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Abstract

Labour force surveys are conducted to estimate quantities such as the unemploy-
ment rate and the number of people in work. Interest is typically both in estimates
at a given time and in changes between two successive time-points. Calibration
of the sample to force agreement with known population margins results in ran-
dom weights being assigned to each response, but the usual methods of variance
estimation do not account for this. This paper describes how resampling meth-
ods — the jackknife, jackknife linearization, balanced repeated replication, and the
bootstrap — can be used to do so. We also discuss implementation issues, and
compare the methods by simulation based on data from the UK Labour Force Sur-
vey. The broad conclusions are these: bootstrap and jackknife linearization are less
computer-intensive than the other resampling methods for such applications and
give better standard errors; ‘standard’ methods can be badly biased downwards;

and it is essential to take variability of the weights into account.
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1 Labour Force Surveys

Reliable estimation of the unemployment rate and the size of a workforce is one of the
priorities of a government statistics office, so most countries have a labour force survey,
typically conducted by stratified sampling of private addresses using geopolitical strata
such as counties or cantons. Within each selected address respondents are selected with
a certain probability. At one extreme all members are selected, as in the UK survey,
whereas for the Swiss equivalent only one individual per household is selected, with the
disadvantage that within-household variation cannot be estimated directly.

There is usually interest in estimates at the time the survey is taken, and also in the
change since the previous survey. To help reduce variability in change estimates, most such
surveys have a panel structure, i.e. each time the survey is conducted most individuals from
the previous time are retained, with the rest replaced by stratified sampling. Individuals
typically remain for five interviews, so about 20% of them are replaced each time, though
there is attrition due to non-response.

Often the sampled units are reweighted so that certain known marginal totals, typi-
cally based on demographic variables such as age, sex, geographic location and race, are
estimated without error; this is known as calibration or post-stratification. Although not
known exactly, these margins can be estimated fairly precisely from census data, and
are considered known for the purpose of calibration, which helps to correct for differential
non-response. The usual method used is iterative proportional fitting, whereby the weights
are iteratively adjusted for each margin in turn. Full convergence of the algorithm is very
slow but as the effect of any change in weights after the first few iterations is very small
(Oh and Scheuren, 1983), it is common in practice to stop after only a few iterations. As
the resulting weights are dependent on the sample they are random and this should in
principle be accounted for in standard error calculation. However, most current variance
estimates assume that the weights are fixed by the sampling design.

The purpose of the work summarized in this paper was: to compare current methods
of variance estimation for labour force surveys with resampling methods; to see whether
variability of the weights is important in practice; to assess the feasibility of using re-
sampling methods to account for it; and to investigate implementation issues. A point of
particular concern was the number of iterations required to take reweighting into account
when resampling. The literature on resampling methods in sample surveys suggests that
the weights should be recalculated for each resample, but this would be time-consuming
in practice, and it would be preferable if fewer iterations could be used.

In Section 2 we describe the estimates of interest and the current methods of cal-
culating their variability. Section 3 reviews the resampling methods we considered and
discusses their implementation. Section 4 describes our simulation study — based on data

from the UK Labour Force Survey — and gives our main results. Section 5 contains a



brief discussion, and the appendix some technical details.

2 Estimates and Standard Errors

Standard texts on sample surveys, such as Cochran (1977), contain variance formulae
applicable for a wide range of sampling designs. In practice, however, the formula used
is generally that for a simple random sample, multiplied by an adjustment — or design
effect — that takes into account the difference between simple random sampling and the
actual design. In this section we describe some typical estimators, and the corresponding
simplified variance formulae.

For static estimation the panel nature of the survey is irrelevant and we suppose that
we have a stratified, and possibly clustered, sample. Let H be the number of strata and
ny, be the number of sampled clusters in the Ath stratum. Let Y and Z be two variables
for which data has been collected, with yp,;; and zj;; being the values observed for the
kth respondent at the jth address in the Ath stratum, and let wy;;, denote the adjusted
weight associated with this individual. Then the three types of estimate of interest are

the total, average, and ratio,
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We shall write étot(y) etc. when we need to distinguish totals for two different variables.
An example is 0., = étot(y)/étot(z).
If we assume that the sample is a simple random sample and that the weights wy

are fixed, a standard error for é(w when Y is an indicator variable is
. . . 1/2
se(Bu) = dV) {81 = )/} (1)

where d(Y") is the design effect for Y and n the size of the sample on which é(w is based.
The estimate of the total incidence of Y in the population, étot, then has standard error
N se(é(w) where N = > wpjx is the population size. For a ratio estimator it is necessary
to estimate the covariance between the two random variables involved and then use the
formula

Se(‘gmt) étot(Z)

where the variances are obtained from (1). When both Y and Z are indicator variables, the

var {étot(y)} — 20, 4icov {étot(y), ém(Z)} + 02, var {étot(Z)H v :

two variances in the above formula are calculated as described for a total. The covariance

is estimated by the usual formula within each stratum,
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where wp; = >, WhjkYnjk, Vi = Y. WhikZhik and 4y and o), are the sample stratum
averages of the uy; and vy;.
For estimates of change 6, — #; between two successive surveys, a typical approach is

to combine standard errors for #; and 6, using a formula such as

N N

var(fy — 02) = Var(él) + Var(ég) — 2kr {Var(él) + Var(ég)} /2

= (1 —rk) {Var(él) + Val’(éz)} ;

where r is the correlation coefficient between the values of Y for an individual at the two
times and £ is the overlap proportion between addresses in the two samples. The value of
r is usually not estimated from the sample but instead is taken to be a known constant.
The true proportion of overlap should be used for k, rather than its theoretical value; the

standard error is thereby slightly increased because of non-response.

3 Resampling Methods

Standard formulae such as those in the previous section do not allow for the randomness of
the weights induced by recalibration. To account for this, we turn to resampling methods.
Theoretical aspects of the literature on resampling for complex surveys are outlined in
Chapter 6 of Shao and Tu (1995) and Chapter 4 of Thompson (1997), while Section 3.7
of Davison and Hinkley (1997) has a more practical discussion confined to bootstrap
methods. Wolter (1985) gives an extensive description of jackknife and half-sampling
methods; see also Chapter 11 of Sarndal et al. (1992). There are also numerous recent
papers on the subject. However we have found no discussion of estimates of change, nor
of implementation issues for very large surveys. The sections below outline the main
approaches, namely jackknifing, jackknife linearization, balanced repeated replications,

and bootstrapping.

3.1 Jackknife

The jackknife idea is division of the sample into disjoint parts, recalculation of the statistic
of interest based on the sample without each part in turn, and then combination of these
recalculated statistics to estimate properties of the original statistic. With stratified
cluster data each cluster is deleted in turn, and the variance calculations are done within

strata. The jackknife bias and variance estimates are then

H
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where fj, is the proportion of clusters sampled in the hth stratum, é_hj is the estimate
recalculated without the jth cluster of stratum h, and 0_, is the average of the estimates
for that stratum. This requires a total of ), nj recalculations of the statistic. Labour
force surveys are usually large, and other jackknives have been proposed to reduce the
number of recalculations involved in (2).

One alternative procedure is to group the n; clusters in the hth stratum into s, > 2
groups and to delete these in turn, requiring ), s recalculations. The only change in (2)
is then replacement of n;, by s,. This method produces less stable variance estimates than
the full jackknife, and clearly sj, should be as large as possible to reduce the instability of

the estimates. Although s, = 2 can be used, a larger value seems preferable in practice.

3.2 Jackknife linearization

The idea of jackknife linearization is to replace repeated recalculation of a statistic —
in effect numerical differentiation — with analytic differentiation. The result is a for-
mula which is simple to calculate, and which in large samples is a good approximation
to the more burdensome full jackknife calculation. The technique is also known as the
nonparametric delta method and the infinitesimal jackknife (Davison and Hinkley, 1997,
Sections 2.7, 3.2). For an unstratified sample of size n, the nonparametric delta method
variance approximation is vg, = n72 > []2,_ The empirical influence value /;, the infinites-
imal change in the statistic due to inclusion of the jth observation, is closely related to
the influence function central to classical robust statistics (Hampel et al., 1986). Replace-
ment of n=% with {n(n — 1)}~! reduces the slight downward bias of vy. For stratified
cluster data the empirical influence value for the jth cluster in stratum h is [;;, and the

bias-adjusted variance formula is

H np
vp = (1- fh)m Z 17 (3)
h=1 j=1
The key to this is calculation of the [j,;, which we outline in the appendix. Formula (3)
presupposes sampling with replacement, but when the sampling fractions fj, are small
it may also be used for sampling without replacement. Jackknife linearization produces
textbook estimates of variance for statistics based on averages, but can also be applied to
more complicated statistics, provided they are smooth.

This approach has the drawbacks that separate derivation of [;; would be required for
further statistics, and that it does not apply to statistics based on sample quantiles. A
smaller difficulty is that our derivation of the [j,; assumes that the proportional fitting
algorithm has iterated to convergence, whereas in practice the weights are based on rather
few iterations. This seems unlikely to affect the results since the change in weights after

the first few iterations is small.



3.3 Balanced repeated replication

The simplest form of balanced repeated replication, balanced half-sampling (McCarthy,
1969), applies when a sample consists of two observations from each of H strata. Then
a half-sample is formed by taking one observation from each stratum, and recalculating
the original statistic. There are 27 resampled values of é, and these can be combined
to estimate the variance of the original estimate. This approach is infeasible unless H is
small, but ideas from experimental design can be used to form a much smaller set of half-
samples, balanced so as to produce exactly the same result as the full set of half-samples,
at least for a linear statistic. This is done by taking H of the columns of a Hadamard
matrix of order L, which can be chosen in the range H + 1,..., H + 4. Appendix A of
Wolter (1985) gives Hadamard matrices of orders up to 100.

Having obtained the original estimate, é, and the L half-sample estimates, éL e ,éz,

the usual variance estimate for 8 is

L
verr = L7V (0] — 0)*, (4)

=1
When the hth stratum is of size n, > 2, the simplest way to generalize balanced
repeated replication is to split the stratum randomly into two groups of nearly-equal size,
and then recalculate the éT, each of which involves taking one group from each stratum.
Suppose that the groups in stratum A have sizes myj and nj, — myp, and that there is a
weight wp;, attached to the kth individual in the ith cluster in the hth stratum. Under
the scheme with n;, = 2, a half-sample is constructed by doubling one of these weights,
and setting the other to zero, separately for each stratum. These weights will not satisfy
the marginal constraints, however, and so each half-sample must be recalibrated. Rao
and Shao (1997) have suggested a better approach in the grouped setting, taking samples

of size my;, < np/2 in each stratum and modifying the weights to

wl, = (1 + nhThmh ) Whik, Wy = (1 — ﬁ ) Whiks (5)
which gives the usual variance estimator for a linear statistic; these reduce to w;;k = 2w,
wy . = 0 when my, = n; /2. This gentler perturbation of the sample reduces the instability
of (4) that can arise when the weights vary greatly due to deleting half the sample. The
weights (5) would be adjusted to satisfy the marginal constraints as before. One would
suppose that this modification will also give improvements for nonlinear statistics. A
drawback of this adjustment is that a set of balanced sub-samples can no longer be
constructed directly from a Hadamard matrix. Instead it is necessary to use orthogonal
multi-arrays (Sitter, 1993). This would require many more replications than the original

method and appears infeasible for a very large survey.



3.4 Bootstrap

The bootstrap idea is to mimic how the original data were constructed, by estimating
the original population from the sample, and then to construct bootstrap analogues of
the original estimator by applying the algorithm that produced it to samples taken from
the estimated population. Let F' denote the population, F' its estimate based on the
sample, and ¢(-) the algorithm that when applied to the population gives the parameter
and when applied to to the data gives the estimate, i.e. § = t(F') and 0= t(F) Then the
bootstrap idea is to resample from F to get a bootstrap sample F* and corresponding
statistic §* = t(F*) This process is repeated R times independently to get éf, . .,é]*%,

and these are used to estimate the bias and variance of § by

bp =0 —0=RY 0:—0,  wp=(R-1)7"Y (0~ 00) (6)
r=1 r=1
The usual approach with a single homogeneous sample yq,...,y, taken independently

from F is to take I to be the empirical distribution function (EDF) that puts masses
n~! on each of the original y;, and to construct e by sampling y7,...,y; with equal
probability and with replacement from yq,...,y,; [ is then the EDF of Yy, ..., y;. For
stratified data this is carried out independently in each stratum. For bias and variance es-
timation, R should be in the range 50-200, and values low in this range give the bootstrap
a computational advantage over the jackknife when calculating confidence intervals based
on normal approximation. Computation of more elaborate confidence intervals requires
R = 1000.

A crucial problem when applying the bootstrap to finite population sampling is to
mimic the effect of sampling without replacement, which decreases the variance of the
estimate. Most of the methods suggested to do this are both ad hoc and hard to apply in
practice; they may involve randomization between fake sample sizes, shrinkage of results
obtained using resampling with replacement, or with-replacement resampling with larger
sample sizes in order to reduce the variance by the appropriate amount. Theoretical
work of Presnell and Booth (1994) and simulations there and in Section 3.7 of Davison
and Hinkley (1997) suggest that a good simple approach is as follows. Suppose that the
sample ¥y, ..., ¥y, has been taken without replacement from a population of size N, and for
simplicity suppose that the inverse of the sampling fraction 1/f = N/n is integer. Then
the bootstrap population of size N is made by concatenating 1/f copies of yi,...,yn,
from which a bootstrap sample of size n is taken without replacement. This is applied
separately to each stratum of a stratified population. If 1/f is small, as is usually the case
for a labour force survey, the difference between sampling with and without replacement
is negligible, and we may simply resample from yy,...,y, with replacement, as described

above.



The construction of a resample just described will in general mean that the post-
strata marginal totals are no longer satisfied, and so we should reweight the resample. The
question is: to what margins should it be calibrated? The original statistic may be written
as T = t{F,m(F)}, where I represents the sample together with its original adjusted
sampling weights, F' the population from which it would have come in the absence of non-
response, and m(F') the population margin to which [ is calibrated. Note that F'is a
sample from the responding population, F,, say, rather than from the population of interest
F'. The bootstrap analogue of T'is T = t{F*, m(F)}, where % is the bootstrap sample,
and m(F) is the margin for the sample. But calibration ensures that m(F) = m(F),
i.e. the original sample is reweighted so that its calibrated margins match those of the
population. This implies that the bootstrap data may be reweighted by applying to it
the usual algorithm with the original population marginal totals.

It might be thought that taking a bootstrap sample from a sample F from the re-
sponding population F, rather than from F' itself would introduce a bias, but in fact it
does not. To understand this, consider a sample £ of values (1,91), -+, (2, yn) obtained
by random sampling with fraction f from a population but then subject to non-response
that depends on z. Suppose that = equals one of 1,...,k, and the probability of response
is m; for + = 7. Recalibration of the sample to match known margins for x will result in
weight w; being given to each of the (x;,y;) for which «; = ¢, and if the recalibration
is performed correctly, w; = (fm;)~!, because one effect of the calibration is to adjust
for non-response. The obvious way to generate a bootstrap observation is then to take
(x*,y*) from the original pairs, but with probabilities equal to their relative weights, and
then to apply the estimated non-response mechanism, deleting an observation (2*,y*) for
which a* = ¢ with probability (fw;)™", which is the best estimate of 7; from the survey.
This procedure is repeated until n resampled pairs are obtained; although the number
of respondents n is random under the original scheme, it is an experimental ancillary
statistic and so is held fixed under the bootstrap scheme. But this procedure amounts
to sampling n times with replacement from F, i.e. applying the bootstrap in the obvious
way. In other words, the original sample is taken from £, and we wish to mimic the effect
of sampling from this. But [ is the best estimate of F,, so we should resample from k.

This has the virtuous side-effect of removing any need to model non-response.

4 Simulation Study

4.1 Artificial survey

We use data from the British Labour Force Survey (LFS) as our artificial population and

draw samples from it in a way that mimics as closely as possible the stratified cluster



sampling used in the LFS. One aspect of interest is estimates of change, so our artificial
population is based on two consecutive LFS samples, in the autumn quarter of 1995
and the winter quarter of 1995-96, which we denote by P; and P; respectively. There
are about 60,000 addresses in Py, of which about 48,000 also appear in P, along with
12,000 “new” addresses sampled for the first time; addresses correspond to clusters in the
previous discussion. Addresses having their ith interview at a given occasion are said to
be in wave ¢, so the LF'S has five waves. Interviews for the LFS are carried out in interview
areas, each of which is sampled in one particular week of the 13 weeks of a quarter.

We decided that our sample would consist of 1250 addresses divided equally between
ten regions and the five waves of the survey, giving our artificial scheme a sampling fraction
of about é. We stratify the sampling by region and wave, giving 50 strata, and get a
sample S§; by taking 25 addresses without replacement from each stratum of P;. To get
a sample Sy from P,, we account for the panel structure by replacing the 250 addresses
in wave five of §; with 250 addresses sampled from the the “new” addresses in wave 1
of Pq, again sampling within regions. The remaining 1000 addresses of S; should also
appear in Py so we use their quarter 2 data to complete S,. Ideally S; would include all
addresses in waves 1-4 of &y, but some 5% of the addresses are affected by circumstantial
non-response, which we deal with by modifying the sampling to produce exactly 1250
addresses in both samples.

Each region of our artificial population is further divided into three strata which
correspond to the month in which the interview took place, mimicking the division of the
LFS into 13 interview areas. Below we consider the strata to be the 30 combinations of
region X month. Asin the LFS we sample entire clusters, except that we omit respondents
aged less than 16 years.

The LES itself is calibrated to certain marginal combinations of sex, age and geograph-
ical location. As our samples are much smaller we cannot use the same margins, so we
calibrate to margins obtained by merging levels of the LFS margins: 23 areas formed by
merging counties of Britain; a cross-classification of sex by age, in single years, for those
between 16 and 24 and 25 or older; and a cross-classification of four large regions by age
groups, 1629, 30-44, 45-59, 60-75 and 75+. As in the LFS we calibrate by iterative
proportional fitting, terminating after five iterations.

We report results for a total and a ratio, i.e. the total number unemployed and the
unemployment rate. ~ The unemployment rate is defined as the number unemployed
divided by the number in the workforce, so its estimate is a ratio statistic. For each of
these statistics we consider both static and change estimates. These are representative of

the many other statistics we considered.



Table 1: True population values of the unemployment statistics, with means and standard
deviations of 10,000 estimates.

Statistic True value Mean Standard deviation
Total 5885 5881 579
Change in total 207 -157 594
Rate (%) 8.29 8.28 0.81
Change in rate (%) —0.25 —0.16 0.83

4.2 Implementation of resampling methods

We calculated jackknife linearization variance estimates using (3) and the formulae given
in the appendix, ignoring finite population corrections.

For the jackknife we use the alternative method described in Section 3.1, with each
of the 30 strata divided into s;, = 10 groups, so that each variance estimate requires 300
recalculations of the statistic.

As we are interested in change estimates, we subdivide each of our thirty strata into
three parts for balanced repeated replication and the bootstrap, corresponding to those
individuals in &7 only, those in both &7 and &,, and those in &y only. With these 90
sub-strata we use a Hadamard matrix of order L = 96 for balanced repeated replication,
and R = 100 bootstrap replicates.

Jackknife linearization involves no reweighting, but the other methods do. In order to
examine its effect, we calculated three sets of estimates for each jackknife, bootstrap, and
balanced repeated replication resample: the ‘incorrect’” estimate, which uses the original
weights; a second estimate, which uses weights derived from these by a single iteration
of the calibration algorithm; and a third estimate, which adjusts the original weights as
fully as in the LFS, terminating after five iterations. In the case of balanced repeated
replication the weights of those respondents in the half-sample are multiplied by two

before calibrating the resample.

4.3 Results

Our first step was to find “target” values against which to compare the various methods.
To do so we generated 10,000 samples and calculated the estimates of interest for each
using five iterations of the calibration algorithm. Table 1 shows the true population values
and the mean and standard deviation of these 10,000 estimates, whose distribution was
very close to normal. Its final column gives the “true” standard deviation of the estimates,

calculated from the 10,000 estimates, and we use these as the target values.

10



Table 2: Summary statistics for standard errors of the total unemployed, the change in
total unemployed, the overall unemployment rate and the change in the rate. RB is the
relative bias, SD the standard deviation and MSFE the mean squared error of the 500

estimates. BRR denotes balanced repeated replication.

Statistic Method Bias RB (%) SD  MSE
Total current -35.2 6.1 25.4 1880
bootstrap -14.6 -2.5 55.0 3230
jackknife 45.3 7.8 96.8 11400
jackknife linearization -13.6 2.4 38.4 1650
BRR 28.0 4.8 79.6 7100
Change in total current —42.7 -7.2 21.6 2290
bootstrap -8.2 -1.4 55.5 3140
jackknife 64.3 10.8  107.0 15600
jackknife linearization 4.7 —0.8 41.8 1770
BRR 55.5 9.3 85.5 10400
Rate current -0.105 -12.9 0.0291 0.0119
bootstrap —-0.019 -2.3 0.0789 0.0070
jackknife 0.066 8.1 0.1370 0.0232
jackknife linearization -0.017 -2.1 0.0543 0.0033
BRR 0.041 5.1 0.1160 0.0151
Change in rate  current -0.105 -12.6  0.0252 0.0116
bootstrap -0.012 -1.5 0.0781 0.0062
jackknife 0.089 10.8 0.1490 0.0302
jackknife linearization —-0.007 -0.8 0.0583 0.0034
BRR 0.077 9.3 0.1180 0.0197

We then took 500 of these 10,000 samples and for each calculated standard errors
using the methods described in Sections 2 and 3. For the former we used a design effect
of 1.05 and a correlation of 0.6 between quarters; these values were checked by a separate
simulation. The implementation of the resampling methods is described in Section 4.2.

Table 2 summarizes the 500 standard errors calculated using five-step reweighting of
each resample. The standard errors for the unemployment rate are plotted in Figure 1.
The corresponding figures for the total unemployed and its change show the same pattern,
namely that the non-resampling standard errors are stable but badly biased downwards.

The bootstrap and jackknife linearization standard errors are comparable and both per-

11



Current method

Current method

Figure 1: Standard errors for the unemployment rate (top row) and the change in un-
employment rate (bottom row); the dashed line is y = x, the dotted lines are the ‘true’

sampling standard errors.
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form well. The versions of balanced repeated replication and the jackknife used here give
very unstable standard errors, though they could be improved at the expense of more
computing. As this extra computing would make the methods infeasible in practice, we

did not examine the improvements.

4.4 Effect of reweighting

As stated earlier, one of our goals was to see the effect of reweighting the resamples, and in
particular to check if fewer than five iterations of the calibration algorithm would suffice.
Standard errors for the different methods of variance estimation showed the same pattern
for all the static estimates. Jackknife standard errors show a large reduction in the bias
of the standard error and a smaller reduction in its variance when just one iteration is
used, but the situation worsens when five steps are used. For change estimates, there is
little or no improvement with one-step reweighting and again a worsening when five-step
reweighting is used. Overall the best jackknife strategy appears to be to use one iteration.

Reweighting has only a small effect for the bootstrap or balanced repeated replications,
and the effect is almost entirely captured in just one iteration. This is also true for the
change estimates.

Figure 2 shows standard errors for five-step reweighting against the other two levels

12



Table 3: Summary statistics for resampling standard errors of the total unemployment and
its change with different levels of reweighting based on 500 samples. RB is the relative
bias, SD the standard deviation and MSE the mean squared error of the 500 estimates.
BRR denotes balanced repeated replication.

Statistic Method Reweighting Bias RB (%) SD  MSE
Total bootstrap none 7.2 1.3 61.4 3820
one-step -15.4 2.7 54.6 3220

five-step -14.6 -2.5  55.0 3230

jackknife none 91.5 15.8  58.3 11800

one-step 1.4 0.3 50.1 2500

five-step 45.3 7.8 96.8 11400

BRR none 16.0 2.8 81.5 6880

one-step 23.6 4.1 784 6700

five-step 28.0 4.8 79.6 7100

Change in total bootstrap none 1.78 0.3 588 3460
one-step -10.2 -1.7  55.0 3120

five-step -8.2 -1.4 555 2140

jackknife none 0.3 0.0 51.2 2610

one-step 11.3 1.9  53.6 2990

five-step 64.3 10.8  107.0 15600

BRR none 22.6 3.8 80.8 7030

one-step 48.9 8.2 83.6 9370

five-step 55.5 9.3 85.5 10400

of reweighting. The plots for the jackknife show a clear bias for the no-reweighting static
estimate but not for the change estimate. A curious feature is that with five-step reweight-
ing the distribution of standard errors is very skewed with some extremely large outliers.
We have as yet no explanation for this, which occurred for all statistics of interest. Table 3
gives summary statistics for the standard errors with different levels of reweighting for the
unemployment statistics. The presence of the large outliers make the jackknife standard
errors with five-step reweighting upwardly biased and very variable and thus they have
very large mean squared errors.

For the bootstrap and balanced repeated replication there is a very strong relationship
between the estimates with one- and five-step reweighting, whereas there is a weaker

relationship with the no-reweighting estimates.
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Figure 2: Standard errors for the total unemployed in quarter 1 (top row) and the change
in total unemployment (bottom row) with different levels of reweighting; the dashes show

the line y = x and the dotted lines are the ‘true’ target sampling standard deviations.
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5 Discussion

Our results give clear answers to the original questions. It is important to take calibration
into account, and resampling methods can do this. In practice the bootstrap and jackknife
linearization give more reliable standard errors than do the jackknife or balanced repeated
replications. These latter could be made more accurate, but the added computational
burden seems likely to make them infeasible in practice, and in any event they would
be unlikely to improve on the bootstrap or jackknife linearization. Although jackknife
linearization slightly outperforms the bootstrap and is less computationally intensive, the
analytical work it involves may make it less attractive in practice when a new quantity is
of interest. If the bootstrap is used, weights should be recalculated, but a single iteration
of the recalibration algorithm suffices.

As previously mentioned, the results presented are typical of those obtained for many
more statistics. We also performed a separate simulation study, based on data from the

Swiss labour force survey, for which similar results were obtained.
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Appendix: Jackknife Linearization

This appendix outlines the derivation of empirical influence values for calibrated survey
estimates. The results parallel those of Yung and Rao (1996), though the derivation is
different. We give enough detail to show how the [;; are obtained for estimates of change
from such surveys; as far as we know these calculations are not available elsewhere.

We use yy;; to denote the value of y for the kth individual in the jth of the n; clusters
in stratum A, for h = 1,..., H, with similar subscripting for other quantities, and use
wp;r to denote the initial weights which would be used in the absence of calibration.
The estimated population total would then be 0 = Em’k WhikYnik = Zh,j Yp;» where
here and below the prime denotes an appropriately weighted sum over the clusters, i.e.
Yni = > w WhikYnsk- Note that 0 is linear in the data. For stratified cluster sampling, the
jackknife is performed by deleting clusters, and a standard calculation for linear statistics
(Davison and Hinkley, 1997, Problem 2.10) gives that the empirical influence value for
the jth cluster in stratum h is ly; = npy;; — >, yj,- Combined with (3) and ignoring the

finite population correction, this yields

H nh 2
1 ! !
vr, = Z m Z (nhyhj - Z yhi) ) (7)
h=1 7=1 7

in agreement with expression (2.2) of Yung and Rao (1996).

Now suppose that the sample consists of n observations of form (wpjk, @pjk, ynjk). Here
xp; 18 a px 1 vector of covariates with known px 1 population total ¢, and it is intended to
estimate the population total for y. Let €2 denote the n x n diagonal matrix with elements
whik, X the n x p matrix with rows l’gjk, y the n x 1 vector with elements y; 5, and 1
a vector of ones, conformable wherever it appears. Then calibrated weights obtained by
iterative proportional fitting and a form of generalized regression are equivalent, provided
the former is iterated to convergence (Stukel et al., 1996). The generalized regression

estimator of the population total for variable y may be written as

T
b = > g+ (C— thy‘k%) (XT0X) X"y (8)
hjk hjk
= 170y + (" — 17X (XTQX) XTQy (9)
= 1Twy,

where W is the n x n diagonal matrix with elements
Wik = whsk {1 +—(cjv——17K))()()(7K))()_1x%}k ;

note that setting y = X in (9) gives the known population total ¢ for x. Thus 0 may

be interpreted as a reweighting of the y;;;, with random weights wy;;, that produce the
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known total for the variables in . We need to account for the variability of the wy,jx
when calculating the analogue of (7), where it is assumed that the weights are fixed, and
this may be done by applying the chain rule when differentiating 0.

Expression (8) shows that 0 is a function of the linear expressions Y wpkYnjr and
c — Y whirThk, and the weighted least squares estimate (XTQX)™1XTQy, for which

empirical influence values for deletion of clusters are respectively

Nh; = Y Yk — (nhx/hj = %) e (XTQX) T wngrwngeeni, (10)

i i k
where e,k = Ynjk — Unji 18 a residual for the weighted regression. The first two expressions
in (10) are obtained from the discussion just before (7), and the third by specializing
Problem 7.1 of Davison and Hinkley (1997) to weighted linear regression. On applying

the chain rule to é, we eventually find that the empirical influence values for 0 are

lh; = nyp Z WhikChik — Z Z Whik€hik = MhE),; — Z €hi- (11)
& Pk i
Substitution of (11) into (3) gives a formula that agrees with (4.6) of Yung and Rao
(1996), and amounts to replacing Yp; in (7) by €l

A

For stratified cluster sampling applied to a ratio of two calibrated estimators, § =
1TWy/1TW 2, the chain rule gives

1 — 0l
_ b hj
where (] ;and [}, are the empirical influence values (11) for the numerator and denominator
weighted averages corresponding to the jth element of the hth stratum; the variance is
obtained by substituting (12) into (3).

We now turn to the estimates of change from one sample to the next. The change in

rate of unemployment may be written as
é:t(F%F?))_t(FlvF?)v (13)

where £} represents those addresses present only in the first sample, Fy those present in
both, Fy those present only in the second, and ¢(-, -) is the ratio of two calibrated estimates.
Thus t(Fl, Fg) = 1TWy/1TWz, where W, y and z are formed using (wp;x, Ynik, Trix) and
(Whjky Zhjk, Thik) for Fl and FQ; note that the the weights W differ between these samples.
Application of the chain rule to (13) gives empirical influence values Z}Lj for the ratio
—t(I7, I) for an address present only in the first sample, [} for the ratio ¢(F, I5) for an
address present only in the second sample, and lij for the difference of ratios (13) for an

address present in both. In each case the empirical influence values are obtained using
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(12). The variance estimate is
H np1 1 nh2 1 Nh3
l142—|— l242—|— l342 ,
2 {nhl nhl _ 1) ;( h]) nhz(nhz _ 1) i ( h]) nh3(nh3 _ 1) ]z_:( h])

where the Ath stratum contains nj,; households present in the first sample only, nj,
households present in both samples, and nj,3 households present in the second sample

only, and the corresponding empirical influence values are given an obvious notation.
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