logarithms
and powers of the monitored parameters, or a product of logarithmic and power terms, etc.
Anyway, only expressions which have a theoretical base are considered.

All the information about the resulting model of this process is shown to the user in-
cluding coefficient of determination, standard error of coefficients, and some other useful
statistical information. Besides, a comparison study between experimental measurements
and the obtained model is performed through a specific visual environment (DRAW mod-
ule in Fig. 2). In parallel applications, this environment shows both the experimental and
predicted elapsed time versus the number of processes during the execution of the in-
strumented code. These graphics show the estimated times according to the model and the
experimental values for all considered experimental conditions. The residuals of the model
can be shown through a box-and-whisker plot.

4 Case of Study

Three different MPI versions of the parallel matrix product of two dense N ×N matrix of
single-precision floating-point numbers have been used as a case of study. Fig. 3 shows the
pseudocode of these versions, that cover a broad spectrum from communication intensive
to computation intensive applications. It is supposed that the distribution of the matrices
has been performed in a previous step. The goal of the experiment is to compare both a
theoretical model and the automatic model obtained from the proposed analysis stage using
a set of predefined functions in a simple and well known parallel code.

The instrumented programs were executed in a homogeneous cluster of six 3 GHz
Pentium 4 connected by a Gigabit Ethernet switch. The driver of the network interface
card of the nodes allows the user to force the speed of the network. Therefore, different
network states (10, 100, and 1000 Mbps) were obtained by using different input parameters
of this driver. The NWS CALL driver was used to monitor the network state just before
the execution of the programs. Each program was executed four times using three matrix
sizes (N=300, 400 and 500) for each number of processors (from 2 to 6) and each network
state.

A model of the three cases was automatically obtained using the developed analysis
stage. As the structure of the code is known in the three cases, the parameters that may

103



FOR i in 1:(N/P)
FOR j in 1:N
Ci,j=0
FOR k in 1:N
Ci,j+=Ai,k*Bk,j

END FOR
END FOR

END FOR
MPI Barrier
MPI Gather(C)
MPI Barrier

FOR i in 1:(N/P)
FOR j in 1:N
Ci,j=0
FOR k in 1:N
Ci,j+=Ai,k*Bk,j

END FOR
END FOR
MPI Barrier
MPI Gather(Ci,∗)
MPI Barrier

END FOR

FOR i in 1:(N/P)
FOR j in 1:N
Ci,j=0
FOR k in 1:N
Ci,j+=Ai,k*Bk,j

END FOR
MPI Barrier
MPI Gather(Ci,j)
MPI Barrier

END FOR
END FOR

a) CASE1 b) CASE2 c) CASE3

Figure 3. Pseudocode of the three versions of parallel matrix product (C=A×B), where the size of the matrices
is N ×N , and P is the number of processes.

have influence in the application performance were identified. In this case, the following
parameters were selected: N , P , L, and BW , where N is the size of the matrices, P the
number of processors, L the mean latency of the network andBW is the mean bandwith of
the network. The proposed initial set of functions for the iterative fitting process (described
in Section 3) were identical in all cases. These functions cover all possible combination of
the following expression:

t = A+BN iP j + CN iP jdlog2 P eL+DN iP jBW−1

where i = 0, 1, 2, 3, j = 0,−1 and the coefficients B, C and D can be set to 0.
In order to evaluate the accuracy of the proposed automatic fit process, the data from

the instrumentation stage were also fitted to a theoretical expression based on the com-
plexity analysis of the three codes. To build this theoretical model, a tree-base behaviour
was supposed in global MPI communication. Besides, the effect of the communication-
computation overlapping was supposed to be negligible.

Table 1 shows the final expressions obtained using the automatic approach of our anal-
ysis stage and the theoretical functions for each case. In these expressions, t is the elapsed
time. The third column shows the coefficient of determination (R2) for both the automatic
and the theoretical fits from the complexity analysis. Note that the theoretical expressions
presents accurate results, even for the third case in which the number of communications
is huge.

5 Conclusions and Ongoing Work

A framework based on a methodology to obtain analytical models of MPI applications
on multiprocessor environments is introduced in this paper. The framework consists of
an instrumentation stage followed by an analysis stage, which are based on the CALL
instrumentation tool and in the R language, respectively. A number of functionalities were
developed in the analysis stage to help the performace analyst to study analytical models
in parallel environments. One of the most relevant features is an automatic fit process to
obtain an analytical model of parallel programs. This process provides accurate models as
good as those based on a theoretical complexity analysis of source codes.

We are currently developing an efficient and flexible process to automatically generate
and fit all analytical attempt functions. The process will permit the user to introduce in-

104



Models R2

CASE1 tAutomatic = bN3

P + d N2

BW 0.9945

tTheoretical = A+BN3

P + Cdlog2 P eL+D N2

BW 0.9946

CASE2 tAutomatic = bN3

P + cNdlog2 P eL+ d N2

BW 0.9966

tTheoretical = A+BN3

P + C N
P dlog2 P eL+DN2

P
1

BW 0.9904

CASE3 tAutomatic = bN2 + d N2

BW 0.980

tTheoretical = A+BN3

P + C N2

P dlog2 P eL+DN2

P
1

BW 0.956

Table 1. The automatically obtained functions and the theoretical functions in each case. The third column is the
corresponding coefficient of determination.

formation about the behaviour of the code, so that the precision of the obtained model will
depend on the amount of the provided information. If no information is introduced, the
monitored parameters will be used to build the initial functions. This process will provide
a full search on all possible attempt analytical functions with physical meaning.

Acknowledgements

This work was supported by the Spanish Ministry of Education and Science through
TIN2004-07797-C02 and TIN2005-09037-C02-01 projects and the FPI programme.

References

1. A. Alexandrov, M. F. Ionescu, K. E. Schauser and C. Scheiman, LogGP: Incorpo-
rating Long Messages into the LogP Model for Parallel Computation, J. Parallel and
Distributed Computing, 44, 71–79 (1997).

2. R. M. Badı́a, J. Labarta, J. Giménez and F. Escale, DIMEMAS: Predicting MPI ap-
plications behavior in Grid environments, in: Workshop on Grid Applications and
Programming Tools (GGF8), (2003).

3. V. Blanco, J.A. González, C. León, C. Rodrı́guez, G. Rodrı́guez and M. Printista,
Predicting the performance of parallel programs, Parallel Computing, 30, 337–356,
(2004).

4. J. L. Bosque and L. Pastor, A Parallel Computational Model for Heterogeneous Clus-
ters, IEEE Trans. Parallel Distrib. Syst., 17, 1390–1400, (2006).

5. M. E. Crovella and Th. J. LeBlanc, Parallel Performance Prediction Using Lost Cy-
cles Analysis, in: Proc. 1994 ACM/IEEE Conference on Supercomputing, (1994).

6. D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian,
and T. von Eicken, LogP: Towards a realistic model of parallel computation, in: 4th

105



ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
(1993).

7. Th. Fahringer, M. Gerndt, G. D. Riley and J. Larsson Träff, Specification of Perfor-
mance Problems in MPI Programs with ASL, in: International Conference on Parallel
Processing (ICPP’00), (2000).

8. I. Foster and C. Kesselman, The Grid2: Blueprint for a New Computing Infrastruc-
ture, Elsevier, Inc., (2004).

9. S. Jarvis, D. P. Spooner, H. N. Lim Choi Keung, J. Cao, S. Saini, and G. R. Nudd.
Performance prediction and its use in parallel and distributed computing systems, Fu-
ture Generation Computer Systems: Special Issue on System Performance Analysis
and Evaluation, 2, 745–754, (2006).

10. N. H. Kapadia, J. A. B. Fortes and C. E. Brodley. Predictive Application-Performance
Modeling in a Computational Grid Environment, in: 8th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC ’99), (1999).

11. D. R. Martı́nez, J. L. Albı́n, J. C. Cabaleiro, T. F. Pena and F. F. Rivera, A load bal-
ance methodology for highly compute-intensive applications on grids based on com-
putational modeling, in: Proc. Grid Computing and its Application to Data Analysis
(GADA’05) - OTM Federated Conferences and Workshops, (2005).

12. D. R. Martı́nez, V. Blanco, M. Boullón, J. C. Cabaleiro, C .Rodrı́guez and F. F. Rivera,
Software tools for performance modeling of parallel programs, in: Proceedings of the
IEEE International Parallel & Distributed Processing Symposium, (2007).

13. M. L. Massie, B. N. Chun and D. E. Culler, The ganglia distributed monitoring
system: design, implementation, and experience, Parallel Computing, 30, 817–840
(2004).

14. R Development Core Team (2006), R: A language and environment for statisti-
cal computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0, URL http://www.R-project.org.

15. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A
framework for performance modeling and prediction, in: Proc. ACM/IEEE confer-
ence on Supercomputing, (2002).

16. L. G. Valiant, A Bridging Model for Parallel Computation, Commun. ACM, 33, 103–
111, (1990).

17. R. Wolski, N. Spring and J. Hayes, The Network Weather Service: A distributed
resource performance forecasting service for metacomputing, J. Future Generation
Computing Systems, 15, 757–768, (1999).

18. X. Wu, Performance Evaluation, Prediction and Visualization of Parallel Systems,
(Kluwer Academic Publishers, 1999).

19. Y. Zhang, C. Koelbel and K. Kennedy, Relative Performance of Scheduling Algo-
rithms in Grid Environments, in: Seventh IEEE International Symposium on Cluster
Computing and the Grid – CCGrid (2007).

106


