
The Concept of Relevant Time Scales andIts Application to Queuing Analysis of Self-Similar Tra�c(or Is Hurst Naughty or Nice?)Arnold L. Neidhardt and Jonathan L. WangBellcore331 Newman Springs RoadRed Bank, NJ 07701farnie, jwangg@bellcore.comAbstractRecent tra�c analyses from various packet networks haveshown the existence of long-range dependence in bursty traf-�c. In evaluating its impact on queuing performance, earlierinvestigations have noted how the presence of long-range de-pendence, or a high value of the Hurst parameter H, is oftenassociated with surprisingly large queue sizes. As a result, acommon impression has been created of expecting queuingperformance to be worse as H increases, but this impres-sion can be misleading. In fact, there are examples in whichlarger values ofH are associated with smaller queues. So thequestion is how can one tell whether queuing performancewould improve or degrade as H rises? In this paper, weshow that the relative queuing performance can be assessedby identifying a couple of time scales. First, in comparinga high-H process with a low-H process, there is a uniquetime scale tm at which the variances of the two processesmatch (assuming exact, second-order self similarity for bothprocesses). Second, there are time scales tqi that are mostrelevant for queuing the arrivals of process i. If both of thequeuing scales tqi exceed the variance-matching scale tm,then the high-H queue is worse; if the queuing scales aresmaller, then the low-H queue is worse. However, no �rmprediction can be made in the remaining case of tm falling

between the two queuing scales. Numerical examples aregiven to demonstrate our results.1 IntroductionIn the past 5 years, large amounts of tra�c measurementsfrom working packet networks (including Ethernet LANs,wide-area TCP/IP, CCSN/SS7, ISDN, VBR video, FrameRelay, and ATM) have been collected and analyzed. The re-sults reported in [1, 3, 4, 10, 11, 13, 16, 17, 18, 21] have beenstriking for two reasons: (i) these studies demonstrate thatit is possible to distinguish clearly between actual packet-network tra�c and tra�c generated by traditional Marko-vian models, and (ii) in sharp contrast to the traditionalpacket-tra�c models, aggregate packet streams are statisti-cally self-similar or fractal in nature; that is, realistic net-work tra�c looks the same when measured over time scalesranging from milliseconds to minutes and hours.From a modeling viewpoint, [16, 20] emphasize that �nd-ing self similarity in tra�c measurements frommodern packetnetworks does not necessitate complicated and highly pa-rameterized tra�c models. In fact, [16, 20] suggest compactand parsimonious modeling based on fractional Brownianmotion (FBM, for short) processes as a feasible and attrac-tive alternative to traditional modeling approaches. Morerecent results obtained in [6] provide conditions under whichFBM-based models can be expected to describe packet traf-�c in modern packet networks realistically and predict theirperformance accurately. At the same time, there is mount-ing evidence that, beyond its omnipresence and statistical



signi�cance in measured data, long-range dependence is atra�c characteristic that (i) has a measurable and prac-tical impact on queuing behavior, (ii) is of crucial impor-tance for a number of packet-tra�c-engineering problems(e.g., tra�c measurements [8], bu�er sizing [6], admissioncontrol [9], and rate control [7]), and (iii) if ignored, typ-ically results in overly optimistic performance predictionsand inadequate network-resource allocations. These earlierinvestigations (see for example, [5, 6, 9, 16, 20]) have notedhow the presence of long-range dependence, or a high valueof the Hurst parameter H, is often associated with surpris-ingly large queue sizes. As a result, a common impressionhas been created of expecting queue performance to be worseas H rises, but this impression can be misleading. In fact,there are examples in which larger values ofH are associatedwith smaller queues [14, 15].In this paper, we show that the relative queuing perfor-mance can be assessed by identifying a couple of time scales:i) a time scale in the arrival process, and ii) a relevant timescale in the queuing. The paper is organized as follows.In the next section, we will describe self-similar tra�c andthe FBM model. It is described to the extent that is rele-vant to our discussion for the rest of the paper. Section 3derives and discusses the relevant times in the queuing aswell as arrival processes. Speci�cally, there are time scalestqi that are most relevant for queuing the arrivals of pro-cess i, usually identi�able as BC�mi � Hi1�Hi , where B is thequeue size, C is the capacity of the queue server, and mi isthe mean arrival rate of process i. Further, in comparing ahigh-H process with a low-H process, there is a unique timescale tm at which the variances of the two processes match.Section 4 establishes elementary conditions for determiningwhich queuing performance is worse, with illustrative exam-ples demonstrating the results. Finally, Section 5 concludesthis paper by summarizing the results.2 Fractional Brownian Motion and Hurst ParameterWith recent analyses of tra�c measurements of various packet-based networking technologies and services, it is now widelyaccepted that real tra�c has variations over many timescales (\fractal") and exhibits scaling relations (\self-similar").This is in contrast to the simple tra�c patterns that arecurrently assumed in most engineering practices and loadtesting.

Quite generally, an arrival process refers to a family ofrandom variables A(s; t), with the interpretation as the amountof tra�c arriving in the time interval (s; t]. In support ofthis interpretation, the family must satisfyA(r; t) = A(r; s) +A(s; t): (1)Usually, the greatest interest is in stationary processes,so stationarity is assumed here.1 The arrival process can alsobe identi�ed with the singly indexed process A(t) = A(0; t)for t � 0 (and A(t) = �A(t;0) for t < 0), because thedoubly indexed process can be recovered from it: A(s; t) =A(t)� A(s). (The singly indexed process is not stationary,however; instead, it is described as having stationary incre-ments.) A consequence of stationarity, plus assumptions of�nite means and of positive average arrivals in positive time,is the existence of a mean arrival rate m > 0:E[A(s; t)] = m � (t� s): (2)Now self similarity of an arrival process actually refersto the 
uctuations about the mean, and not to the processitself. In detail, �rst let X be the process of 
uctuations:X(s; t) = A(s; t)�m � (t� s): (3)Self similarity means that for any (time) factor � > 0,letting X� be the time-scaled process X�(s; t) = X(�s;�t),there must be a corresponding (space) factor �(�) > 0 forwhich X� matches �(�)X. Strict self similarity means thematch must be in the sense of distributions: X� and �(�)Xmust have the same distribution. Second-order self similar-ity means the match is in the sense of the �rst two moments:the means and covariances of X� must be those of �(�)X.In particular, the moments exist and are �nite. Regardlessof the version of self similarity, if a process is self-similar,then the function � satis�es �(�1�2) = �(�1)�(�2). Hence,� is given by a power law, at least within the set of rationalpowers of a generating � value. Indeed, if � is measurable(which would follow from the technical condition that A bejointly measurable as a function of both the explicit index(s; t) and the implicit random sample), then the function� is given by a power law without restrictions: for someH 2 R, for all � > 0,1An arrival process A is said to be stationary, if for any r 2 R,letting Ar be the translated process de�ned by Ar(s; t) = A(s�r; t�r), it turns out that Ar has the same distribution as A.



�(�) = �H: (4)Moreover, the Hurst parameter H must satisfy H � 0 ingeneral, and if second moments are �nite, then H � 1. Theassumption is made in this paper that the �rst two momentsare �nite.The assumptions on arrival processes alone imply thatjust a few parameters can determine the �rst two momentsof all the random variables in the process. Speci�cally, themeans and covariances of all the random variables in a self-similar arrival process are determined by three parameters:a mean rate m > 0, a Hurst parameter H 2 [0; 1], and somevariance parameter �2 or peakedness parameter a = �2=mto �x the size of the 
uctuations at unit time. Explicitly,E[A(s; t)] = m � (t� s); (5)Var[A(s; t)] = V (t� s) = �2jt� sj2H ; (6)and Cov[A(p; q); A(s; t)]= 12 fV (t� p) + V (s� q)� V (t� q)� V (s� p)g= �22 �jt� pj2H + js� qj2H � jt� qj2H � js� pj2H	 :(7)For de�niteness, the further assumption will be madethat the \arrival" process is Gaussian. Then the full distri-bution ofA is determined by the three parametersm,H, anda (or �2), and is a fractional Brownian motion (FBM). Anunrealistic aspect of this assumption is that negative valuesof A(s; t) can occur (corresponding to negative number of ar-rivals) with positive probability. Indeed, so long as a > 0, itfollows that with probability 1, there is a time t 2 (0; 1) withA(t) < 0. In this sense, A cannot be an arrival process. Nev-ertheless, by the central-limit theorem, any real tra�c is ap-proximately FBM, if it is the aggregate of independent, iden-tically distributed streams that are approximately second-order self-similar. Accordingly, we will simply proceed un-der the assumption that the \arrival" process is FBM. Notethat for H = 0:5, FBM becomes ordinary Brownian motion.The increment process Y = (Y (k) = A(k; k + 1) : k � 0) iscalled fractional Gaussian noise (FGN) and is a stationary(discrete-time) Gaussian process with autocorrelation func-tion r(k) = 1=2(jk+1j2H � 2jkj2H + jk� 1j2H); k � 1. It iseasy to see that, asymptotically, r(k) � H �(2H�1)jkj2H�2,for 1=2 < H < 1, i.e., Y exhibits long-range dependence (see

[16]). Also, simple calculations show that the aggregated pro-cessesA(n) = (A(n)(k) = n�H(Y (kn�n+1)+: : :+Y (kn)) :k � 1); n > 0, all have the same distribution as Y , i.e., Yis exactly self-similar in the sense of [2].From the packet-tra�c-modeling viewpoint, the FBMtra�c model is a reasonable representation of aggregate datatra�c (i.e., formed by multiplexing a large number of inde-pendent data sources). This has recently been observed andvalidated in tra�c analyses of various packet-network tech-nologies and services, see for example [1, 10, 11, 16, 18, 21].In these comparisons of FBM models to real tra�c, it hasbeen noted that the match is poor at the smallest time scaleswhere physical limitations govern tra�c generation, but thatthe match at intermediate time scales seems to extend to thelongest time scales for which the data allow a comparison.Thus, these comparisons indicate that while real tra�c isnot exactly self-similar, it does seem to be asymptoticallyself-similar. To emphasize the correspondence of real traf-�c with the abstract FBM model, note that the three FBMparameters do capture signi�cant features of the real tra�c,as follows. m is the mean rate (or equivalently, resource uti-lization) that measures the volume or \quantity" of tra�c.The other two parameters refer to the burstiness or \qual-ity" of tra�c. a (the peakedness) measures the magnitudeof 
uctuations about the mean rate. At the unit time scale,it is the ratio of the variance of packet counts to the meanvalue. H (the Hurst parameter) is an indication of the rateof decay of correlations in the tra�c. As noted earlier, thecombination of fm; a; Hg is a complete description of themodel for an aggregate data-tra�c stream. Thus, to theextent that FBM models do capture the tra�c features rel-evant for performance, any two tra�c streams with the samefm; a; Hg will result in the same performance.The parameter H is obviously important, for it describesthe existence and, for the case of 0:5 < H < 1,2 the inten-sity of any long-range dependence (LRD). Moreover, earlierinvestigations (see for example, [6, 9, 20]) have noted that ahigh value of the Hurst parameter H is often associated withsurprisingly large queue sizes. As a result, a common im-pression has been created of expecting queue performance tobe worse as H rises, but this impression can be misleading.In fact, there are examples in which larger values of H are2Tra�c withH < 0:5 has also been observed [12, 13], in which casea high tra�c period is likely to be followed by a low tra�c period andis referred to as anti-persistent.



associated with smaller queues as demonstrated in [14, 15],and was referred to as the cross-over e�ect. So the ques-tion is how can one tell whether queuing performance wouldimprove or degrade as H rises? In the following section,we introduce the concept of relevant time scales both in thearrival and queuing processes and show its application incomparing the queuing performance driven by self-similararrival processes.3 Relevant Time ScalesTo address the posed question concerning two arrival pro-cesses, we will in this section, describe the relevant timescales in comparing the arrival processes to the queuing sys-tem and to each other. Comparison of these relevant timescales determines whether the arrival process with the higherHurst parameter encounters poorer performance.3.1 Relevant Queuing Time ScalesIn this paper, we assume that the queuing system is charac-terized merely by a service rate or capacity C and a bu�ersize B. Indeed, the \jobs" (or packets) on which the serverworks are conceived as a 
uid, with the server passing 
uidat rate C, with the queue size measuring the amount of 
uidthat has arrived without being passed, and with the arrivalprocess A(s; t) giving the amount of 
uid arriving in the in-terval (s; t]. To simplify calculations, we will estimate prob-abilities associated with the hypothetical, in�nite-capacityqueue Q that never over
ows, as opposed to the \real" queuethat is bounded by B. Thus, the hypothetical, unboundedqueue Q can be expressed in terms of the arrivals A asQ(t) = sups:s�t[A(s; t)�C � (t� s)]; (8)which can be veri�ed as follows. To see that Q(t) is at leastas large as the supremum, note that for any s � t, each
uid particle in the total amount Q(s)+A(s; t) either leavesthe system or stays to contribute to Q(t). Since the amountleaving the system in (s; t] is bounded by C �(t�s), Q(t) is atleast as large asQ(s)+A(s; t)�C �(t�s)� A(s; t)�C �(t�s).Thus, Q(t) is at least as large as the supremum. For theconverse, let s be the last time before t with Q(s) = 0.Because the queue was nonempty since that time, the servermust have been busy in (s; t), so C � (t� s) really did leave,and Q(t) is exactly Q(s)+A(s; t)�C �(t�s) = A(s; t)�C �(t�s). Thus, Equation (8) is correct. Note that the stationarity

of A implies the stationarity of the process Q. Hence, all theQ(t) have the same distribution. As a surrogate for queueover
ows, we will estimate Pr(Q > B), the probability thatthe hypothetical, unbounded queue exceeds the real bu�ersize B.With these background assumptions, the question of acomparison of two processes should be a bit more concrete.Recall that the question was which arrival process wouldcreate worse queuing performance, given two self-similararrival processes \1" and \2" with di�erent Hurst param-eters H1 and H2 (without loss of generality, we assumeH1 < H2). Thus, the two arrival processes under consid-eration are A1 and A2, with mean rates m1 and m2, andwith variance functions V1 and V2, and the correspondingqueues are Q1 and Q2, where the queuing systems servingthe arrivals are the same in the two cases (i.e., C1 = C2 = Cand B1 = B2 = B). The question is whether Pr(Q1 > B) islarger than Pr(Q2 > B).First, the capacity C can be separated into a mean ratemi and an \excess" (or spare) capacity ci = C�mi. The rea-son is that there is no di�erence between the queue formedby arrivals Ai at a server with rate C and the queue formedby the reduced arrivals Xi(s; t) = Ai(s; t)�mi � (t� s) at aserver with the reduced capacity ci. (This observation canbe justi�ed mathematically from the de�nition Equation (8)of the queues in the two cases: the suprema are over exactlythe same di�erences, whether mi � (t� s) is subtracted fromboth terms or not.3) In other words, the queue is most intu-itively imagined as being driven entirely by the fluctuationsin the arrivals, with these 
uctuations being served just bythe \excess" capacity ci. This excess capacity ci can be re-garded as having the role of controlling the size of the queue.Thus, ci determines the queue-size distribution, with largervalues of ci tending to make the queue smaller, i.e., to con-centrate the mass of the queue-size distribution onto smallerneighborhoods of zero. Then the bu�er size B is merely athreshold, which is high enough (one hopes) that the queue-size distribution assigns su�ciently small mass to the inter-val (B;1). (The conception of B as merely a threshold isespecially relevant in our conception of Qi as referring tohypothetical, unbounded queues.)3There is a conceptual di�erence, however, in that Ai in generalcan be an arrival process in the sense of being always positive, but Xicannot be an arrival process in this sense. Of course, our assumptionof FBM arrivals has already invalidated the positivity constraint.



This conception of queues being driven by arrival 
uctu-ations supports the idea of a distinction in the service qual-ity between the �rst-order e�ect of ensuring that capacityexceeds the mean, and the second-order e�ect of handlingthe queue. In one sense, this distinction is correct, in thatthe mean rate mi depends only on the �rst moments of thearrival process, while the queue is driven by the 
uctua-tions Xi, which have no �rst-order dependence whatsoever.Quantitatively, however, this distinction can be misleadingif one jumps to the conclusion that second-order e�ects arealways \smaller" than �rst-order e�ects. Speci�cally, thearriving tra�c can be so variable that it can be necessary toinstall much more \excess" capacity ci than the \�rst-order"capacity mi. Nevertheless, for our comparison of queuingperformance with di�erent arrival streams distinguished bydi�erent Hurst parameters, which refers to di�erent second-order behavior, we will assume that the two streams sharethe same �rst-order behavior. In other words, we assumethat the mean rates are the same: m1 = m2 = m. Withthis assumption, it follows that the excess capacities are thesame: c1 = c2 = c = C �m.Large queues can form in a variety of ways. Speci�cally,when a queue forms that is large enough to exceed B, theperiod of formation can be long or short. Nevertheless, itcannot be extremely long, because while the 
uctuationsXi in the arrivals have mean zero, the excess capacity c isstrictly positive (C > m for a stable queue), which meansthat the server will eventually \catch up" to any burst inarrivals. Similarly, unless instantaneous bursts of size B arecommon, the period of formation cannot be too short. In-deed, if arrivals are FBM with H > 0, then arrivals arecontinuous with no instantaneous bursts. Similarly, if ar-rivals are merely approximately FBM, so long as B is largeenough that the FBM approximation is relevant, the instan-taneous bursts of size B are rare enough to be neglected.Mathematically,fQi > Bg = [f>0 fXi(�f;0) > B + cfg ; (9)and the point is that within this union, the events corre-sponding to intermediate periods f of formation have thelargest probabilities.For simplicity, we consider just one of the events in theunion of Equation (9), corresponding to one period f of

formation.4 Let Di(f) =pVi(f) (10)and Zi(f) = Xi(�f;0)Di(f) ; (11)so Zi(f) is a zero-mean, unit-variance random variable. Interms of this normalized random variable, the event underconsideration is Ei(f) = fZi(f) > zi(f)g ; (12)where zi(f) = B + cfDi(f) (13)is the normalized 
uctuation corresponding to a queue over-
ow for the period f . Intuitively, since the random variablesZi(f) are all normalized, the value of zi(f) determines atleast a �rst approximation to the improbability of the eventEi(f). Indeed, under our assumption of Gaussian arrivals,zi(f) determines the improbability exactly:Pr(Ei(f)) = �(zi(f)); (14)where �(x) = 1p2� Z 1x e�z2=2dz: (15)One consequence of these considerations is a formula forthe \most relevant" period of formation of queues largerthan B. Thus, since zi(f) gives the improbability of theevent Ei(f), the event with the greatest probability is theone with the smallest value of zi(f). In other words, thetask is to �nd f to minimize zi(f). According to the self-similarity assumptions, Vi(f) = �i2f2Hi , so Di(f) = �ifHi ,and zi(f) = B + cf�ifHi : (16)So long as 0 < Hi < 1, zi(f)!1 as f ! 0 and as f !1,so any minima of zi would appear as solutions of0 = zi0(f) = f�1�Hi h�Hi B�i + f � (1�Hi) c�i i : (17)Note that this equation for f has only the one solutiontqi = Bc Hi1�Hi = BC �m Hi1�Hi = BC � (1� �) Hi1�Hi ;(18)where � (= m=C) is the utilization factor. It follows thatthis value tqi is the \most relevant" period of formation for4Our later numerical experiments will check the validity of thissimpli�cation, e.g., Figure 5.



queues larger than B. Note that tqi increases with Hi, andtqi = B=(C �m) for Hi = 0:5.This formula (18) can be interpreted intuitively, as fol-lows. We can imagine the queue as currently having size Band wonder how long it will take for the server (e.g., link)with capacity C to drain the queue. Without arrivals contin-uing to show up, the time required would be B=C. In reality,however, tra�c continues to arrive. On average, tra�c ar-rives at rate m, which suggests that the drain time wouldbe about B=(C �m). This occasion, however, on which thequeue has reached the large value of B, is not average. Giventhe correlations of arrivals, and the fact that a current largevalue for Q implies an excess of arrivals in the recent past,one should expect the excess to persist in the near future,at least for H > 0:5. Thus, the drain time should increasewith H, and the formula (18) may be understood as ex-pressing this increase quantitatively. (Although the formulaestimates a likely time of formation of a large queue, whilethe intuition deals with a likely time of erosion. Intuitionalso suggests that these times should be close to each other.)Figure 1 shows the zi(f) versus time for two cases: H = 0:7and H = 0:9 (B = 1; 000, C = 625, m = 62:5, and a = 6:25)with the dotted lines represent the relevant queuing time tqi(Equation (18)), i.e., the time scale when zi(f) is minimized.
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Figures 2 and 3 show zi(tqi) versus H for two di�erentsets of parameters. The �rst set of parameters is intended tomodel the ATM environment with C = 365; 000 cells/second(roughly an OC-3c link), while the second set of parame-ters is intended to model the Frame Relay environment withC = 625 frames/second (with an average frame size of 300bytes, this roughly models a DS-1 link). In each case, themean rate m is 10% of the capacity and the peakedness a(� = pam) is 10% of the mean rate, when the peakedness isevaluated at the same time scale of 1 second as the time unitemployed in reporting rates. Figure 2 corresponds to theATM environment and Figure 3 corresponds to the FrameRelay environment. The dotted lines denote where zi(tqi) ismaximized (or the best performance), which is around 0:88in Figure 2 and 0:53 in Figure 3. We see that for the mostpart, zi(tqi) increases with rising Hurst values in the ATMenvironment while the other way is true in the Frame Relayenvironment.
Hurst Parameter

Z
(t

q
)

0.5 0.6 0.7 0.8 0.9 1.0

1
.8

2
.0

2
.2

2
.4

Figure 2: zi(tqi) vs. H for the ATM setting
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ity of the union: Pr(Qi > B) = Pr(Sf>0Ei(f)). Instead,we will pay attention simply to zi(tqi), with the followingexcuses. When f 6= tqi, zi(f) > zi(tqi), and because �(z)decays so swiftly with z (roughly as e�z2=2), it follows corre-spondingly that Pr(Ei(f)) is much smaller than Pr(Ei(tqi)).This suggests that the probability of the union really shouldbe close to the largest individual probability Pr(Ei(tqi)). In-deed, a version of this claim can be established rigorouslyin large-deviations calculations of the asymptotic behaviorof Pr(Qi > B) [5]. The point is that the error should notbe horribly large if one replaces the union Sf>0Ei(f) bythe single event Ei(tqi). Since zi(tqi) does determine theimprobability of this single event, it follows that it can alsobe used as an indicator of the improbability of the union.Thus, the question, of which process leads to a greater prob-ability Pr(Qi > B), is practically the same as the question,of which process has a smaller value for zi(tqi). This will bediscussed further in Section 4.3.2 Relevant Arrival Time ScalesSelf-similar arrival processes, or their distributions, needmore than just their Hurst parameters to be speci�ed. TheHurst parameter merely determines the ratiosVi(� � t)Vi(t) = �2Hi (20)(self similarity yielding the fact that these ratios are inde-pendent of t); the Hurst parameter tells nothing of the mag-nitude of an individual variance. For a process with Hurstparameter Hi and �nite second moments, the variance func-tion must have the formVi(t) = �i2t2Hi (21)for some �i � 0. For any two processes with H1 < H2,it follows that the variance function of the �rst process ap-proaches in�nity more slowly than the second. Indeed, itfollows that there is a unique time tm for which the vari-ances match, as follows. Thus, V1(tm) = V2(tm) means that�12tm2H1 = �22tm2H2 : (22)Taking square roots, and then rearranging the equation withpowers of t on the left, one �ndstmH2�H1 = �1�2 : (23)

Solving this equation for tm yieldstm = ��1�2�1=(H2�H1) (24)as the one time for which the variances match: V1(tm) =V2(tm). For pairs of more realistic processes that are merelyasymptotically self-similar, the variance-matching time neednot be unique, or even exist. Yet, because exactly self-similar models are often used to estimate performance fea-tures of these processes, our interest here is con�ned tothe case of exact self similarity in which there is a uniquevariance-matching time.Figure 4 shows the standard deviation of the number ofarrivals (pV (t)) versus the time scale t with �1=�2 = 1=2.The dotted line denotes tm (� 0:177 in the example), andwe can clearly see that when the time scale is greater thantm, the arrival process with the higher Hurst value (= 0:9)has higher variance. On the other hand, the arrival processwith the lower Hurst value (= 0:7) has higher variance whenthe time scale is less than tm.
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cases being compared, so the translation is not particularlydirect. Indeed, if the cases meet the condition of identi-cal parameters with respect to one choice of time unit, theywill not meet this condition for any other choice of unit. Forexample, consider how to translate, into a time unit of mil-liseconds, a report on two cases that is originally given withrespect to a time unit of seconds. Let primes refer to mil-liseconds, so the lack of primes will refer to seconds. Thus,a time of � milliseconds is the same as t = �=1000 seconds,so Ai0(�; �) = Ai( �1000 ; �1000): (25)Taking means and variances, it follows thatmi0 = E[Ai0(0; 1)] = E[Ai(0; 11000 )] = mi1000 ; (26)andVi 0(t) = Var[Ai0(0; t)] = Var[Ai(0; t1000 )] = Vi(t)1000�2Hi :(27)From V (t) = �2t2H , it now follows that Hi0 = Hi and�i02 = �i21000�2Hi : (28)In particular, if �1 = �2, then �10 6= �20. The point is thata requirement for �1 to match �2 is not a requirement onthe processes, but on the time unit with respect to whichthe processes are characterized. Naturally, we do not wantour results to be limited to a particular time unit of choice,and that is why we do not insist on matching all non-Hurstparameters and why we introduce explicitly the matchingtime tm.4 Are Higher Hurst Values Good or Bad?Once the matching time tm (derived in the previous section)has been identi�ed, comparisons of variances or deviationsat other time scales are determined simply by whether theother time scale is bigger or smaller than tm. First, recallingthat Di(f) =pVi(f), it follows that Di(��f)=Di(f) = �Hi .Let d = D1(tm) = D2(tm): (29)Hence, Di(f)=d = (f=tm)Hi . Now for any ratio r > 1,rH2 > rH1 , while rH2 < rH1 for r < 1. Therefore,D2(f) > D1(f) for f > tm; (30)and D2(f) < D1(f) for f < tm: (31)

In other words, the high-Hurst process is smoother at smalltime scales with smaller variances and deviations, but atlarger time scales, the stronger correlations of the high-Hurstprocess produces larger 
uctuations. So if one is concernedwith a particular time scale, the process with the larger 
uc-tuations at this scale will depend on whether the time scaleis larger than tm.In particular, these comparisons translate into correspond-ing comparisons of the queuing indicators zi(tqi), assumingclear comparisons are available of the queuing times tqi withthe matching time tm. The keys to this translation are thegeneral formula zi(f) = (B + cf)=Di(f) and the de�ningproperty of tqi as the value that minimizes zi. First, iftq1 � tm, then D1(tq1) � D2(tq1), soz1(tq1) = B + ctq1D1(tq1) � B + ctq1D2(tq1) = z2(tq1) � z2(tq2): (32)Given our use of zi(tqi) as the indicator of service quality,this comparison says that the low-Hurst process has betterqueuing performance in this case of tq1 � tm. Next, if tq2 �tm, then D2(tq2) � D1(tq2), soz2(tq2) = B + ctq2D2(tq2) � B + ctq2D1(tq2) = z1(tq2) � z1(tq1): (33)This comparison says that the high-Hurst process has betterqueuing performance in this case of tq2 � tm.These two comparisons (in the cases tq1 high and tq2low) do not deal with a clean partition of all cases. First,the formula tqi = Bc Hi1�Hi (34)shows that tqi increases with Hi, so tq2 > tq1. Hence, thetwo cases above, de�ned by tq1 � tm and by tq2 � tm,cannot occur simultaneously. Finally, in the remaining un-treated case of tq1 < tm < tq2, except for the direct cal-culation of the zi(tqi), there is no simple way to deter-mine which queue performs better. Now from the treatedcases, it is clear that among intermediate values of H (whilekeeping tm �xed), the best queuing behavior occurs (in oursense of a large value for zH(tqH)) when H satis�es tm =(B=c)H=(1 � H). Unfortunately, this observation merelyimplies that processes 1 and 2 both perform worse than theintermediate process, so it cannot be used to compare thegiven processes 1 and 2.Figures 5 and 6 show the zi(tqi) versus bu�er size for theATM and the Frame Relay settings much like Figures 2 and3. Again, in each case, the mean rate is 10% of the capacity,



two tra�c streams with Hurst parameters of 0.7 and 0.9 areinput to the queue, and the ratio of the standard deviationof the two streams is 1/2 at the time scale of one second. InFigure 5, in addition to zi(tqi), we also plot the asymptoticresults of Pr(Qi > B) recently suggested by Narayan [19].The two curves below the 0 on the y-axis depict the thecell-loss ratio based on Narayan's results on a log10 scale.We can see that zi(tqi) is a good surrogate for comparingthe cell loss ratio performance. Furthermore, in Figure 5, wecan clearly identify the three regions as discussed. In RegionI (where tm � tq2 > tq1), the stream with higher Hurstvalue receives better performance; in Region III (where tq2 >tq1 � tm), the stream with lower Hurst value receives betterperformance; and in Region II, the cross-over occurs.In Figure 6, only Region III exists, that is, with the pa-rameter settings we have for the Frame Relay case,5 thelower-Hurst-parameter stream always performs better. Thismay be one of the reasons that creates the common mis-conception of higher Hurst values always incurring worsequeuing performance since it is relatively unlikely for thecross-over scenarios to occur in lower-speed networks.
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Figure 5: log10(Pr(Qi > B)) or zi(tqi) vs. B for the ATMsettingFigures 7 and 8 further demonstrate that the perfor-mance comparison between high-Hurst and low-Hurst pro-cesses depends on a combination of tra�c and system pa-rameters, and not just the Hurst values. Figure 7 plotszi(tqi) vs. server capacity with various parameter settings.Figure 7(a) is the base case with B = 1; 000, H1 = 0:7,5Actually, the boundary between Regions I and II occurs at bu�ersize of roughly 1, while the boundary between Regions II and IIIoccurs at bu�er size of roughly 8. It is highly unlikely that existingFrame Relay equipment has such small bu�er sizes.
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less than 0, which are not feasible. Figure 8(c) is the sameas the base case (a) except that the capacity is reduced to625 (e.g., a Frame Relay link). Again, only Region III isfeasible. Finally, Figure 8(d) is the same as the base case(a) except that the ratio of the peakedness of process 2 toprocess 1 is now 1=4 as opposed to 4, that is, the higherHurst process has lower peakedness at the unit of time. Inthis case, only Region I exists with the range of utilizationvalues we choose. In this case, Regions II and III only ex-ist when the utilization is very close to 1. The boundarybetween Regions II and III is around � � 0:9998, while theboundary between Regions I and II is around � � 0:9992.
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(d)Figure 7: zi(tqi) vs. capacityThere is a sense in which the untreated case (Region II)(of tq1 < tm < tq2) should be expected to be rare. Speci�-cally, the bu�er sizes contemplated for di�erent systems varyby more than an order of magnitude, with some bu�ers de-signed to hold less than 10 ms of work, while others aredesigned to hold almost a second. In contrast, the rangeof Hurst parameters commonly contemplated, often fromH = 0:5 to H = 0:9, corresponds to values for the expres-sion H=(1�H) ranging from 1 to 9, all within single orderof magnitude. No matter what scale tm turns out to be, thewide possibilities for B=c imply that it will be quite rare fortq1 and tq2 to turn out to be on opposite sides of any givenvalue of interest. In Figure 5 (Figure 6), only bu�ers withsizes between roughly 1140 and 4400 (1 and 8) fall withinthis untreated case.
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(d)Figure 8: zi(tqi) vs. utilization5 ConclusionEarlier performance analyses of self-similar tra�c have notedhow the presence of long-range dependence, or a high valueof the Hurst parameter H, is often associated with surpris-ingly large queue sizes. As a result, a common impressionhas been created of expecting queue performance to be worseas H rises, but this impression can be misleading. In fact,the queuing performance depends on a combination of vari-ous tra�c and system parameters.In this paper, we have shown and derived the concept ofrelevant time scales both in arrival as well as queuing and itsapplication in performance comparison between self-similartra�c streams. First, in comparing a high-H process witha low-H process, there is a unique time scale tm at whichthe variances of the two processes match. Second, there aretime scales tqi that are most relevant for queuing the arrivalsof process i, usually identi�able as (B=(C�m))Hi=(1�Hi)and both close in order of magnitude to B=(C �m).We have derived the conditions under which the perfor-mance is better based on these identi�able time scales: if thequeuing scales tqi both exceed the variance-matching scaletm, then the high-H queue is worse; if the queuing scales aresmaller, then the low-H queue is worse. No �rm predictioncan be made in the remaining case of tm falling between thetwo queuing scales.
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