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Abstract—In this paper, we study a decode-and-forward two-
way relaying network. We propose an opportunistic two-way
relaying (O-TR) scheme based on joint network coding and
opportunistic relaying. In the proposed scheme, one single “best
relay” is selected by MaxMin criterion to perform network
coding on two decoded symbols sent from two sources, and then
to broadcast the network-coded symbols back to the two sources.
The performance of the proposed scheme is analyzed, and verified
through Monte Carlo simulations. Results show that the proposed
scheme achieves a better performance compared to the fully-
distributed space-time two-way relaying (FDST-TR), which has
been identified as the best decode-and-forward two-way relaying
method so far.

Index Terms—Cooperative communications, decode and for-
ward, network coding, relay selection, two-way relay.

I. INTRODUCTION

RECENTLY, cooperative relaying technique has attracted
an increasing interest in the academia and in the industry.

The cooperative relaying not only preserves the benefits in-
herent from the multiple-input-multiple-output (MIMO) tech-
nique, but also possesses a few more remarkable advantages.
However, bringing the benefits of the MIMO systems to the
relaying systems is not trivial because of other technical
challenges such as relaying methods, synchronization, re-
source allocation, and encoder and decoder design. Distributed
space-time coding [1]–[3] is an initiative that tackles these
challenges.

At the same time, network coding is a promising method
aiming to improve the throughput of communication sys-
tems [4]. Motivated by this innovative throughput-boosting
method, physical-layer network coding has been proposed to
improve the information transmission efficiency in wireless
communication systems [5], [6]. Integrating the benefits of
relaying and network coding, distributed space-time coding
(STC) with modular network coding for two-way relaying
systems has been proposed and referred to as the “partial
decode-and-forward II (PDF II)” scheme [7]. To reflect the
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relaying strategy more precisely, in this paper, we name such
an relaying scheme as the “fully-distributed space-time two-
way relaying (FDST-TR)” scheme. The FDST-TR scheme
(i) uses physical-layer network coding; and (ii) decodes the
frames and forwards them; and (iii) allows both sources to
transmit simultaneously. It has also been shown that the FDST-
TR scheme can achieve the full diversity order if the number
of symbols in a frame is no less than the number of relays
[7]. Further, in order to achieve the optimal performance,
the space-time codewords transmitted from different relays
have to be orthogonal. Besides, whenever there is a new
relay joining the relaying network, all other relays need to
change their linear transformation matrices accordingly. Also,
the synchronization among all relays becomes more and more
difficult when the number of relays is large.

In [8], opportunistic relaying has been proposed as an al-
ternative method for the distributed space-time relaying and is
shown to accomplish the full diversity. Opportunistic relaying
has been extensively studied for one-way relaying systems and
recently some studies have extended the opportunistic relaying
to two-way relaying systems [9]–[12]. In [9] and [10], two
relay selection criteria have been proposed to optimize the
achievable sum-rate in a two-way relaying system. However,
no network coding has been considered. In [11] and [12],
a two-way relaying system with opportunistic relay selection
and amplify-and-forward scheme has been studied in terms of
average error rate, outage probability and average sum-rate. It
is found that the two-way amplify-and-forward relaying shares
the same performance degradation as its one-way counterpart
due to noise propagation by the relays.

In this paper, we propose a new decode-and-forward two-
way relaying protocol, namely opportunistic two-way relaying
(O-TR) method, which is based on modular network coding
and opportunistic relay selection. The sources are allowed
to transmit simultaneously in the proposed O-TR protocol.
However, no distributed space-time coding is needed. There-
fore, the requirement that each relay should be assigned an
orthogonal precoding matrix is removed. On the other hand,
the O-TR protocol requires a relay-selection process which
is not needed in distributed space-time coding. Such a relay-
selection process, for example, can be implemented by using
a distributed algorithm [8] which does not require the channel
state information (CSI) of the entire network to be known
to all relays. Consequently, instead of selecting a number of
relays as in distributed space-time coding, the proposed O-TR
protocol selects only one active relay to perform the network
coding on the decoded symbols sent by the two sources and to
forward the network-coded symbols back to the two sources.
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Fig. 1. The system model of a multi-relay system with two sources and
two-way communications.

Moreover, the proposed protocol imposes no restriction on the
frame length, which results in a more flexible frame design at
the sources. We will further show by analysis that the proposed
O-TR protocol accomplishes the full diversity.

In Sect. II, the model of a decode-and-forward two-way
relaying system is briefly introduced. In Sect. III, the pro-
posed O-TR method is introduced, and the FER performance
is analyzed. In addition, an approximated FER is derived
when BPSK modulation is used. In Sect. IV, we present our
analytical and simulation results.

Notations: ∥ x ∥2= (x𝐻x)1/2 denotes the 𝑙2 norm or
Euclidean norm of the vector x; (⋅)𝑇 denotes the transposition
of a matrix or vector; (⋅)∗ denotes the Hermitian of a matrix
or vector; ℜ(𝑥) is the real part of the complex variable 𝑥;
and ℑ(𝑥) is the imaginary part of 𝑥; E𝑥[𝑓(𝑥)] represents the
expectation of 𝑓(𝑥) over the random variable (RV) 𝑥; det(𝑿)
is the determinant of the matrix 𝑿 .

II. SYSTEM MODEL OF DECODE-AND-FORWARD

TWO-WAY RELAYING

We consider the two-way relaying network shown in Fig. 1,
where two source nodes 𝕊1 and 𝕊2 exchange their information
with the help of 𝑁𝑅 relay nodes ℝ𝑖 (𝑖 = 1, . . . , 𝑁𝑅). We
assume that all the relays lie within the transmission ranges
of both 𝕊1 and 𝕊2, but there is no direct link connecting 𝕊1

and 𝕊2. The link between 𝕊1 and ℝ𝑖 is characterized by the
channel coefficient ℎ𝑖, which is modeled as a complex RV
following a complex Gaussian distribution with zero mean
and unit variance, i.e., a 𝒞𝒩 (0, 1) distribution. Meanwhile,
the channel coefficient of the 𝕊2-to-ℝ𝑖 link is denoted by 𝑔𝑖
which also follows a 𝒞𝒩 (0, 1) distribution.

We concentrate on a cooperative communication system in
which both 𝕊1 and 𝕊2 employ the same modulation scheme
and map each symbol to a corresponding energy-normalized
signal 𝑥 ∈ 𝒳 . We assume that the cardinality of the constella-
tion ∣𝒳 ∣ =𝑀 , and that each transmission frame consists of 𝑁
symbols. Also, we denote the minimum distance of the𝑀 -ary
signal constellation by 𝑑min. In each transmission-time unit,
𝕊1 and 𝕊2 will exchange one frame of 𝑁 symbols, which
is fulfilled in two equal-duration time slots. Specifically, in

the first time slot, 𝕊1 and 𝕊2 broadcast their signal frames
x1 = [𝑥1(1), ⋅ ⋅ ⋅ , 𝑥1(𝑁)]𝑇 and x2 = [𝑥2(1), ⋅ ⋅ ⋅ , 𝑥2(𝑁)]𝑇 ,
with powers 𝑃1 and 𝑃2, respectively, to all the relays at the
same time. At the 𝑖th relay, the received signal frame, denoted
by yℝ𝑖 = [𝑦ℝ𝑖(1), ⋅ ⋅ ⋅ , 𝑦ℝ𝑖(𝑁)]𝑇 , is given by

yℝ𝑖 =
√
𝑃1ℎ𝑖x1 +

√
𝑃2𝑔𝑖x2 + n𝑖 (1)

where n𝑖 ∈ ℂ𝑁 is a signal vector consisting of independent
complex Gaussian noises with zero mean and variance 𝑁0.
The 𝑖th relay (𝑖 = 1, . . . , 𝑁𝑅) will decode the received
signal frame yℝ𝑖 using a generalized sphere decoder [13]. The
detection method is expressed by

[x̂𝑖
1, x̂

𝑖
2] = argmin

[s1,s2]:s1,s2∈𝒳𝑁

∥ yℝ𝑖 − (
√
𝑃1ℎ𝑖s1 +

√
𝑃2𝑔𝑖s2) ∥22

(2)
where x̂𝑖

1 and x̂𝑖
2 are the decoded signal frames of x1 and

x2, respectively. Afterwards, the 𝑖th relay combines the two
decoded signal frames into one frame by using modular
network coding, which is presented as follows.

Recall that 𝑀 = ∣𝒳 ∣ is the cardinality of the signal
constellation 𝒳 . Let ℳ = {0, 1, . . . ,𝑀 − 1} be a set
containing 𝑀 symbols. Define 𝒜 : ℳ �→ 𝒳 as a one-to-
one mapping with 𝒜(𝑗) = 𝑥𝑗 ∈ 𝒳 and 𝑗 ∈ ℳ. For a
vector v in which each element is a member of ℳ, 𝒜 will
map v on an element-by-element basis onto 𝒳 . Denote the
inverse mapping of 𝒜 by 𝒜−1, which is also a one-to-one
mapping. We can then map the decoded signal frames x̂𝑖

1 and
x̂𝑖
2 to the decoded symbol vectors, which we denote by v𝑖

1

and v𝑖
2, respectively. Therefore, we have v𝑖

1 = 𝒜−1(x̂𝑖
1) and

v𝑖
2 = 𝒜−1(x̂𝑖

2). Then the 𝑖th relay will determine whether the
decoded symbol vectors satisfy the following equation:

mod{v𝑖
1 + v𝑖

2,𝑀} = mod{v1 + v2,𝑀} (3)

where v1 = 𝒜−1(x1), v2 = 𝒜−1(x2) and mod{x,𝑀}
denotes the modulo-𝑀 operation performing on each element
in the vector x. If the equation is satisfied, the 𝑖th relay
is called a successful relay 1. Depending on the protocol
being used, one or more relays may broadcast a new signal
frame back to 𝕊1 and 𝕊2 in the second time slot. Therefore,
the exchange of one pair of information frames between the
sources 𝕊1 and 𝕊2 only consumes two time slots, achieving the
optimal spectral efficiency for the studied half-duplex two-hop
two-way relaying networks.

III. PROPOSED OPPORTUNISTIC TWO-WAY RELAYING

(O-TR) METHOD

We propose a protocol based on modular network coding
and opportunistic relay selection. In the proposed protocol,
each relay will check if the modular condition (3) is satisfied

1In this paper, we assume that the condition (3) can be verified, for instance,
by a cyclic-redundancy-check (CRC) error-detection code. If v1 and v2 are
binary vectors, i.e., 𝑀 = 2, the XOR between the CRCs of v1 and v2 is
exactly the same as the CRC of mod{v1+v2,𝑀} [7]. If 𝑀 = 2𝑟 where 𝑟 is
an integer, the condition (3) can still be verified by mapping the 𝑀 -ary symbol
sequences v1 and v2 to binary vectors before performing a CRC detection.
However, we have not considered the actual type of error-detection being
used, which is outside the scope of this paper. Consequently, the symbols in
each frame are considered as independent and identically distributed, and the
FER will be evaluated based on the transmitted symbols directly.
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after decoding the received signal vectors. Among the suc-
cessful relays, only the “best relay" will be selected and will
forward a combined signal frame back to the two sources in
the second time slot. If there is no successful relay, none of
the relays will be selected. Thus no information frame will
be broadcasted back to the sources 𝕊1 and 𝕊2, resulting in a
declaration of frame errors at both sources.

Suppose the 𝑘th relay is the best relay, which can be
selected based on the MaxMin criterion, the maximize-
harmonic-mean criterion or any other criteria [8], [14], [15].
We further denote the transmitted signal frame from the 𝑘th
relay by ť𝑘 =

√
𝑁𝑅𝑃𝑟𝒜(mod{v𝑘

1 + v𝑘
2 ,𝑀}) where 𝑃𝑟 is

the transmission power of each relay. Using (3), the received
signal frame at the source 𝕊1 during the second time slot can
be expressed as ř1 = ℎ𝑘 ť𝑘 + w1 =

√
𝑁𝑅𝑃𝑟ℎ𝑘𝒜(mod{v1 +

v2,𝑀}) +w1. The suboptimal detection method is used and
the received signal frame is decoded in favor of

x̃2 = argmin
x=𝒜(ṽ2)

∥ ř1 −
√
𝑁𝑅𝑃𝑟ℎ𝑘𝒜(mod{v1 + ṽ2,𝑀}) ∥22 .

(4)
Note that v1 is a function of the transmitted signal vector x1
from 𝕊1, and is therefore known to 𝕊1. Unlike the detection
for the FDST-TR protocol [7], the detection for the proposed
O-TR protocol (4) does not require the summing of different
received signal vectors or any matrix transformations. Thus the
decoding complexity is lower. Moreover, the average received
power at each of the sources is equal to 𝑁𝑅𝑃𝑟 for the proposed
O-TR protocol, and is no less than that for the FDST-TR
protocol, which has a value of only 𝐾𝑃𝑟 (𝑁𝑅 ≥ 𝐾 ≥ 1)).
Therefore, intuitively the O-TR protocol should accomplish a
better frame error error (FER) performance than the FDST-TR
protocol if the O-TR protocol can achieve the full diversity.
In Sect. IV, we will further show the results when the average
received powers at each of the sources for the proposed O-TR
protocol and for the FDST-TR protocol are identical.

In summary, the benefit of the proposed protocol is three-
fold. Firstly, there is no restriction on the frame length 𝑁 ,
which results in a more flexible frame design at the sources
𝕊1 and 𝕊2. Secondly, no distributed-space-time linear transfor-
mation is performed at the relays. Thirdly, the decoding at the
sources 𝕊1 and 𝕊2 is made simpler. The drawback of the O-TR
protocol compared with the FDST-TR protocol is that a relay-
selection algorithm is required. In [8], a distributed algorithm
has been proposed to select the relay and the algorithm does
not require the channel state information (CSI) of the entire
network to be known to all relays.

A. Upper-bound of FER and Diversity Analysis

For simplicity, we assume that the transmission powers
of the sources 𝕊1 and 𝕊2, and of the relays are identical,
i.e., 𝑃1 = 𝑃2 = 𝑃𝑟 = 𝑃 . We also denote the signal-
to-noise ratio as 𝛾 = 𝑃/𝑁0, where 𝑁0 is the Gaussian
noise variance. Furthermore, we will study the scenario when
the MaxMin criterion is used to select the “best relay” [8],
[15]. In other words, the 𝑖𝑘th relay will be selected if it
can maximize the minimum of the 𝕊1-ℝ𝑖 channel gain and
the 𝕊2-ℝ𝑖 channel gain for all 𝑖 ∈ {1, 2, . . . , 𝑁𝑅}, i.e.,
𝑖𝑘 = argmax𝑖∈{1,2,...,𝑁𝑅}(min(∣ℎ𝑖∣2, ∣𝑔𝑖∣2)). The approach

shown in the following can be applied to cases when another
selection criterion is adopted.

1) FER at the relays ℝ𝑖(𝑖 = 1, 2, . . . , 𝑁𝑅): Considering
the 𝑖th relay ℝ𝑖, we rewrite (2) as

[x̂𝑖
1, x̂

𝑖
2] = argmin

[s1,s2]:s1,s2∈𝒳𝑁

∥ yℝ𝑖−
√
𝑃 [s1 s2][ℎ𝑖 𝑔𝑖]

𝑇 ∥22 . (5)

Recall that the signal frames x1 and x2 are transmitted from 𝕊1

and 𝕊2, respectively. We let 𝑿 = [x1 x2] and 𝑯 = [ℎ𝑖 𝑔𝑖]
𝑇 .

Given that 𝑿 has been transmitted and the estimation is in
favor of a particular �̂� = [x̂𝑖

1 x̂𝑖
2], by making use of the

method described in Sect. IV of [1], it can be shown that
the pairwise error probability (PEP) is bounded above by the
Chernoff bound, i.e.,

Pr{�̂� ∕= 𝑿 ∣�̂�,𝑿} ≤ det−1(𝑰2 +
𝛾
4
(𝑿 − �̂�)∗(𝑿 − �̂�)). (6)

Furthermore, applying the analysis that derives (50) in [7] to
(6), we obtain Pr{�̂� ∕= 𝑿∣�̂� ,𝑿} ≤ 2

𝛾𝑑2
min

. (Recall that
𝑑min represents the minimum distance of the 𝑀 -ary signal
constellation.) Finally, considering all the cases where �̂� ∕=
𝑿 (there are (𝑀2𝑁 − 1) such �̂�) and applying the union
bound, we have

Pr{�̂� ∕= 𝑿∣𝑿}=
∑
�̂�

Pr{�̂� ∕= 𝑿∣�̂�,𝑿}

≤ 2(𝑀2𝑁 − 1)

𝛾𝑑2min

≈ 2𝑀2𝑁

𝛾𝑑2min

. (7)

Consequently, the probability that the modular condition (3)
is violated, denoted by 𝑝relay, is bounded by

𝑝relay =Pr
{
𝒜(mod{v𝑖

1 + v𝑖
2,𝑀}) ∕= 𝒜(mod{v1 + v2,𝑀})

}

≤ Pr{�̂� ∕= 𝑿 ∣𝑿} ≤ 2𝑀2𝑁

𝛾𝑑2min

. (8)

2) FER at the sources 𝕊1 and 𝕊2: Suppose that there are
𝐾 (1 ≤ 𝐾 ≤ 𝑁𝑅) relays {𝑖1, . . . , 𝑖𝐾} ⊂ {1, . . . , 𝑁𝑅}
which can meet the modular condition (3). Assume that
the MaxMin criterion is used to select the “best relay”,
which is denoted as the 𝑖𝑘th relay. In other words, 𝑖𝑘 =
argmax𝑖∈{𝑖1,⋅⋅⋅ ,𝑖𝐾}(min(∣ℎ𝑖∣2, ∣𝑔𝑖∣2)). Furthermore, we de-
fine 𝑈 = min(∣ℎ𝑖𝑘 ∣2, ∣𝑔𝑖𝑘 ∣2). Since ∣ℎ𝑖1 ∣2, . . . , ∣ℎ𝑖𝐾 ∣2 and
∣𝑔𝑖1 ∣2, . . . , ∣𝑔𝑖𝐾 ∣2 are independent, identical exponential RVs
with parameter 𝜆 = 1, the pdf of 𝑈 is given by [16]

𝑓𝑈 (𝑢) = 2𝐾 exp(−2𝑢)[1− exp(−2𝑢)]𝐾−1

= 2𝐾
𝐾−1∑
𝑘=0

(
𝐾−1
𝑘

)
(−1)𝑘 exp(−2(𝑘 + 1)𝑢). (9)

At the sources 𝕊1 and 𝕊2, the signal frame
received from the selected relay (𝑖𝑘th relay) are
given by

√
𝑁𝑅𝑃ℎ𝑖𝑘𝒜(mod{v1 + v2,𝑀}) + w1 and√

𝑁𝑅𝑃𝑔𝑖𝑘𝒜(mod{v1 + v2,𝑀}) + w2, respectively, where
w2 is a vector consisting of 𝑁 independent complex
Gaussian noises with zero mean and variance 𝑁0. Denote
the decoded symbol frame from 𝕊2 at 𝕊1 by ṽ2 and the
decoded symbol frame from 𝕊1 at 𝕊2 by ṽ1. Using the
decoding mechanism as in (4), the average conditional
PEP, which is defined as the average over the conditional
PEP Pr {ṽ2 ∕= v2∣v2, ṽ2, 𝑈 = 𝑢} at the source 𝕊1 and the
conditional PEP Pr {ṽ1 ∕= v1∣v1, ṽ1, 𝑈 = 𝑢} at the source
𝕊2, can be shown equal to (10) at top of next page [7].
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1
2 Pr {ṽ2 ∕= v2∣v2, ṽ2, 𝑈 = 𝑢}+ 1

2 Pr {ṽ1 ∕= v1∣v1, ṽ1, 𝑈 = 𝑢}
= 1

2 Pr(x̃2 ∕= x2∣x2, x̃2, 𝑈 = 𝑢) + 1
2 Pr(x̃1 ∕= x1∣x1, x̃1, 𝑈 = 𝑢)

≤ 1
2 [𝑒

−𝑁𝑅

4 𝛾ℎ∗
𝑖𝑘
(x̃2−x2)

∗(x̃2−x2)ℎ𝑖𝑘 + 𝑒−
𝑁𝑅

4 𝛾𝑔∗
𝑖𝑘
(x̃1−x1)

∗(x̃1−x1)𝑔𝑖𝑘 ]

≤ 𝑒−𝑁𝑅

4 𝛾min(∣ℎ𝑖𝑘
∣2,∣𝑔𝑖𝑘 ∣2)𝑑2

min = 𝑒−
𝑁𝑅

4 𝛾𝑢𝑑2
min. (10)

Combining the results in (9) and (10) and applying [17,
Eq(3.312.1)], we obtain

1
2
Pr{ṽ2 ∕= v2∣v2, ṽ2}+ 1

2
Pr{ṽ1 ∕= v1∣v1, ṽ1}

≤
∫ ∞

0

𝑒−
𝑁𝑅
4

𝛾𝑑2min𝑢𝑓𝑈 (𝑢) d𝑢 = 𝐾B(𝑁𝑅
8
𝛾𝑑2min + 1,𝐾) (11)

where B(⋅, ⋅) is the Beta function [17]. Applying the union
bound, the FER at 𝕊1 and 𝕊2 which is defined as the average
over the FER Pr{ṽ2 ∕= v2} at the source 𝕊1 and the FER
Pr{ṽ1 ∕= v1} at the source 𝕊2, given that there are 𝐾
successful relays, is upper-bounded as follows:

𝑝sources,𝐾

=1
2 Pr{ṽ2 ∕= v2}+ 1

2 Pr{ṽ1 ∕= v1}
=

∑
ṽ1,ṽ2

1
2 Pr{ṽ2 ∕= v2∣v2, ṽ2}+ 1

2 Pr{ṽ1 ∕= v1∣v1, ṽ1}

≤𝑀𝑁𝐾B(𝑁𝑅

8 𝛾𝑑
2
min + 1,𝐾). (12)

Note that if there are no successful relays, i.e., 𝐾 = 0, frame
errors are declared at both sources and thus 𝑝sources,0 = 1.

3) Overall system FER and diversity: Finally, the overall
average FER of the two-way relaying system, denoted by
𝑃FER, is bounded by

𝑃FER =

𝑁𝑅∑
𝐾=0

(
𝑁𝑅
𝐾

)
𝑝sources,𝐾 × (1− 𝑝relay)

𝐾 × 𝑝𝑁𝑅−𝐾
relay

≤
𝑁𝑅∑
𝐾=0

(
𝑁𝑅
𝐾

)
𝑝sources,𝐾 × 𝑝𝑁𝑅−𝐾

relay

≤
(
2𝑀2𝑁

𝛾𝑑2min

)𝑁𝑅

+

𝑁𝑅∑
𝐾=1

(
𝑁𝑅
𝐾

)
𝑀𝑁𝐾

×B(𝑁𝑅
8
𝛾𝑑2min + 1,𝐾)

(
2𝑀2𝑁

𝛾𝑑2min

)𝑁𝑅−𝐾

=

(
2𝑀2𝑁

𝛾𝑑2min

)𝑁𝑅

+

𝑁𝑅∑
𝐾=1

(
𝑁𝑅
𝐾

)
𝑀𝑁𝐾

× Γ(𝐾)

(𝑁𝑅
8
𝛾𝑑2min + 2)𝐾

(
2𝑀2𝑁

𝛾𝑑2min

)𝑁𝑅−𝐾

≤𝑀𝑁 (𝛾𝑑2min)
−𝑁𝑅(8 + 2𝑀2𝑁 )𝑁𝑅 (13)

where Γ(⋅) is the Gamma function [17]. In deriving
the last inequality, we have applied 𝐾 Γ(𝐾)

(
𝑁𝑅

8 𝛾𝑑2
min+2)𝐾

≤
𝐾 Γ(𝐾)

(
𝑁𝑅

8 𝛾𝑑2
min)

𝐾
≤ ( 8

𝛾𝑑2
min

)𝐾 . The results in (13) indicate that

the upper bound of the average FER is proportional to 𝛾−𝑁𝑅 .
Thus, we can conclude that our proposed O-TR scheme for the
two-way relaying system can achieve the full diversity even
without employing distributed space-time coding.

B. FER analysis for binary-phase-shift-keying (BPSK) modu-
lation

Suppose the BPSK modulation is used in the signal trans-
mission. We denote 𝑝ℝ𝑖∣ℎ𝑖,𝑔𝑖 as the FER at Relay ℝ𝑖 condi-
tioned on ℎ𝑖 and 𝑔𝑖, i.e., the probability that the condition in

(3) fails at Relay ℝ𝑖. We further define 𝑉𝑖 = min(∣ℎ𝑖∣2, ∣𝑔𝑖∣2).
Then, 𝑝ℝ𝑖∣ℎ𝑖,𝑔𝑖 can be approximated by (see Appendix A)

𝑝ℝ𝑖∣ℎ𝑖,𝑔𝑖 ≈ 1−
(
1−Q(

√
2min(∣ℎ𝑖∣2, ∣𝑔𝑖∣2)𝛾)

)𝑁

=

𝑁∑
𝑛=1

(
𝑁
𝑛

)
(−1)𝑛+1 Q𝑛

(√
2𝑉𝑖𝛾

)
≜ 𝑝ℝ𝑖∣𝑉𝑖

. (14)

We define 𝒦 = {𝑖𝑚}𝐾𝑚=1 as a set of indices where
𝑖𝑚 ∈ {1, . . . , 𝑁𝑅} and 𝐾 ≤ 𝑁𝑅. Define “ℝ𝒦 successful”
as the event that the relays {ℝ𝑖𝑚}𝐾𝑚=1 are successful while
the relays {ℝ𝑗} with 𝑗 /∈ 𝒦 are not successful. The probability
for such an event to occur can therefore be approximated by
Pr (ℝ𝒦 successful) ≈ ∏

𝑖𝑚∈𝒦(1− 𝑝ℝ𝑖𝑚 ∣𝑉𝑖𝑚
)×∏

𝑗 /∈𝒦 𝑝ℝ𝑗 ∣𝑉𝑗
.

Furthermore, by applying 𝑓𝑉𝑖(𝑣) = 2 exp(−2𝑣) and the ap-
proximation (21) in Appendix B to (14), we can approximate
the average FER at ℝ𝑖 as

𝑝ℝ ≜ 𝑝ℝ𝑖 = E𝑉𝑖 [𝑝ℝ𝑖∣𝑉𝑖
]

= E𝑉𝑖

[
𝑁∑

𝑛=1

(
𝑁
𝑛

)
(−1)𝑛+1 Q𝑛

(√
2𝑉𝑖𝛾

)]

≈
𝑁∑

𝑛=1

(
𝑁
𝑛

)
(−1)𝑛+1

∑
𝑙1,𝑙2,...,𝑙8

𝑙1+𝑙2+⋅⋅⋅+𝑙8=𝑛

2𝛼𝑛𝛽𝑛(2𝛾)
𝜇𝑛

2

× Γ(𝜇𝑛

2 + 1)(𝑛𝛾 + 2)−(
𝜇𝑛

2 +1) (15)

where 𝛼𝑛 = 𝑛!/(𝑙1!𝑙2! . . . 𝑙𝑚𝑎 !), 𝛽𝑛 = (𝑐1)
𝑙1 . . . (𝑐𝑚𝑎)

𝑙𝑚𝑎 and
𝜇𝑛 = 𝑙2 + 2𝑙3 + ⋅ ⋅ ⋅ + (𝑚𝑎 − 1)𝑙𝑚𝑎 . As in Sect. III-A2,
we denote 𝑈 = max𝑖𝑚∈𝒦{min(∣ℎ𝑖𝑚 ∣2, ∣𝑔𝑖𝑚 ∣2)}. Since only
the best relay will transmit the coded signal vector back to
the sources in the second time slot, the FER at the sources
conditioned on the “ℝ𝒦 successful” event is obtained by

𝑝sources∣ℝ𝒦 successful

≈ 1
2 (1− (1−Q(

√
2𝑈𝑁𝑅𝛾))

𝑁 )

= 1
2

∑𝑁

𝑛=1

(
𝑁
𝑛

)
(−1)𝑛+1 Q𝑛

(√
2𝑈𝑁𝑅𝛾

)
. (16)

Note that the same approximation shown in Appendix A has
been used in the above derivation. Then, the average PEP at the
sources over all {𝑉𝑖}𝑁𝑅

𝑖=1 when {ℝ𝑖𝑚}𝐾𝑚=1 are the successful
relays, denoted by 𝑝sources,ℝ𝒦 successful,𝐾 , can be found using
(17) on the next page. By the definition of 𝑈 , each 𝑉𝑖𝑚 is no
greater than 𝑈 , i.e., 𝑉𝑖𝑚 ≤ 𝑈 . Thus, the inner expectation in
(17) can be written as

E{𝑉𝑖𝑚}𝑖𝑚∈𝒦

[ ∏
𝑖𝑚∈𝒦

(1 − 𝑝ℝ𝑖𝑚 ∣𝑉𝑖𝑚
)

∣∣∣∣∣𝑈 = 𝑢

]

≈E{𝑉𝑖𝑚}𝑖𝑚∈𝒦

[ ∏
𝑖𝑚∈𝒦

(
1−Q(

√
2𝑣𝑖𝑚𝛾)

)𝑁
∣∣∣∣∣𝑈 = 𝑢

]

≈
∏

𝑖𝑚∈𝒦

∫ 𝑢

0

[1− 𝑒−𝑣𝑖𝑚
𝛾

12 − 𝑒−4𝑣𝑖𝑚
𝛾/3

4 ][2 exp(−2𝑣𝑖𝑚)] d𝑣𝑖𝑚
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𝑝sources,ℝ𝒦 successful,𝐾 = E{𝑉𝑖}𝑁𝑅
𝑖=1

[
𝑝sources∣ℝ𝒦 successful × Pr (ℝ𝒦 successful)

]
= E{𝑉𝑖𝑚}𝑖𝑚∈𝒦,{𝑉𝑗}𝑗 /∈𝒦

⎡
⎣𝑝sources∣ℝ𝒦 successful ×

∏
𝑖𝑚∈𝒦

(1− 𝑝ℝ𝑖𝑚 ∣𝑉𝑖𝑚
) ×

∏
𝑗 /∈𝒦
𝑝ℝ𝑗 ∣𝑉𝑗

⎤
⎦

= E{𝑉𝑖𝑚}𝑖𝑚∈𝒦

[
𝑝sources∣ℝ𝒦 successful ×

∏
𝑖𝑚∈𝒦

(1 − 𝑝ℝ𝑖𝑚 ∣𝑉𝑖𝑚
)

]
×

∏
𝑗 /∈𝒦

E𝑉𝑗

[
𝑝ℝ𝑗 ∣𝑉𝑗

]

= E{𝑉𝑖𝑚}𝑖𝑚∈𝒦

[
𝑝sources∣ℝ𝒦 successful ×

∏
𝑖𝑚∈𝒦

(1 − 𝑝ℝ𝑖𝑚 ∣𝑉𝑖𝑚
)

]
× (𝑝ℝ)

𝑁𝑅−𝐾

= E𝑈

[
E{𝑉𝑖𝑚}𝑖𝑚∈𝒦

[
𝑝sources∣ℝ𝒦 successful ×

∏
𝑖𝑚∈𝒦

(1− 𝑝ℝ𝑖𝑚 ∣𝑉𝑖𝑚
)

]
× (𝑝ℝ)

𝑁𝑅−𝐾 ∣ 𝑈 = 𝑢

]

= E𝑈

[
𝑝sources∣ℝ𝒦 successful × E{𝑉𝑖𝑚}𝑖𝑚∈𝒦

[ ∏
𝑖𝑚∈𝒦

(1− 𝑝ℝ𝑖𝑚 ∣𝑉𝑖𝑚
) ∣ 𝑈 = 𝑢

]]
× (𝑝ℝ)

𝑁𝑅−𝐾 . (17)

=
(
1− 1

6(𝛾+2) − 1
2(4𝛾/3+2) − 𝑒−2𝑢

+ 𝑒−(𝛾+2)𝑢

6(𝛾+2) + 𝑒−(4𝛾/3+2)𝑢

2(4𝛾/3+2)

)𝐾

. (18)

Here, we have approximated (1 − Q(
√

2𝑣𝑖𝑚𝛾))
𝑁 by 1 −

Q(
√

2𝑣𝑖𝑚𝛾). When 2𝑣𝑖𝑚𝛾 is large, Q(
√

2𝑣𝑖𝑚𝛾) approaches
zero and the approximation becomes more accurate. The same
is true when 𝑁 is small. Further, we approximate Q(

√
2𝑣𝑖𝑚𝛾)

by 1
12𝑒

−𝑣𝑖𝑚𝛾 + 1
4𝑒

−4𝑣𝑖𝑚𝛾/3 [18]. The accuracy of the approx-
imations will be examined when we compare the analytical
results with the simulations in Sect. IV. Then, by using (18)
and (21), (17) can be expressed as (19). Finally, by taking into
account all possible cases of 𝐾 , i.e., 𝐾 = 0, 1, 2, . . . , 𝑁𝑅, and
the number of possible combinations of {𝑖𝑚}𝐾𝑚=1, the average
FER for the O-TR relaying system when BPSK is applied,
denoted by 𝑃FER,BPSK, can be estimated using

𝑃FER,BPSK =

𝑁𝑅∑
𝐾=0

(
𝑁𝑅

𝐾

)
𝑝sources,ℝ𝒦 successful,𝐾

= (𝑝ℝ)
𝑁𝑅 +

𝑁𝑅∑
𝐾=1

(
𝑁𝑅

𝐾

)
𝑝sources,ℝ𝒦 successful,𝐾 .

(20)

IV. SIMULATION AND NUMERICAL RESULTS

First, we compare the FER performance of our proposed
O-TR method with that of the FDST-TR method [7] by sim-
ulations. In Fig. 2, we show the simulated FER performance
under three system settings: a 2-relay system with frame
length 𝑁 = 2, a 4-relay system with 𝑁 = 4 and an 8-
relay system with 𝑁 = 8. The curves in Fig. 2 clearly show
that the O-TR method can achieve the same full diversity
order as the FDST-TR method. In addition, for all the settings
being considered, the proposed O-TR method achieves better
performance than the FDST-TR method in terms of FER. Note
that in the O-TR scheme, the transmissions through the 𝑁𝑅

relays can be regarded as a group of 𝑁𝑅 independent fading
channels. Selecting the best relay using the opportunistic
relaying method is equivalent to selecting the best channel
among the 𝑁𝑅 independent channels. Since each independent
fading channel has a diversity of one, the best channel will
behave like utilizing the diversities of all the 𝑁𝑅 independent
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4 relays  O−TR
8 relays  FDST−TR
8 relays  O−TR

Fig. 2. The frame error rate comparison between the fully-distributed
space-time coded two-way relaying method (FDST-TR) and the proposed
opportunistic two-way relaying method (O-TR) for three different systems:
a 2-relay system (i.e., 𝑁𝑅 = 2), a 4-relay system (i.e., 𝑁𝑅 = 4) and an
8-relay system (i.e., 𝑁𝑅 = 8). The frame length 𝑁 is set to equal to the
number of relays, i.e., 𝑁 = 𝑁𝑅. BPSK modulation is used.

fading channels and forming an equivalent fading channel with
a diversity of 𝑁𝑅.

In the FDST-TR scheme, for a given SNR, there will be
an average of E[𝐾] successful relays at each broadcasting
session. The average transmission power of all the relays is
therefore given by E[𝐾]𝑃𝑟. In our proposed O-TR method,
suppose the “best relay” transmits with a power identical to
the average power of all the relays in the FDST-TR case, i.e.,
E[𝐾]𝑃𝑟, we study the FER under such a scenario. (Note that in
practice, it may not be feasible for the “best relay” to transmit
with E[𝐾]𝑃𝑟, which varies as the SNR changes.) In Fig. 3, we
plot the FERs for a two-way relaying system with 𝑁𝑅 = 4.
The results indicate that our proposed O-TR method with the
“best relay” transmitting with E[𝐾]𝑃𝑟 still outperforms the
FDST-TR scheme. The reason is that the “best relay” spends
all the transmission power on the “best channels” while the
relays in the FDST-TR scheme spend some of the transmission
power on the comparatively “not-so-good” channels. Note also
that as the SNR increases, the FER for the O-TR{E[𝐾]𝑃𝑟}
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𝑝sources,ℝ𝒦 successful,𝐾

= E𝑈

[
1
2

∑𝑁

𝑛=1

(
𝑁
𝑛

)
(−1)𝑛+1 Q𝑛

(√
2𝑢𝑁𝑅𝛾

)(
1− 1

6(𝛾+2) − 1
2(4𝛾/3+2) − 𝑒−2𝑢 + 𝑒−(𝛾+2)𝑢

6(𝛾+2) + 𝑒−(4𝛾/3+2)𝑢

2(4𝛾/3+2)

)𝐾]
× (𝑝ℝ)

𝑁𝑅−𝐾

≈ 1
2

∑𝑁

𝑛=1

(
𝑁
𝑛

)
(−1)𝑛+1

∑
𝑙1,𝑙2,...,𝑙8

𝑙1+𝑙2+⋅⋅⋅+𝑙8=𝑛

𝛼𝑛𝛽𝑛(2𝑁𝑅𝛾)
𝜇𝑛

2

𝐾−1∑
𝑘=0

2𝐾
(
𝐾−1
𝑘

)
(−1)𝑘

×
𝐾∑

𝑗1,𝑗2,𝑗3,𝑗4
𝑗1+𝑗2+𝑗3+𝑗4=𝐾

𝐾!
𝑗1!𝑗2!𝑗3!𝑗4!

(
1− 1

6(𝛾+2) − 1
2(4𝛾/3+2)

)𝑗1
(−1)𝑗2( 1

6(𝛾+2) )
𝑗3( 1

2(4𝛾/3+2) )
𝑗4

× Γ(𝜇𝑛

2 + 1) [𝑛𝑁𝑅𝛾 + 2(𝑘 + 𝑗2 + 1) + (𝛾 + 2)𝑗3 + (4𝛾/3 + 2)𝑗4]
−(

𝜇𝑛

2 +1) × (𝑝ℝ)
𝑁𝑅−𝐾 . (19)
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Fig. 3. The frame error rate comparison between the fully-distributed space-
time coded two-way relaying method (FDST-TR), the proposed opportunistic
two-way relaying method with a relay transmission power of E[𝐾]𝑃𝑟 (O-
TR{E[𝐾]𝑃𝑟}), and the proposed opportunistic two-way relaying method with
a relay transmission power of 𝑁𝑅𝑃𝑟 (O-TR{𝑁𝑅𝑃𝑟}) for a 4-relay system
(i.e., 𝑁𝑅 = 4). The frame length 𝑁 is set to equal to the number of relays,
i.e., 𝑁 = 𝑁𝑅. BPSK modulation is used.

converges to that for the O-TR{𝑁𝑅𝑃𝑟}. It is because when the
SNR increases, the number of successful relays increases and
approaches 𝑁𝑅. We then examine the impact of the frame
length 𝑁 on the FER performance of the proposed O-TR
method. In Fig. 4, we show the simulated FER performance of
a 4-relay system under different frame length 𝑁 . As expected,
reducing 𝑁 improves the FER performance.

Finally, we compare the approximated FER performance
(20) with the simulation results in the case of BPSK mod-
ulation. The results for a two-relay system and a four-relay
system are illustrated in Fig. 5(a) and Fig. 5(b), respectively.
The curves indicate that the FER approximation in (20) forms
a lower-bound of the actual FER. We can further observe that
for the same 𝛾, a smaller value of 𝑁 gives a smaller absolutely
difference between the simulated FER and approximated FER.
The same observation occurs when we increase 𝛾 while
keeping 𝑁 constant. Such findings are consistent with a more
accurate approximation of (18) (which forms part of (20))
when 𝑁 is small and 𝛾 is large.
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Fig. 4. The frame error rate versus signal-to-noise ratio for a 4-relay system
employing the O-TR method and the BPSK modulation scheme. Frame length
𝑁 = 2, 4, 8, 12, 16, 20.

V. CONCLUSIONS

In this paper, we have proposed a relaying method for a two-
way relaying network, namely opportunistic two-way relaying
(O-TR) method. It is based on the modular network coding
method and the opportunistic relay selection. We have derived
the upper-bound of the frame error rate (FER) of the proposed
O-TR method and have shown that the proposed method can
accomplish the full diversity order. Simulation results have
further shown that the proposed O-TR method outperforms
the fully-distributed space-time two-way relaying method in
terms of FER.

APPENDIX A: FER AT THE RELAYS

At time instance 𝑡 (1 ≤ 𝑡 ≤ 𝑁 ), the transmitted BPSK
signals from 𝕊1 and 𝕊2 are denoted by 𝑥1(𝑡) and 𝑥2(𝑡),
respectively. We remove the time index and represent these
signals by 𝑥1 and 𝑥2 in order to simplify the notation. At the
𝑖th relay, the received signal is expressed as

[ℜ(𝑦ℝ𝑖)ℑ(𝑦ℝ𝑖)

]
=

√
𝑃

[ℜ(ℎ𝑖)ℜ(𝑔𝑖)
ℑ(ℎ𝑖)ℑ(𝑔𝑖)

] [
𝑥1

𝑥2

]
+

[ℜ(𝑛𝑖)
ℑ(𝑛𝑖)

]
. The corre-

sponding decoded signal-vector results that made the modular
condition (3) invalid are

[−𝑥1
𝑥2

]
and

[ 𝑥1−𝑥2

]
. Given that

[
𝑥1
𝑥2

]
has been transmitted, the probability that the detected signal
vector being

[−𝑥1
𝑥2

]
can be shown equal to [19, Sect. A.2]

Pr
([−𝑥1

𝑥2

]∣[ 𝑥1
𝑥2

])≈Q
(
∥
√
𝑃
[ℜ(ℎ𝑖) ℜ(𝑔𝑖)
ℑ(ℎ𝑖) ℑ(𝑔𝑖)

][
𝑥1
𝑥2

]
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Fig. 5. The simulated FER and the approximated FER for an O-TR two-
way relaying system. All systems employ BPSK modulation. Frame length
𝑁 = 2, 4, 6. (a) A 2-relay system; (b) a 4-relay system.

−
√
𝑃
[ℜ(ℎ𝑖) ℜ(𝑔𝑖)
ℑ(ℎ𝑖) ℑ(𝑔𝑖)

][−𝑥1
𝑥2

] ∥2 /(2√1/2)
)

= Q(
√

2∣ℎ𝑖∣2𝛾)
where Q(⋅) is the Q-function. In the above derivation, we
have made use of the fact that ∣𝑥1∣ = 1. Similarly, we have
Pr

([ 𝑥1−𝑥2

]∣[ 𝑥1
𝑥2

]) ≈ Q(
√

2∣𝑔𝑖∣2𝛾). Therefore the frame error
rate of the signal frame detection at the relay ℝ𝑖 is calculated

by 𝑝𝑟𝑖∣ℎ𝑖,𝑔𝑖 ≈ 1 −
(
1−Q(

√
2∣ℎ𝑖∣2𝛾) −Q(

√
2∣𝑔𝑖∣2𝛾)

)𝑁

≈
1−

(
1−Q(

√
2min(∣ℎ𝑖∣2, ∣𝑔𝑖∣2)𝛾)

)𝑁

.

APPENDIX B: APPROXIMATION OF GAUSSIAN

Q-FUNCTION

Using the approximations in [20], we can express the Gaus-
sian Q-function as exp(−𝑥2

2 )
∑𝑚𝑎

𝑚=1 𝑐𝑚𝑥
𝑚−1 where 𝑐𝑚 =

(−1)𝑚+1𝐴𝑚

𝐵
√
𝜋(

√
2)𝑚+1𝑚!

; and can approximate the 𝑛-th power of the
Gaussian Q-function by

Q𝑛(𝑥) ≈ exp(−𝑛𝑥2/2)(
𝑚𝑎∑
𝑚=1

𝑐𝑚𝑥
𝑚−1)𝑛

= exp(−𝑛𝑥2/2)
∑

𝑙1,𝑙2,...,𝑙𝑚𝑎 s.t. 𝑙1+𝑙2+⋅⋅⋅+𝑙𝑚𝑎=𝑛

𝛼𝑛𝛽𝑛𝑥
𝜇𝑛

(21)

where 𝛼𝑛 = 𝑛!/(𝑙1!𝑙2! . . . 𝑙𝑚𝑎 !), 𝛽𝑛 = (𝑐1)
𝑙1 . . . (𝑐𝑚𝑎)

𝑙𝑚𝑎 and
𝜇𝑛 = 𝑙2+2𝑙3+ ⋅ ⋅ ⋅+(𝑚𝑎−1)𝑙𝑚𝑎 . In our analysis, we employ
the following parameters: 𝑚𝑎 = 8, 𝐴 = 1.98 and 𝐵 = 1.135,
which has been found to be a good setting in approximating
the Q-function [20].
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