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Abstract

Recent traffic analyses from various packet networks have
shown the existence of long-range dependence in bursty traf-
fic. In evaluating its impact on queuing performance, earlier
investigations have noted how the presence of long-range de-
pendence, or a high value of the Hurst parameter H, is often
associated with surprisingly large queue sizes. As a result, a
common impression has been created of expecting queuing
performance to be worse as H increases, but this impres-
sion can be misleading. In fact, there are examples in which
larger values of H are associated with smaller queues. So the
question is how can one tell whether queuing performance
would improve or degrade as H rises? In this paper, we
show that the relative queuing performance can be assessed
by identifying a couple of time scales. First, in comparing
a high-H process with a low-H process, there is a unique
time scale t,, at which the variances of the two processes
match (assuming exact, second-order self similarity for both
processes). Second, there are time scales tq; that are most
relevant for queuing the arrivals of process ¢. If both of the
queuing scales t4; exceed the variance-matching scale ¢y,
then the high-H queue is worse; if the queuing scales are
smaller, then the low-H queue is worse. However, no firm

prediction can be made in the remaining case of t,, falling

between the two queuing scales. Numerical examples are

given to demonstrate our results.

1 Introduction

In the past 5 years, large amounts of traffic measurements
from working packet networks (including Ethernet LANS,
wide-area TCP/IP, CCSN/SS7, ISDN, VBR video, Frame
Relay, and ATM) have been collected and analyzed. The re-
sults reported in [1, 3, 4, 10, 11, 13, 16, 17, 18, 21] have been
striking for two reasons: (i) these studies demonstrate that
it is possible to distinguish clearly between actual packet-
network traffic and traffic generated by traditional Marko-
vian models, and (ii) in sharp contrast to the traditional
packet-traffic models, aggregate packet streams are statisti-
cally self-similar or fractal in nature; that is, realistic net-
work traffic looks the same when measured over time scales
ranging from milliseconds to minutes and hours.

From a modeling viewpoint, [16, 20] emphasize that find-
ing self similarity in traffic measurements from modern packet
networks does not necessitate complicated and highly pa-
rameterized traffic models. In fact, [16, 20] suggest compact
and parsimonious modeling based on fractional Brownian
motion (FBM, for short) processes as a feasible and attrac-
tive alternative to traditional modeling approaches. More
recent results obtained in [6] provide conditions under which
FBM-based models can be expected to describe packet traf-
fic in modern packet networks realistically and predict their
performance accurately. At the same time, there is mount-

ing evidence that, beyond its omnipresence and statistical



significance in measured data, long-range dependence is a
traffic characteristic that (i) has a measurable and prac-
tical impact on queuing behavior, (ii) is of crucial impor-
tance for a number of packet-traffic-engineering problems
(e.g., traffic measurements [8], buffer sizing [6], admission
control [9], and rate control [7]), and (iii) if ignored, typ-
ically results in overly optimistic performance predictions
and inadequate network-resource allocations. These earlier
investigations (see for example, [5, 6, 9, 16, 20]) have noted
how the presence of long-range dependence, or a high value
of the Hurst parameter H, is often associated with surpris-
ingly large queue sizes. As a result, a common impression
has been created of expecting queue performance to be worse
as H rises, but this impression can be misleading. In fact,
there are examples in which larger values of H are associated
with smaller queues [14, 15].

In this paper, we show that the relative queuing perfor-
mance can be assessed by identifying a couple of time scales:
i) a time scale in the arrival process, and ii) a relevant time
scale in the queuing. The paper is organized as follows.
In the next section, we will describe self-similar traffic and
the FBM model. It is described to the extent that is rele-
vant to our discussion for the rest of the paper. Section 3
derives and discusses the relevant times in the queuing as
well as arrival processes. Specifically, there are time scales
tq; that are most relevant for queuing the arrivals of pro-

where B is the

cess %, usually identifiable as C—Bmi . lf—}'{i,
queue size, C is the capacity of the queue server, and m; is
the mean arrival rate of process i. Further, in comparing a
high-H process with a low-H process, there is a unique time
scale t,, at which the variances of the two processes match.
Section 4 establishes elementary conditions for determining
which queuing performance is worse, with illustrative exam-

ples demonstrating the results. Finally, Section 5 concludes

this paper by summarizing the results.

2 Fractional Brownian Motion and Hurst Parameter

With recent analyses of traffic measurements of various packet-
based networking technologies and services, it is now widely
accepted that real traffic has variations over many time
scales (“fractal”) and exhibits scaling relations (“self-similar”).
This is in contrast to the simple traffic patterns that are
currently assumed in most engineering practices and load

testing.

Quite generally, an arrival process refers to a family of
random variables A(s,t), with the interpretation as the amount
of traffic arriving in the time interval (s,t]. In support of

this interpretation, the family must satisfy

A(r,t) = A(r, s) + A(s, t). (1)

Usually, the greatest interest is in stationary processes,
so stationarity is assumed here.! The arrival process can also
be identified with the singly indexed process A(t) = A(0,t)
for t > 0 (and A(t) = —A(t,0) for ¢ < 0), because the
doubly indexed process can be recovered from it: A(s,t) =
A(t) — A(s). (The singly indexed process is not stationary,
however; instead, it is described as having stationary incre-
ments.) A consequence of stationarity, plus assumptions of
finite means and of positive average arrivals in positive time,

is the existence of a mean arrival rate m > 0O:
E[A(s,t)]=m - (t —s). (2)

Now self similarity of an arrival process actually refers
to the fluctuations about the mean, and not to the process

itself. In detail, first let X be the process of fluctuations:

X(s,t) = A(s,t) —m - (t—s). (3)

Self similarity means that for any (time) factor o > 0,
letting X o be the time-scaled process Xq(s,t) = X(as,at),
there must be a corresponding (space) factor S(a) > 0 for
which X, matches 8(a)X. Strict self similarity means the
match must be in the sense of distributions: X, and g8(a)X
must have the same distribution. Second-order self similar-
ity means the match is in the sense of the first two moments:
the means and covariances of X, must be those of ﬂ(a)X.
In particular, the moments exist and are finite. Regardless
of the version of self similarity, if a process is self-similar,
then the function 8 satisfies S(a1a2) = B(a1)B(az). Hence,
B is given by a power law, at least within the set of rational
powers of a generating o value. Indeed, if 8 is measurable
(which would follow from the technical condition that A be
jointly measurable as a function of both the explicit index
(s,t) and the implicit random sample), then the function
B is given by a power law without restrictions: for some

HeR,foral a >0,

L An arrival process A is said to be stationary, if for any r € R,
letting A, be the translated process defined by A,.(s,t) = A(s—7,t—

r), it turns out that A, has the same distribution as A.



Bla)=a". (4)

Moreover, the Hurst parameter H must satisfy H > 0 in
general, and if second moments are finite, then H < 1. The
assumption is made in this paper that the first two moments
are finite.

The assumptions on arrival processes alone imply that
just a few parameters can determine the first two moments
of all the random variables in the process. Specifically, the
means and covariances of all the random variables in a self-
similar arrival process are determined by three parameters:
a mean rate m > 0, a Hurst parameter H € [0,1], and some
variance parameter o or peakedness parameter a = o°/m

to fix the size of the fluctuations at unit time. Explicitly,
E[A(s,t)] = m - (t — 3), 5)
Var[A(s,t)] = V(t—s) = o2t — s|2H’ (6)
and

Cov[A(p,q), A(s,t)]
_ %{V(t—p) tV(s—gq) —V(t—gq) — V(s —p)}

2
(o2
= S {lE=pl" +ls— g -

t—q*" — |s — p|*" 7)

For definiteness, the further assumption will be made
that the “arrival” process is Gaussian. Then the full distri-
bution of A is determined by the three parameters m, H, and
a (or 0°), and is a fractional Brownian motion (FBM). An
unrealistic aspect of this assumption is that negative values
of A(s,t) can occur (corresponding to negative number of ar-
rivals) with positive probability. Indeed, so long as a > 0, it
follows that with probability 1, there is a time ¢ € (0, 1) with
A(t) < 0. In this sense, A cannot be an arrival process. Nev-
ertheless, by the central-limit theorem, any real traffic is ap-
proximately FBM, if it is the aggregate of independent, iden-
tically distributed streams that are approximately second-
order self-similar. Accordingly, we will simply proceed un-
der the assumption that the “arrival” process is FBM. Note
that for H = 0.5, FBM becomes ordinary Brownian motion.
The increment process Y = (Y (k) = A(k,k+1): k> 0) is
called fractional Gaussian noise (FGN) and is a stationary
(discrete-time) Gaussian process with autocorrelation func-
tion r(k) = 1/2(Jk + 1> — 2|k|* " 4+ |k — 1]*H), k> 1. Tt is
easy to see that, asymptotically, r(k) ~ H-(2H —1)|k|*7 2,
for 1/2 < H < 1, l.e., Y exhibits long-range dependence (see

[16]). Also, simple calculations show that the aggregated pro-
cesses A™ = (A(") (k) = n_H(Y(kn—n—l—l)—l—. ..+Y(kn)):
k > 1), n > 0, all have the same distribution as Y, i.e., ¥
is ezactly self-similar in the sense of [2].

From the packet-traffic-modeling viewpoint, the FBM
traffic model is a reasonable representation of aggregate data
traffic (i.e., formed by multiplexing a large number of inde-
pendent data sources). This has recently been observed and
validated in traffic analyses of various packet-network tech-
nologies and services, see for example [1, 10, 11, 16, 18, 21].
In these comparisons of FBM models to real traffic, it has
been noted that the match is poor at the smallest time scales
where physical limitations govern traffic generation, but that
the match at intermediate time scales seems to extend to the
longest time scales for which the data allow a comparison.
Thus, these comparisons indicate that while real traffic is
not exactly self-similar, it does seem to be asymptotically
self-similar. To emphasize the correspondence of real traf-
fic with the abstract FBM model, note that the three FBM
parameters do capture significant features of the real traffic,
as follows. m is the mean rate (or equivalently, resource uti-
lization) that measures the volume or “quantity” of traffic.
The other two parameters refer to the burstiness or “qual-
ity” of traffic. a (the peakedness) measures the magnitude
of fluctuations about the mean rate. At the unit time scale,
it is the ratio of the variance of packet counts to the mean
value. H (the Hurst parameter) is an indication of the rate
of decay of correlations in the traffic. As noted earlier, the
combination of {m, a, H} is a complete description of the
model for an aggregate data-traffic stream. Thus, to the
extent that FBM models do capture the traffic features rel-
evant for performance, any two traffic streams with the same
{m, a, H} will result in the same performance.

The parameter H is obviously important, for it describes
the existence and, for the case of 0.5 < H < 1,2 the inten-
sity of any long-range dependence (LRD). Moreover, earlier
investigations (see for example, [6, 9, 20]) have noted that a
high value of the Hurst parameter H is often associated with
surprisingly large queue sizes. As a result, a common im-
pression has been created of expecting queue performance to
be worse as H rises, but this impression can be misleading.

In fact, there are examples in which larger values of H are

2Traffic with H < 0.5 has also been observed [12, 13], in which case
a high traffic period is likely to be followed by a low traffic period and

is referred to as anti-persistent.



associated with smaller queues as demonstrated in [14, 15],
and was referred to as the cross-over effect. So the ques-
tion is how can one tell whether queuing performance would
improve or degrade as H rises? In the following section,
we introduce the concept of relevant time scales both in the
arrival and queuing processes and show its application in
comparing the queuing performance driven by self-similar

arrival processes.

3 Relevant Time Scales

To address the posed question concerning two arrival pro-
cesses, we will in this section, describe the relevant time
scales in comparing the arrival processes to the queuing sys-
tem and to each other. Comparison of these relevant time
scales determines whether the arrival process with the higher

Hurst parameter encounters poorer performance.

3.1 Relevant Queuing Time Scales

In this paper, we assume that the queuing system is charac-
terized merely by a service rate or capacity C and a buffer
size B. Indeed, the “jobs” (or packets) on which the server
works are conceived as a fluid, with the server passing fluid
at rate C, with the queue size measuring the amount of fluid
that has arrived without being passed, and with the arrival
process A(s,t) giving the amount of fluid arriving in the in-
terval (s,t]. To simplify calculations, we will estimate prob-
abilities associated with the hypothetical, infinite-capacity
queue @ that never overflows, as opposed to the “real” queue
that is bounded by B. Thus, the hypothetical, unbounded
queue @ can be expressed in terms of the arrivals A as
Q(t) = sup [A(s,t) — C - (t — 5)], (8)
sis<t
which can be verified as follows. To see that Q(t) is at least
as large as the supremum, note that for any s < ¢, each
fluid particle in the total amount Q(s)+ A(s,t) either leaves
the system or stays to contribute to Q(t). Since the amount
leaving the system in (s, t] is bounded by C-(t—s), Q(¢) is at
least as large as Q(s)+A(s,t)—C-(t—s) > A(s,t)—C-(t—s).
Thus, Q(t) is at least as large as the supremum. For the
converse, let s be the last time before ¢t with Q(s) = 0.
Because the queue was nonempty since that time, the server
must have been busy in (s,t), so C - (t — s) really did leave,
and Q(t) is exactly Q(s)+A(s,t)—C-(t—s) = A(s,t)—C-(t—
s). Thus, Equation (8) is correct. Note that the stationarity

of A implies the stationarity of the process }. Hence, all the
Q(t) have the same distribution. As a surrogate for queue
overflows, we will estimate Pr(Q > B), the probability that
the hypothetical, unbounded queue exceeds the real buffer
size B.

With these background assumptions, the question of a
comparison of two processes should be a bit more concrete.
Recall that the question was which arrival process would
create worse queuing performance, given two self-similar
arrival processes “1” and “2” with different Hurst param-
eters H, and H- (without loss of generality, we assume
H, < Hz). Thus, the two arrival processes under consid-
eration are A; and Az, with mean rates m; and m2, and
with variance functions Vi and V2, and the corresponding
queues are J1 and @2, where the queuing systems serving
the arrivals are the same in the two cases (i.e., Ci=Cy=C
and By = B; = B). The question is whether Pr(Q; > B) is
larger than Pr(Q: > B).

First, the capacity C can be separated into a mean rate
m; and an “excess” (or spare) capacity ¢; = C—m;. The rea-
son is that there is no difference between the queue formed
by arrivals A; at a server with rate C and the queue formed
by the reduced arrivals X;(s,t) = A;(s,t) —m;-(t —s) at a
server with the reduced capacity c;. (This observation can
be justified mathematically from the definition Equation (8)
of the queues in the two cases: the suprema are over exactly
the same differences, whether m; - (t — s) is subtracted from
both terms or not.s) In other words, the queue is most intu-
itively imagined as being driven entirely by the fluctuations
in the arrivals, with these fluctuations being served just by
the “excess” capacity c¢;. This excess capacity ¢; can be re-
garded as having the role of controlling the size of the queue.
Thus, ¢; determines the queue-size distribution, with larger
values of ¢; tending to make the queue smaller, i.e., to con-
centrate the mass of the queue-size distribution onto smaller
neighborhoods of zero. Then the buffer size B is merely a
threshold, which is high enough (one hopes) that the queue-
size distribution assigns sufficiently small mass to the inter-
val (B, 00). (The conception of B as merely a threshold is
especially relevant in our conception of @; as referring to

hypothetical, unbounded queues.)

3There is a conceptual difference, however, in that A; in general
can be an arrival process in the sense of being always positive, but X;
cannot be an arrival process in this sense. Of course, our assumption

of FBM arrivals has already invalidated the positivity constraint.



This conception of queues being driven by arrival fluctu-
ations supports the idea of a distinction in the service qual-
ity between the first-order effect of ensuring that capacity
exceeds the mean, and the second-order effect of handling
the queue. In one sense, this distinction is correct, in that
the mean rate m; depends only on the first moments of the
arrival process, while the queue is driven by the fluctua-
tions X;, which have no first-order dependence whatsoever.
Quantitatively, however, this distinction can be misleading
if one jumps to the conclusion that second-order effects are
always “smaller” than first-order effects. Specifically, the
arriving traffic can be so variable that it can be necessary to
install much more “excess” capacity c; than the “first-order”
capacity m;. Nevertheless, for our comparison of queuing
performance with different arrival streams distinguished by
different Hurst parameters, which refers to different second-
order behavior, we will assume that the two streams share
the same first-order behavior. In other words, we assume
that the mean rates are the same: m; = ms = m. With
this assumption, it follows that the excess capacities are the
same: ¢ =c2 =c=C —m.

Large queues can form in a variety of ways. Specifically,
when a queue forms that is large enough to exceed B, the
period of formation can be long or short. Nevertheless, it
cannot be extremely long, because while the fluctuations
X; in the arrivals have mean zero, the excess capacity c is
strictly positive (C > m for a stable queue), which means
that the server will eventually “catch up” to any burst in
arrivals. Similarly, unless instantaneous bursts of size B are
common, the period of formation cannot be too short. In-
deed, if arrivals are FBM with H > 0, then arrivals are
continuous with no instantaneous bursts. Similarly, if ar-
rivals are merely approximately FBM, so long as B is large
enough that the FBM approximation is relevant, the instan-
taneous bursts of size B are rare enough to be neglected.

Mathematically,

{Q: > BY = | {Xi(~£,0) > B+ cf}, 9)
>0
and the point is that within this union, the events corre-
sponding to intermediate periods f of formation have the
largest probabilities.
For simplicity, we consider just one of the events in the

union of Equation (9), corresponding to one period f of

formation.* Let

Di(f) = vVi(f) (10)
and X
z(n = 50, (11)

so Z;(f) is a zero-mean, unit-variance random variable. In
terms of this normalized random variable, the event under

consideration is

Ei(f) ={Zi(f) > =(f)}, (12)
where
(0= Fo (13)

is the normalized fluctuation corresponding to a queue over-
flow for the period f. Intuitively, since the random variables
Z;(f) are all normalized, the value of z;(f) determines at
least a first approximation to the improbability of the event
E;(f). Indeed, under our assumption of Gaussian arrivals,

z;(f) determines the improbability exactly:

Pr(Ei(f)) = #(z(f)), (14)

where

3(z) = L/me—zzfzdz. (15)
Ver J,

One consequence of these considerations is a formula for
the “most relevant” period of formation of queues larger
than B. Thus, since z;(f) gives the improbability of the
event E;(f), the event with the greatest probability is the
one with the smallest value of z;(f). In other words, the
task is to find f to minimize z;(f). According to the self-
similarity assumptions, V;(f) = o2 f2%, so Di(f) = o: f 7,
and B ;

c
()=

So long as 0 < H; < 1, zi(f) = oo as f — 0 and as f — oo,

(16)

so any minima of z; would appear as solutions of

B ira-mE]. an

oq oq

0= Zi’(f) — f—l—Hi

Note that this equation for f has only the one solution

B H; _ B H;, B H;
¢cl—-H;, C-ml-H;, C-(1-p)l-H;’
(18)

where p (= m/C) is the utilization factor. It follows that

tgi =

this value £4; is the “most relevant” period of formation for

4Qur later numerical experiments will check the validity of this

simplification, e.g., Figure 5.



queues larger than B. Note that ¢, increases with H;, and
tgi = B/(C — m) for H; = 0.5.

This formula (18) can be interpreted intuitively, as fol-
lows. We can imagine the queue as currently having size B
and wonder how long it will take for the server (e.g., link)
with capacity C to drain the queue. Without arrivals contin-
uing to show up, the time required would be B/C. In reality,
however, traffic continues to arrive. On average, traffic ar-
rives at rate m, which suggests that the drain time would
be about B/(C — m). This occasion, however, on which the
queue has reached the large value of B, is not average. Given
the correlations of arrivals, and the fact that a current large
value for @ implies an excess of arrivals in the recent past,
one should expect the excess to persist in the near future,
at least for H > 0.5. Thus, the drain time should increase
with H, and the formula (18) may be understood as ex-
pressing this increase quantitatively. (Although the formula
estimates a likely time of formation of a large queue, while
the intuition deals with a likely time of erosion. Intuition
also suggests that these times should be close to each other.)
Figure 1 shows the z,(f) versus time for two cases: H = 0.7
and H = 0.9 (B = 1,000, C = 625, m = 62.5, and a = 6.25)
with the dotted lines represent the relevant queuing time tg;

(Equation (18)), i.e., the time scale when z;(f) is minimized.
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Figure 1: z;(f) vs. time

This “most relevant” period ¢4 corresponds to an “easi-

est” damaging (normalized) fluctuation z;(t4;). Thus,

B 4+ cty; B/(l—H,')
wlta) = ——m = p m
itai o (2:5%)
Bl—HiCHi

= . (19
o’,'H,'Hi . (1 — H,')I_Hi ( )

This value determines the probability of the most likely of

the events E;(f) through Pr(E;(t4)) = ®(z:i(te:)).

Figures 2 and 3 show z;(t,;) versus H for two different
sets of parameters. The first set of parameters is intended to
model the ATM environment with C = 365,000 cells/second
(roughly an OC-3c link), while the second set of parame-
ters is intended to model the Frame Relay environment with
C = 625 frames/second (with an average frame size of 300
bytes, this roughly models a DS-1 link). In each case, the
mean rate m is 10% of the capacity and the peakedness a
(¢ = v/am) is 10% of the mean rate, when the peakedness is
evaluated at the same time scale of 1 second as the time unit
employed in reporting rates. Figure 2 corresponds to the
ATM environment and Figure 3 corresponds to the Frame
Relay environment. The dotted lines denote where z,'(tq,') is
maximized (or the best performance), which is around 0.88
in Figure 2 and 0.53 in Figure 3. We see that for the most
part, z,'(tq,') increases with rising Hurst values in the ATM

environment while the other way is true in the Frame Relay

~

environment.
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Figure 2: z;(tq:) vs. H for the ATM setting
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Figure 3: z;(t4;) vs. H for the Frame Relay setting

Strictly speaking, our interest should be in the probabil-



ity of the union: Pr(@; > B) = Pr(Uf>0 E;(f)). Instead,
we will pay attention simply to z;(t4), with the following
excuses. When f # tqi, 2i(f) > zi(tqs), and because g(z)
decays so swiftly with z (roughly as e_zz/z), it follows corre-
spondingly that Pr(E;(f)) is much smaller than Pr(E;(t4)).
This suggests that the probability of the union really should
be close to the largest individual probability Pr(E;(t4:)). In-
deed, a version of this claim can be established rigorously
in large-deviations calculations of the asymptotic behavior
of Pr(Q; > B) [5]. The point is that the error should not
be horribly large if one replaces the union [ J >0 E;(f) by
the single event FE;(tq;). Since z;(tq;) does determine the
improbability of this single event, it follows that it can also
be used as an indicator of the improbability of the union.
Thus, the question, of which process leads to a greater prob-
ability Pr(Q; > B), is practically the same as the question,
of which process has a smaller value for z,'(tq,'). This will be

discussed further in Section 4.

3.2 Relevant Arrival Time Scales

Self-similar arrival processes, or their distributions, need
more than just their Hurst parameters to be specified. The
Hurst parameter merely determines the ratios

Vi(a -t) — o2Hi

0] (20)

(self similarity yielding the fact that these ratios are inde-
pendent of t); the Hurst parameter tells nothing of the mag-
nitude of an individual variance. For a process with Hurst
parameter H; and finite second moments, the variance func-

tion must have the form
Vi(t) = o282 (21)

for some o; > 0. For any two processes with H; < Hs,
it follows that the variance function of the first process ap-
proaches infinity more slowly than the second. Indeed, it
follows that there is a unique time t,, for which the vari-

ances match, as follows. Thus, Vi (tm) = V2(tm) means that

2

o1 thHl — o_zzthHz‘ (22)

Taking square roots, and then rearranging the equation with

powers of t on the left, one finds

Hy—H, o1
tm 2 = g. (23)

Solving this equation for t,, yields

b = (”—1)1/(H2_H1) (24)

o2

as the one time for which the variances match: Vi(tm) =
Vz2(tm). For pairs of more realistic processes that are merely
asymptotically self-similar, the variance-matching time need
not be unique, or even exist. Yet, because exactly self-
similar models are often used to estimate performance fea-
tures of these processes, our interest here is confined to
the case of exact self similarity in which there is a unique
variance-matching time.

Figure 4 shows the standard deviation of the number of
arrivals (4/V(t)) versus the time scale t with o1 /02 = 1/2.
The dotted line denotes ¢, (= 0.177 in the example), and
we can clearly see that when the time scale is greater than
tm, the arrival process with the higher Hurst value (= 0.9)
has higher variance. On the other hand, the arrival process
with the lower Hurst value (= 0.7) has higher variance when

the time scale is less than t,,.

Standard Deviation
400 600 800 1000 1200

200

0.0 01 02 03 04

Figure 4: Standard deviation vs. time

A comment should be made on our procedure of intro-
ducing an explicit matching time ¢,,, instead of assuming
that, in the different cases when H varied, all other pa-
rameters would remain constant. It is true that in abstract
studies of the effect of different parameters, it is easiest to
fix all but the varied parameter. In particular, when speci-
fying an arrival process by the three parameters m, H, and
o?, it would be natural, in an abstract study of cases with
different values of H, to keep m and o? fixed. It is also
true that whenever there are scaling laws, the report of an
analysis with one convention of units can be translated and
usually generalized to other scales or units. Here, however,

one of the crucial scaling laws of interest varies in the two



cases being compared, so the translation is not particularly
direct. Indeed, if the cases meet the condition of identi-
cal parameters with respect to one choice of time unit, they
will not meet this condition for any other choice of unit. For
example, consider how to translate, into a time unit of mil-
liseconds, a report on two cases that is originally given with
respect to a time unit of seconds. Let primes refer to mil-
liseconds, so the lack of primes will refer to seconds. Thus,
a time of 7 milliseconds is the same as ¢ = 7/1000 seconds,

SO

£ n
— L, 25
1000’ 1000) (25)

Taking means and variances, it follows that

A'(&,m) = Ai(

1 m;

mi’ = E[Ail(07 1)] = E[Ai(07 M)] = 1000’ (26)
and
Vi'(£) = Var[ 4 (0,£)] = Var[A:(0, —==)] = Vi(£) 100075,

(27)
From V(t) = o2t it now follows that H;' = H; and

i 2 = 0;210007 25| (28)

In particular, if oy = o9, then o1’ #* o2'. The point is that
a requirement for o1 to match o2 is not a requirement on
the processes, but on the time unit with respect to which
the processes are characterized. Naturally, we do not want
our results to be limited to a particular time unit of choice,
and that is why we do not insist on matching all non-Hurst
parameters and why we introduce explicitly the matching

time to,.

4 Are Higher Hurst Values Good or Bad?

Once the matching time ¢,,, (derived in the previous section)
has been identified, comparisons of variances or deviations
at other time scales are determined simply by whether the
other time scale is bigger or smaller than ¢,,. First, recalling
that Di(f) = /Vi(f), it follows that D;(a-f)/Di(f) = o™i,
Let

d = Di(tm) = Dz(tm). (29)

Hence, D;(f)/d = (f/twm)™.

rHz > pH1 while ™2 < v for r < 1. Therefore,

Now for any ratio r > 1,

Da(f) > Di(f)  for f> tm, (30)

and

Dz(f) < Di(f)  for f < tm. (31)

In other words, the high-Hurst process is smoother at small
time scales with smaller variances and deviations, but at
larger time scales, the stronger correlations of the high-Hurst
process produces larger fluctuations. So if one is concerned
with a particular time scale, the process with the larger fluc-
tuations at this scale will depend on whether the time scale
is larger than t,,.

In particular, these comparisons translate into correspond-
ing comparisons of the queuing indicators z;(¢4i), assuming
clear comparisons are available of the queuing times £4; with
the matching time t,,. The keys to this translation are the
general formula z;(f) = (B + c¢f)/Di(f) and the defining
property of t4, as the value that minimizes z;. First, if
tq1 > tm, then D1(tq) < Dz(tq), so

B —|— thl
D, (tql)

B —|— thl
Dz(tql)

zi(tq) = = z2(tq1) > 22(te2).  (32)

Given our use of z;(t4i) as the indicator of service quality,
this comparison says that the low-Hurst process has better
queuing performance in this case of tg1 > tm. Next, if £, <
tm, then D3(tq2) < Di(tq2), so

_ B —|— thz

B-|—Ct 2
zz(tqz) = Dz(t 2) &
q

Dl(tqz)

= z1(te2) 2 z1(ta1). (33)

This comparison says that the high-Hurst process has better
queuing performance in this case of t42 < ty,.

These two comparisons (in the cases £41 high and tg
low) do not deal with a clean partition of all cases. First,

the formula
ty= 21
71— H;

shows that t4; increases with H;, so g2 > t;1. Hence, the

(34)

two cases above, defined by ts1 > tm and by tge < tm,
cannot occur simultaneously. Finally, in the remaining un-
treated case of tg1 < tm < tg2, except for the direct cal-
culation of the z;(t4), there is no simple way to deter-
mine which queue performs better. Now from the treated
cases, it is clear that among intermediate values of H (while
keeping t,, fixed), the best queuing behavior occurs (in our
sense of a large value for zm(tym)) when H satisfies tn,, =
(B/c)H/(1 — H). Unfortunately, this observation merely
implies that processes 1 and 2 both perform worse than the
intermediate process, so it cannot be used to compare the
given processes 1 and 2.

Figures 5 and 6 show the z,'(tq,') versus buffer size for the
ATM and the Frame Relay settings much like Figures 2 and

3. Again, in each case, the mean rate is 10% of the capacity,



two traffic streams with Hurst parameters of 0.7 and 0.9 are
input to the queue, and the ratio of the standard deviation
of the two streams is 1/2 at the time scale of one second. In
Figure 5, in addition to z;(t4:), we also plot the asymptotic
results of Pr(@Q; > B) recently suggested by Narayan [19].
The two curves below the 0 on the y-axis depict the the
cell-loss ratio based on Narayan’s results on a log,, scale.
We can see that z;(t4;) is a good surrogate for comparing
the cell loss ratio performance. Furthermore, in Figure 5, we
can clearly identify the three regions as discussed. In Region
I (where tm > tgz > tq1), the stream with higher Hurst
value receives better performance; in Region III (where tg2 >
tg1 > tm), the stream with lower Hurst value receives better
performance; and in Region II, the cross-over occurs.

In Figure 6, only Region III exists, that is, with the pa-
rameter settings we have for the Frame Relay case,” the
lower-Hurst-parameter stream always performs better. This
may be one of the reasons that creates the common mis-
conception of higher Hurst values always incurring worse
queuing performance since it is relatively unlikely for the

cross-over scenarios to occur in lower-speed networks.
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Figure 5: log,o(Pr(Q; > B)) or z;(te) vs. B for the ATM
setting

Figures 7 and 8 further demonstrate that the perfor-
mance comparison between high-Hurst and low-Hurst pro-
cesses depends on a combination of traffic and system pa-
rameters, and not just the Hurst values. Figure 7 plots
zi(tqi) vs. server capacity with various parameter settings.

Figure 7(a) is the base case with B = 1,000, H; = 0.7,

5 Actually, the boundary between Regions I and II occurs at buffer
size of roughly 1, while the boundary between Regions II and III
occurs at buffer size of roughly 8. It is highly unlikely that existing

Frame Relay equipment has such small buffer sizes.
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Figure 6: z;(t4;) vs. B for the Frame Relay setting

H; = 0.9, p = 0.1, and the ratio of the peakedness of pro-
cess 2 to process 1 is 4 at the time scale of one second. We
see that Region I occurs when the capacity is greater than
3.2 x 10° cells/second and Region III occurs when the ca-
pacity is less than about 82,962 cells/second. Figure 7(b) is
the same as the base case (a) except that the buffer size is
increased to 5,000. We see that only Region III exists with
the range of capacity values we choose. The boundaries be-
tween Regions II and III and Regions I and II are around
C ~ 414,814 and C ~ 1.6 x 10°, respectively. Figure 7(c)
is the same as the base case (a) except that the utilization
is increased to 0.5. We see that Region II and III exist with
the range of capacity values we choose. The boundary be-
tween Regions I and II is around C ~ 5.76 x 10°. Finally,
Figure 7(d) is the same as the base case (a) except that
the ratio of the peakedness of process 2 to process 1 is now
1/4 as opposed to 4, that is, the higher Hurst process has
lower peakedness at the unit of time. In this case, only Re-
gion I exists with the range of capacity values we choose.
The boundary between Regions II and III (Regions I and
II) occurs around C ~ 81 (C ~ 312).

Figure 8 plots z,'(tq,') vs. utilization with various param-
eter settings. Figure 8(a) is the base case with B = 1,000,
H, =0.7, H; = 0.9, C = 365,000 (e.g., an ATM link), and
the ratio of the peakedness of process 2 to process 1is 4 at
the 1-second time scale. We see that Region I occurs when
the utilization is less than 0.21 and Region III occurs when
the utilization is greater than about 0.80. Figure 8(b) is the
same as the base case (a) except that the buffer size is in-
creased to 5,000. We see that only Region III exists. In this
case, the boundary between Regions II and III as well as

the boundary between Regions I and II occur at utilization



less than 0, which are not feasible. Figure 8(c) is the same
as the base case (a) except that the capacity is reduced to
625 (e.g., a Frame Relay link). Again, only Region III is
feasible. Finally, Figure 8(d) is the same as the base case
(a) except that the ratio of the peakedness of process 2 to
process 1 is now 1/4 as opposed to 4, that is, the higher
Hurst process has lower peakedness at the unit of time. In
this case, only Region I exists with the range of utilization
values we choose. In this case, Regions II and III only ex-
ist when the utilization is very close to 1. The boundary
between Regions II and III is around p ~ 0.9998, while the
boundary between Regions I and II is around p ~ 0.9992.

N
— 1} Il |
- s
=1 /:’9 ~
® -0y
N N
< ©
N ©
o <
0 100000 200000 300000 0 100000 200000 300000
Capacity Capacity
° o )
] N |
n
o Q
o
o 0
v g-
N No
o =1
—
n wn
o
2 o
0 100000 200000 300000 0 100000 200000 300000

Capacity Capacity

Figure 7: z;(tq:) vs. capacity

There is a sense in which the untreated case (Region II)
(of tg1 < tm < tq2) should be expected to be rare. Specifi-
cally, the buffer sizes contemplated for different systems vary
by more than an order of magnitude, with some buffers de-
signed to hold less than 10 ms of work, while others are
designed to hold almost a second. In contrast, the range
of Hurst parameters commonly contemplated, often from
H = 0.5 to H = 0.9, corresponds to values for the expres-
sion H/(1 — H) ranging from 1 to 9, all within single order
of magnitude. No matter what scale t,, turns out to be, the
wide possibilities for B/c imply that it will be quite rare for
tq1 and tg to turn out to be on opposite sides of any given
value of interest. In Figure 5 (Figure 6), only buffers with
sizes between roughly 1140 and 4400 (1 and 8) fall within

this untreated case.
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Figure 8: z;(tq:) vs. utilization

5 Conclusion

Earlier performance analyses of self-similar traffic have noted
how the presence of long-range dependence, or a high value
of the Hurst parameter H, is often associated with surpris-
ingly large queue sizes. As a result, a common impression
has been created of expecting queue performance to be worse
as H rises, but this impression can be misleading. In fact,
the queuing performance depends on a combination of vari-
ous traffic and system parameters.

In this paper, we have shown and derived the concept of
relevant time scales both in arrival as well as queuing and its
application in performance comparison between self-similar
traffic streams. First, in comparing a high-H process with
a low-H process, there is a unique time scale t,, at which
the variances of the two processes match. Second, there are
time scales t4; that are most relevant for queuing the arrivals
of process 17, usually identifiable as (B/(C —m))H;/(1 — H;)
and both close in order of magnitude to B/(C — m).

We have derived the conditions under which the perfor-
mance is better based on these identifiable time scales: if the
queuing scales t4; both exceed the variance-matching scale
tm, then the high-H queue is worse; if the queuing scales are
smaller, then the low-H queue is worse. No firm prediction
can be made in the remaining case of t,, falling between the

two queuing scales.



References

[1]

[10]

J. Beran, R. Sherman, M.S. Tagqu and W. Willinger,
“Long-Range Dependence in Variable-Bit-Rate Video
Traffic,” IEEE Trans. Commun., Vol. 43, No. 2/3/4,
pp. 1566-1579, 1995.

D.R. Cox, “Long-Range Dependence: A Review”, in:
Statistics: An Appraisal, H. A. David and H. T. David
(Eds.), The Iowa State University Press, Ames, lowa,
55-74, 1984.

M.E. Crovella and A. Bestavros, “Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes,” Proc. ACM Sigmetrics, pp. 160-169, May
1996.

D.E. Duffy, A.A. McIntosh, M. Rosenstein and W. Will-
inger, “Statistical Analysis of CCSN/SS7 Traffic Data
from Working Subnetworks,” IEEE JSAC, Vol. 12, No.
3, pp. 544-551, 1994.

N.G. Duffield and N. O’Connell, “Large Deviation and
Overflow Probabilities for the General Single-Server
Queue, with Applications”, Math. Proc. Cam. Phil.
Soc., Vol. 118, 363-374, 1995.

A. Erramilli, O. Narayan and W. Willinger, “Experi-
mental Queuing Analysis with Long-Range Dependent
Packet Traffic,” IEEE/ACM Trans. on Networking,
Vol. 4, No. 2, pp. 209-223, April 1996.

A. Erramilli and A. Neidhardt, “The Role of Shaping
and Policing in ATM Networks,” Proc. ITC Specialist
Seminar, Lund, Sweden, 1996.

A. Erramilli and J.L. Wang, “Monitoring Packet Traffic
Levels,” Proc. IEEE Globecom, pp. 274-280, San Fran-
cisco, CA, 1994.

A. Erramilli, W. Willinger and J.L. Wang, “Modeling
and Management of Self-Similar Traffic Flows in High-
Speed Networks,” to appear State-of-the-Art in Per-

formance Modeling and Simulation, K. Bagchi (ed.),
Gordon and Breach.

J.L. Jerkins, M. Pucci, J.L. Wang and J. Monroe, “Car-
rying Internet Traffic Over Frame Relay Links: Traffic
Analysis and Characterization,” preprint 1997.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

(21]

J.L. Jerkins and J.L. Wang, “A Measurement Analy-
sis of ATM Cell-Level Aggregate Traffic,” Proc. IEEE
Globecom, pp. 1589-1595, Phoenix, AZ, 1997.

J.L. Jerkins and J.L. Wang, “Traffic Analysis and En-
gineering for CCS Links Carrying 800 or AIN Service,”
Proc. ISCOM, pp. 15-19, Hsinchu, Taiwan, 1997.

J.L. Jerkins and J.L. Wang, “Establishing Broadband
Application Signatures through ATM Network Traffic
Measurement Analyses,” to appear IEEE ICC, 1998.

K.R. Krishnan, “A New Class of Performance Results
for a Fractional Brownian Traffic Model,” Queueing

Systems, Vol. 22, pp. 277-285, 1996.

K.R. Krishnan, A.L. Neidhardt and A. Erramilli, “Scal-
ing Analysis in Traffic Management of Self-Similar Pro-
cesses,” Proc. 15th ITC, Washington, D.C., pp. 1087-
1096, June 1997.

W.E. Leland, M.S. Taqqu, W. Willinger and D.V. Wil-
son, “On the Self-Similar Nature of Ethernet Traffic
(Extended Version),” IEEE/ACM Trans. on Network-
ing, Vol. 2, No. 1, pp. 1-15, 1994.

W.E. Leland, M.S. Taqqu, W. Willinger and D.V. Wil-
son, “Self-Similarity in High-Speed Packet Traffic:
Analysis and Modeling of Ethernet Traffic Measure-
ments,” Statistical Science, Vol. 10, pp. 67-85, 1995.

K. Meier-Hellstern, P.E. Wirth, Y.-L. Yan and
D.A. Hoeflin, “Traffic Models for ISDN Data Users: Of-
fice Automation Application,” Proc. 13th ITC, Copen-
hagen, pp. 167-172, 1991.

O. Narayan, “New Results in Fractional Brownian Stor-
age”, presented at the Workshop on Traffic Charac-
terization and Performance Analysis for Modern High-
Speed Networks: New Developments in Self-Similar
Performance Modeling, Tsukuba, Japan, November

1997.

I. Norros, “A Storage Model with Self-Similar Input,”
Queueing Systems, Vol. 16, pp. 387-396, 1994.

V. Paxson and S. Floyd, “Wide-Area Traffic: The Fail-

”

ure of Poisson Modeling,” Proc. ACM Sigcomm, pp.

257-268, London, UK, 1994.



